Volume 14 (2008)

Download this article
For screen
For printing
Recent Volumes
Volume 1, 1998
Volume 2, 1999
Volume 3, 2000
Volume 4, 2002
Volume 5, 2002
Volume 6, 2003
Volume 7, 2004
Volume 8, 2006
Volume 9, 2006
Volume 10, 2007
Volume 11, 2007
Volume 12, 2007
Volume 13, 2008
Volume 14, 2008
Volume 15, 2008
Volume 16, 2009
Volume 17, 2011
Volume 18, 2012
Volume 19, 2015
The Series
All Volumes
 
About this Series
Ethics Statement
Purchase Printed Copies
Author Index
ISSN 1464-8997 (online)
ISSN 1464-8989 (print)
 
MSP Books and Monographs
Other MSP Publications

A Magnus theorem for some one-relator groups

Oleg Bogopolski and Konstantin Sviridov

Geometry & Topology Monographs 14 (2008) 63–73

DOI: 10.2140/gtm.2008.14.63

arXiv: 0904.1143

Abstract

We will say that a group G possesses the Magnus property if for any two elements u,v∈ G with the same normal closure, u is conjugate to v or v-1. We prove that some one-relator groups, including the fundamental groups of closed nonorientable surfaces of genus g>3 possess this property. The analogous result for orientable surfaces of any finite genus was obtained by the first author [Geometric methods in group theory, Contemp. Math, 372 (2005) 59-69].

Keywords

fundamental group, normal closure, amalgamated product

Mathematical Subject Classification

Primary: 20F34

Secondary: 20E45

References
Publication

Received: 29 April 2006
Accepted: 9 November 2006
Published: 29 April 2008

Authors
Oleg Bogopolski
Fachbereich Mathematik
Universität Dortmund
Vogelpothsweg 87
Dortmund, 44227
Germany
http://www.mathematik.uni-dortmund.de/lsvi/bogopolski/index.html
Konstantin Sviridov
Institute of Mathematics of SBRAS
Koptjuga 4
Novosibirsk, 630090
Russia