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Preface

This book is devoted to the study of moduli spaces of Seiberg—Witten monopoles over
spin® Riemannian 4-manifolds with long necks and/or tubular ends. The original
purpose of this work was to provide analytical foundations for a certain construction of
Floer homology of rational homology 3—spheres; this is carried out in [23]. However,
along the way the project grew, and except for some of the transversality results, most
of the theory is developed more generally than is needed for that construction. Floer
homology itself is hardly touched upon in this book, and to compensate for that I
have included another application of the analytical machinery, namely a proof of a
“generalized blow-up formula” which is an important tool for computing Seiberg—Witten
invariants.

The book is divided into three parts. Part I is almost identical to my paper [22]. The
only significant change is the addition of Proposition 3.4.2 and Lemma 8.1.2. The other
two parts consist of previously unpublished material. Part II is an expository account of
gluing theory including orientations. The main novelties here may be the formulation
of the gluing theorem and the approach to orientations. In Part III the analytical results
are brought together to prove the generalized blow-up formula. A detailed description
of the contents of the book is provided by the introductions to each part.

At least on a formal level there are many analogies with the instanton theory, and at some
places, most notably in Chapters 2 and 6, I have borrowed ideas from Donaldson’s book
[14]. Furthermore, the approach to orientations uses a concept of Benevieri—Furi [8]
which I learnt about from Shuguang Wang [51].

About a year after the manuscript to this book was submitted, the book of Kronheimer—
Mrowka [31] appeared, which takes the subject much further, using an entirely new
approach involving certain blown-up configuration spaces. It is hoped that the present
text may complement their work by giving a thorough discussion of ordinary moduli
spaces (as opposed to the blown-up ones). Our setup is less general than that of [31]
in that “balanced” perturbations of the Chern—Simons—Dirac functional (using their
terminology) are ruled out when the underlying 3—manifold has Betti number b; > 0.

vii



viii Preface

On the other hand, this book in some ways goes further in investigating compactness
in the presence of “nonexact” perturbations, introducing a second technique in addition
to the standard one based on the energy concept. As for the blow-up formula, this can
be proved using Floer homology as is done in [31], but the proof given here is a lot
more elementary.

Part of this work was carried out in 2001-2 during a stay at the Institut des Hautes
Etudes Scientifiques, and the author is grateful for the hospitality and excellent research
environment which he enjoyed there. This work was also partially supported by grants
from the National Science Foundation and the DFG (German Research Foundation) as
well as by the CRC 701 at the University of Bielefeld.

Geometry & Topology Monographs, Volume 15 (2008)



Part I

Compactness

Let Z be a closed, oriented 4—manifold equipped with a spin—structure. Suppose Z
is separated by a closed hypersurface Y, say

Z = Z, Uy Z>.

Then one may attempt to express the Seiberg—Witten invariant of Z in terms of relative
invariants of the two pieces Z1, Z,. The standard approach, familiar from instanton
Floer theory (see Floer [19] and Donaldson [14]), is to construct a 1—parameter family
{gT} of Riemannian metrics on Z by stretching along Y so as to obtain a neck
[-T,T]x Y, and study the monopole moduli space M ) over (Z, gr) for large T .
There are different aspects of this problem: compactness, transversality and gluing.
In this part of the book we will focus particularly on compactness, and also establish
transversality results sufficient for the construction of Floer homology groups of rational
homology 3-spheres.

Let the monopole equations over the neck [—7,T] x Y be perturbed by a closed
2—form 1 on Y, so that temporal gauge solutions to these equations correspond to
downward gradient flow lines of the correspondingly perturbed Chern—Simons—Dirac
functional 1%, over Y . Suppose all critical points of 1}, are nondegenerate. Because
each moduli space M ™) js compact, one might expect, by analogy with Morse theory,
that a sequence w, € M (Tw) where T, n — 00 has a subsequence which converges, in a
suitable sense, to a pair of monopoles over the cylindrical-end manifolds associated to
Zy, Z, together with a broken gradient line of ¢;, over R x Y. Unfortunately, this kind
of compactness may fail when 7 is nonexact. (A simple class of counter-examples is
described after Theorem 1.4.1 below.) It is then natural to seek topological conditions
which ensure that compactness does hold. We will consider two approaches which
provide different sufficient conditions. In the first approach, which is essentially well



known, one first establishes global bounds on a certain energy functional and then
derives local L2 bounds on the curvature forms. In the second approach, which appears
to be new, one begins by placing the connections in Coulomb gauge with respect to
a given reference connection and then obtains global bounds on the corresponding
connection forms in suitably weighted Sobolev norms, utilizing the apriori pointwise
bounds on the spinors.

The energy concept is particularly well explained by Kronheimer—Mrowka [31], who
discuss compactness (for blown-up moduli spaces) for exact and nonexact 1. The
important case when Y is a circle times a surface of genus g was studied by Morgan—
Szab6-Taubes [40] (when g > 1) and Taubes [48] (when g = 1), in both cases with n
nonexact. Other sources are Nicolaescu [41] (with n = 0) and Marcolli-Wang [36]
(with n exact).

In the transversality theory of moduli spaces we mostly restrict ourselves, for the
time being, to the case when all ends of the 4—manifold in question are modelled on
rational homology spheres. The perturbations of the monopole equations on the ends
are minor modifications of the ones introduced in [21]. (It is not clear to us that these
perturbations immediately carry over to the case of more general ends, as has apparently
been assumed by some authors, although we expect that a modified version may be
shown to work with the aid of gluing theory.) In the language of finite dimensional
Morse theory our approach is somewhat analogous to perturbing the gradient vector
field away from the critical points. In contrast, [31] uses more general perturbations
of the Chern—Simons—Dirac functional but retains the gradient flow property of the
equations.

This part also contains expository chapters on configuration spaces and exponential
decay.
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CHAPTER 1

Compactness theorems

1.1 Vanishing results

Before describing our compactness results in more detail we will mention two applica-
tions to Seiberg—Witten invariants of closed 4—manifolds.

By a spin® manifold we shall mean an oriented smooth manifold with a spin® structure.
If Z is a spin® manifold then —Z will refer to the same smooth manifold equipped
with the opposite orientation and the corresponding spin® structure.

If Z is a closed, oriented 4—manifold then by an homology orientation of Z we mean
an orientation of the real vector space H*(Z)* @ H'(Z)® H*(Z)*, where H*(Z)
is any maximal positive subspace for the intersection form on H?(Z). The dimension
of HY is denoted b .

In [7] Bauer and Furuta introduced a refined Seiberg—Witten invariant for closed spin®
4—manifolds Z . This invariant SW (Z) lives in a certain equivariant stable cohomotopy
group. If Z is connected and b (Z) > 1, and given an homology orientation of Z, then
according to Bauer [5] there is a natural homomorphism from this stable cohomotopy
group to Z which maps SW (Z) to the ordinary Seiberg—Witten invariant SW(Z)
defined by the homology orientation. In [6] Bauer showed that, unlike the ordinary
Seiberg—Witten invariant, the refined invariant does not in general vanish for connected
sums where both summands have b+ > 0. However, §W(Z ) = 0 provided there exists
a metric and perturbation 2—form on Z for which the Seiberg—Witten moduli space
Mz is empty (see Bauer [5, Remark 2.2] and Ishida—LeBrun [27, Proposition 6]).



4 1 Compactness theorems

Theorem 1.1.1 Let Z be a closed spin® 4-manifold and Y C Z a 3—dimensional
closed, orientable submanifold. Suppose

(i) Y admits a Riemannian metric with positive scalar curvature,
(i) H*(Z;Q)— H?*(Y;Q) is nonzero.

Then there exist a metric and perturbation 2—form on Z for which M z is empty, hence
SW(Z)=0.

This generalizes a result of Fintushel-Stern [17] and Morgan—Szab6—Taubes [40] which
concerns the special case when ¥ a~ S! x S? is the link of an embedded 2—sphere of
self-intersection 0. One can derive Theorem 1.1.1 from Nicolaescu’s proof [41] of their
result and the classification of closed orientable 3—manifolds admitting positive scalar
curvature metrics (see Lawson—Michelson [33, p 325]). However, we shall give a direct
(and much simpler) proof where the main idea is to perturb the monopole equations on
Z by a suitable 2—form such that the corresponding perturbed Chern—Simons—Dirac
functional on Y has no critical points. One then introduces a long neck [-7, T|x Y.
See Chapter 9 for details.

We now turn to another application, for which we need a little preparation. For any
compact spin® 4—manifold Z whose boundary is a disjoint union of rational homology
spheres set

d(2) = (/L2 = 0(2) +51(2) ~b*(2),

Here Lz is the determinant line bundle of the spin® structure, and o (Z) the signature
of Z. If Z is closed then the moduli space Mz has expected dimension d(Z)—by(Z).

In [23] we will assign to every spin® rational homology 3—sphere Y a rational number
h(Y). (A preliminary version of this invariant was introduced in [21].) In Chapter 9
this invariant will be defined in the case when Y admits a metric with positive scalar
curvature. It satisfies #(—Y) = —h(Y). In particular, 4(S3) = 0.

Theorem 1.1.2 Let Z be a closed, connected spin® 4-manifold, and let W C Z be a
compact, connected, codimension 0 submanifold whose boundary is a disjoint union of
rational homology spheres Y1, ...,Y,, r > 1, each of which admits a metric of positive
scalar curvature. Suppose b (W) > 0 and set W€ = Z \ int W . Let each Y; have the
orientation and spin® structure inherited from W . Then the following hold:

i If2 Zj h(Y;) < —d(W) then there exist a metric and perturbation 2—form on
Z for which M z is empty, hence SW(Z) = 0.
(i) Ifb+(Z)>1 and ZZJ- h(Y;) <d(W€) then SW(Z) = 0.
Note that (ii) generalizes the classical theorem (see Salamon [44] and Nicolaescu [41])
which says that SW(Z) = 0 if Z is a connected sum where both sides have b* > 0.

Geometry & Topology Monographs, Volume 15 (2008)



1.2 The Chern—-Simons—Dirac functional 5

1.2 The Chern-Simons-Dirac functional

Let Y be a closed, connected Riemannian spin® 3-manifold. We consider the Seiberg—
Witten monopole equations over R x Y, perturbed by adding a 2—form to the curvature
part of these equations. This 2—form should be the pullback of a closed form 7 on Y.
Recall from [30; 40] that in temporal gauge these perturbed monopole equations can be
described as the downward gradient flow equation for a perturbed Chern—Simons—Dirac
functional, which we will denote by 1, or just  when no confusion can arise.

For transversality reasons we will add a further small perturbation to the monopole
equations over R x Y, similar to that introduced in [21, Section 2]. This perturbation
depends on a parameter p (see Section 3.3). When p # 0 the perturbed monopole
equations are no longer of gradient flow type. Therefore, p has to be kept small in
order for the perturbed equations to retain certain properties (see Section 4.2).

If S is a configuration over Y (ie a spin connection together with a section of the spin
bundle) and u: Y — U(1) then

Fu(S)) —H(S) = 27r/Yﬁ/\[u], (1.1)

where [u] € H'(Y) is the pullback by u of the fundamental class of U(1), and
i=mci(Ly)—[n e H(Y). (1.2)
Here Ly is the determinant line bundle of the spin® structure of Y .

Let Ry be the space of (smooth) monopoles over Y (ie critical points of ) modulo
all gauge transformations ¥ — U(1), and Ry the space of monopoles over ¥ modulo
null-homotopic gauge transformations.

When no statement is made to the contrary, we will always make the following two
assumptions:
(O1) 7 is areal multiple of some rational cohomology class.

(02) All critical points of ¢ are nondegenerate.

The second assumption implies that Ry is a finite set. This rules out the case when
7 =0 and b1(Y) > 0, because if 7 = 0 then the subspace of reducible points in
Ry is homeomorphic to a by (Y)—dimensional torus. If 77 # 0 or b{(Y) = 0 then
the nondegeneracy condition can be achieved by perturbing 1 by an exact form (see
Proposition 8.1.1).

For any «, f € Ry let M (e, B) denote the moduli space of monopoles over R x Y
that are asymptotic to & and 8 at —oo and oo, respectively. Set M = M /R, where

Geometry & Topology Monographs, Volume 15 (2008)



6 1 Compactness theorems

R acts by translation. By a broken gradient line from « to f we mean a sequence
(w1,...,wr) where k > 0 and w; € M(ozj_l,ozj) for some ayg,...,0 € Ry with
ag=a, oy =f,and oj_ # o foreach j. If o = B then we allow the empty broken
gradient line (with k = 0).

1.3 Compactness

Let X be a spin® Riemannian 4-manifold with tubular ends I@+ xYj, j=1...r,
where r > 0 and each Y; is a closed, connected Riemannian spin® 3-manifold. Setting
Y ={J; Y; this means that we are given

e an orientation preserving isometric embedding 1: Ry x ¥ — X such that
X=X \t((t,00)xY) (1.3)
is compact for any ¢ > 0,

e an isomorphism between the spin® structure on R4 x Y induced from Y and
the one inherited from X via the embedding ¢.

Here R+ is the set of positive real numbers and Ry =R, U{0}. Usually we will just
regard R4 x Y as a (closed) submanifold of X .

Let nj be a closed 2—form on Y; and define 7j; € H?(Y;) in terms of n; as in (1.2). We
write ¢ instead of #,;, when no confusion is likely to arise. We perturb the curvature
part of the monopole equations over X by adding a 2—form p whose restriction
to R4 x Y; agrees with the pullback of ;. In addition we perturb the equations
over R x ¥} and the corresponding end of X using a perturbation parameter p;. If
a=(ay,....0p) with o € 7%1/]. let M(X;a) denote the moduli space of monopoles
over X that are asymptotic to «j over Ry x Y;.

Let Aq,..., A, be positive constants. We consider the following two equivalent condi-
tions on the spin® manifold X and 7;,A;:

(A) There exists a class Z € H?(X;R) such that Zly, = Ajmj for j=1,...,r.

(A") For configurations S over X.o the sum ) i %iV(S|{o3xy;) depends only on the
gauge equivalence class of S'.

Note that if A; = 1 for all j then (A) holds precisely when there exists a class
z € H*(X:;R) such that z|y, =[n;] for j =1,....r.

Geometry & Topology Monographs, Volume 15 (2008)



1.4 Compactness and neck-stretching 7

Theorem 1.3.1 If Condition (A) is satisfied and each p; has sufficiently small C !
norm then the following holds. Forn = 1,2, ... let w, € M(X;ay), where a, =

(@n1se e Otny). I

,
ingAjﬁ(an,jp—oo (1.4)

j=1
then there exists a subsequence of w, which chain-converges to an (r + 1)—tuple
(w,01,...,0,) where w is an element of some moduli space M (X ; ,é) and Vj is a
broken gradient line over R x Y; from B; to some y; € ﬁYj . Moreover, if w, chain-
converges to (w, vy, . .., Uy) then for sufficiently large n there is a gauge transformation

un: X — U(1) which is translationary invariant over the ends and maps M (X ; &) to
M(X;7).

The Equation (1.4) imposes an “energy bound” over the ends of X', as we will show in
Section 7.2. The notion of chain-convergence is defined in Section 7.1. The limit, if it
exists, is unique up to gauge equivalence (see Proposition 7.1.2 below).

1.4 Compactness and neck-stretching

In this section cohomology groups will have real coefficients.

We consider again a spin® Riemannian 4-manifold X as in the previous section,
but we now assume that the ends of X are given by orientation preserving isometric
embeddings

t;-:I?R_Fx)/j/—)X, j=1,....r,

FiRyx(EY) > X, j=1...r,
where r, 7’ > 0. Here each Yj’ , Y; should be a closed, connected spin® Riemannian
3—manifold, and as before there should be the appropriate identifications of spin®
structures. For every T = (Ty,...,T,) with T; > 0 for each j, let XD denote the
manifold obtained from X by gluing, for j = 1,...,r, the two ends L]:.t (Ry xYj)

to form a neck [T, Tj] x Y;. To be precise, let X7} € X be the result of deleting
from X the sets L]:-b([sz,oo) xYj), j=1,...,r.Set

x( — X{T}/ ~,

where we identify
L]—'i_(tv y) ~ Lj_(zj} —1, J’)

Geometry & Topology Monographs, Volume 15 (2008)



8 1 Compactness theorems

for all (¢, y) € (0,27j) xY; and j =1,...,r. We regard [T}, T;] x Y; as a sub-
manifold of XT) by means of the isometric embeddmg t,y)— JTTL+(I +7;,y),

where 77: X7 — X(T) | Also, we write Ry x (£Y;) instead of Li(RJ’_ xYj), and
similarly for R4 x Y’ if this is not likely to cause any confusion.

Set X* = XT) with T; =1 for all j. The process of constructing X # from X (as
smooth manifolds) can be described by the unoriented graph y which has one node for
every connected component of X and, for each j =1,...,r, one edge representing
the pair of embeddings tj:-t

A node in an oriented graph is called a source if it has no incoming edges. If e is any
node in y let X, denote the corresponding component of X . Let Z, = (X,).; be the
corresponding truncated manifold as in (1.3). Let y \ e be the graph obtained from y by
deleting the node e and all edges of which e is a boundary point. Given an orientation
o of y let 0~ Z, denote the union of all boundary components of Z, corresponding
to incoming edges of (y,0). Let F, be the kernel of H'(Z,) — H'(0~Z,), and set

S(X.y.0) =dim H'(X*) =) "dim F,.
e

It will follow from Lemma 5.3.1 below that 3 (X, y, 0) <0 if each connected component
of y is simply connected.

We will now state a condition on (X, y) which is recursive with respect to the number
of nodes of y.

(C) If y has more than one node then it should admit an orientation o such that the
following two conditions hold:
e 3(X,y,0)=0.
¢ Condition (C) holds for (X \ X,y \ e) for all sources e of (y,0).

We are only interested in this condition when each component of y is simply connected.
If y is connected and has exactly two nodes ey, e, then (C) holds if and only if
H'(X*) - H! (Z.;) is surjective for at least one value of j, as is easily seen from
the Mayer—Vietoris sequence. See Section 5.3 and the proof of Proposition 5.4.2 for
more information about Condition (C).

Let the Chern—Simons—Dirac functionals on Y, Yj/ be defined in terms of closed
2—forms 7n;, 17;. respectively. Let 7; and ﬁ; be the corresponding classes as in (1.2).
Let Ay,...,A, and )‘/1’ ... ,)L’r, be positive constants. The following conditions on
X, 175, ﬁ}, )»j,)\} will appear in Theorem 1.4.1 below.

(B1) There exists a class in H?(X*#) whose restrictions to Y; and Yj/ are [n;] and

[n}], respectively, and all the constants A;, A} are equal to 1.

Geometry & Topology Monographs, Volume 15 (2008)



1.4 Compactness and neck-stretching 9

(B2) There exists a class in H?(X*) whose restrictions to ¥; and Yj/ are A;7; and
A} 77'; , respectively. Moreover, the graph y is simply connected, and Condition (C)
holds for (X, y).

Choose a 2—form p on X whose restriction to each end Ry x (£Y;) is the pullback
of 1;, and whose restriction to R4 x Y/ is the pullback of r] Such a form p gives
rise, in a canonical way, to a form £ on X ™). We use the forms w, 0T to perturb
the curvature part of the monopole equations over X, X @, respectively. We use
the perturbation parameter p} over R x Yj’ and the corresponding ends, and p; over
R x ¥; and the corresponding ends and necks.

Moduli spaces over X will be denoted M (X ; @+,a—,a’), where the j—th Component
of a4 specifies the limit over the end R4 x (:i:YJ) and the j—th component of o’
specifies the limit over R 4 X Yj/ . We set

Twin ;= min(77, ..., Ty).
If we are given a sequence 7'(n) of r—tuples, we write

Twin(m) :=min(T; (n), ..., Tr(n)).

Theorem 1.4.1 Suppose at least one of the conditions (B1), (B2) holds, and for
n=1,2,... letw, e M(XT); 3"y, where a, = (ozn 1o e e Oy ) and Tiyin(n) — 00
as n — 0o. Suppose also that the perturbation parameters p j,p} are admissible for
each a),, and that

inf » A.9(a), ;) > —o0.
nf ) A e, )
j=1

Then there exists a subsequence of w, which chain-converges to an (r + r’ + 1)—tuple
V = (w,Vy,...,0,V],....0,,), where

e o is an element of some moduli space M (X ; a1, a», '),

. 17]- is a broken gradient line over R x Y; from ay; to as;,

. 17]’. is a broken gradient line over R x Y] from f to some y] € Ry’

J

Moreover, if w, chain-converges to V then for sufficiently large n there is a gauge
transformation u,: X T™) — U(1) which is translationary invariant over the ends and

maps M(XT@): Gy to M(XT@); 37).

The notion of chain-convergence is defined in Section 7.1. Note that the chain-limit is
unique only up to gauge equivalence; see Proposition 7.1.2.

Geometry & Topology Monographs, Volume 15 (2008)



10 1 Compactness theorems

What it means for the perturbation parameters p;, p} to be “admissible” is defined in
Definition 7.1.3. As in Theorem 1.3.1, if (B2) holds and the perturbation parameters
have sufficiently small C! norm then they are admissible for any a’; see Proposition
5.4.2. If (B1) is satisfied but perhaps not (B2) then for any C; < oo thereisa Cy > 0
such that if the perturbation parameters have C! norm < C, then they are admissible
for all @’ satisfying Z]r/:l A:9(a;) > —Cy; see the remarks after Proposition 4.3.1.

The conditions (B1), (B2) in the theorem correspond to the two approaches to com-
pactness referred to at the beginning of this introduction: If (B1) is satisfied then one
can take the “energy approach”, whereas if (B2) holds one can use the “Hodge theory
approach”

The conclusion of the theorem does not hold in general when neither (B1) nor (B2) are
satisfied. For in that case Theorem 1.1.1 would hold if instead of (ii) one merely assumed
that b;(Y) > 0. Since R* contains an embedded S! x S? this would contradict the
fact that there are many spin® 4-manifolds with 5% > 1 and nonzero Seiberg—Witten
invariant.

For the moment we will abuse language and say that (B2) holds if it holds for some
choice of constants A j,k}, and similarly for (B1). Then a simple example where
(B1) is satisfied but not (B2) is X = R x Y, where one glues the two ends to obtain
XM =R /2T 7) x Y . There are also many examples where (B2) is satisfied but not
(B1). For instance, consider the case when X consists of two copies of R x Y, say
X =RxY x{l1,2} with Y connected, and one glues R x Y x {1} with R_xY x{2}.
In this case r = 1 and r’ = 2, so we are given closed 2—forms 7, 7},75 on Y.
Condition (B1) now requires that these three 2—forms represent the same cohomology
class, while (B2) holds as long as there are a;,a, > 0 such that [n;] = a,[n}] = az2[n}].
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CHAPTER 2

Configuration spaces

2.1 Configurations and gauge transformations

Let X be a Riemannian n—manifold with tubular ends I@+ xYj, j=1,...,r, where
n=>1,r >0, and each Y; is a closed, connected Riemannian (7 — 1)—-manifold. This
means that we are given for each j an isometric embedding

iRy x Y — X;

moreover, the images of these embeddings are disjoint and their union have precompact
complement. Usually we will just regard Ry x ¥; as a submanifold of X. Set
Y:Uij and, for t > 0,

X=X\ (t,00) x Y.

Let S — X and S; — Y; be Hermitian complex vector bundles, and L — X and
Lj — Y; principal U(1)-bundles. Suppose we are given, for each j, isomorphisms

*q ~° o xry ¥ 5
;S >Ry xS, L—>RyxLj.

By a configuration in (L,S) we shall mean a pair (4, ) where A is a connection in
L and ® a section of S. Maps u: X — U(1) are referred to as gauge transformations
and these act on configurations in the natural way:

u(A,®) = (u(A), ud).
The main goal of this chapter is to prove a “local slice” theorem for certain orbit spaces

of configurations modulo gauge transformations.

11



12 2 Configuration spaces

We begin by setting up suitable function spaces. For p > 1 and any nonnegative integer
m let L5, (X) be the completion of the space of compactly supported smooth functions
on X with respect to the norm

m 1/p
1 o =171 f,,=( |ka|p) |
» =171 ;)/X

Here the covariant derivative is computed using some fixed connection in the tangent
bundle TX which is translationary invariant over each end. Define the Sobolev space
L2 (X:S) of sections of S similarly.

We also need weighted Sobolev spaces. For any smooth function w: X — R set
LEY(X)=e"LE(X) and

_ w
I g = Ne® flipg,-

In practice we require that w have a specific form over the ends, namely
wotj(t,y) =ojt,
where the o7 ’s are real numbers.

The following Sobolev embeddings (which hold in R”, hence over X ') will be used
repeatedly:
LY cLy ifp=n/2,m=0,
Lg CCg if p>n/2.
Here Cg denotes the Banach space of bounded continuous functions, with the supre-
mum norm. Moreover, if pm > n then multiplication defines a continuous map
Ly x Ly — Ly for 0 <k <m.

For the remainder of this chapter fix p > n/2.
Note that this implies Lf C L? over compact n—manifolds.

We will now define an affine space C of Lf oc configurations in (L, S). Let A, be
a smooth connection in L. Choose a smooth section ®, of S whose restriction to
R4 x Y is the pullback of a section ¥; of S;. Suppose ¥; = 0 for j < r¢, and
Vi # 0 for j > ro, where r¢ is a nonnegative integer.. Fix a weight function w as
above with 0; > 0 small for all j, and o; > 0 for j <rg. Set

C={(4o+a,®,+¢) : a,¢eLf’w}.

We topologize C using the Lf " metric.
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2.2 The Banach algebra 13

We wish to define a Banach Lie group G of Lg loc 2auge transformations over X such
that G acts smoothly on C and such that if S,S” € C and u(S) =S’ for some LY,
gauge transformations u then u € G. If u € G then we must certainly have

(—u~"du, (u—1)@p) = u(Ap, D) — (Ao, @) € L.

Now

ldul|pw < const- (lu™" dullLp-w + |u~" du|zpw), 2.1)
and vice versa, ||du||Lr controls ||u_1du||L11’sw , SO we try

G={ue Lé’,loc(X;U(l)) Ddu, (u—1)®, € L7}

By Lé”loc(X; U(1)) we mean the set of elements of Lg’loc (X; C) that map into U(1).

We will see that G has a natural smooth structure such that the above criteria are
satisfied.

(This approach to the definition of G was inspired by Donaldson [14].)

2.2 The Banach algebra

Let X be a finite subset of X which contains at least one point from every connected
component of X where ®, vanishes identically.

Definition 2.2.1 Set

E={felL?

3 10e(X5C) 1 df, [, € LYY},

and let £ have the norm

1/ lle = lldf Ly + 1 f @ollLye + D [ f ().

XEX

We will see in a moment that £ is a Banach algebra (without unit if 7y < r). The next
lemma shows that the topology on & is independent of the choice of ®, and X.

Lemma 2.2.1 Let Z C X be a compact, connected codimension 0 submanifold.

(1) If ®,|z #£ O then there is a constant C such that
[urr=c [ jarrsisenr @)
z z

forall /e L¥(Z).

Geometry & Topology Monographs, Volume 15 (2008)



14 2 Configuration spaces

(i) There are constants Cy, C, such that

|f(z2) = f (D] = Cilldf | 2r(z) = Calldf [l (z)

fora]lfeLé’(Z) and z1,z, € Z.

Proof Part (i) follows from the compactness of the embedding Lf (Z)—> L?(Z). The
first inequality in (ii) can either be deduced from the compactness of pr (Z2)—=C%2),
or one can prove it directly, as a step towards proving the Rellich lemma, by considering
the integrals of df along a suitable family of paths from z; to z,. O

Lemma 2.2.2 Let Y be a closed Riemannian manifold, and o > 0.

(i) Ifg>1and f: Ry xY — R isa C! function such that lim; e f(t,y) =0
forall y € Y then

1/ Lao@®sxyy <0~ 101 f | Lao®oxy)-

(i) Ifg>1,T>1,and f:[0,T]xY — R isa C! function then

1S Laqr-1.71x¥) < | follagry + (@r) 71181 £ || Lawo qo.77x7)
where fo(y) = f(0,y) and 1/g+1/r =1.

Here 0, is the partial derivative in the first variable, ie in the R4 coordinate.

Proof Part (i) follows from:

q 1/q
1f o @ xr) = ( /R ) dr dy)
+X

00 1/q
E/ (/ |e”’81f(s+t,y)|thdy) ds
0 RyxY

00 1/q
(/ e %8 ds) (/ 1e7CHD9, f(s +1, p)| dt dy)
0 RixY

<o 01 fllLao®yx)-

/ e f(s+t,y)ds
0

A

Part (ii) follows by a similar computation. a

Parts (i)—(iv) of the following proposition are essentially due to Donaldson [14].

Proposition 2.2.1 (i) There is a constant Cy such that, for all f € £,

1 flloo = C1ll S e

Geometry & Topology Monographs, Volume 15 (2008)



2.3 The infinitesimal action 15

(ii) Forevery f €& and j =1,...,r therestriction f|yxy; converges uniformly
to a constant function fU) ast — oo, and fU) =0 for j > ry.

(iii) There is a constant C, such that if f € £ and f(j) = for all j then
ALz < Gl flle-

(iv) There is an exact sequence

0 L2" Se5 o,

where ¢ is the inclusion and e(f) = (f O, ..., f00).

(v) €& is complete, and multiplication defines a continuous map £ x £ — £.

Proof First observe that for any f € Lg loc(X) and € > 0 there exists a g € C*°(X)

such that ||g — f|z-» < €. Therefore it suffices to prove (i)—(iii) when f € & is
smooth. Part (i) is then a consequence of Lemma 2.2.1 and Lemma 2.2.2 (ii), while
Part (ii) for ro < j < r follows from Lemma 2.2.1.

We will now prove (ii) when 1 < j <rg. Let f € £ be smooth. Since f]RerYj |df | < oo
by the Holder inequality, we have

[e.e]
/ [01 f(z, y)| dt < o0 forae. y €Yj.
0

For n € N set fu = f|n—1,n+1]xy; - regarded as a functionon B =[n—1,n+1]xY;.
Then { f,} converges a.e., so by Egoroff’s theorem { f;,} converges uniformly over
some subset 7" C B of positive measure. There is then a constant C > 0, depending
on 7', such that for every g € Lf (B) one has

[rer=c( [ s+ [ 1er).

It follows that { f,} converges in Lg over B, hence uniformly over B, to some constant
function.

Part (iii) follows from Lemma 2.2.1 and Lemma 2.2.2 (i). Part (iv) is an immediate
consequence of (ii) and (iii). It is clear from (i) that £ is complete. The multiplication
property follows easily from (i) and the fact that smooth functions are dense in £. O

2.3 The infinitesimal action

If f: X — iR and ® is a section of S we define a section of iA! &S by
I f = (=df. f®)

Geometry & Topology Monographs, Volume 15 (2008)



16 2 Configuration spaces

whenever the expression on the right makes sense. Here A¥ denotes the bundle of
k—forms (on X, in this case). If S = (A, ®) is a configuration then we will sometimes
write Zg instead of Zg. Set

1:=1sp,.
If @ is smooth then the formal adjoint of the operator Zg is
Ii(a. @) =—d*a+i(i®. )R,

where (-, - )R is the real inner product on S. Note that

I3Te = A+|D|?
where A is the positive Laplacian on X .
Set LG:={f €& : f mapsinto iR}.
From Proposition 2.2.1 (i) we see that the operators

Ie: LG— LYY, Ig: LYY —LPY

are well defined and bounded for every ® € &, + Lf Y (X;S).

Lemma 2.3.1 Forevery ® € &, + Lf Y(X;S), the operators 73Ze and I have
the same kernel in LG.

Proof Choose a smooth function 8: R — R such that f(¢) =1fort <1, f(t) =0
for t > 2. For r > 0 define a compactly supported function

Bri X —>R

by Brlx, = 1.and By (t.y) = B(t/r) for (1.y) € Ry x Y.

Now suppose f € LG and Z37¢ f = 0. Proposition 2.2.1 (i) and elliptic regularity
gives f € Lé’ loc» SO We certainly have

Tofel? CLE.

1,loc

Clearly, 1Ze fl2 < lirn_l)icgf 1Zo (Br /) l2-

Over R4 x Y; we have

I3Te = —01 + Ay, + @,

Geometry & Topology Monographs, Volume 15 (2008)



2.3 The infinitesimal action 17

where d; = % and Ay; is the positive Laplacian on ¥}, so

1Ze(Br )3 = /X TiTo(Br /) Br f
_ 2 . 7
- ,Z /R (@B 42008000 18
<1 f F2B" (1) r) di
0
00 1/q
+ Ol Nl Iy ( f Ir‘lﬁ/(t/r)l"dt)
0
2 2

< 2 —1 " 1—q / q
_Czllfllg(r [ widu+re [ du)

—0asr — oo,

where Cy, C, > 0 are constants and 1/p +1/g = 1. Hence Zg f = 0. |
Lemma 2.3.2 7*7: L‘z”w(X) — L9 (X) is Fredholm of index —rg, for 1 <gq < oo.

Proof Because Z*Z is elliptic the operator in the Lemma is Fredholm if the operator
—37 + Ay, + |yj|% LYY — L9, (2.3)

acting on functions on R x Y}, is Fredholm for each j. The proof of [14, Proposi-
tion 3.21] (see also Lockhart-McOwen [34]) can be generalized to show that (2.3) is
Fredholm if ajz is not an eigenvalue of Ay, +[V; |2. Since we are taking oj >0 small,
and o; > 0 if ; = 0, this establishes the Fredholm property in the Lemma.

We will now compute the index. Set
ind® = index{Z*Z: LY*™(X) — LI%Y (X)),

Expressing functions on ¥; in terms of eigenvectors of Ay, + [y |2 as in //Xtiyah—
Patodi—Singer [3] or Donaldson [14] one finds that the kernel of Z*Z in Li,’iw is
the same for all ¢’ > 1 and integers k" > 0. Combining this with the fact that Z*Z is
formally self-adjoint we see that

ind™ = —ind".

Geometry & Topology Monographs, Volume 15 (2008)



18 2 Configuration spaces

Now choose smooth functions w;: R — R such that w;(¢) = oj|t| for [t| > 1. The
addition formula for the index (see Corollary C.0.1) gives

ind” =ind* + ) index{Z} Ty, : LI (R x Yj) — LYY (R x Yj)}
j
=indt +2) "dimker(Ay, + [y
j
=ind" + 2rg.

Therefore, ind™ = —r¢ as claimed. a

Proposition 2.3.1 Forany ® € ®, + LY (X S) the following hold:
(i) The operator
Z(”I;I@: LG — LPY 2.4)
is Fredholm of index 0, and it has the same kernel as T¢: LG — Lf’w and the
same image as T}: LY — LPV.

(i) Zo(LG) isclosedin LY"" and
LYY (A" ®S) =To(LG) D ker(Z3). (2.5)

Proof It is easy to deduce Part (ii) from Part (i). We will now prove Part (i). Since
I3Te —T*T = |®|* — |Do|*: LEY — LIV

is a compact operator, Z; Ze and Z*7 have the same index as operators between these
Banach spaces. It then follows from Lemma 2.3.2 and Proposition 2.2.1 (iv) that the
operator (2.4) is Fredholm of index 0. The statement about the kernels is the same
as Lemma 2.3.1. To prove the statement about the images, we may as well assume
X is connected. If ® = 0 then the operator (2.4) is surjective and there is nothing
left to prove. Now suppose ® = 0. Then all the weights o; are positive, and the
kernel of Zg in £ consists of the constant functions. Hence the image of (2.4) has
codimension 1. But [y d*a = 0 for every 1-form a € L", so d*: LYY — LP-¥
is not surjective. a

In the course of the proof of (i) we obtained:

Proposition 2.3.2 If X is connected and ro = r then

d*d(é’):{geLP’w(X;(C) : / g=0}. O
X
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2.3 The infinitesimal action 19

We conclude this section with a result that will be needed in the proofs of Proposition
5.2.1 and Lemma 5.4.2 below. Let 1 < ¢ < oo and for any L(II loc function f: X — R
set

8 f = IWf j=1,...r
{0}xY;

The integral is well defined because if » is any positive integer then there is a bounded
restriction map L?(R") — L7({0} x R"™1).

Choose a point xg € X .

Proposition 2.3.3 If X is connected, 1 < g < oo, r > 1, and if 0j > 0 is sufficiently
small for each j then the operator

B: L27(X;R) - LY " (X;R)®R",
S (Af GBS 81 ], [ (%0))

is an isomorphism.

Proof By the proof of Lemma 2.3.2, A: Lg’_w — L9~ hasindex r, hence ind(B) =
0. We will show B is injective. First observe that er —190j f =0 whenever Af =0,
soif Bf =0 then §; f =0 forall j.

Suppose Bf = 0. To simplify notation we will now assume Y is connected. Over
R4+ xY we have A = —8% + Ay. Let {hy},—0,1,... be a maximal orthonormal set of

eigenvectors of Ay, with corresponding eigenvalues A2, where 0 =19 <A; <A <---.
Then

S y)=a+br+g(y),
where a,b € R, and g has the form

gt.y) =Y cve ™ hy(y)
v=>1

for some real constants ¢, . Elliptic estimates show that g decays exponentially, or
more precisely,

(V) Nyl = dje ™!
for (1, y) e R4 xY and j >0, where dj > 0 is a constant. Now

01 f(t,y)= b_zcvkue_kvthv(y)-

v=>1

Since Ay is formally self-adjoint we have [} &, =0 if A, 5 0, hence

b Vol(Y) =/ 3, f =0.

{t}xY

Geometry & Topology Monographs, Volume 15 (2008)



20 2 Configuration spaces

It follows that f is bounded and df decays exponentially over R4 x Y, so

0=foAf =/X|df|2,

hence f is constant. Since f(xo) =0 we have f =0. |

2.4 Local slices
Fix a finite subset b C X.

Definition 2.4.1 Set
Go={u €14+ : umapsinto U(l) and u|, = 1}
LG, ={f €& : f mapsintoiR and f|, =0}

and let G, and LGy have the subspace topologies inherited from 1 4+ & ~ £ and &,
respectively.

By 1 + & we mean the set of functions on X of the form 1+ f where f € £. If b is
empty then we write G instead of Gy, and similarly for LG.

Proposition 2.4.1 (i) Gy is a smooth submanifold of 1 +& and a Banach Lie group
with Lie algebra LGy,.
(ii) The natural action Gy, X C — C is smooth.

(ii) IfSeC,uel?, (X;U(l)) andu(S)eC thenucg.

2,loc

Proof (i) If rg <r then 1 & £, but in any case,
1
/ HkZ o/ =) -1
=1

defines a smooth map £ — £, by Proposition 2.2.1 (v). Therefore, the exponential map
provides the local parametrization around 1 required for Gy to be a submanifold of
1 + &. The verification of (ii) and (iii) is left to the reader. O

Let B, = C/Gp have the quotient topology. This topology is Hausdorff because
it is stronger than the topology defined by the L?” metric on By (see Donaldson—
Kronheimer [15]). The image in By of a configuration S € C will be denoted [S], and
we say S is a representative of [S].
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2.4 Local slices 21

Let C be the set of all elements of C which have trivial stabilizer in Gp. In other
words, C; consists of those (4, ®) € C such that b contains at least one point from
every component of X where ® vanishes almost everywhere. Let B, be the image of
Cy — By. It is clear that B is an open subset of By.

If b is empty then C* C C and B* C B are the subspaces of irreducible configurations.
As usual, a configuration that is not irreducible is called reducible.

We will now give B} the structure of a smooth Banach manifold by specifying an atlas
of local parametrizations. Let S = (4, ®) € C; and set

V=THLIY), W = T5Te(LGy).
By Proposition 2.3.1 we have
dim(V/W) = |b| —¢

where £ is the number of components of X where @ vanishes a.e. Choose a bounded
linear map p: V — W such that p|y = I, and set

T4 = pT}.

Then LPY(A' ©S) = To(LGy) @ ker(Zh)
by Proposition 2.3.1. Consider the smooth map
IT: LGy x ker(Iﬁ,) —C, (f,s)>exp(f)(S+ys).
The derivative of this map at (0, 0) is
DII(0,0)(f.s) =Za [ +5,

which is an isomorphism by the above remarks. The inverse function theorem then
says that IT is a local diffeomorphism at (0, 0).

Proposition 2.4.2 In the situation above there is an open neighbourhood U of 0 €
ker(Iﬁ,) such that the projection C — By, restricts to a homeomorphism of S + U onto
an open subset of B;; .

Remark It is clear that the collection of such local parametrizations U — B} is a
smooth atlas for Bj;.
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22 2 Configuration spaces

Proof It only remains to prove that S + U — By is injective when U is sufficiently
small. So suppose (ay, ), (bi, V) are two sequences in ker(Ig) which both
converge to 0 as k — oo, and such that

u(A+ag, ®+¢r) = (A~+bg, ®+ Yy)

for some uy € G,. We will show that ||uz—1||¢ — 0. Since IT is a local diffeomorphism
at (0,0), this will imply that u; = 1 for k > 0.

Written out, the assumption on uy, is that
u,?lduk =ay — by,
(e =)@ =Y —udr.
By (2.1) we have || duy||r»» — 0, which in turn gives |lug ey || — 0, hence
[(ug — @[ Lr-w — 0. (2.6)

Because uy, is bounded and duy converges to 0 in Lf over compact subsets, we can
find a subsequence {k;} such that uy; converges in Lé’ over compact subsets to a
locally constant function u. Then u|p, =1 and u® = ®, hence u = 1. Set f; = ug; —1
and ¢ = d— P, € Lf’w. Then | df; ® ¢||L»-w — 0. Furthermore, given € > 0 we

can find ¢ > 0 such that
| e <
[t,00)xXY 4

/'wwﬁwp<f
X, 2

for j > N. Then [y |e¥ fj$|? <€ for j > N. Thus || fj¢|lr-w — 0, and similarly
| /iVél Lrw — 0. Altogether this shows that || fj¢| L?-» — 0. Combined with (2.6)
this yields

and N such that

[ (ug; — D PollLrw — 0,

hence [lug; —1[|¢ — 0. But we can run the above argument starting with any subse-
quence of {uy}, so ||up —1||e¢ = 0. |

2.5 Manifolds with boundary

Let Z be a compact, connected, oriented Riemannian n—manifold, perhaps with
boundary, and b C Z a finite subset. Let S — Z be a Hermitian vector bundle
and L — Z a principal U(l)-bundle. Fix p > n/2 and let C denote the space
of L‘IU configurations (4, ®) in (L,S). Let Gy be the group of those Lg gauge

Geometry & Topology Monographs, Volume 15 (2008)



2.5 Manifolds with boundary 23

transformations Z — U(1) that restrict to 1 on b, and C; the set of all elements of C
that have trivial stabilizer in Gy. Then

B =Cg/Go

is again a (Hausdorff) smooth Banach manifold. As for orbit spaces of connections
(see [15, p 192]) the main ingredient here is the solution to the Neumann problem over
Z , according to which the operator

Te: LY(Z) — LP(Z) @ ILY(3Z),
[ (Af+]9 /.0, /)

is a Fredholm operator of index 0 (see Taylor [49, Section 5.7] and Hamilton [25,
pp 85-6]). Here v is the inward-pointing unit normal along dZ, and aLf (0Z) is the
space of boundary values of Lf functions on Z. Henceforth we work with imaginary-
valued functions, and on 0Z we identify 3—forms with functions by means of the
Hodge x—operator. Then T = JpZo, where

Jo(a,¢) = (Zg(a,$), (xa)laz)-
Choose a bounded linear map
p: LP(Z) ®dLY (3Z) — W := Tg(LGp)

which restricts to the identity on W, and set Jg = pJo. An application of Stokes’
theorem shows that
ker(Tg) C ker(Zgp) in LE(Z),

hence Ty = Jqu;: LGy —> W

T T
is an isomorphism. In general, if V; = |Z) =3 V3 are linear maps between vector spaces
such that 7,77 is an isomorphism, then V, = im(7}) & ker(73). Therefore, for any
(A, ®) € Cf we have

L2(Z;iN' ©S) =TIo(LGs) ®ker(J§).

where both summands are closed subspaces. Thus we obtain the analogue of Proposition
2.4.2 with local slices of the form (A, ®) + U, where U is a small neighbourhood of
0 eker(J%).
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CHAPTER 3

Moduli spaces

3.1 Spin‘ structures

It will be convenient to have a definition of spin® structure that does not refer to
Riemannian metrics. So let X be an oriented n—dimensional manifold and Pgp + its
bundle of positive linear frames. Let GL* (n) denote the 2—fold universal covering
group of the identity component GL™ (1) of GL(n, R), and denote by —1 the nontrivial
element of the kernel of GL™* (n) = GL* (n). Set

GL°(n) =GL*t(n) x U(1).
+(1,1)

Then there is a short exact sequence
0— 7Z/2— GL¢(n) — GL* (n) x U(1) — 1,

and Spin®(n) is canonically isomorphic to the preimage of SO(n) by the projection
GL¢(n) — GL* (n).

Definition 3.1.1 By a spin® structure s on X we mean a principal GL¢ (n)—bundle
PgLe — X together with a GL¢(n) equivariant map Pgrc — P+ which covers the
identity on X . If s’ is another spin® structure on X given by P4 c — PgL+ then s
and s’ are called isomorphic if there is a U(1) equivariant map P{;c — Pgrc which
covers the identity on Pgp+.

The natural U(1)-bundle associated to Pgrc is denoted £, and the Chern class ¢ (L)
is called the canonical class of the spin® structure.

Now suppose X is equipped with a Riemannian metric, and let Pso be its bundle of
positive orthonormal frames, which is a principal SO(n)—bundle. Then the preimage
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26 3 Moduli spaces

Pspinc of Pso by the projection Pgre — Pgr+ is a principal Spin©(n)-bundle over X,
ie a spin® structure of X in the sense of Lawson—Michelsohn [33]. Conversely, Pgpc
is isomorphic to Pspin¢ Xspincn GL®(1). Thus there is a natural 1-1 correspondence
between (isomorphism classes of) spin® structures of the smooth oriented manifold X
as defined above, and spin® structures of the oriented Riemannian manifold X in the
sense of [33].

By a spin connection in Pspipc we shall mean a connection in Pspize that maps to
the Levi-Civita connection in Pso. If A is a spin connection in Pspip¢ then F "4 will
denote the iR component of the curvature of A4 with respect to the isomorphism of
Lie algebras

spin(n) ® iR = spin(n)

defined by the double cover Spin(n) x U(1) — Spin®(n). In terms of the induced

connection 4 in £ one has :

If A, A’ are spin connections in Pspine then we regard 4 — A’ as an element of iQIIY.

The results of Chapter 2 carry over to spaces of configurations (A, ) where A4 is a
spin connection in Pspip¢ and ® a section of some complex vector bundle S — X'

When the spin® structure on X is understood then we will say “spin connection over

B

X7 instead of “spin connection in Pspisc ™.

If 7 is even then the complex Clifford algebra C¥£(n) has up to equivalence exactly one
irreducible complex representation. Let S denote the associated spin bundle over X .
Then the eigenspaces of the complex volume element wc in C£(n) defines a splitting
S=ST®S™ (see [33)).

If n is odd then C£(n) has up to equivalence two irreducible complex representations
01, p2. These restrict to equivalent representations of Spin€(#n), so one gets a well-
defined spin bundle S for any spin® structure on X [33]. If « is the unique automor-
phism of C£(n) whose restriction to R” is multiplication by —1 then p; &~ p o .
Hence if A is any spin connection over X then the sign of the Dirac operator D4
depends on the choice of p;j. To remove this ambiguity we decree that Clifford
multiplication of 77X on S is to be defined using the representation p; satisfying
pjloc) =1.

In the case of a Riemannian product R x X there is a natural 1-1 correspondence
between (isomorphism classes of) spin®—structures on R x X and spin®—structures on
X, and we can identify

Lrxx =75 (Lx).
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3.2 The Chern—Simons—Dirac functional 27

where 5: R x X — X is the projection.

If A is a spin connection over R x X" then A|¢yxx will denote the spin connection B
over X satisfying /I|{,}xX = B.

When 7 is odd then we can also identify

Sgxx = 75 (Sx). 3.1)

If e is a tangent vector on X then Clifford multiplication with e on Sy corresponds
to multiplication with ege on SEK?X y » Where e is the positively oriented unit tangent
vector on R. Therefore, reversing the orientation of X changes the sign of the Dirac
operator on X .

From now on, to avoid confusion we will use dg to denote the Dirac operator over a
3—manifold with spin connection B, while the notation D4 will be reserved for Dirac
operators over 4—manifolds.

By a configuration over a spin® 3-manifold Y we shall mean a pair (B, ¥) where B
is a spin connection over Y and W a section of the spin bundle Sy . By a configuration
over a spin® 4-manifold X we mean a pair (A4, ®) where A is a spin connection over
X and P a section of the positive spin bundle S;.

3.2 The Chern-Simons—Dirac functional

Let Y be a closed Riemannian spin® 3-manifold and 7 a closed 2—form on Y of class
C'. Fix a smooth reference spin connection B, over Y and for any configuration
(B, W) over Y define the Chern—Simons-Dirac functional ¢ = o, by

1 ~ ~ 1
19(B,\IJ)=—§/Y(Fg—l—FBo+2i77)/\(B—Ba)—§/Y(83\IJ,\IJ).

Here and elsewhere (-,-) denotes Euclidean inner products, while (-,-)c denotes
Hermitian inner products. Note that reversing the orientation of Y changes the sign
of ¥. Let C = Cy denote the space of L% configurations (B, ¥). Then ¥ defines a
smooth map Cy — R which has an L? gradient

. 1
Vi p.w) = (* (Fp +in) =50 (. W), —anp).

If {aj} is a local orthonormal basis of imaginary-valued 1-forms on Y then

3
o(@. )= (aj$.¥)a;.

j=1
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28 3 Moduli spaces

Here and elsewhere the inner products are Euclidean unless otherwise specified. Since
V¥ is independent of B,, ¥ is independent of B, up to additive constants. If u: ¥ —
U(1) then

Fu(S)) —9(S) = /Y(ﬁB +inAu du= 2nfy‘ﬁA[u],
where [u] € H!(Y) is the pullback by u of the fundamental class of U(1), and 7 is as
in (1.2).
The invariance of ¥ under null-homotopic gauge transformations imply
Ty Vo Bw) =0. (3.2)
Let H( g w): L3 — L? be the derivative of Vi: C — L?* at (B, ¥), ie
Hpw)(b. V) = (xdb—o (¥, ), —b¥ —dpy).

Note that H(p,y) is formally self-adjoint, and H(p y)Zg = 0 if dpg¥ = 0. Asin [21],
a critical point (B, W) of ¥ is called nondegenerate if the kernel of Z3, + H(p ) in
L% is zero, or equivalently, if Zy + H(p v): L% — L? is surjective. Note that if 7 is
smooth then any critical point of }; has a smooth representative.

Let G be the Hilbert Lie group of L% maps ¥ — U(1), and Gy C G the subgroup of
null-homotopic maps. Set

B=C/G, B=C/G,.

Then ¢+ descends to a continuous map B — R which we also denote by 9. If
Condition (O1) holds (which we always assume when no statement to the contrary is
made) then there is a real number ¢ such that

?(GS) =v(S)+qZ
for all configurations S. If (O1) does not hold then ¥ (G.S) is a dense subset of R.

If S is any smooth configuration over a band (a,b) x Y, with a < b, let Vg be the
section of the bundle 7} (Sy @ iA%,) over (a,b) x Y such that Vi¥g| 1y = Vi, .
Here m5: Rx Y — Y is the projection. Note that S — Vg extends to a smooth map
L?— L2

Although we will normally work with L% configurations over Y, the following lemma
is sometimes useful.

Lemma 3.2.1 ¢ extends to a smooth function on the space of L% /2 configurations
over Y.
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3.2 The Chern—Simons—Dirac functional 29

Proof The solution to the Dirichlet problem provides bounded operators
E:L},(Y) > Li(R4 xY)

such that, for any f € L% /Z(Y), the function E f restricts to f on {0} x ¥ and
vanishes on (1,00) XY, and Ef is smooth whenever f is smooth. (see [49, p307]).
Similar extension maps can clearly be defined for configurations over Y . The lemma
now follows from the observation that if .S is any smooth configuration over [0, 1]x Y

then
aS
o 5]

and the right hand side extends to a smooth function on the space of L% configurations
S over [0,1]x Y. a

mm—mwzf

[0,1]xY

We will now relate the Chern—Simons—Dirac functional to the 4—dimensional monopole
equations, cf [30; 40]. Let X be a spin® Riemannian 4-manifold. Given a parameter
w € Q2(X) there are the following Seiberg—Witten equations for a configuration (A4, ®)
over X :

(Fa+im™ = 0(®)
Ds® =0, (3-3)
13
where o) = Z;(aj D, D)o

for any local orthonormal basis {«;} of imaginary-valued self-dual 2—forms on X . If
W is another section of S; then one easily shows that

O(P)V = (U, D) P — %|<I>|2\IJ.

Now let X =R xY and for present and later use recall the standard bundle isomorphisms

Pl (AN @AY Y)) - AR XY), (fia)r fdt+a,
3.4
pt: (AN (Y) > ATRXY), am %(dt/\a-l— *ya). G4

Here *y is the Hodge *—operator on Y. Let p be the pullback of a 2—form 7 on Y.
Set ¥ = ;. Let S = (4, ®) be any smooth configuration over R x Y such that 4 is
in temporal gauge. Under the identification Sﬁgxy = 5 (Sy) we have

pt (P, ®) =20(P).
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30 3 Moduli spaces

Let Vi1, V1 denote the 1-form and spinor parts of Vi, respectively. Then

9 ~
p* (—A + Vlt?s) = (Fa+imyn™* - Q(®)

8aq) (3.5)
e + Vot = —dt - D4,
Thus, the downward gradient flow equation
S
o + Vg =0

is equivalent to the Seiberg—Witten equations (3.3).

3.3 Perturbations

For transversality reasons we will, as in [21], add further small perturbations to the
Seiberg—Witten equation over R x Y. The precise shape of these perturbations will
depend on the situation considered. At this point we will merely describe a set of
properties of these perturbations which will suffice for the Fredholm, compactness and
gluing theory.

To any L% configuration S over the band (—1/2,1/2) x Y there will be associated an
element 4(S) € RV, where N > 1 will depend on the situation considered. If S is an
L% configuration over Bt = (¢ —1/2,b +1/2) x Y where —oco <a < b < oo then
the corresponding function

hs: [a,b] > RN

given by hg(¢) = h(S|(1—1/2,:+1/2)xy) Will be smooth. These functions /g will have
the following properties. Let S, be a smooth reference configuration over BT

(P1) For 0 < k < oo the assignment s > hg, s defines a smooth map L% — Ck
whose image is a bounded set.

(P2) If S, — S weakly in L3 then ||hg, —hsl|lcx — 0 for every k > 0.

(P3) hg is gauge invariant, ie hg = hy(s) for any smooth gauge transformation u.

We will also choose a compact codimension 0 submanifold & € RV which does
not contain /(¢) for any critical point «, where ¢ is the translatlonary invariant
configuration over R x Y (in temporal gauge) determined by «. Let ‘B ‘IBY denote
the space of all (smooth) 2—forms on RV x ¥ supported in E x Y. For any S as
above and any p € ‘}3 let hg € Q2([a,b] x Y) denote the pullback of p by the map

hs x1d. It is clear that hg ,(t, y) = 0 if hg(t) ¢ E. Moreover,

1725 pllcr = vielipllcx (3.6)

Geometry & Topology Monographs, Volume 15 (2008)



3.3 Perturbations 31

where the constant y; is independent of S, p.

Now let —o0o <a<b <00 and B=(a,b) xY. If q: B— R is a smooth function
then by a (p, q)—monopole over B we shall mean a configuration S = (4, ®) over
Bt = (a—1/2,b+1/2) x Y (smooth, unless otherwise stated) which satisfies the
equations

(Fa+imsn+ighsy)t = 0(®)

Ds®d =0,

over B, where 7 is as before. If A is in temporal gauge then these equations can also
be expressed as

(3.7)

aS
a_zt = Vs, + Es(1), (3.8)

where the perturbation term E g(¢) depends only on the restriction of S to (t—1/2,¢+
1/2)xY.

To reduce the number of constants later, we will always assume that ¢ and its differential
dq are pointwise bounded (in norm) by 1 everywhere. Note that if q is constant then
the equations (3.7) are translationary invariant. A (p, q)—monopole with ghg , =0
is called a genuine monopole. In expressions like || F4]|/, and || ®||oo the norms will
usually be taken over B.

For the transversality theory in Chapter 8 we will need to choose a suitable Banach
space B3 = Py of forms p as above (of some given regularity). It will be essential that

CBT)xP— LPB,A%), (S,p)>hsy (3.9)

be a smooth map when a, b are finite (here p > 2 is the exponent used in defining the
configuration space C(B™)). Now, one cannot expect / S,p to be smooth in S unless
p is smooth in the R direction (this point was overlooked in [21]). It seems natural
then to look for a suitable space ‘3 consisting of smooth forms p. Such a P will be
provided by Lemma 8.2.1. The topology on ‘B will be stronger than the C°° topology,
ie stronger than the C k topology for every k. The smoothness of the map (3.9) is then
an easy consequence of property (P1) above and the next lemma.

Lemma 3.3.1 Let A be a topological space, U a Banach space, and K C R" a
compact subset. Then the composition map

Cp(A,R") x CKR", U) g — Cp(A4,U)

is of class C*¥~! for any natural number k. Here Cg(A, -) denotes the supremum-
normed space of bounded continuous maps from A into the indicated space, and
Ck(R",U)g is the space of C¥ maps R" — U with support in K .

Proof This is a formal exercise in the differential calculus. O
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3.4 Moduli spaces

Consider the situation of Section 1.3. (We do not assume here that (A) holds.) We will
define the moduli space M (X ;a). In addition to the parameter u this will depend on
a choice of perturbation forms p; € ‘:ﬁyj and a smooth function q: X — [0, 1] such
that ||dqllec <1, ¢71(0) = X,(3/2) and g =1 on [3,00) x Y.

Choose a smooth reference configuration S, = (A4,, ®,) over X which is translationary
invariint and in temporal gauge over the ends and such that Sp|(3xy; represents
®j € Ry; . Let p >4 and choose w as in Section 2.1. Let b be a finite subset of X
and define C, Gy, By as in Sections 2.1 and 2.4. For clarity we will sometimes write
C(X;a) etc. Set p = (p;,...,p,) and let

My(X:G) = Mp(X;&; 1) C By

be the subset of gauge equivalence classes of solutions S = (A, ®) (which we simply
refer to as monopoles) to the equations

r +
(FA +ip+iq Zhs,pj) —0(®)=0
o (3.10)
D4® = 0.

Itisclearthat q ) ;j 1s.p; vanishes outside a compact setin X . If it vanishes everywhere
then S is called a genuine monopole. If b is empty then we write M = M.

Note that different choices of S, give canonically homeomorphic moduli spaces
My(X ;@) (and similarly for By(X;@)).

Unless otherwise stated the forms p and p; will be smooth. In that case every element
of My(X;a;u:p) has a smooth representative, and in notation like [S]€ M we will
often implicitly assume that .S is smooth.

We define the moduli spaces M («, B) = M(«, B;p) of Section 1.2 similarly, except
that we here use the equations (3.7) with g = 1.

The following estimate will be crucial in compactness arguments later.
Proposition 3.4.1 For any element [A, ®] € M (X ;&) one has that either
1.
®=0 or |05 == inf s(x)+4llloo + 4y max [p; oo,
xeX J

where s is the scalar curvature of X and the constant Y is as in (3.6).
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Proof Let ¥; denote the spinor field of Ay|¢yxy; . If [P has a global maximum then
the conclusion of the proposition holds by the proof of [30, Lemma 2]. Otherwise one
must have ||®| o = max; ||[{/j|o because of the Sobolev embedding Lf c C%on
compact 4—manifolds. But the argument in [30] applied to R x Y yields

1 .
Yj=0 or ||1ﬂ]||2 S—Exlél[f‘ls(x)‘f“‘”/i”oo

for each j, and the proposition follows. a

The left hand side of (3.10) can be regarded as a section O(S) = @(S , /L, p) of the
bundle AT @S~ over X. It is clear that ® defines a smooth map

®:C— LPY,
which we call the monopole map. Let D® denote the derivative of ®. We claim that
I3+ DO(S): LYY — LPY (3.11)

is a Fredholm operator for every S = (4, ®) € C. Note that the p; —perturbations in
(3.10) only contributes a compact operator, so we can take p; = 0 for each j. We first
consider the case X =R x Y, with u = 57 as before. By means of the isomorphisms
(3.4), (3.1) and the isomorphism ST — S~, ¢ > dt - ¢ we can think of the operator
(3.11) as acting on sections of 7 (A?, @ A; @ Sy). If A is in temporal gauge then a
simple computation yields

d
T+ DO(S) = - + Ps,. (3.12)
0 T*
where P, = v )
B (I\Il Hp, v

for any configuration (B, W) over Y. Note that P(p y) is elliptic and formally self-
adjoint, and if (B, W) is a nondegenerate critical point of ¢;; then ker P(p ¢) =ker Zy.
Thus, the structure of the linearized equations over a cylinder is analogous to that of
the instanton equations studied in [14], and the results of [14] carry over to show that
(3.11) is a Fredholm operator.

The index of (3.11) is independent of S and is called the expected dimension of
M(X;a). If S €C is a monopole and DO(S): Lf’w — LP" is surjective then [S]
is called a regular point of My(X:a). If in addition S € C; then [S] has an open
neighbourhood in My(X'; @) which is a smooth submanifold of B} of dimension

dim My(X;@) = index(Z3 + DO(S)) + |b].
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The following regularity result to some extent makes up for the fact that we only work
with L? o configurations.

Proposition 3.4.2 Let wq be a regular, irreducible point of M (X ;&). Let Z C X be
a smooth compact codimension 0 submanifold and C(Z)ce the space of configurations
over Z of class C*, where { is a natural number. Then there is an open neighbourhood
U of wy and a smooth map f: U — C(Z)ce such that f(w) is a representative of
w|z forevery w e U.

Proof Let Sy be a smooth representative of wg. For any natural number k let Vj
denote the space of all L,’;loc configurations S over X such that S — S € L,lg’w
and the local slice condition I;O (S —So) = 0 holds. Let V; have the L,f " metric.
Because Sy is a regular monopole, Vj is smooth in a neighbourhood of Sy. By
elliptic regularity Vi consists of smooth configurations. The inclusion t5: Vy — V)
induces the identity map between the tangent spaces at Sq, so by the inverse function
theorem ¢, is a local diffeomorphism at Sy . By the local slice theorem the projection
Vi — M(X ;) is alocal diffeomorphism at Sy. Taking k > £ + 4/ p the proposition
now follows from the Sobolev embedding L/f (Z) — Ct(2). |
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CHAPTER 4

Local compactness I

This chapter provides the local compactness results needed for the proof of Theorem
1.4.1 assuming (B1).

4.1 Compactness under curvature bounds

For the moment let B be an arbitrary compact, oriented Riemannian manifold with
boundary, and v the outward unit normal vector field along dB. Then

Q¥ (B) > QY (B)®Q™(9B). ¢ > ((d+d")p,1(v)¢) 4.1
is an elliptic boundary system in the sense of Hormander [26] and Atiyha [2]. Here
t(v) is contraction with v. By [26, Theorems 20.1.2, 20.1.8] we then have:
Proposition 4.1.1 For k > 1 the map (4.1) extends to a Fredholm operator

Ly(B,AR) = Li_{(B,AR)® L;_,,,(3B,A}p)
whose kernel consists of C*° forms.
Lemma 4.1.1 Let X be a spin® Riemannian 4—manifold and Vi C V, C --- precom-
pact open subsets of X such that X = Uj Vi.Forn=1,2,... let u, be a 2—form
on Vy, and S, = (A, ®,) a smooth solution to the Seiberg—Witten equations (3.3)
over V, with t = . Let ¢ > 4. Then there exist a subsequence {n;} and for each

J asmooth uj: V; — U(1) with the following significance. If k is any nonnegative
integer such that

sup (1 @nllzawy) + 1 F(An)ll L2y + litall oy ) < 00 42)

n>j

35



36 4 Local compactness 1

for every positive integer j then for every p > 1 one has that uj(Sy;) converges
weakly in Ll€+l and strongly in Llf over compact subsets of X as j — o0.

Before giving the proof, note that the curvature term in (4.2) cannot be omitted. For
if w is any nonzero, closed, anti-self-dual 2—form over the 4—ball B then there is a
sequence A, of U(1) connections over B such that F(A4,) =inw. If S, = (A4,,0)
then there are clearly no gauge transformations u, such that u,(S;) converges (in any
reasonable sense) over compact subsets of B.

Proof of Lemma 4.1.1 Let B C X be a compact 4-ball. After trivializing £ over B
we can write A,|p = Ao+ ay, where A, is the spin connection over B corresponding
to the product connection in £|g. By the solution to the Neumann problem (see [49])
there is a smooth &,: B — iR such that b, = a, — d§& satisfies

d*by, =0; *by|ap =0.

Using the fact that H!(B) = 0 one easily proves that the map (4.1) is injective on
Q! (B). Hence there is a constant C such that

1611238 = €U +d*)bll2a + bl L2 am)
for all b € Q1(B). This gives
16l 2m) = Clldbull 2z = CIE (AR 12(8)-

Set v, = exp(&,). It is now an exercise in bootstrapping, using the Seiberg—Witten
equations for .S, and interior elliptic estimates, to show that, for every k > 0 for which
(4.2) holds and for every p > 1, the sequence v,(Sy) = (4, + by, v, Py) is bounded

in L,’; 41 over compact subsets of int(B).

To complete the proof, choose a countable collection of such balls such that the
corresponding balls of half the size cover X', and apply Lemma A.O.1. a

4.2 Small perturbations

If S is any smooth configuration over a band (a, b) x Y with a < b, the energy of S
is by definition
energy(S) = / IVds|?.
[a,b]xY
If S is a genuine monopole then 3,9 (S;) = — [y | Vs, |2, and so the energy equals
U(Sa) —9(Sp). If S is a (p, q)—monopole then one no longer expects these identities
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to hold, because the equation (3.8) is not of gradient flow type. The main object of this
section is to show that if ||p||<1 is sufficiently small then, under suitable assumptions,
the variation of 9 (S;) still controls the energy locally (Proposition 4.2.1), and there is
a monotonicity result for ¥ (S;) (Proposition 4.2.2).

It may be worth mentioning that the somewhat technical Lemma 4.2.3 and Proposition
4.2.1 are not needed in the second approach to compactness which is the subject of
Chapter 5.

In this section q: RxY — R may be any smooth function satisfying ||q||co, [|dqllcc < 1.
Constants will be independent of ¢. The perturbation forms p may be arbitrary elements

of ‘J~3

Lemma4.2.1 There is a constant Cy > 0 such thatif —oo <a<b <oo and S = (A4, D)
is any (p, q) —monopole over (a,b) x Y then there is a pointwise bound

|E(A)] < 2[VOs|+ Il + Col @I* + voIplco-

Proof Note that both sides of the inequality are gauge invariant, and if A4 is in temporal
gauge then

94
F(A) =dt A 8—; + Fy(4,),

where Fy stands for the curvature of a connection over ¥ . Now use inequalities (3.8)
and (3.6). O

Lemma 4.2.2 There exists a constant C; > 0 such that for any T > 0 and any (p, q)—
monopole S over (0,7) X Y one has

/[0 VISP 220050~ (50 + bl
,T]x

Recall that by convention a (p, q)—-monopole over (0, 7) x Y is actually a configuration
over (—1/2,t 4 1/2) x Y, so the lemma makes sense.

Proof We may assume S is in temporal gauge. Then
T
9(S0)=9(S0) = [ 8,(Si)dr
0
:/ (Virg,—Vis + Eg)dt
[0,7]xY

= [IVisl2(IEsll2 = VIs]2).
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where the norms on the last line are taken over [0, ] x Y. If a, b, x are real numbers
satisfying x2 —bx —a < 0 then

x2 <2x?—2bx +b% <2a+b>.
Putting this together we obtain
IVOs13 < 2(3(So) — #(So) + | Es 3.

and the lemma follows from the estimate (3.6). O

Lemma 4.2.3 For all C > 0 there exists an € > 0 with the following significance.
Lett>4,pe 553 with |[p|leot!/? <€, and let S = (A, ®) be a (p, q)—monopole over
(0, 7) x Y satistying ||®||coc < C. Then at least one of the following two statements
must hold:

i) 0;9(S;)<0for2<t=<t-2.
(i) D(Sy) <V(Sy) for0<t1, <1, 1—1=<H =rt.

Proof Given C > 0, suppose that for n = 1,2,... there exist t, > 4, p, € ‘i
with ||]o,,||oot,y2 <1/n, and a (py, q,)—monopole S, = (A4,, D) over (0,7,) XY
satisfying || ®,]lco < C such that (i) is violated at some point ¢ = f,, and (ii) also does
not hold. By Lemma 4.2.2 the last assumption implies

IV, lL2 (015 11x7) < Cillpnlloot)/? < Ci /n.

For s € R let 7;: R x Y — R x Y be translation by s:

Ts(t,y) = (t +5.p).

Given p > 2 then by Lemma 4.2.1 and Lemma 4.1.1 we can find u,: (—1,1) xY —
U(1) in Lg’loc such that a subsequence of u, (7, (Sy)) converges weakly in Lf over
(—1/2,1/2) x Y to an Lf solution S’ to the equations (3.3) with & = n3n. Then
Vs = 0. After modifying the gauge transformations we can even arrange that S’ is
smooth and in temporal gauge, in which case there is a critical point & of ¥ such that
S’(t) = a. After relabelling the subsequence above consecutively we then have

s, (tn) = hs:(0) & E.

Since E is closed, &g, (tx) ¢ E for n sufficiently large. Therefore, d;|s, 0} (Sn(?)) =
—IVis, @) |2 <0, which is a contradiction. |
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Proposition 4.2.1 For any constant C > 0 there exist C’, § > 0 such that if S = (A, @)
is any (p, q)—monopole over (=2, T +4)xY where T > 2, ||p|loc <6, and | P||co < C,
then for 1 <t < T — 1 one has

/ |V195|252( sup #(S—,)— inf ﬁ(ST+,))+C’||pllio-
[t—1,t4+1]xY 0<r<4

0=<r=<1

Proof Choose € > 0 such that the conclusion of Lemma 4.2.3 holds (with this constant
C),and set § = ¢/ V6. We construct a sequence f, ..., L of real numbers, for some
m > 1, with the following properties:

(i) —1<t9<0and T <1, <T +4.
(i) Fori=1,...,monehas 1 <t;—t;_1 <5 and ¥(S;,) <3(S;_,).

The lemma will then follow from Lemma 4.2.2. The #; ’s will be constructed inductively,

and this will involve an auxiliary sequence t(/), R 41 Settoy = ty =0.

Now suppose #;_i,t; have been constructed for 0 <i < j. If tJf > T then we set

tj = t]f and m = j, and the construction is finished. If t]f < T then we define [J"tj/'+1
as follows:

If 9;9(S;) =0 forall 1 €[t],1 +2] set tj = ¢ and ¢

— 4/ . 1
/ / ! i 1= 6+ 2; otherwise set
tj:zj—l andlj-{—l =1 +4.

Then (i) and (ii) are satisfied, by Lemma 4.2.3. O

Proposition 4.2.2 For all C > 0 there exists a § > 0 such that if S = (A4, ®) is any
(p. q)—monopole in temporal gauge over (—1, 1) x Y such that ||p||c1 <9, [|P|lec =C
and ||Vdg||2 < C then the following holds: Either d;|o0(S;) < 0, or there is a critical
point « such that Sy = « for |t| < 1/2.

Proof First observe that if S is any C! configuration over R x Y then
15}
9 -0 = [ [ (V95,008 dy .
1 Y
hence ¥(S;) isa C! function of ¢ whose derivative can be expressed in terms of the

L? gradient of ¥ as usual.

Now suppose thereisa C >0 andforn=1,2,... ap, € ‘33 and a (py, g, )—monopole
Sn=(An, Pp) over (=1, 1)xY suchthat [|pxllct =1/n, [Pulleo =C, Vs, 2 =C
and d;]o0(Sy(z)) > 0. Let p >4 and 0 < € < 1/2. After passing to a subsequence
and relabelling consecutively we can find u,: (—1,1) x Y — U(1) in Lg oc such that
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40 4 Local compactness 1

Sy = un(Sy) converges weakly in L, and strongly in C!, over (—1/2—¢,1/24+€)xY
to a smooth solution S” of (3.3) with ;= 7}'n. We may arrange that S’ is in temporal
gauge. Then

0= 4lo? Gu0) = [ (995, BuloSs(0) = BuloD (S}

But S’ is a genuine monopole, so 3;3(S;) = —[| Vg, |13 It follows that Vig/(gy =0,
hence Vg, =0 in (—1/2—€, 1/2+€)xY by unique continuation as in [21, Appendix].
Since hg, — hs’ uniformly in [—€, €], and s/ = const & &, the function /&5, maps
[—e, €] into the complement of E when 7 is sufficiently large. In that case, S, restricts
to a genuine monopole on [—¢, €] X Y, and the assumption 9;|o? (S, (¢)) > 0 implies
that Vitg, = 0 on [—€, €] x Y. Since this holds for any € € (0, 1/2), the proposition
follows. |

We say a (p, g)—monopole S over R4 x Y has finite energy if inf;~q 9 (S;) > —oo.
A monopole over a 4—manifold with tubular ends is said to have finite energy if it has
finite energy over each end.

Proposition 4.2.3 Let C,§ be given such that the conclusion of Proposition 4.2.2
holds. If S = (A, ®) is any finite energy (p, q)—monopole over R xY with ||p||c1 <4,
g=1, ||®|lco < C and

sup Vsl 2(i—1,041)xv) =C
=1

then the following hold:

(i) Thereisat > 0 such that S restricts to a genuine monopole on (¢, 00) X Y .

(ii) [S¢] converges in By to some critical point as t — 0.

Proof Let p > 4. If {#,} is any sequence with ,;, — 0o as n — oo then by Lemma
4.1.1 and Lemma 4.2.1 there exist u, € L?, (R x Y;U(1)) such that a subsequence

3,loc
of un (7,7 S) converges weakly in Lé’ (hence strongly in C!) over compact subsets of
R xY toasmooth (p, q)—monopole S’ in temporal gauge. Proposition 4.2.2 guarantees
that 9,9(S;) < 0 for ¢ > 1, so the finite energy assumption implies that ¥ (S;) is
constant. By Proposition 4.2.2 there is a critical point « such that S; = « for all . This
implies (i) by choice of the set E (see Section 3.3). Part (ii) follows by a continuity
argument from the facts that By contains only finitely many critical points, and the
topology on By defined by the L?—metric is weaker than the usual topology. |

The following corollary of Lemma 3.2.1 shows that elements of the moduli spaces
defined in Section 3.4 have finite energy.
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4.3 Neck-stretching I 41

Lemma 4.2.4 Let S be a configuration over Ry x Y and « a critical point of ¥ such
that S —a € Lf for some p > 2. Then

H(Sy) > ¥ () ast— oo. |

4.3 Neck-stretching I

This section contains the crucial step in the proof of Theorem 1.4.1 assuming (B1),
namely what should be thought of as a global energy bound.

Lemma 4.3.1 Let X be as in Section 1.3 and set Z = X.;. We identity Y = dZ.
Let ju1, ity € Q%(Z), where djiy = 0. Set n = |y and i = ju; + po. Let A, be
a spin connection over Z , and let the Chern—Simons—Dirac functional ¥, over Y be
defined in terms of the reference connection B, = A,|y . Then for all configurations
S = (A, ®) over Z which satisfy the monopole equations (3.3) one has

'219n(S|Y)+/Z (|VA¢|2+|ﬁA+iM1|2)‘

2
= CVOU(Z) (14 1912 + 1 Fa, oo + 1o + 1221100 + Islloc)

for some universal constant C , where s is the scalar curvature of Z .
The upper bound given here is not optimal but suffices for our purposes.

Proof Set F/, = F4+ipn; and define F 1’40 similarly. Set B = A|y. Without the
assumption du; = 0 we have

[ RCIGAMET AN
Z y4
=/ (210(@) —ipuf >+ Fy, A By, —2idps A (A= 4,)
Z
+ [ Byt Fa,+200) 7 (B - Bo)
Y

Without loss of generality we may assume A is in temporal gauge over the collar
t([0, 1] x Y'). By the Weitzenbock formula we have

0=DiO=ViVs0+ Ff +7.
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42 4 Local compactness 1

This gives

[ waor = [ (wivao.0)+ [ (0.0
Z Z Y
1
-/ (——|q>|4—5|<1>|2+<m+q>,<1>>)+/<aBd>,<I>>. 0
z 2 4 Y

Consider now the situation of Section 1.4. If (B1) holds then we can find a closed
2—form p; on X whose restriction to R4 x (£Yj) is the pullback of 7;, and whose
restriction to R4 x Y/ is the pullback of 1. From Lemma 4.3.1 we deduce:

Proposition 4.3.1 For every constant C; < oo there exists a constant C, < oo with
the following significance. Suppose we are given

e 1,Cy <00 and an r—tuple T such that T < T; foreach j,

e real numbers ‘L’j:t, 1<j<rand rjf, 1 <j <r' satistying 0 < T; —‘L'j:t <71 and
Ofrjf <rt.

Let Z be the result of deleting from X ) all the necks (=17, r+) xY;,1<j<r and
all the ends ( 00) X Y’ 1 <j <r’. Then for any conﬁguranon S = (A ®) represent-
ing an element of a moduh space M(X(T) a'; i p,p’) where Z]_l 19(0{ ) > —Cy
and pj, p W all have L°° norm < Cy one has that

r
[ 9A0F 4 1Fa i)+ 2 3 (95l = (S, )
j=1
r/
+23° (ﬁ(shrf}xyj/) . 19(051’-)) < Co(1+ 1) + 2Cy.
j=1

Thus, if each p;, p} has sufficiently small L°° norm then Lemma 4.2.4 and Propo-
sition 4.2.1 provides local energy bounds over necks and ends for such monopoles.
(To apply Proposition 4.2.1 one can take rji to be the point ¢ in a suitable interval
where £ (S|(3xy;) attains its maximum, and similarly for rjf .) Moreover, if these
perturbation forms have sufficiently small C! norms then we can apply Proposition
4.2.2 over necks and ends. (How small the C! norms have to be depends on Cj.)
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CHAPTER 5

Local compactness 11

This chapter, which is logically independent from Chapter 4, provides the local com-
pactness results needed for the proof of Theorem 1.4.1 assuming (B2).

While the main result of this chapter, Proposition 5.4.1, is essentially concerned with
local convergence of monopoles, the arguments will, in contrast to those of Chapter 4,
be of a global nature. In particular, function spaces over manifolds with tubular ends
will play a central role.

5.1 Hodge theory for the operator —d* +d*

In this section we will study the kernel (in certain function spaces) of the elliptic
operator

D=—-d*+d": Q'(X) - QX)) QT (X), (5.1)

where X is an oriented Riemannian 4—manifold with tubular ends. The notation
ker(D) will refer to the kernel of D in the space Q' (X) of all smooth 1-forms, where

X will be understood from the context. The results of this section complement those
of [14].

We begin with the case of a half-infinite cylinder X' =R x Y, where Y is any closed,
oriented, connected Riemannian 3—manifold. Under the isomorphisms (3.4) there is the
identification D = % 4+ P over Ry x Y, where P is the self-adjoint elliptic operator

0 —d*
P_(—d xd )

43



44 5 Local compactness II

acting on sections of A%(Y)@® A!(Y) (cf (3.12)). Since P? is the Hodge Laplacian,
ker(P) = H(Y)® H' (V).
Let {/,} be a maximal orthonormal set of eigenvectors of P, say Ph, = A,h,.

Given a smooth 1—-form a over R4 xY we can express itas a =), fuh,, where
foi: Ry > R.If Da =0 then f,(t) = cye ™! for some constant ¢, . If in addition
a € L? forsome p > 1 then f, € L? for all v, hence f,, =0 when A, <0. Elliptic
inequalities for D then show that a decays exponentially, or more precisely,

((Va) | < Bje™

for (1, y) e Ry xY and j > 0, where B; is a constant and § the smallest positive
eigenvalue of P.

Now let 0 > 0 be a small constant and a € ker(D) N L?-79. Arguing as above we find
that

a=>b+cdt+a*y, (5.2)

where b is an exponentially decaying form, ¢ a constant, 7: R4 x Y — Y, and
¥ € Q1(Y) harmonic.

‘We now turn to the case when X is an oriented, connected Riemannian 4-manifold
with tubular end R4 xY (so X \R4 xY is compact). Let Yq,..., Y, be the connected
components of Y and set

s
Y,:UYj’ Y”ZY\Y’,
j=1

where 0 < s <r. Let 0 > 0 be a small constant and «: X — R a smooth function
such that

—ot onRy xY'
K =
ot on R4y xY”,

where ¢ is the R4 coordinate. Our main goal in this section is to describe ker(D) N
L7,

We claim that all elements a € ker(D) N L#-* are closed. To see this, note first that the
decomposition (5.2) shows that a is pointwise bounded, and da decays exponentially
over the ends. Applying the proof of [15, Proposition 1.1.19] to X.7 = X' \ (7, 00) xY
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5.1 Hodge theory for the operator —d* +d+ 45

we get

(|dta|*—|d~al?) = da Ada = d(a A da)
X.r X.r X.r

:/ anda—0 asT — oco.
aX:T

Since dTa = 0, we conclude that da = 0.

Fix t >0 and forany a € Q1(X) and j =1,...,r set

Rja=/ «a. (53)
{t}xY;

Recall that d* = — % d* on 1-forms, so if d*a =0 then Rja is independent of 7.
Therefore, if a € ker(D) N L?* then Rja =0 for j > s, hence

S
ZRJ-a=/ *a = d*a = 0.
j=1 ?

Xt Xt
Set E:{(Zl,...,ZS)GRS:Zijo}.
J

Proposition 5.1.1 In the situation above the map

a: ker(D) N LP* > ker(H' (X)) > H' (Y")) & E,
ar— ([a], (Rya,..., Rsa))

is an isomorphism.

Proof We first prove « is injective. Suppose «(a) = 0. Then a = df for some
function f on X . From the decomposition (5.2) we see that a decays exponentially
over the ends. Hence f is bounded, in which case

0:/de*a:/X|a|2.

Next we prove « is surjective. Suppose b € Q! (X), db = 0, [b|y»] = 0, and
(z1....,25) € E. Let ¥ € Q1(Y) be the harmonic form representing [b|y] € H'(Y).
Then

This shows « is injective.

blryxy ="y +df.
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46 5 Local compactness I1

for some f: Ry xY — R. Choose a smooth function p: X — R which vanishes in a
neighbourhood of Xy and satisfies p =1 on [r,00) x Y. Set z; =0 for j > s and
let z be the function on Y with z|y;, = Vol(Yj)~!zj. Define

b=b+dp(z— f)).

Then over [1,00) x Y we have b = 7*y + z dt, so d*b = 0 in this region, and

/d*i;:—/ *5:—/z=0.
X 0X.¢ Y

Let k: X — R be a smooth function which agrees with |«| outside a compact set. By
Proposition 2.3.2 we can find a smooth &: X — R such that d§ € Lf * and

d*(b+dg) =0.
Seta=bhb+ d&. Then (d +d*)a =0 and «a(a) = ([b], (z1, ..., zs)). ad
The following proposition is essentially [14, Proposition 3.14] and is included here
only for completeness.
Proposition 5.1.2 Ifb{(Y) =0 and s = 0 then the operator

D: L — LP* (5.4)
has index —bo(X) + b1 (X)—bT(X).
Proof By Proposition 5.1.1 the dimension of the kernel of (5.4) is b1(X). From
Proposition 2.3.1 (ii) with S = 0 we see that the image of (5.4) is the sum of d*Lf’K

and d +Lf . The codimensions of these spaces in L? are bo(X) and b (X),
respectively. O

5.2 The case of a single moduli space
Consider the situation of Section 1.3. Initially we do not assume Condition (A).

Proposition 5.2.1 Fix 1 < g < co. Let 0 > 0 be a small constant and k: X — R
a smooth function such that k(t, y) = —ot for all (t,y) € Ry xY. Let A, be a
spin connection over X which is translationary invariant over the ends of X . For
n=1,2,... let S, = (Ao, +an, P,) be a smooth configuration over X which satisfies
the monopole equations (3.10) with 1 = i, p = Pn. Suppose a, € L?’K for every n,
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5.2 The case of a single moduli space 47

and sup,, || ®,|lec < 0o. Then there exist smooth u,: X — U(1) such that if k is any
nonnegative integer with

sup ([ nller + Ipn,jllcr) < oo (5.5)
J,n
p/

then the sequence u,(Sy) is boundedin Ly,

p=>1.

over compact subsets of X for every

Before giving the proof we record the following two elementary lemmas:

S T
Lemma 5.2.1 Let E, F,G be Banach spaces, and E — F and E — G bounded
linear maps. Set

S+T: E—>FpG, x+—(Sx,Tx).

Suppose S has finite-dimensional kernel and closed range and that S + T is injective.
Then S + T has closed range, hence there is a constant C > 0 such that

Il = CASxI+ 1T x])

forall x € E.
Proof Exercise. O

Lemma 5.2.2 Let X be a smooth, connected manifold and xy € X. Denote by
Map,(X,U(1)) the set of smooth maps u: X — U(1) such that u(x¢) =1, and let V
denote the set of all closed 1—forms ¢ on X such that [¢] € H'(X;Z). Then

1
Mapy,(X,U(1)) >V, u+ —u "du
2mi

is an isomorphism of Abelian groups.

u(x) = exp (2711' /X ¢),

where | ;0 ¢ denotes the integral of ¢ along any path from x¢ to x. Then we have
(1/27i))u"'du = ¢. The details are left to the reader. m|

Proof If ¢ € V define

Proof of Proposition 5.2.1 We may assume X is connected and that (5.5) holds
at least for k£ = 0. Choose closed 3—forms wy,...,wp, (x) Which are supported in
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48 5 Local compactness I1

the interior of X:¢ and represent a basis for H2(X). For any a € Q' (X) define the
coordinates of Ja € R01(X) py

(Ja)k=/Xa/\a)k.

Then J induces an isomorphism H'(X) — R?1(X) by Poincaré duality. By Lemma
5.2.2 we can find smooth v,: X — U(1) such that J(a, — v;, 'dvy) is bounded as
n — oo. We can arrange that v, (¢, y) is independent of # > 0 for every y € Y. Then
there are &, € Lg’K (X;iR) such that b, = a, — v;ldvn — d§&, satisfies

d*by = 0; Rjb, =0, j=1,....,r—1

where R; is asin (5.3). If r > 1 this follows from Proposition 2.3.3, while if r =0
(ie if X is closed) it follows from Proposition 2.3.2. (By Stokes’ theorem we have
R,;b, =0 as well, but we don’t need this.) Note that &, must be smooth, by elliptic
regularity for the Laplacian d*d . Set u,, = exp(&n)vn. Then u, (Ao +ay) = Ao+ by.
By Proposition 5.1.1 and Lemma 5.2.1 there is a C; > 0 such that

r—1

b1z = €1 (160" +dDbles+ 3 |Rsbl+ 1701 )

j=1

forall b e L‘ll"c. From inequality (3.6) and the curvature part of the Seiberg—Witten
equations we find that sup,, ||d T by|lco < 00, hence

”bn”L‘l”’( = C1(||d+bn||Lq.K +|Jbnl]) = Cy

for some constant C,. We can now complete the proof by bootstrapping over compact
subsets of X', using alternately the Dirac and curvature parts of the Seiberg—Witten
equation. a

Combining Proposition 5.2.1 (with k£ > 1) and Proposition 3.4.1 we obtain, for fixed
closed 2—forms 7n; on ¥;:

Corollary 5.2.1 If (A) holds then for every constant Cy < oo there exists a constant
Cy < oo with the following significance. Suppose ||| c1.[pjllct < Co for each
J . Then for any & = (a1, ...,0) with oj € ﬁyj ,and any [S] € M(X;a;u;p) and
t,...,tr €[]0, Cy] one has

,
> 49 (Slgixy;)| < Cr.
j=1
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5.3 Condition (C) 49
Note that if }; A3 (aj) = —Cp then this gives

> 4 (9(Slgyyxy;) = 9(@))) < Co + C. (5.6)
j=1

5.3 Condition (C)

Consider the situation in Section 1.4 and suppose y is simply connected and equipped
with an orientation o. Throughout this section (and the next) (co)homology groups
will have real coefficients, unless otherwise indicated.

We associate to (y, 0) a “height function”, namely the unique integer valued function £
on the set of nodes of ¥ whose minimum value is 0 and which satisfies i(e’) = h(e)+1
whenever there is an oriented edge from e to ¢’.

Let Z% and Z% denote the union of all subspaces Z, C X* where e has height k
and > k, respectively. Set

ozk= ) o z..
h(e)=k
For each node e of y choose a subspace G, C H{(Z,) such that
Hi(Ze) =G, ®im (H (0" Z,) - H1(Z,)) .

Then the natural map Fp — Ge",‘ is an isomorphism, where G: is the dual of the vector
space Ge.

Lemma 5.3.1 The natural map H'(X*) — @@ . G~ is injective. Therefore, this map
is an isomorphism if and only if X (X, y,0) = 0.

Proof Let N be the maximum value of 4 and suppose z € H!(X*) lies in the kernel
of the map in the lemma. It is easy to show, by induction on £ = 0,..., N, that
H'(X*) - H"'(Z*) maps z to zero for each k. We now invoke the Mayer—Vietoris
sequence for the pair of subspaces (Z k=1 7Iky of x*:

HOZF Y HO(ZW) & HO(~ 2% > H' (zF) & o' (ZF ) @ B (Z1F).

Using the fact that y is simply connected it is not hard to see that a is surjective,
hence b is injective. Arguing by induction on k = N, N —1,...,0 we then find that
H'(X* — H'(zk) maps z to zero for each k. a
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50 5 Local compactness I1

We will now formulate a condition on (X, y) which is stronger than (C) and perhaps
simpler to verify. A connected, oriented graph is called a tree if it has a unique node
(the root node) with no incoming edge, and any other node has a unique incoming edge.

Proposition 5.3.1 Suppose there is an orientation o of y such that (y, o) is a tree and
H'(z%) - H'(ZF)
is surjective for all k. Then Condition (C) holds.

Proof It suffices to verify that X (X, y,0) = 0. Set

Flk = ker(H'(Zz*) > H' (0~ Z%)),

F¥ =ker(H'(ZF) - H' (0~ Z%)).
The Mayer—Vietoris sequence for (Z k zlk *1) yields an exact sequence

0 Flik » Fk g gl(Z*+1) & gl zk+1,
If H'(Zzk) > H'(Zk) is surjective then so is Flk — Fk hence ker(FIk — Fk) —
FUe+1 js an isomorphism, in which case
dim F* = dim FK+1 4 dim Fk,

Therefore T(X,y,0) =dim H'(X*) -, dim Fk
=dim H'(X*)—dim FI° = 0. o

5.4 Neck-stretching II

Consider again the situation in Section 1.4. The following set-up will be used in the
next two lemmas. We assume that y is simply connected and that o is an orientation
of y with (X, y,0)=0.Let | < p < 0.

Anend of X that corresponds to an edge of y is either incoming or outgoing depending
on the orientation o. (These are the ends R x (£Y}), but the sign here is unrelated
to 0.) All other ends (ie R4 x Yj/ , 1 < j <r’)are called neutral.

Choose subspaces G, of H{(Z,) ~ H{(X,) as in the previous section, and set g, =
dim G, . For each component X, of X let {g.r} be a collection of closed 3—forms on
X, supported in the interior of Z, = (X,).o which represents a basis for the image of
G in H3?(X,) under the Poincaré duality isomorphism. For any a € Q!(Z/) define
Jea € RE&¢ by

(Jea)x =/ angek-
Xe
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5.4 Neck-stretching IT 51

For each e let Ry X Ypp,, m = 1,...,h, be the outgoing ends of X,. For any
a € Q'(Z)) define R.a € R* by

(Rea)m = / *d.
{0}xYem

Lea = (Jea, Rea) € Rne.

Set n, = g0 + he and

Forany a € Q' (XM) let Lae V =P . R"¢ be the element with components L.a.

For any tubular end R4 x P of X let #: Ry x P — R be the projection. Choose a
small o > 0 and for each ¢ a smooth function «.: X, — R such that

ot on incoming ends,
Ke = .
—ot on outgoing and neutral ends.

Let X7} X be as in Section 1.4 and let k = Kkt X (T) - R be a smooth function
such that k7 —«k, is constant on X, NX {T} for each e. (Such a function exists because
y is simply connected.) This determines «7 up to an additive constant.

Fix a point x, € X, and define a norm |- ||z on V by

lollr = explier (xe)) vell,

where || - || is the Euclidean norm on R"¢ and {v.} the components of v.
Let D denote the operator —d* +d+ on X ).
Lemma 5.4.1 There is a constant C such that for every r —tuple T with T, suffi-
ciently large and every L 1-form a on XT) we have
lall e = C(|[DallLrw +|[LalT).

Note that adding a constant to x rescales all norms in the above inequality by the same
factor.

Proof Let 7 be a function on X which is equal to 27} on the ends Ry x (£Y;) for
each j. Choose smooth functions fj, f>: R — R such that ( f;(¢))?>+(f2(1—1))> =1
forall ¢, and fr(t) =1 for¢t <1/3, k =1,2. For each ¢ define f.: X, — R by

f1(t/t) on outgoing ends,
Be = { f2(t/t) onincoming ends,

1 elsewhere.

Geometry & Topology Monographs, Volume 15 (2008)



52 5 Local compactness II

Let . denote the smooth function on X ™) which agrees with B, on X, N X7} and
is zero elsewhere.

In the following, C, C;, C,, ... will be constants that are independent of 7'. Assume
Tmin = I.
Note that |V .| < C; Tn;rll everywhere, and similarly for B, . Therefore

|Beall pe < Callall o

for 1-forms a on X,.

Let D, denote the operator —d* + d+ on X,. By Proposition 5.1.1 the Fredholm
operator
De® Le: L — LV @ R™

is injective, hence it has a bounded left inverse P,
P.(D.® L,) =1d.
If aisa I—formon X and v € V set

ﬂ_e(a’ v) = (Eea, Ve).

Here we regard Eea as a 1-form on X,. Define

P =Y BePefe: LP* @V — L™,
e

If we use the norm || - ||z on V then || P|| < C5. Now

P(D@®L)a=)  BePe(BeDa, Lea)
= Z Be Pe(DeEea + [ﬂ_e, Dla, Lelgea)
=Y (BeBea + Be Pe([e, Dla, 0))

=a+ Ea,
where ||Ea||L¥.K =< C4Tn;I11||a||Lp.:<.
Therefore, |IP(DdL)-I| < C4TH;III,

80 if Tipin > C4 then z = P(D & L) will be invertible, with
Iz < a—=lz=1)~"
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In that case we can define a left inverse of D @ L by
Q= (P(DeL)'P.
If Thin > 2C4 say, then || Q|| < 2C3, whence for any a € Lf"c we have
lall Lr« = |Q(Pa. La)|| rx < C(|Pal|Lox + || Lall7). 0
Lemma 5.4.2 Let e be anode of y and forn =1,2,... let T(n) be an r —tuple and
an an Lf’K” 1—form on XT™)  where «, = KT (n) - Suppose
@ Z(X.y.0)=0,
(i) Tmin(n) = 00 as n — oo,
(iii) there is a constant C’ < oo such that
Kn(Xer) < kn(xe) +C’
for all nodes e’ of y and all n,

(iv) sup, |d T anlloo < oc.

Then there are smooth uy,: X T™) U(1) such that the sequence b, = a, — u;ldun
is bounded in Llp over compact subsets of X,, and b, € Lf *n and d*b, = 0 for
every n.

Note that (iii) implies that e must be a source of (y, 0).

Proof Without loss of generality we may assume that «,(x.) = 1 for all n, in which
case
sup ||1]| Lpan < 00.
n

By Lemma 5.2.2 and Lemma 5.3.1 we can find smooth vy: XT@™) (1) such that

sup || Jer (an — v, ' dvp)|| < 00
n

for every node ¢’, where |- || is the Euclidean norm. (Compare the proof of Proposition
5.2.1.) Moreover, we can take v, translationary invariant over each end of X (T@m)
Proposition 2.3.3 then provides smooth &, € Lg #n(X;iR) such that

b, = ay, —v;ldvn —d§&, € Lf’K”

satisfies d*b, =0, / xb, =0
{0}xY}
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for j =1,...,r —1. Stokes’ theorem shows that the integral vanishes for j = r’ as
well, and since y is simply connected we obtain, for j =1,...,r,

/ *b, =0 for |t| < Tj(n).
{1}xY;

In particular, R.b, = 0 for all nodes ¢’ of y.

Set u, = v, exp(&,), so that b, = a, — u;ldun. By Lemma 5.4.1 we have

Ionlzgon = € (10 ¥ balron + explintre )l o
e/

< (I anllnon +ex0(1-+ €)X ean =3 ).

e/

which is bounded as n — oo. O

Proposition 5.4.1 Suppose y is simply connected and that Condition (C) holds for
(X,y). Forn=1,2,... let[Sy,] € M(XTO:&": 11,:pn:7.,), where Tpin(n) — .
Then there exist smooth maps wy,: X — U(1) such that if k is any positive integer with

sup ([l llcr + Ipjnllcr + 19 ullcr) < oo
JJ’sn
p/

then the sequence wy(Sy) is bounded in LkJrl

p >1.

over compact subsets of X for every

Proof Consider the set-up in the beginning of this section where now p > 4 is the
exponent used in defining configuration spaces, and o is an orientation of ¢ for which
(C) is fulfilled. By passing to a subsequence we can arrange that «,(x¢) — kn(Xe’)
converges to a point £(e, e’) € [—00, 0o] for each pair of nodes e, ¢’ of y. Define an
equivalence relation ~ on the set A/ of nodes of y by declaring that e ~ ¢’ if and only
if £(e, ¢’) is finite. Then we have a linear ordering on N’/ ~ such that [e] > [¢'] if and
only if £(e,e’) > —oo. Here [e] denotes the equivalence class of e.

Choose e such that [e] is the maximum with respect to this linear ordering. Let
Sy = (Ao + an, ). Then all the hypotheses of Lemma 5.4.2 are satisfied. If u,, is as
in that lemma then, as in the proof of Proposition 5.2.1, u,(Sy) = (Ao + by, un®y)

will be bounded in L? /

k1 over compact subsets of X, for every p>1.

For any r—tuple T let W) be the result of gluing ends of X \ X, according to the
graph y \ e and (the relevant part of) the vector 7". To simplify notation let us assume
that the outgoing ends of X, are Ry x (=Y;), j =1,...,r;. Then R4 x Y} is an
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end of WT™ for j =1,...,r,. Let b, be the 1—form on WT® which away from
the ends R4 x Yj, 1 < j <r; agrees with by, and on each of these ends is defined by
cutting off b, :

f1@t =2Tj(n) +1)-bu(t,y), 0=t =2Tj(n),

by(t,y) = {0’ t > 2Tj(n).

Here fj is as in the proof of Lemma 5.4.1. Then sup,, |d T},||co < 00. After choosing
an orientation of y \ e for which (C) holds we can apply Lemma 5.4.2 to each component
of y \ e, with b}, in place of a,. Repeating this process proves the proposition. O

Corollary 5.4.1 If (B2) holds then for every constant Cy < oo there exists a constant
C} < oo such that for any element [S] of a moduli space M (X T);a’; yu;p; p') where
Tmin > C1 and ., pj,p;. all have C' —norm < C, one has

r r’
Dk (F(Slity3x) =9 (Slmxy) + A9 Shoyy)| <Ci. - O

The next proposition, which is essentially a corollary of Proposition 5.4.1, exploits the
fact that Condition (C) is preserved under certain natural extensions of (X, y).

Proposition 5.4.2 Suppose y is simply connected and (C) holds for (X, y). Then for
every constant Cy < oo there is a constant Cy < oo such that if S = (A, ®) represents
an element of a moduli space M (X T);&'; ju; ;') where Tyin > Cy and , p;, p} all
have L*° norm < C, then

IVOsll2(@—1,041)xy;) <C1 forlt| < Tj—1,
||v19s||L2((t_1,t+l)ijl) < Cl fort > 1.

Proof Given an edge v of y corresponding to a pair of ends Ry x (£Y;) of X, we
can form a new pair (X(jy, ¥(j)) where X(jy =X [ [(RxY}), and y(;) is obtained from
y by splitting v into two edges with a common endpoint representing the component
R x YJ of X, (-

Similarly, if e is a node of y and R4 x Y/ an end of X, then we can form a new pair
(XD, )y where X)) = X [T(Rx Yj/), and ¥ is obtained from y by adding one
node ej’. representing the component R x Yj/ of X and one edge joining e and e}.

One easily shows, by induction on the number of nodes of y, that if (C) holds for
(X,y) then (C) also holds for each of the new pairs (X}, y(;)) and (X ), 0y,
Given this observation, the proposition is a simple consequence of Proposition 5.4.1. O
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CHAPTER 6

Exponential decay

In this chapter we will prove exponential decay results for genuine monopoles over
half-cylinders R4 x Y and long bands [T, T'] x Y. The overall scheme of proof will
be the same as that for instantons in [14], and Section 6.1 and Section 6.3 follow [14]
quite closely. On the other hand, the proof of the main result of Section 6.2, Proposition
6.2.1, is special to monopoles.

Throughout this chapter Y will be a closed, connected Riemannian spin® 3-manifold,
and n € Q2(Y) closed. We will study exponential decay towards a nondegenerate
critical point o of ¥ = 1,. We make no nondegeneracy assumptions on any other
(gauge equivalence classes of) critical points, and we do not assume that (O1) holds,
except implicitly in Proposition 6.4.1. All monopoles will be genuine (ie p = 0).

Earlier treatments of exponential decay can be found in Nicolaescu [41] (in the case
n = 0) and Kronheimer—-Mrowka [31] (in the context of “blown-up” configurations).

6.1 A differential inequality
We begin by presenting an argument from [14] in a more abstract setting, so that it
applies equally well to the Chern—Simons and the Chern—Simons—Dirac functionals.

Let E be a real Banach space with norm || - || and E’ a real Hilbert space with inner
product (-,-). Let E — E’ be an injective, bounded operator with dense image. We
will identify E as a vector space with its image in E’. Set |x| = (x,x)!/2 for x € E.

Let U C E be an open set containing 0 and
f:U—R, g U—E

57



58 6 Exponential decay

smooth maps satisfying f(0) =0, g(0) =0 and

Df(x)y = (g(x),y)

forall x e U, y € E. Here Df(x): E — R is the derivative of f at x. Suppose
H = Dg(0): E — E’ is an isomorphism (of topological vector spaces). Note that H
can be thought of as a symmetric operator in E’. Suppose E contains a countable set
{ej} of eigenvectors for H which forms an orthonormal basis for E’. Suppose o, A
are real numbers satisfying 0 < A < o and such that H has no positive eigenvalue less
than o .

Lemma 6.1.1 In the above situation there is a constant C > 0 such that for every
x € U with ||x|| < C~! one has

20f(x) < |g(x)* +Clg ()P,
211 (x) = |g ()|,

Proof It clearly suffices to establish the first inequality for some C. By Taylor’s
formula (Dieudonné [10, 8.14.3]) there is a C; > 0 such that for all x € U with
x| < Cl_1 one has

1
|/ (0) = 5 {Hx, x) < Cillx|P,
|g(x) — Hx| = Ci|x||*.
Let Hej = Ajej, and set xj = (x,ej)ej. Then

o(Hx,x) =0y Alx;|> <Y M|xj> = |Hx|.
J J

By assumption, there is a C, > 0 such that
x|l = Co|Hx|
for all x € E. Putting the above inequalities together we get, for r = ||x|| < C| L

|Hx| <|g(x)|+Cir?
< [g(x¥)[+rCi G| Hx|.

If r < (C;C,)7! this gives

|Hx| < (1-rC1Co) g,
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6.1 A differential inequality 59

hence
20f(x) <o(Hx,x)+20Cr?
< |Hx|2+20rC1C22|Hx|2
2
< e g
= (1+Cn)lg))?
<[g(x)> + C4lg ()]

for some constants C3, Cy. O

We will now apply this to the Chern—Simons—Dirac functional. Let o = (B, \IJQ) be
a nondegenerate critical point of ¢. Set Ky = ker(Z}) C T(iA! & S) and H, =
Hylk,: Ko — Kq. Note that any eigenvalue of Hy is also an eigenvalue of the

self-adjoint elliptic operator
0 Iy

over Y acting on sections of iA° @iA' @S. Let A be positive real numbers such
that H, has no eigenvalue in the interval [-A~, A 7].

In the following lemma, Sobolev norms of sections of the spinor bundle Sy over Y
will be taken with respect to By and some fixed connection in the tangent bundle 7Y .
This means that the same constant € will work if « is replaced with some monopole
gauge equivalent to «.

Lemma 6.1.2 In the above situation there exists an € > 0 such that if S is any smooth
monopole over the band (—1, 1) x Y satistying ||Sq —a||L%(Y) < € then

+220F (B (So) — 3 (@) < —0: 0P (Sy).

Proof Choose a smooth u: (—1,1) x Y — U(1) such that «(.S) is in temporal gauge.
Then
8:9(S1) = 8r9 (s (S0)) = [ VI (S5 = ~IIVI (S5

If € > 0 is sufficiently small then by the local slice theorem we can find a smooth
v: Y — U(1) which is L% close to 1 and such that Z} (v(Sy) —a) = 0. We now
apply Lemma 6.1.1 with E the kernel of Z} in L3, E’ the kernel of Z} in L? and
f(x) =£@ (¢ + x) — 9 (x)). The assumption that @ be nondegenerate means that
H=Hy: E— E'isan isomorphism, so the lemma follows. O
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60 6 Exponential decay

6.2 Estimates over [0, T] x Y

Let o be a nondegenerate critical point of ¢+ and o = (B, ¥) the monopole over R x Y’
that o defines. Throughout this section, the same convention for Sobolev norms of
sections of Sy will apply as in Lemma 6.1.2. For Sobolev norms of sections of the
spinor bundles over (open subsets of) R x ¥ we will use the connection B.

Throughout this section S = (A, ®) will be a monopole over aband B=1[0,T]x Y
where 7 > 1. Set s = (a¢,¢) = S —a and
§= ||S||L§(B)»

(6.1)
V2 = |[V95]122 5 = 9(S0) — D(S7).

The main result of this section is Proposition 6.2.1, which asserts in particular that
if § is sufficiently small then S is gauge equivalent to a configuration S which is in
Coulomb gauge with respect to ¢ and satisfies ||.S — «|| L2®) < const-v.

We will assume § < 1. Let ¢’ denote the contraction of ¢ with the vector field 9; = %
Quantities referred to as constants or denoted “const” may depend on Y, n, [«], T but
not on S. Note that

v < const- ([ls|l1,2 + [l ,) < const, (6.2)
the last inequality because § < 1.

For real numbers ¢ set
irnY —>RxY, ye(t).

If w is any differential form over B set w; =i, 0 <¢ < T. Similar notation will
be used for connections and spinors over B.

Lemma 6.2.1 There is a constant Cy > 0 such that

[919]2 < Co(w + ||d|13).

Proof We have

dp=00=Vid—d®,
where Vf‘ is the covariant derivative with respect to A in the direction of the vector
field 0; = %. Now |Vf‘CI>| depends only on the gauge equivalence class of S = (4, @),
and if A4 is in temporal gauge (ie if @’ = 0) then (VIACI)), = d4, P;. The lemma now
follows because 6 < 1. |
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Lemma 6.2.2 There is a constant C; > 0 such that if § is sufficiently small then the
following hold:

@ Nl = CiliZgsliz + lla'll1,2 +v).
(ii) There is a smooth f: B — iR such that § = (a, ¢V)) = exp(f)(S) — o satisfies
[S¢ll1,2 < CilIVEs,lla, 0=<t=<T.

(iii) ||da|, < Cyv.
In (i) and (iii) all norms are taken over B.
Proof The proof will use an elliptic inequality over Y, the local slice theorem for Y,
and the gradient flow description of the Seiberg—Witten equations over R x Y.
(i) Since « is nondegenerate we have

Izll1,2 < const- [|(Zy + Ha)z |2
for L% sections z of (iA @ S)y . Recall that
Vigtz=Hyz+:z®:z

where z ® z represents a pointwise quadratic function of z. Furthermore, ||z ® z|; <
const - ||z||f 5 If ||z]l1,2 is sufficiently small then we can rearrange to get

Izll1,2 < const- (| Zgzll2 + VIa+zl2)- (6.3)
By the Sobolev embedding theorem we have
< .
”SIHL%(Y) = const ”S”Lg(B)’ t€l0,T],

for some constant independent of 7, so we can apply inequality (6.3) with z = s; when
§ is sufficiently small. Because

(Zys—01d")r =Tys;
we then obtain
T
2 * )2 ) 2
/(; ”Sl ”L%(Y) dt < const- (”IgS”LZ(B) + ||ala ||L2(B) +v )
This together with Lemma 6.2.1 establishes (i).

(ii)) Choose a base-point yo € Y. By the local slice theorem there is a constant C
such that if § is sufficiently small then for each ¢ € [0, T'] there is a unique smooth
ft: Y — iR such that

Geometry & Topology Monographs, Volume 15 (2008)



62 6 Exponential decay

o« | fil22=C8,
e fi(yo) =0 if « is reducible,
°* 5= eXp(ft)(St) —« satisfies Z)5; = 0.

It is not hard to see that the function f : B— iR given by f (t,y)= j‘v}( ») is smooth.
Moreover, ||S]|1,2 < const- [|s]|1,2. Part (i) then follows by taking z = §, in (6.3).

(iii) Choose a smooth u: B — U(1) such that u(S) is in temporal gauge, and set
(a,¢) = u(S)—a. Then

da=da=dt Ndya+dya=—dt ANVi¥s, +dyay,

where V4 is the first component of V. This yields the desired estimate on da. O

Lemma 6.2.3 Let {vy,...,vp, (y)} be a family of closed 2—forms on Y which repre-
sents a basis for H?>(Y; R). Then there is a constant C such that
1613 = € (16" + Dbl + 16Danlz om + 3 ‘ [ denaty b))
J

(6.4)

forall L3 1-forms b on B, where : B — Y is the projection.

Proof Let K denote the kernel of the operator
Q> QBB QY. b (d*b.db, xb|sp).
Then we have an isomorphism
p: K5 HY(Y:R), b [bo).

For on the one hand, an application of Stokes’ theorem shows that p is injective. On
the other hand, any ¢ € H!(Y;R) can be represented by an harmonic 1—form w, and
7*w lies in K, hence p is surjective.

It follows that every element of K is of the form 7*(w). Now apply Proposition 4.1.1
and Lemma 5.2.1. |
Lemma 6.2.4 There is a smooth map f : B— iR, unique up to an additive constant,

such that a = a —d f satisfies

d*a =0, (%0)|sp =0.
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Given any such f if we set § = (a, 5) = exp(f)(S) —a then
a < G <
lall 2 < Cov. ISl L2 < Ca8
for some constant C, > 0.
Proof The first sentence of the lemma is just the solution to the Neumann problem. If

we fix xo € B then there is a unique f as in the lemma such that f (x9) =0, and we
have ||f||3,2 <const- ||a|2 . Writing

¢ =exp(f)®— W = (exp(f) — )P + ¢

and recalling that, for functions on B, multiplication is a continuous map L% xL ]26 — L ,26
for 0 <k <3, we get

#6122 = Cllexp(f) = l32|Pll2,2 + [[#]l2.2

=N fll32exp(C”1 fl13,2) + #12,2
<C"|isll2,2

for some constants C, ..., C"”, since we assume § < 1. There is clearly a similar L2
bound on &, so this establishes the L% bound on 5.

We now turn to the L% bound on a. Let ¢ be as in Lemma 6.2.2. Since d — a is exact

/v/\ﬁt ='/UA&;
Y Y

for any closed v € Q% Now take » = @ in Lemma 6.2.3 and use Lemma 6.2.2,
remembering that da = da. O

we have

=< const- [[v]|2[ld:]l2

Definition 6.2.1 For any smooth 4: Y — iR define /&, P(h): B— iR by A(t, y) =
h(y) and
P(h)=Ah+i{iV,exp(h)®),

where A = d*d is the Laplacian over R x Y. Let P;(/) be the restriction of P (/) to
{t}xY.

Note that Ty (exp(W)(S) —a) = —d*a+ P(h).

Lemma 6.2.5 If « is irreducible then the following hold:

(1) There is a C3 > 0 such that if § is sufficiently small then there exists a unique
smooth h: Y — iR satisfying ||h|3, < C38 and Py(h) =0.
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(i) If h: Y — iR is any smooth function satistying Py(h) = 0 then
| P(M)|l 2y < const- (v + [la'[| L3g))-
Proof (i) We will apply Proposition B.0.2 (ie the inverse function theorem) to the
smooth map
Po: L3 — L}, h> Ayh+i{iWg,exp(h)do).

The first two derivatives of this map are

DPy(h)k = Ayk + k{Wy, exp(h) Do),

D2 Py(h)(k, ) = ikl(i Wy, exp(h)Do).

The assumption § <1 gives

1D? Po(h)|| = const- (1 + [|Vhl|3).
Set L = DPy(0). Then

(L — Ay —[¥o|*)k = k(Wo, ¢o),

hence |L —Ay —|Wo|?| < const-8.
Thus if § is sufficiently small then L is invertible and
L7 < 1Ay + [WoH) M+ 1.
Furthermore, we have Py(0) =i (i ¥q, ¢), SO
| Po(0)]|1,2 < const-§.

By Proposition B.0.2 (i) there exists a constant C > 0 such that if § is sufficiently small
then there is a unique /4 € L% such that ||4]|3,, < C and Po(h) = 0 (which implies
that /2 is smooth). Proposition B.0.2 (ii) then yields

I7]l3,2 < const- || Po(0)|]1,2 < const-é.
(ii) Setting Q = P(h) we have, for 0 <¢ < T,

t
2 —
[1oenrar=[ | [ a0 as
Now, 0; 0 =i (i, exp(h)d; D), hence

2
dy < const-/ 19, 0|2
B

101 Q|2 < const- [|d; @], < const- (v + ||d||3)

by Lemma 6.2.1. O
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Proposition 6.2.1 There is a constant C4 such that if § is sufficiently small then there
exists a smooth f: B — iR such that 5 = (a, ¢) = exp(f)(S) — « satisfies

L5 =0, (Dl =0, 5120 < Cav. [5l,20 < Cad,
where §, v are as in (6.1).
This is analogous to Uhlenbeck’s theorem [50, Theorem 1.3] (with p = 2), except that
we assume a bound on § rather than on v.

Proof To simplify notation we will write Z = Z in this proof.

Case 1: « reducible In that case the operator Z* is given by Z*(b, ) = —d*b. Let
J be the f provided by Lemma 6.2.4. Then apply Lemma 6.2.2 (ii), taking the S of
that lemma to be the present exp( f)(S).

Case 2: « irreducible Let fA S etc be as in Lemma 6.2.4. Choose /: ¥ — iR such
that the conclusions of Lemma 6.2.5 (i) holds with the S of that lemma taken to be the
present S.Set S = (A dD) = exp(h)(S) and § = (4, ¢) S— «. By Lemma 6.2.5
and Lemma 6.2.2 (i1) we have

|Z*5]j, < const-v, [§]2,2 <const-§, ||¢)||12 < const- v.
Since —d*a =T*§—i(iV,$) we also get
ld*a|» < const-v.
Applying Lemma 6.2.3 as in the proof of Lemma 6.2.4 we see that
lall1,2 < const-v.

It now only remains to make a small perturbation to S 5o as to fulfil the Coulomb
gauge condition. To this end we invoke the local slice theorem for B. This says that
there is a C > 0 such that if § is sufficiently small then there exists a unique smooth
f: B — iR such that setting § = (@, 5) = exp(f)(S') — o one has

I fll32<C8, I*S=0, xalsg=0.

We will now estimate first || f'||2,2, then [|5]| 2 in terms of v. First note that xa|sp =
xd|sg = 0, and

i=a—df, ¢=exp(f)d—V
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by definition. Write the imaginary part of exp(f) as f + f3u. Then f satisfies the
equations (d; f)|sg = 0 and

0=—d*a+i(iV.¢)r
= Af —d*a+i(iV,exp(f)($+ V)R
= A+ |V f—d*a+i(iWexp(f)$+ [PuW)g.
By the Sobolev embedding theorem we have
| flloo < const- || f 3,2 < const- 4,
and we assume § < 1, so ||u| 0o < const. Therefore,
11122 < const- [ Af + [¥]* /|2
<v+const- || £,
< v 4 const- ||f||32,

cf Section 2.5 for the first inequality. If § is sufficiently small then we can rearrange to
get || f]|2,2 < const-v. Consequently, ||@||;,» < const-v. To estimate |¢|;,» we write

¢ = g¥ +exp(f)g.
where g =exp(f)—1. Then |dg| = |df| and |g| < const-| f|. Now
|11z < const- || f1l2 + |¢l2 < const-v,
IV@ll2 < const-(Igll1.2 + ldf ® dll2+ |Vell2)
<const- (v + |df l|4ll¢l4)
<const- (v + || fll2.2/111.2)

< const- (v + v?)

<const-v
by (6.2). Therefore, ||$ [l1,2 < const-v. Thus, the proposition holds with
[=T+h+7. 0

Proposition 6.2.2 Let k be a positive integer and V' & int(B) an open subset. Then
there are constants €y, Cy -, where € is independent of V', such that if

*
Iys =0, ||S||L%(B) =€k

then ||s||le((V) = Ck,V”S”L%(B)-
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Proof The argument in [15, pp 62-3] carries over, if one replaces the operator d* + d+
with Z} + D®g, where D®, is the linearization of the monopole map at «. Note
that I(f+ DOy is injective over S I %Y because « is nondegenerate, so if y: B — R
is a smooth function supported in int(B) then

lysllk2 < Cell(Zg + DO (¥5) k1,2

for some constant C /2 O

6.3 Decay of monopoles

The two theorems in this section are analogues of Propositions 4.3 and 4.4 in [14],
respectively.

Let B8 be a nondegenerate monopole over Y, and U C By an L?—closed subset which
contains no monopoles except perhaps [8]. Choose A* > 0 such that Hg has no
eigenvalue in the interval [-A~, AT], and set A = min(A~, A ™). Define

B, =[t—1,141]xY.

Theorem 6.3.1 For any C > 0 there are constants €, Cy, Cy, ... such that the follow-
ing holds. Let S = (A, ®) be any monopole in temporal gauge over (—2, 00) x Y such
that [S;] € U for some t > 0. Set

V= |VOslr2(=2,00x¥): V) =[VIslr2@,)-

If |®|lco < C and v < € then there is a smooth monopole « over Y, gauge equivalent
to B, such that if B is the connection part of « then for every t > 1 and nonnegative
integer k one has

o+
sug |V§(S —a)|,y) = Crv/v(0)e ATe (6.5)
ye

Proof It follows from the local slice theorem that By — By isa (topological) principal
H'(Y;Z)-bundle. Choose a small open neighbourhood V of [8] € By which is the

image of a convex set in Cy . We define a continuous function f: V — R by

S (x) =0(a(x)) - (a(B])
where o: V — gy is any continuous cross-section. It is clear f_ is independent of o .

Given C >0, let S = (4, ®) be any monopole over (—2, 00) x Y such that || Do <C
and [S;] € U for some ¢ > 0. If § > 0, and k is any nonnegative integer, then provided

Geometry & Topology Monographs, Volume 15 (2008)



68 6 Exponential decay

v is sufficiently small, our local compactness results (Lemma 4.2.1 and Lemma 4.1.1)
imply that for every ¢ > 0 we can find a smooth u: By — U(1) such that

[u(S1B,) = Bllcrk®y) <9
In particular, if v is sufficiently small then
SRy =R, 1 f((S])

is a well-defined smooth function. Since f(¢)—19(S¢) is locally constant, and f(z) =0
as t — 0o, we have

S@&)=9(S)—-L,

where L = lim;— o0 #(S;). If U is sufficiently small then Lemma 6.1.2 gives 241 f <
— f’, hence

0< @) <e 271 F0), 1>0.
This yields
V()= f-1)—ft+1)< const-e_Z)‘+’f(0), t>1.
If v is sufficiently small then by Propositions 6.2.1 and 6.2.2 we have

f(t) <const-v(r), sup |[VE(VIs)|¢y) < Civ(t) (6.6)
yeyYy

for every ¢ > 0 and nonnegative integer k, where C ,; is some constant. Here we are
using the simple fact that if £, E’ are Banach spaces, W C E an open neighbourhood of
0,and i: W — E’ adifferentiable map with /2(0) =0 then ||2(x)|| < (|| DA0)||+1)]x]|
in some neighbourhood of 0. For instance, to deduce the second inequality in (6.6) we
can apply this to the map

hiLi =L s=(a.9)> Vi, (Vi)
where j > 3, say, and B’ is the connection part of é .

Putting the inequalities above together we get

sup IVE (V) iy < CF VO™, 1> 1
yE

for some constants CIQ’ . If S is in temporal gauge we deduce, by taking k = 0, that
S; converges uniformly to some continuous configuration . One can now prove by
induction on k that « is of class C¥ and that (6.5) holds. O
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Theorem 6.3.2 For any C > 0 there are constants €, Cy, Cy, ... such that the follow-

ing holds forevery T > 1. Let S = (A, ®) be any smooth monopole in temporal gauge

over the band [-T —2, T + 2] x Y, and suppose [S;] € U for some t € [T, T]. Set
V= |Visll2(—r—2,742)xy), V() = IVIslr2@,)-

If | ®||oo < C and v < € then there is a smooth monopole « over Y , gauge equivalent to
B, such that if B is the connection part of @ then for |t| < T — 1 and every nonnegative
integer k one has

sup IVE(S —a)(r.y) < ChW(=T) + v(T))/2e T =ID,
ye

Proof Given C >0, let S = (A, ®) be any monopole over [-T —2, T +2]x Y such
that || ®||eo < C and [S¢] € U for some ¢ € [T, T]. If v is sufficiently small then we
can define the function f'(¢) for |¢| < T as in the proof of Theorem 6.3.1, and (6.6)
will hold with f(¢) replaced by | f(¢)|, for |¢| < T. Again, f(t) = ¥ (S;) — L for
some constant L. Lemma 6.1.2 now gives

T (T = f() T FT), 1| =T
which implies
SOOI < (f D+ f@De™ TNy <1,
v(t)? < const- (V(=T) + v(T))e 22T=ID /1 <T—1.

By Proposition 6.2.1 and Proposition 6.2.2 there is a critical point « gauge equivalent
to B such that
IV5(So =)o) = CG'v(0)

for some constants C ,2’ ’. It is now easy to complete the proof by induction on k. O

6.4 Global convergence

The main result of this section is Proposition 6.4.1, which relates local and global
convergence of monopoles over a half-cylinder. First some lemmas.

Lemma 6.4.1 Let Z be a compact Riemannian n—manifold (perhaps with boundary),
m a nonnegative integer, and ¢ > n/2. Then there is a real polynomial Pp, 4(x) of
degree m + 1 satisfying Pp, 4(0) = 0, such that for any smooth u: Z — U(1) one has

”d””m,q = Pm,q(“”_ldu”m,q)-
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70 6 Exponential decay

Proof Argue by induction on m and use the Sobolev embedding L} (Z) C L,zc’_ (Z)
fork>1,r>n/2. O

Lemma 6.4.2 Let Z be a compact, connected Riemannian n—manifold (perhaps with
boundary), z € Z, m a positive integer, and ¢ > 1. Then there is a C > 0 such that for
any smooth f: Z — C one has

@ NS = fallmg = Clldf lm—1,4-
(@) [ lmg = CUldf lm—1.4 + 11D,

where f,, = Vol(Z)™! fZ f is the average of f .
Proof Exercise. |

Lemma 6.4.3 Let Z be a compact Riemannian n—manifold (perhaps with boundary),
m a positive integer, and q a real number such that mq > n. Let ® be a smooth section
of some Hermitian vector bundle E — Z, ® £ 0. Then there exists a C > 0 with the
following significance. Let ¢, be a smooth section of E satisfying ||¢1|s < C~! and
w: Z — C a smooth map. Define another section ¢, by

w(® +¢1) = P+ ¢o.

Then [w—=1lmg = Cldwlm-1,4 + ll¢2 — P1llg)-
Proof The equation
(w=1DP =¢s—¢1 — (w—1)¢y
gives
lw —1llm,g = const- (|dwlm—1,4 + [|(w—1)P|ly)
= const- (|dwllm—1,4 + o2 = P1llg + lw — mgllP1llg)-

Here the first inequality is analogous to Lemma 6.4.2 (ii). If || ||, is sufficiently small
then we can rearrange to get the desired estimate on [|w — 1|4 |

Now let @ be a nondegenerate critical point of . Note that if S = (A4, ®) is any finite
energy monopole in temporal gauge over R4 x Y such that ||®|| < 0o and

lim inf IS —a" =0
=00 Jit,r4+1]xY

for some r > 1 then by the results of Chapter 4 we have [S;] — [«a] in By, hence
S — o decays exponentially by Theorem 6.3.1. In this situation we will simply say that
S is asymptotic to «.
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(Here we used the fact that for any p > 2 and 1 <r <2p, say, the L” metric on the
L? configuration space B([0, 1]x Y) is well defined.)

Lemma 6.4.4 IfS = (A, ®) is any smooth monopole over R+ XY such that ||®||c0 <
oo and S —a € Lf for some p > 2 then there exists a null-homotopic smooth
u: Ry xY — U(1) such that u(S) is in temporal gauge and asymptotic to .

Proof By Theorem 6.3.1 there exists a smooth u: R4 x Y — U(1) such that u(.S)
is in temporal gauge and asymptotic to «. Lemma 6.4.1, Lemma 6.4.2 (i), and the
assumption § — ¢ € Lf then gives

[ — tav || Loo [t ,0+11xy) = 0 as £ — o0,
hence u is null-homotopic. a

It follows that all elements of the moduli spaces defined in Section 3.4 have smooth
representatives that are in temporal gauge over the ends.

Proposition 6.4.1 Let § > 0 and suppose ¥: By — R has no critical value in the
half-open interval (9 («), 9 («) + §] (this implies Condition (O1)). Forn =1,2,... let
Sn = (Ay, ®,) be a smooth monopole over Ry x Y such that

Sp—aelLf, sup [®nlloo <00,  F(Sn(0)) =P(e) + 4,
for some p > 2. Let v,: Ry x Y — U(1) be a smooth map such that the sequence

vn(Sy) converges in C® over compact subsets of R x Y to a configuration S in
temporal gauge. Then the following hold:

(i) S is asymptotic to a critical point o' gauge equivalent to «.

(ii) If o = o then vy, is null-homotopic for all sufficiently large n, and there exist
smooth u,: Ry x Y — U(1) with the following significance: For every t > 0
one has u, = 1 on [0,t] x Y for all sufficiently large n. Moreover, for any
o <A1, ¢ > 1 and nonnegative integer m one has

|unvn(Sn) —S||L2e -0 asn— oo.
Here AT is as in Section 6.1.

Proof It clearly suffices to prove the proposition when ¢ > 2 and mgq > 4, which we
assume from now on.
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By Lemma 4.2.4 we have
f Vg, > = 9(Sn(0)) —H(a) <8 6.7)
R+XY

for each 7, hence fR+XY |V g|? < 8. Part (i) of the proposition is now a consequence
of Theorem 6.3.1 and the following:

Claim 6.4.1 [S(¢)] converges in By to [«] as t — oc0.

Proof of claim For r > 0 let B, C By denote the open r-ball around [¢] in the
L2 metric, and let B, be the corresponding closed ball. Choose r > 0 such that EZ,
contains no monopole other than [«]. Assuming the claim does not hold then by Lemma
4.1.1 one can find a sequence ZJ’- such that tJ’. — 00 as j — oo and [S(ZJ{)] ¢ B, for
each j. Because of the convergence of v,(Sy) it follows by a continuity argument
that there are sequences nj,#; with 7;,n; — oo as j — oo, such that

[Snj (tj)] € EZr \ B,
forall j. For s e R let 7;: Rx Y — R x Y be translation by s:

Ts(t,y) =t +5. ).
Again by Lemma 4.1.1 there are smooth w;: R4 x Y — U(1) such that a subsequence
of (7;)*(w;(Sn;)) converges in C* over compact subsets of R x ¥ to some finite
energy monopole S’ whose spinor field is pointwise bounded. Moreover, it is clear
that ¥ ow;(0) — ¥ € R must be bounded as j — 0o, so by passing to a subsequence
and replacing w; by w;j a)j_ol for some fixed jo we may arrange that ¥ o w; (0) = ¢
for all n. Then £ = lim;— o (S’ (¢)) must be a critical value of . Since

[S/(O)] € EZr \Br,
S7(0) is not a critical point, whence d;|o%(S’(¢)) < 0. Therefore,
Ha) + 8> L >3(S"(0) > ¥ w),

contradicting our assumptions. This proves the claim. a

We will now prove Part (ii). For T > 0 let

B; =[0,7]xY, B} =[r00)xY, O;=[r.t+1]xY.

By Lemma 6.4.4 there is, for every 7, a null-homotopic, smooth v,: R4 xY — U(1)
such that S, = v,(Sy) is in temporal gauge and asymptotic to c.

Note that lim limsup (S, (¢)) = V().

=00 p—o0

Geometry & Topology Monographs, Volume 15 (2008)



6.4 Global convergence 73

For otherwise we could find an € > 0 and for every natural number ; a pair #j,n; > j
such that

0(Sn; (1)) = D) + €,

and we could then argue as in the proof of Claim 6.4.1 to produce a critical value of
in the interval (o,  + 8]. Since |[Vig, | = [V gr| it follows from (6.7) and Theorem
6.3.1 that there exists a £; > 0 such that if T > #; then

. "_ < X (0'—}\+)1.'
hnnl)solip IS, g||qu,a(B;+) <const-e

where the constant is independent of 7. Then we also have

i i+
lim sup ”Sr/l/_S”LZiU(B;F) < const-e@ AT,

n—>oo

Set S} = v,(Sy) and wy, = T,v,, '. Then we get

: " / -tz
limsup ||S,; — Syl La 0,y = const-e ,
n—o0
. . . e
which gives limsup [[dwnl| 4 o,y =< const-e
n—00 m T

by Lemma 6.4.1. In particular, w,, is null-homotopic for all sufficiently large 7.

Fix yg € Y and set x; = (7, o). Choose a sequence t, such that 7, — co as n — 0o
and

1Sy = Slzge sz ) = 0. 68)

as n — oo. If « is reducible then by multiplying each v, by a constant and redefining
Wy, S, accordingly we may arrange that wy(x,) =1 for all n. (If « is irreducible
we keep vy, as before.) Then (6.8) still holds. Applying Lemma 6.4.1 together with
Lemma 6.4.2 (ii) (if « is reducible) or Lemma 6.4.3 (if « is irreducible) we see that

oT,
e fwn =1la . (0, 0
as n — o0.

Let B: R — R be a smooth function such that 8(¢) =0 for < 1/3 and B(¢) = 1 for
t>2/3. Set B:(¢t) = B(t — 7). Given any function w: Oy — C \ (—o0, 0] define

U,z = exp(B: logw)
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where log(exp(z)) = z for complex numbers z with |Im(z)| < 7. Let m’ be any
integer such that m’q > 4. If ||w — 1|, 4 is sufficiently small then
U,z — Ulm,q < const- [w—1n,q,

1 (6.9)

[w™ dw|[p—1,4 < const-[[w—1|[n,q.
To see this recall that for functions on R*, multiplication defines a continuous map
Lfn, X LZ — LZ for 0 < k < m’. Therefore, if V is the set of all functions in
L:In,(Of, C) that map into some fixed small open ball about 1 € C then w +— Uy, ¢
definesa C*® map V — L?n,. This yields the first inequality in (6.9), and the proof of
the second inequality is similar.

Combining (6.8) and (6.9) we conclude that Part (ii) of the proposition holds with

1 in B, ,
Un = uwnafn in Ofn’
Wy in B:rn 41
This completes the proof of Proposition 6.4.1. O
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CHAPTER 7

Global compactness

In this chapter we will prove Theorems 1.3.1 and 1.4.1. Given the results of Chapters 4
and 5, what remains to be understood is convergence over ends and necks. We will use
the following terminology:

c-convergence = C°° convergence over compact subsets.

7.1 Chain-convergence

We first define the notion of chain-convergence. For simplicity we only consider two
model cases: first the case of one end and no necks, then the case of one neck and no
ends. It should be clear how to extend the notion to the case of multiple ends and/or
necks.

Definition 7.1.1 Let X be a spin® Riemannian 4-manifold with one tubular end
R4+ x Y, where Y is connected. Let a,a3,... and By,..., B; be elements of
Ry, where k >0 and #(B;_1) > #(Bj) for j =1,..., k. Let o € M(X; fBy) and
v = (vy,...,vt), where v; € M(,Bj_l,,Bj). We say a sequence [S,] € M(X;ay)
chain-converges to (w, V) if there exist, for each n,

e asmooth map u,: X — U(1),

e for j =1,...,k asmooth map u, j: RxY — U(1),

e asequence 0 =1, <fty1 <- - <Ilyk,

such that

(1) un(Sy) c-converges over X to a representative of @ (in the sense of Section
2.4),

75
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(i) fn,j—1tpj—1 —> 00 as n— oo,

(iii) up,j (T,;’:J, Sy) c-converges over R x Y to a representative of v;,

(iv) limsup,_, [ﬁ(Sn(tn,j_l + 1) = (Su(tn,j — ‘E))] — 0 as T — oo,
(v) limsup,_, [19(5,, (tnk +7))— 19(01,,)] —0as t— o0,

where (ii), (iii) and (iv) should hold for j =1,...,k.

Conditions (iv), (v) mean, in familiar language, that “no energy is lost in the limit”. As
before, 75 denotes translation by s, ie Zs(z, y) = (t + 5, ).

We now turn to the case of one neck and no ends.

Definition 7.1.2 In the situation of Section 1.4, suppose r = 1 and ' = 0. Let
Bo..... Bk € Ry, where k > 0 and 9(Bj_1) > 9(B;), j = 1,....k. Let o €
M(X; Bo,Br) and U = (vy,...,vg), where v; € M(ﬁj_l,ﬁj). Let T (n) - oo as
n — oco. We say a sequence [S,] € M (X T chain-converges to (w, ) if there
exist, for every n,

e asmooth map uy: XT®) - y(),
e for j =1,...,k asmooth map u, ;: RxY — U(1),

e asequence —1'(n) =10 <ty < <typ+1 =1 (n),

such that (i)—(iv) of Definition 7.1.1 hold for the values of j for which they are defined
(in other words, (ii) and (iv) should hold for 1 < j <k + 1 and (iii) for 1 < j <k).

In the notation of Section 1.2, if J C R is an interval with nonempty interior then
a smooth configuration S over J x Y is called normal (with respect to ) if either
3:9(Sy) <0 forevery t € J, or S is gauge equivalent to the translationary invariant
configuration ¢ determined by some critical point « of . Proposition 4.2.2 guarantees
the normality of certain (p, q)—monopoles when p is sufficiently small. In particular,
genuine monopoles are always normal.

Consider now the situation of Section 1.4 (without assuming (B1) or (B2)), and let the
2—form g on X be fixed.

Definition 7.1.3 A set of perturbation parameters p, p’ is admissible for a vector o’
of critical points if for some #y > 1 the following holds. Let M be the disjoint union
of all moduli spaces MXTD):;a":p;p') with Thin > fo. Then we require, for all j,k,
that the following hold:

Geometry & Topology Monographs, Volume 15 (2008)



7.1 Chain-convergence 77

(i) If S is any configuration over [—1, 1]xY; whichis a C° limit of configurations
of the form S|;—1,/41)xy; with S € M and |¢| = Tj — 1, then S is normal.

i) If S is any configuration over [—1, 1]x Y]é which is a C*® limit of configurations
of the form S|[t_1,t+1]xyé with S € M and 7 > 1, then S is normal.

In particular, the zero perturbation parameters are always admissible.

The next two propositions describe some properties of chain-convergence.

Proposition 7.1.1 In the notation of Theorem 1.3.1, suppose w, chain-converges to
(w,¥y,...,0y), where &, = B forall n, each v; is empty and p is admissible for f3.
Then w, — w in M(X; B) with its usual topology.

Proof This follows from Proposition 6.4.1. O

In other words, if a sequence w; in a moduli space M chain-converges to an element
w € M, then w,;, — w in M provided the perturbations are admissible.

Proposition 7.1.2  In the notation of Section 1.4, suppose w, € M (X T):G!) chain-
=/

converges to V = (w, V1, ..., Vr, V], ..., V,,), where Tpn(n) — co. Suppose also that

the perturbation parameters p, p’ are admissible for each &!,. Then the following hold:

(i) For sufficiently large n there is a smooth map u,: X T™) — U(1) such that

_ . . / _ / . /
Up,j = unl{o}xyj/ satisfies vn,J(an,j) =y, J= 1,...,r".

(ii) The chain limit is unique up to gauge equivalence, ie if V, V' are two chain
limits of w,, then there exists a smooth u: X* — U(1) which is translationary
invariant over the ends of X*, and such that u(V) = V’.

In (i), recall that moduli spaces are labelled by critical points modulo null-homotopic
gauge transformations. Note that we can arrange that the maps u;, are translationary
invariant over the ends. This allows us to identify the moduli spaces M (X;a),) and
M(X;7y"), so that we obtain a sequence uy,(wy), n>> 0 in a fixed moduli space.

In (ii) we define u(V) as follows. Let w;: R x ¥; — U(1) and wj/ R x Yj’ — U(l)
be the translationary invariant maps which agree with u on {0} x ¥; and R4 x Y/,
respectively. Let w: X — U(1) be the map which is translationary invariant over each
end and agrees with # on X.;. Then u(V) is the result of applying the appropriate
maps w, wj, w]’. to the various components of u (V).
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Proof of proposition (i) For simplicity we only discuss the case of one end and no
necks, ie the situation of Definition 7.1.1. The proof in the general case is similar.

Using Condition (v) of Definition 7.1.1 and a simple compactness argument it is
easy to see that o, is gauge equivalent to B; for all sufficiently large n. Moreover,
Conditions (iv) and (v) of Definition 7.1.1 ensure that there exist 7, n’ > 0 such that
if n > n’ then w, restricts to a genuine monopole on (#, x + 7,00) x ¥ and on
(tn,j—1+ T, tn,j —7)xY for j =1,..., k. It then follows from Proposition 6.4.1 that
Un = Up i |(oyxy satisfies vy (an) = By for n > 0. (Recall again that oy, By € Ry are
critical points modulo null-homotopic gauge transformations, so v, (o) depends only
on the homotopy class of v,.) Similarly, it follows from Theorems 6.3.1 and 6.3.2
that u, j_1|{oyxy is homotopic to uy,j|yxy for j = 1,...,r and n > 0, where
Un,0 = Uy . Therefore, v, extends over X.g.

(i) This is a simple exercise. O

7.2 Proof of Theorem 1.3.1

By Propositions 3.4.1,5.4.2 and 4.2.2, if each p; has sufficiently small C ! norm then
p will be admissible for all &. Choose p so that this is the case. Set

Co = —n’}fz A (an, ;) < oo.
J

Let S, be a smooth representative for w,. The energy assumption on the asymptotic
limits of Sj, is unaffected if we replace S, by u,(Sy) for some smooth u,: X — U(1)
which is translationary invariant on (¢,,00) X Y for some #, > 0. After passing to
a subsequence we can therefore, by Proposition 5.2.1, assume that S, c-converges
over X to some monopole S’ which is in temporal gauge over the ends. Because p is
admissible we have that

9: 9 (Snliryxy;) =0
forall j,n and ¢ > 0. From the energy bound (5.6) we then see that S’ must have finite

energy. Let y; denote the asymptotic limit of S” over the end Ry x Y} as guaranteed
by Proposition 4.2.3. Then

lim sup & (ap, ;) < 9(y})
n

for each j. Hence there is a constant C, < oo such that for 2 =1,...,r and all n
one has

Ca+ P (@np) = Y Ajd(an,j) = —Co.
J
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Consequently, sup | (ap, j)| < oo.

n,j
For the remainder of this proof we fix j and focus on one end R4 x ¥;. For simplicity
we drop j from notation and write Y, &, instead of Y;, ay, j etc.

After passing to a subsequence we may arrange that ¥ (o) has the same value L for
all n (here we use Condition (O1)). If #(y) = L then we set k = 0 and the proof is
complete. Now suppose ©(y) > L. Then there is an n’ such that 9,9 (S, (¢)) < 0 for
allm>n', t > 0. Set

1 ~
§= 3 min{|x — y| : x, y are distinct critical values of ¥: By — R}.

The minimum exists by (O1). For sufficiently large n we define 7, ; > 0 implicitly by

0 (Sn(tn,1)) =9 (y) —4.

It is clear that 7, ; — 00 as n — oo. Moreover, Definition 7.1.1 (iv) must hold for
j = 1. For otherwise we can find ¢ > 0 and sequences 1y, ny with 7,,n; — 00 as
£ — o0, such that

19(Sng (rﬁ))_ﬁ(‘snz (an,l _Ie)) > € (71)
for every £. As in the proof of Claim 6.4.1 there are smooth #;: R x ¥ — U(1)
satisfying © o 2y(0) = ¥ such that a subsequence of

1’76 (,Tt* Sne )

ng.1
c-converges over R x Y to a finite energy monopole S in temporal gauge. The
asymptotic limit ¥ of S at —oo must satisfy

€e=0(y)—9(y) <4,

where the first inequality follows from (7.1). This contradicts the choice of §. Therefore,
Definition 7.1.1 (iv) holds for j =1 as claimed.

After passing to a subsequence we can find u,, 1: RxY — U(1) such that u, ; (Tt:i1 Sn)
c-converges over R x Y to some finite energy monopole S| in temporal gauge. Let
B f: denote the limit of S i at +00. A simple compactness argument shows that ¢ and
B are gauge equivalent, so we can arrange that y = B by modifying the u,,; by a
fixed gauge transformation R x ¥ — U(1). As in the proof of Proposition 7.1.2 (i) we
see that u, ; must be null-homotopic for all sufficiently large n. Hence z?(,Bfr) >L.
If 19(,8;L) = L then we set k = 1 and the proof is finished. If on the other hand
z?(ﬁfL) > L then we continue the above process. The process ends when, after passing
successively to subsequences and choosing uy j, s, ;, ,Bf for j = 1,...,k (where
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+ - i - +y — '
T =BT, n =1L.
B = B ; and uy,; is null-homotopic for n >> 0) we have ¢(8,”) = L. This must

occur after finitely many steps; in fact k < (28) "1 (d(y) — L).

7.3 Proof of Theorem 1.4.1

For simplicity we first consider the case when there is exactly one neck (ie r = 1),
and we write Y = Y7 etc. We will make repeated use of the local compactness results
proved earlier.

Let S, be a smooth representative of w, . After passing to a subsequence we can find
smooth maps

up: X T\ ({0} x ¥) — U(1)
such that S, = uy, (Syp) c-converges over X to some finite energy monopole S’ which
is in temporal gauge over the ends. Introduce the temporary notation Sy (f) = Syl 1xy >
and similarly for Sy and up. For 0 <7 < T (n) set

Orn = H(Su(=T (n) + 7)) =9 (Sp(T'(n) — 7).
Let uni =u,(£T(n)) and

It = 2nfyﬁj A,

cf Equation (1.1). Since ®g, is bounded as n — oo, it follows that I,/ — I is
bounded as n — co. By Condition (O1) there is a ¢ > 0 such that q],jIE is integral for
all n. Hence we can arrange, by passing to a subsequence, that 7, — I, is constant.
In particular,
A R e

Choose a smooth map w: X — U(1) which is translationary invariant over the ends,
and homotopic to ul_l over X.o. After replacing u, by wu, for every n we then
obtain I, = I . Set I, = I;X. We now have

O = 29(§n (=T (n))) — ﬁ(gn(T(n)))

Let By and B’ denote the asymptotic limits of S’ over the ends :T (R4 x Y) and
1~ (R4 x Y), respectively. Set

L= lim lim O, = (Bo) — ().

T—>00 n—>00

Since O, > 0 for r > 0 we have L > 0.

Suppose L = 0. Then a simple compactness argument shows that there is a smooth
v: Y — U(1) such that v(Bg) = B’. Moreover, there is an ng such that v u, ~ u;" for
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n > ng, where ~ means “homotopic”. Therefore, we can find a smooth z: X — U(1)
which is translationary invariant over the ends and homotopic to u;ol over X, such
that after replacing u, by zu, for every n we have that o = B’ and u; ~ u}, . In that
case we can in fact assume that u, is a smooth map X (T™) 5 U(1). The remainder
of the proof when L = 0 (dealing with convergence over the ends) is now a repetition

of the proof of Theorem 1.3.1.

We now turn to the case L > 0. For large n we must then have 9;S,(z) < 0 for
|| < T'(n). Let § be as in the proof of Theorem 1.3.1. We define #, ; € (=T (n), T'(n))
implicitly for large n by

19(130) = ﬁ(Sn(tn,l)) + I+ J.
Then |t,,1 £ T (n)| — oo as n — oco. As in the proof of Theorem 1.3.1 one sees that

lim sup [19(5',, (=T (n)+ 1)) = (Sn(tn,1 — r))] —0

as T — 00, and after passing to a subsequence we can find smooth u, ;: RxY — U(1)
such that u, ; (Tt;k ,Sn) c-converges over R x Y to a finite energy monopole S| in
temporal gauge whose asymptotic limit at —oo is . Let 81 denote the asymptotic
limit of S| at co. We now repeat the above process. The process ends when, after
passing successively to subsequences and choosing uy,j,t,,j, Bj for j =1,...,k one
has that

lim sup [19(S,, (thke + 7)) =0 (Sn(T (n) — r))] —0

n—oo
as T — o0o. As in the case L = 0 one sees that S, 8/ must be gauge equivalent,
and after modifying u,, u,,; one can arrange that f; = B’. This establishes chain-
convergence over the neck. As in the case L = 0 we can in fact assume that u, is a
smooth map X (T() _ U(1), and the rest of the proof when L > 0 is again a repetition
of the proof of Theorem 1.3.1.

In the case of multiple necks one applies the above argument successively to each
neck. In this case, too, after passing to a subsequence one ends up with smooth maps
up: XT™) 5 U(1) such that u,(Sy,) c-converges over X . One can then deal with
convergence over the ends as before. O
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CHAPTER 8

Transversality

We will address two kinds of transversality problems: nondegeneracy of critical points of
the Chern—Simons—Dirac functional and regularity of moduli spaces over 4—manifolds.

In this chapter we do not assume Condition (O1).

Recall that a subset of a topological space Z is called residual if it contains a countable
intersection of dense open subsets of Z.

8.1 Nondegeneracy of critical points

Lemma 8.1.1 Let Y be a closed, connected, Riemannian spin® 3-manifold and n
any closed (smooth) 2—form on Y . Let G* be the set of all v € Q!(Y) such that all
irreducible critical points of ¥, 4, are nondegenerate. Then G* C Q 1(Y) is residual,
hence dense (with respect to the C°° topology).

Proof The proof is a slight modification of the argument in [21]. For 2 < k < oo
and § > 0 let Wy s be the space of all 1-forms v on Y of class C k which satisfy
|dvlct < 8. Let Wi s have the Ck topology. For 1 < k < co we define a G—
equivariant smooth map
Yy: C*x L3(Y;iR) x Wy s — L*(Y;iA' @5),
(B’ \I’, g’ V) = Z‘I’S + V§n+dv(B, ‘I’)v

where G acts trivially on forms and by multiplication on spinors. If Yz (B, W, &,v) =0
then

I Zwkl2 = — /Y (Vi1 (B, W), TyE) = 0
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84 8 Transversality

by (3.2), which implies £ = 0 since ¥ # 0. The derivative of Y} at a point x =
(B,¥,0,v) is

DTk(X)(b, W, f? U) = H(B,\I/)(b’ W) +I\pf + (i*dv7 0) (81)

Let (B, V) be any irreducible critical point of . We show that P = DYy (B, ¥, 0, 0)
is surjective. Note that altering (B, V) by an L% gauge transformation u has the
effect of replacing P by uPu~'. We may therefore assume that (B, ¥) is smooth.
Since P; = Zy + H(p,w) has surjective symbol, the image of the induced operator
L% — L? is closed and has finite codimension. The same must then hold for im(P).
Suppose (b, V) € L? is orthogonal to im(P), ie db = 0 and Pl (b,y) =0. The
second equation implies that b and ¥ are smooth, by elliptic regularity. Writing out the
equations we find as in [21] that on the complement of W~!(0) we have —b = idr for
some smooth function r: ¥ \ ¥~1(0) — R. We now invoke a result of Bir [4] which
says that, because B is smooth and ¥ # 0, the equation dgW = 0 implies that the
zero-set of W is contained in a countable union of smooth 1-dimensional submanifolds
of Y. In particular, any smooth loop in Y can be deformed slightly so that it misses
W~1(0). Hence b is exact. From Bir’s theorem (or unique continuation for 8, which
holds when B is of class C!; see Kazdan [28]) we also deduce that the complement
of W~1(0) is dense and connected. Therefore, f has a smooth extension to all of Y,
and as in [21] this gives (b, ¥) = 0. Hence P is surjective.

Consider now the vector bundle
E = (C* x LA(Y;iN' ®S)) x L3(Y;iR) — B* x L3(Y;iR).
For 1 <k < oo the map Yy defines a smooth section oy s of the bundle
E x Wy 5 — B* x L1(Y;iR) x W 5.

By the local slice theorem, a zero of Yy is a regular point of Yy if and only if the
corresponding zero of oy 5 is regular. Since surjectivity is an open property for bounded
operators between Banach spaces, a simple compactness argument shows that the zero-
set of 0, s is regular when § > 0 is sufficiently small. Fix such a §. Observe that the
question of whether the operator (8.1) is surjective for a given x is independent of k.
Therefore, the zero-set M s of oy s is regular for 2 < k < oo. In the remainder of
the proof assume k > 2.

For any p > 0 let B, be the set of elements [B, ¥] € B satisfying

/ Y| > p.
Y
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8.1 Nondegeneracy of critical points 85

Define My s , C My s similarly. For any given v, the formula for Y defines a
Fredholm section of E which we denote by o0,. Let Gg s, be the set of those
v € Wy s such that o, has only regular zeros in B, x {0}. For k < oo let

. Mk,(g —> Wk’(g

be the projection, and X C My s the closed subset consisting of all singular points of
7. A compactness argument shows that 7 restricts to a closed map on My 5 ,, hence

Grs,0=Wis\m(Mgs,NX)

is open in Wy 5. On the other hand, applying the Sard—Smale theorem as in [15,
Section 4.3] we see that Gy s , is residual (hence dense) in Wy 5. Because W 5 is
dense in Wy s, we deduce that G 5, is open and dense in W, 5. But then

ﬂ Goo,(S,l/n

neN

is residual in W, 5, and this is the set of all v € W, 5 such that o, has only regular
Zeros.

An irreducible critical point of 9,1 4, is nondegenerate if and only if the corresponding
zero of oy, is regular. Thus we have proved that among all smooth 1-forms v with
dv]|c1 <6, those v for which all irreducible critical points of 4, are nondegener-
ate make up a residual subset in the C°° topology. The same must hold if 5 is replaced
with 74 dv for any v € Q1(Y), so we conclude that G* is locally residual in Q!(Y),
ie any point in G* has a neighbourhood V' such that G* NV is residual in V. Hence
G* is residual in Q!(Y'). (This last implication holds if '(Y) is replaced with any
second countable, regular space.) O

Lemma 8.1.2 Let Y be a closed, connected, Riemannian spin® 3—manifold with
b1(Y) =0, and let B be a spin connection over Y . Let K C Y be a compact subset
with nonempty interior and W the set of all smooth 1—forms on Y which are supported
in K. Let G’ be the set of all v € W such that ker dg_;,, = 0. Then G’ is open and
dense in W with respect to the C*° topology.

Proof For k > 2 let W}, denote the closure of W in the space of all 1-forms of class
Ck on Y (with the C¥—topology). Consider the smooth map

i (L3(Y;S)\{0}) x Wi xR — L*(Y;S),
(¢, v,0) > dB—iv(®) +1ig.

We first show that 0 is a regular value of Yj. Let Y (¢, v,t) = 0. Because dp_;,
is self-adjoint, we must have ¢t = 0 and dg—;,(¢) = 0. Let P denote the derivative
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86 8 Transversality

of Yj at (¢,v,0) and P; the partial derivative with the respect to the j—th variable,
j=1,2,3. Suppose ¥ € L? is orthogonal to the image of P. Since ¥ L im(P;), we
have d3_;,(¥) = 0. By elliptic regularity, both ¢ and ¥ are of class C2. By unique
continuation (see Kazdan [28]) there is a point y in the interior of K where ¢ does
not vanish. Because ¥ L im(P,) we can express ¥ = ri¢ in a neighbourhood of y
for some real function r. Then

0=0p-in(y)=dr-i¢,

hence r is equal to a constant C in some neighbourhood U of y. But then ¢ — Ci¢
lies in the kernel of d g—;;, and vanishes in U, so by unique continuation, ¥ = Ci¢ in
Y. But ¢ L im(P3), so C = 0. This shows that 0 is a regular value of Y} as claimed.

For every v € W the map Yy ,, := Ty (-, v,-) is Fredholm of index 1. Let N, denote
the kernel of dg_;,, in L%, and let G,’( be the set of those v € W}, for which N, = 0.
By the Sard—Smale theorem there is a residual set of v’s in W}, for which T]; 11)(0)
(which we can identify with N, \{0}) is a smooth submanifold of real dimension 1.
Since dp_;, is complex linear, this is only possible when N, =0. Thus, Gl’c is residual
in Wy Since G,’{ is obviously open in W, the lemma follows. O

Proposition 8.1.1 Let Y be a closed, connected, Riemannian spin® 3—manifold and
n any closed 2—form on Y such that either b1(Y) =0 or 7] # 0. Let G be the set of all
v € Q1(Y) such that all critical points of Uy+av are nondegenerate. Then G is open
and dense in Q' (Y') with respect to the C* topology.

Proof A compactness argument shows that G is open. If 1(Y) > 0 then 1,4, has
no reducible critical points and the proposition follows from Lemma 8.1.1.

Now suppose b;(Y) = 0. Then we may assume 7 = 0. For any v € Q!(Y) the
functional ¥4, has up to gauge equivalence a unique reducible critical point, represented
by (B —iv,0) for any spin connection B over Y with B flat. This critical point is
nondegenerate precisely when

ker 83_,-1, = 0,

which by Lemma 8.1.2 holds for an open, dense subset of v’s in Q!(Y). Now apply
Lemma 8.1.1. d

Marcolli [35] proved a weaker result in the case by (Y') > 0, allowing 5 to vary freely
among the closed 2—forms.
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8.2 Regularity of moduli spaces 87

8.2 Regularity of moduli spaces

The following lemma will provide us with suitable Banach spaces of perturbation
forms.

Lemma 8.2.1 Let X be a smooth n—manifold, K C X a compact, codimension 0
submanifold, and E — X a vector bundle. Then there exists a separable Banach space
W consisting of smooth sections of E supported in K, such that the following hold:

(i) The natural map W — I'(E|g) is continuous with respect to the C*° topology
onT'(E|g).

(i) For every point x € int(K) and every v € E, there exists a section s € I'(E)
with s(x) = v and a smooth embedding g: R" — X with g(0) = x such that
for arbitrarily small € > 0 there are elements of W of the form fs where
f: X — [0, 1] is a smooth function which vanishes outside g(R") and satisfies

|z| > 2e,
|z| <e.

f@@»={?

Proof Fix connectionsin £ and 7X, and a Euclidean metric on £ . For any sequence
a = (ag,ay,...) of positive real numbers and any s € I'(E) set

o0
Islla =) axl V¥ slloo
k=0
and Wy ={s €T (E) : supp(s) C K, ||s]la < 00}.

Then W = W,, equipped with the norm || - ||4, clearly satisfies (i) for any a. We
claim that one can choose a such that (ii) also holds. To see this, first observe that
there is a finite dimensional subspace V C I'(E) such that

V—>Eyx, st>s(x)
is surjective for every x € K. Fix a smooth function b: R — [0, 1] satisfying
I, t=1
bty=3 "
© {0, t=4.
We use functions f that in local coordinates have the form
Jr(2) =b(r|z?),

where r > 0. Note that for each k there is a bound || f; ||cx < const- rk where the
constant is independent of » > 1. It is now easy to see that a suitable sequence a can
be found. |
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In the next two propositions, X, @, i will be as in Section 1.3. Let K C X be any
nonempty compact codimension 0 submanifold. Let W be a Banach space of smooth
self-dual 2—forms on X supported in K, as provided by Lemma 8.2.1. The following
proposition will be used in the proof of Theorem 1.1.2.

Proposition 8.2.1 In the above situation, let G be set of all v € W such that all
irreducible points of the moduli space M (X ;a; ju + v;0) are regular (here pj = 0 for
each j). Then G C W is residual, hence dense.

There is another version of this proposition where W is replaced with the Fréchet
space of all smooth self-dual 2—forms on X supported in K, at least if one assumes
that (O1) holds for each pair Y;,n; and that (A) holds for X,7;,A;. The reason for
the extra assumptions is that the proof then seems to require global compactness results
(cf the proof of Lemma 8.1.1).

Proof We may assume X is connected. Let © be as in Section 3.4. Then
(S,v) > O(S, u+v,0)
defines a smooth map
[iC*xW — LPY(X:iAT®S7),

where C* =C*(X; @). We will show that 0 is a regular value of f. Suppose f(S,v)=
0 and write S = (A, ®). We must show that the derivative P = Df (S, v) is surjective.
Because of the gauge equivariance of f* we may assume that S is smooth. Let P,
denote the derivative of f(-,v) at S. Since the image of P; in L% is closed and
has finite codimension, the same holds for the image of P. Let p’ be the exponent
conjugate to p and suppose (z, V) € LP "% (X;iAT & S™) is L? orthogonal to the
image of P, ie

/ (Pa.$.V). (z.9)) = 0
X

for all (a,¢) € LY"" and v/ € W. Taking v’ = 0 we see that P} (z, ) = 0. Since P}
has injective symbol, z, ¥y must be smooth. On the other hand, taking a,¢ = 0 and
varying v’ we find that z|g = 0 by choice of W . By assumption, ® is not identically
zero. Since D,4® = 0, the unique continuation theorem in [28] applied to Dfl says
that ® cannot vanish in any nonempty open set. Hence & must be nonzero at some
point x in the interior of K. Varying a alone near x one sees that { vanishes in some
neighbourhood of x. But Py P} has the same symbol as Dj ®dt(d1)*, so another
application of the same unique continuation theorem shows that (z, ) = 0. Hence P
is surjective.
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8.2 Regularity of moduli spaces 89

Consider now the vector bundle
E=C*xg LPY(X;iAT®S™)
over B*. The map f defines a smooth section o of the bundle
ExW —B*xW.

Because of the local slice theorem and the gauge equivariance of f, the fact that 0 is
a regular value of /" means precisely that o is transverse to the zero-section. Since
o(-,v) is a Fredholm section of E for any v, the proposition follows by another
application of the Sard-Smale theorem. O

We will now establish transversality results for moduli spaces of the form M (X, @)
or M(a, B) involving perturbations of the kind discussed in Section 3.3. For the time
being we limit ourselves to the case where the 3—manifolds Y, Y; are all rational
homology spheres. We will use functions /g that are a small modification of those
in [21]. To define these, let Y be a closed Riemannian spin® 3—-manifold satisfying
b1(Y) =0, and ¥ the Chern—-Simons—Dirac functional on Y defined by some closed
2—form 7. Choose a smooth, nonnegative function x: R — R which is supported in
the interval (—1/4,1/4) and satisfies [ x = 1. If S is any L% configuration over a
band (¢ —1/4,b + 1/4) where a < b define the smooth function 551 [a,b] = R by

5s(T) = /ﬂ; (T — 0D (Sy) d.

where we interpret the right hand side as an integral over R x Y. A simple exercise,
using the Sobolev embedding theorem, shows that if S, — S weakly in L% over
(a—1/4,b+1/4)x Y then g, — g in C* over [a, b].

Choose a smooth function ¢: R — R with the following properties:

e >0,
e ¢ and all its derivatives are bounded,

e ¢(t) =t for all critical values ¢ of ¥,

where ¢’ is the derivative of ¢. The last condition is added only for convenience.

For any L% configuration S over (@ —1/2,b+1/2) x Y with a < b define

hs(t) = [R X()e@st — 1)) dir.

It is easy to verify that hg satisfies the properties (P1)—(P3).
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90 8 Transversality

It remains to choose E and 3. Choose one compact subinterval (with nonempty
interior) of each bounded connected component of R \ crit(¢), where crit(?}) is the
set of critical values of ¥¥. Let E be the union of these compact subintervals. Let
P =Py be a Banach space of 2—forms on R x Y supported in E x Y as provided by
Lemma 8.2.1.

We now return to the situation described in the paragraph preceding Proposition 8.2.1.
Let W’ C W be the open subset consisting of those elements v that satisfy [|[v||c1 < 1.
Let 15 denote the set of all p = (py,...,p,) where p; € Py, and ||pjllc1 <6 for
each j.

Proposition 8.2.2 Suppose each Y; is a rational homology sphere and K C X.o. Then
there exists a § > 0 such that the following holds. Let G be the set of all (v, p) € W'xI1;
such that every irreducible point of the moduli space M (X ;a; 1 + v;p) is regular.
Then G C W' x Il is residual, hence dense.

It seems necessary here to let p vary as well, since if any of the p ; is nonzero then the
linearization of the monopole map is no longer a differential operator, and it is not clear
whether one can appeal to unique continuation as in the proof of Proposition 8.2.1.

Proof To simplify notation assume » = 1 and set Y = Y;, o = oy etc. (The proof
in the general case is similar.) Note that (A) is trivially satisfied, since each Y; is
a rational homology sphere. Therefore, by Propositions 4.2.2 and 5.4.2, if § > 0 is
sufficiently small then for any (v,p) € W’ x I1g and [S] € M (X;a; pu+ v;p) one has
that either

@) [Si]=a fort>0,or

(1) 9;9(Sy) <0 forz>0.
As in the proof of Proposition 8.2.1 it suffices to prove that 0 is a regular value of the
smooth map

FiC*x W x g — LPY,
(S.v.p) > O(S. 4 v.p).

The smoothness of the perturbation term g(S, p) = qh g, follows from the smoothness
of the map (3.9), for by (P1) there exist a ¢y and a neighbourhood U C C of S such
that hg/ (1) ¢ E forall t >ty and S’ € U.

Now suppose f(S, v,p) = 0 and (z,y) € LP~% is orthogonal to the image of
D f(S,v,p). We will show that z is orthogonal to the image of 7 = Dg(S,p), or
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equivalently, that (z, ¥) is orthogonal to the image of Df(S,v), where f = f —g as
before. The latter implies (z, ¥) = 0 by the proof of Proposition 8.2.1.

Let hg: [1/2,00) — R be defined in terms of the restriction of S to R4 x Y. If
hs(J) CR\ E for some compact interval J then by (P1) one has that 1g/(J) CR\ B
for all S’ in some neighbourhood of S in C. Therefore, all elements of im(7") vanish
on hig!(R\E)x Y.

We now digress to recall that if u is any locally integrable function on R” then the
complement of the Lebesgue set of u# has measure zero, and if v is any continuous
function on R” then any Lebesgue point of u is also a Lebesgue point of uv. The
notion of Lebesgue set also makes sense for sections 7 of a vector bundle of finite rank
over a finite dimensional smooth manifold M . In that case a point x € M is called a
Lebesgue point of 7 if it is a Lebesgue point in the usual sense for some (hence any)
choice of local coordinates and local trivialization of the bundle around x.

Returning to our main discussion, there are now two cases: If (i) above holds then
hs(t) =9(a) € E for t > 1/2, whence T = 0 and we are done (recall the overall
assumption g~ ! (O)~= X.(3/2) made in Section 3.4). Otherwise (ii) must hold. In that
case we have d;c(9(¢)) <0 for t > 1/4 and d;hg(¢) <0 for t > 1/2. Since z is
orthogonal to g, for all p’ € Py we conclude that z(z, y) = 0 for every Lebesgue
point (¢, y) of z with ¢t > 3/2 and hg(¢) € int(E). Since hgl(aE) N(3/2,00) is a
finite set, z must vanish almost everywhere in [hg1 (E)N(3/2,00)] x Y. Combining
this with our earlier result we deduce that z is orthogonal to im(7"). m]

In the next proposition (which is similar to [21, Proposition 5]) let Il be as above
with r =1, and set Y = Y.

Proposition 8.2.3 In the situation of Section 1.2, suppose Y is a rational homology
sphere and a, B € Ry = Ry . Then there exists a § > 0 such that the following holds.
Let G be the set of all p € Tlg such that every point in M (c, §;p) is regular. Then
G C Il is residual, hence dense.

Proof If o = B then an application of Proposition 4.2.2 shows that if |p||c1 is
sufficiently small then M («, 8;p) consists of a single point represented by ¢, which
is regular because « is nondegenerate.

If « # B and ||p|/c1 is sufficiently small then for any [S] € M(«, B;p) one has
d;9(Sy) < 0 for all . Moreover, the moduli space contains no reducibles, since «,
cannot both be reducible. The proof now runs along the same lines as that of Proposition
8.2.2. Note that the choice of E is now essential: it ensures that im(4g) = (¢ («), 3 (B))
contains interior points of Z. |
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CHAPTER 9

Proofs of Theorems 1.1.1 and 1.1.2

In these proofs we will only use genuine monopoles.

Proof of Theorem 1.1.1 We may assume Y is connected. Let 1 be a closed nonexact
2—form on Y which is the restriction of a closed form on Z. Let Y have a metric
of positive scalar curvature. If s # 0 is a small real number then ¥, will have no
irreducible critical points, by the apriori estimate on the spinor fields and the positive
scalar curvature assumption. If in addition s[n] —c;(Ly) # 0 then s, will have no
reducible critical points either.

Choose a spin® Riemannian 4—manifold X as in Section 1.4, with r =1, ¥’ =0, such
that there exists a diffeomorphism X# — Z which maps {0} x Y; isometrically onto
Y. Let n; be the pullback of sn. Then (B1) is satisfied (but perhaps not (B2)), so it
follows from Theorem 1.4.1 that M (X 7)) is empty for 7 > 0. m|

We will now define an invariant / for closed spin® 3—manifolds Y that satisfy b (Y) =
0 and admit metrics with positive scalar curvature. Let g be such a metric on Y . Recall
that for the unperturbed Chern—-Simons—Dirac functional ¢ the space Ry of critical
points modulo gauge equivalence consists of a single point 6, which is reducible.
Let (B,0) be a representative for 8. Let Yq,...,Y, be the connected components
of ¥ and choose a spin® Riemannian 4-manifold X with tubular ends R4 x Y},
j =1,...,r (in the sense of Section 1.3) and a smooth spin connection 4 over X
such that the restriction of A to R4+ x Y is equal to the pullback of B. (The notation
here is explained in Section 3.1.) Define

H(Y,9) = inde(Dg) ~ <(e1 (Lx)” ~ (X))

= %(dim M(X;0)—d(X)+ bo(X)),
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94 9 Proofs of Theorems 1.1.1 and 1.1.2

where Dy: L3 — L?, “dim” is the expected dimension, and d(X) is the quantity
defined in Section 1.1. Since indc(Dy4) = (1/8)(c1(Lx)? —o (X)) when X is closed,
it follows easily from the addition formula for the index (see Corollary C.0.1) that
h(Y, g) is independent of X and that

h=Y,g) =—h(¥.g).

Clearly, h(Y,g) = Zh(ijgj)»

where g; is the restriction of g to Y;. To show that /(Y, g) is independent of g we
may therefore assume Y is connected. Suppose g’ is another positive scalar curvature
metric on Y and consider the spin® Riemannian manifold X =R x Y where the metric
agrees with 1 x g on (—oo, —1]x Y and with 1 x g’ on [1,00) x Y. As we will prove
later (see Lemma 14.2.2 below) the moduli space M (X'; 6, 8) must have negative odd
dimension. Thus,

1
h(Y,g)+h(=Y,g) = 5(dim M(X;0,0)+1)<0.

This shows 4(Y) = h(Y, g) is independent of g.

Proof of Theorem 1.1.2 Let each Y; have a positive scalar curvature metric. Choose
a spin® Riemannian 4—manifold X as in Section 1.4, with r’ = 0 and with the same r,
such that there exists a diffeomorphism f: X* — Z which maps {0} x ¥; isometrically
onto Y;. Then (B1) is satisfied (but perhaps not (B2)). Let X, be the component of
X such that W = f((Xp):1). For each j set n; =0 and let &j € Ry; be the unique
(reducible) critical point. Choose a reference connection A4, as in Section 3.4 and set
Ao = Aolx,. Since each «; has representatives of the form (B,0) where B is flat
it follows that F (A,) is compactly supported. In the following, p will denote the
(compactly supported) perturbation 2—form on X and ¢ its restriction to Xj.

Let H™ be the space of self-dual closed L? 2—forms on Xy. Then dim H* =
bT(Xg) > 0, so HT contains a nonzero element z. By unique continuation for
harmonic forms we can find a smooth 2—form po on Xp, supported in any given small
ball, such that £+ (Ag) +i /‘0 is not L? orthogonal to z. (Here F F+ is the self-dual

part of F .) Then
FY(Ao) +ind ¢im(d™t: LY — L),

where w is the weight function used in the definition of the configuration space. Hence
M (Xy: @) contains no reducible monopoles. After perturbing jo in a small ball we
can arrange that M (Xy; @) is transversally cut out as well, by Proposition 8.2.1.
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9 Proofs of Theorems 1.1.1 and 1.1.2 95

To prove (i), recall that
dim M(Xo:a) =d(W) =142 h(¥;), ©.1)
J
so the inequality in (i) simply says that

dim M (Xy;a) <0,

hence M (Xy; &) is empty. Since there are no other moduli spaces over X, it follows
from Theorem 1.4.1 that M (X T)) is empty when Tipin > 0.

We will now prove (ii). If M (X (T)) has odd or negative dimension then there is nothing
to prove, so suppose this dimension is 2m > 0. Since M (Xy; @) contains no reducibles
we deduce from Theorem 1.4.1 that M (X (T)) is also free of reducibles when 7, 1S
sufficiently large. Let B C X be a compact 4—ball and B*(B) the Banach manifold of
irreducible Lf configurations over B modulo Lé’ gauge transformations. Here p > 4
should be an even integer to ensure the existence of smooth partitions of unity. Let
L — B*(B) be the natural complex line bundle associated to some base-point in B,
and s a generic section of the m—fold direct sum mIL. For Ty, > 0 let

SO cmxD)y, Sy M(Xo:d)

be the subsets consisting of those elements w that satisfy s(w|g) = 0. By assumption,
S is a submanifold of codimension 2m. For any T for which ST is transversely
cut out the Seiberg—Witten invariant of Z is equal to the number of points in ST
counted with sign. Now, the inequality in (ii) is equivalent to

dW)+23 h(Y)) <d(Z) =2m+1,
j
which by (9.1) gives

dim Sy = dim M (Xy;a)—2m < 0.

Therefore, Sy is empty. By Theorem 1.4.1, ST is empty too when T, > 0, hence
SW(Z) =0. |
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Part 11

Gluing theory

There are many different hypotheses under which one can consider the gluing problem.
Here we will not aim at the utmost generality, but rather give an expository account
of gluing in what might be called the favourable cases. More precisely, we will glue
precompact families of regular monopoles over 4—manifolds with tubular ends, under
similar general assumptions as in Part I. Although obstructed gluing is not discussed
explicitly, we will show in Part III how the parametrized version of our gluing theorem
can be used to handle one kind of gluing obstructions.

One source of difficulty when formulating a gluing theorem is that gluing maps are in
general not canonical, but rather depend on various choices hidden in their construction.
We have therefore chosen to express our gluing theorem as a statement about an
ungluing map, which is explicitly defined in terms of data that appear naturally in
applications.

If X is a 4—manifold with tubular ends and X ™) the glued manifold as in Section 1.4,
then the first component of the ungluing map involves restricting monopoles over X 1)
to some fixed compact subset K C X (which may also be regarded as a subset of
X T when each Tj is large). In the case of gluing along a reducible critical point, the
ungluing map has an additional component which reads off the U(1) gluing parameter
by measuring the holonomy along a path running once through the corresponding neck
in X1,

Ungluing maps of a different kind were studied already in Donaldson [11] and Freed—
Uhlenbeck [20] but later authors have mostly formulated gluing theorems in terms of
gluing maps, usually without characterizing these maps uniquely.

The proof of the gluing theorem is divided into two parts: surjectivity and injectivity of
the ungluing map. In the first part the (quantitative) inverse function theorem is used to
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construct a smooth local right inverse E of an “extended monopole map” Z. In the
second part the inverse function theorem is applied a second time to show, essentially,
that the image of E is not too small. There are many similarities with the proof of the
gluing theorem in [15], but also some differences. For instance, we do not use the
method of continuity, and we handle gluing parameters differently.

It may be worth mentioning that the proof does not depend on unique continuation
for monopoles (only for harmonic spinors), as we do not know whether solutions to
our perturbed monopole equations satisfy any such property. (Unique continuation for
genuine monopoles was used in Proposition 4.2.2 in the discussion of perturbations,
but this has little to do with gluing theory.) Therefore, in the injectivity part of the
proof, we argue by contradiction, restricting monopoles to ever larger subsets KcX.
This is also reflected in the statement of the theorem, which would have been somewhat
simpler if unique continuation were available.

In Chapter 12 we give a detailed account of orientations of moduli spaces, using
Benevieri—Furi’s concept of orientations of Fredholm operators of index 0 [8]. This
seems simpler to us than the standard approach using determinant line bundles (see
[11; 15; 45; 14]). Our main result here, Theorem 12.4.1, says that ungluing maps are
orientation preserving. The length of this chapter is much due to the fact that we allow
gluing along reducible critical points and that we work with (multi)framed moduli
spaces (as a means of handling reducibles over the 4—manifolds).

There is now a large literature on gluing theory for instantons and monopoles. The
theory was introduced by Taubes [46; 47], who used it to obtain existence results for self-
dual connections over closed 4—manifolds. It was further developed in seminal work of
Donaldson [11]; see also Freed—Uhlenbeck [20]. General gluing theorems for instantons
over connected sums were proved by Donaldson [12] and Donaldson—Kronheimer [15].
In the setting of instanton Floer theory there is a highly readable account in [14];
see also Floer [19] and Fukaya [24]. Gluing with degenerate asymptotic limits was
studied by Morgan—Mrowka [39]; part of their work was adapted to the context of
monopoles by Safari [43]. Nicolaescu [41] established gluing theorems for monopoles
in certain situations, including one involving gluing obstructions. Marcolli-Wang [36]
discuss gluing theory in connection with monopole Floer homology. For monopoles
over closed 3—manifolds split along certain tori, see Chen [9]. Product formulae for
Seiberg—Witten invariants of 4—manifolds split along a circle times a surface of genus
g were established by Morgan—Szabé—Taubes [40] (for g > 1) and by Taubes [48]
(for g = 1). Gluing theory is a key ingredient in a large programme of Feehan—
Leness [16] for proving Witten’s conjecture relating Donaldson and Seiberg—Witten
invariants. Gluing theory in the context of blown-up moduli spaces was developed by
Kronheimer-Mrowka [31].
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CHAPTER 10

The gluing theorem

10.1 Statement of theorem

Consider the situation of Section 1.4, but without assuming any of the conditions (B1),
(B2), (C). We now assume that every component of X contains an end R4 x Y; or
R4+ x (=Yj) (ie an end that is being glued). Fix nondegenerate monopoles «; over Y;
and oz} over Yj/ . (These should be smooth configurations rather than gauge equivalence
classes of such.) Suppose «; is reducible for 1 < j <rq and irreducible for ro < j <7,
where 0 < ry <r. We consider monopoles over X and X (™) that are asymptotic to
a]’. over R} x Yj’ and (in the case of X') asymptotic to «; over Ry x (£Yj). These
monopoles build moduli spaces

My=My(X:a.a.8), M = M(xD;a),

Here b C X is a finite subset to be specified in a moment, and the subscript indicates
that we only divide out by those gauge transformations that restrict to the identity on b;
see Section 3.4. The ungluing map f will be a diffeomorphism between certain open
subsets of Mb(T) and My when

Tiin :=min(Ty,...,Ty)
is large.

When gluing along the critical point o, the stabilizer of «; in Gy, appears as a “gluing
parameter”. This stabilizer is a copy of U(1) if «; is reducible and trivial otherwise.
When «; is reducible we will read off the gluing parameter by means of the holonomy
of the connection part of the glued monopole along a path y; in X (T) which runs once
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100 10 The gluing theorem

through the neck [—77j, 7;] x Y;. To make this precise, for 1 < j <r¢ fix y; € ¥; and
smooth paths

it [-l.00) > X
such that yji(t) = Lji(t,yj) for t > 0 and )/ji([—l,O]) C X.o. Let b denote the

collection of all the start-points oj: = ji (—=1). (We do not assume that these are

distinct.) Note in passing that we then have
M) = M.
Define the smooth path

v Iy = -1 =17 + 1] - XD

ary (T +0). ~Tj—1<1<Tj,

y v (0) {JTT)/j_(Tj—Z), T <i<Tj+1,

where 77 X} 5 X g as in Section 1.4.

Choose a reference configuration S, = (4o, ®y) over X with limits o}, oz]’. over
Ry x(£Y}), Rx Yj/ , resp. Let S) = (A4, ®)) denote the reference configuration
over XT) obtained from S, in the obvious way when gluing the ends. Precisely
speaking, S, is the unique smooth configuration over X (™) which agrees with .S, over
int(X.7) (which can also be regarded as a subset of X').

IfP—xD temporarily denotes the principal Spin¢(4)-bundle defining the spin®
structure, then the holonomy of a spin® connection 4 in P along y; is a Spin‘(4)—
equivariant map

holy, (4): Po;r — Poj—.

Because A and A, map to the same connection in the tangent bundle of X (7", there is
a unique element Hol; (A4) in U(1) (identified with the kernel of Spin(4) — SO(4))
such that

holy, (4) = Hol; (A) - hol,, (4)). (10.1)

Explicitly Hol;(A4) = exp (—/ Y (A— A;)),
I;

where as usual A — A is regarded as an imaginary valued 1—form on X (T) | For gauge
transformations u: XT) — U(1) we have

Hol; (u(A4)) = u(oy) - Hol; (4) -u(of) ™" (10.2)
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10.1 Statement of theorem 101

In particular, there is a natural smooth map
Hol: M{T) = U(1)", [A, ®] (Hol;(A),...,Hol,(A))
which is equivariant with respect to the appropriate action of
T := Map(b, U(1)) ~ U(1)?,
where b = |b].

Consider for the moment an arbitrary compact codimension 0 submanifold K C X
containing b. Let DT be the subgroup of H!'(X):7Z) consisting of those classes
whose restriction to each Y]-/ is zero. Let Dk be the cokernel of the restriction map
DT s HY(K:Z). Here Tiin should be so large that K may be regarded as a subset
of XT) and Dg is then obviously independent of 7'. In the following we use the
Lf configuration spaces etc introduced in Section 2.5. Let éb(K ) be the kernel of the
(surjective) group homomorphism

G(K) > T x Dk, ur> (ulp, [u]),
where [u] denotes the image in Dg of the homotopy class of u regarded as an element
of HY(K;7Z). Set
By(K) =C(K)/Gu(K). By (K) = Ci(K)/Go(K).
On both these spaces there is a natural action of T x Dg . Note that Dg acts freely and

properly discontinuously on the (Hausdorff) Banach manifold [;’; (K) with quotient
B (K).
b

It is convenient here to agree once and for all that the Sobolev exponent p > 4 is to be
an even integer. This ensures that our configuration spaces admit smooth partitions of
unity, which are needed in Sections 11.1 and 10.4 (but not in the proof of Theorem
10.1.1).

Fix a T —invariant open subset G C M}, whose closure G is compact and contains only
regular points. (Of course, G is the preimage of an open set G’ in M, but G’ may
not be a smooth manifold due to reducibles and we therefore prefer to work with G.)

Definition 10.1.1 By a kv-pair we mean a pair (K, V') where

e K C X isacompact codimension 0 submanifold which contains b and intersects
every component of X,

o VCBy(K ) is a T —invariant open subset containing Rx (G), where R denotes
restriction to K.
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102 10 The gluing theorem

We define a partial ordering < on the set of all kv-pairs, by decreeing that
(K', V)< (K,V)
if and only if K C K’ and Rg(V')C V.

Now fix a kv-pair (K, V') which satisfies the following two additional assumptions:
firstly, that V' C Z’S’Z(K ); secondly, that if X, is any component of X which contains a
point from b then X, N K is connected. The second condition ensures that the image
of Rg: M= M — Be(K) lies in B (K).

Suppose we are given a T —equivariant smooth map
q: V. — My (10.3)

such that ¢(w|g) = w forall w € G. (If T acts freely on G then such a map always
exists when K is sufficiently large; see Section 10.4. In concrete applications there is
often a natural choice of ¢; see Sections 11.1-11.2.)

Let X* and the forms 7;, ﬁ; be as in Section 1.4, and choose Aj,k} > 0.

Theorem 10.1.1 Suppose there is class in H*(X*) whose restrictions to Y; and Yj/
are Aj7; and A} 77';. , respectively, and suppose the perturbation parameters p,p’ are
admissible for o’ . Then there exists a kv-pair (K, V) < (K, V) such thatif (K', V")
is any kv-pair < (K, V') then the following holds when Ty, is sufficiently large. Set
HD :=lweM® : w|g eV},
¢ HD > My, o qolg).

Then q~'G consists only of regular monopoles (hence is a smooth manifold), and the
T —equivariant map f := q x Hol restricts to a diffeomorphism

q G - G xu@).

Remarks (1) When Ty, is large then K’ C X can also be regarded as a subset of
X | in which case the expression w|g- in the definition of H ™) makes sense.

(2) Except for the equivariance of f, the theorem remains true if one leaves out all
assumptions on T —invariance resp. —equivariance on G and ¢, and on V in Definition
10.1.1, above. However, it is hard to imagine any application that would not require
equivariance of f.

(3) The theorem remains true if one replaces Bp(K) and 5’;‘ (K) by Bp(K) and
B; (K) above. However, working with B gives more flexibility in the construction of
maps ¢ ; see Section 11.2.
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(4) Concerning admissibility of perturbation parameters, see the remarks after Theorem
1.4.1. Note that the assumption on A;7; and k} 77'} in the theorem above is weaker than
either of the conditions (B1) and (B2) in Section 1.4. However, in practice the gluing
theorem is only useful in conjunction with a compactness theorem, so one may still
have to assume (B1) or (B2).

The proof of Theorem 13.3.1 has two parts. The first part consists in showing that f
has a smooth local right inverse around every point in G x U(1)"® (Proposition 10.2.1
below). In the second part we will prove that f is injective on q~!G. (Proposition
10.3.1 below).

10.2 Surjectivity

The next two sections are devoted to the proof of Theorem 10.1.1. Both parts of the
proof make use of the same set-up, which we now introduce.

We first choose weight functions for our Sobolev spaces over X and XT). Let
Oj,ojf > 0 be small constants and w: X — R a smooth function which is equal to
ojt on Ry x (£Y;) and equal to UJ’.Z on R4 x Yj’. As usual, we require o; > 0 if «;
is reducible (ie for j = 1,...,79), and similarly for O'J{. For j =1,...,r choose a
smooth function w;j: R — R such that w; (t) = —oj|t| for |¢| > 1. We will always
assume 7, > 4, in which case we can define a weight function «: X M SR by

k=w on XD\, [-T;, ;] ¥;,
k(t,y)=0;T; +wj(t) for(t,y)e[-T;, Tj]xY].

Let C denote the Lf " configuration space over X defined by the reference config-
uration S,, and let C’ denote the Lf * configuration space over XT) defined by
S, Let Gy, Gy, be the corresponding groups of gauge transformations and By, By the
corresponding orbit spaces.

Now fix (wg,z) € G x U(1)’0. Our immediate goal is to construct a smooth local
right inverse of f around this point, but the following set-up will also be used in the
injectivity part of the proof.

Choose a smooth representative Sy € C for wo which is in temporal gauge over the
ends of X . (This assumption is made in order to ensure exponential decay of Sy.) Set
d = dim My and let w: C — By be the projection. By the local slice theorem we can
find a smooth map

S:RY ¢
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104 10 The gluing theorem

such that S(0) = Sy and such that @ := 7 oS is a diffeomorphism onto an open subset
of M, b-

We will require one more property of S, involving holonomy. If a € LY (X iR)
then we define HOl;-l: (4o +a) € U(1) by

HolfE (Ao +a) =exp (—/

[—1,00

(y-i)*a) :
)

The integral exists because, by the Sobolev embedding Lf ccC g in R* for p >4, we
have
le®alloo < Clle®allLr = CllaliLy-» (10.4)

for some constant C. It is clear that Holj:-t is a smooth function on C. Because any
smooth map R¢ — U(1) factors through exp: Ri — U(1), we can arrange, after
perhaps modifying S by a smooth family of gauge transformations that are all equal to
1 outside the ends Ry x ¥; and constant on [1, 0o) x Y;, that

Hol} (S(v)) - (Hol; (S(v))) ™' =z; (10.5)

for j =1,...,ry and every v € R?. Here Holjj.E (S(v)) denotes the holonomy, as
defined above, of the connection part of the configuration S(v), and the z; are the
coordinates of z.

Lemma 10.2.1 Let E, F, G be Banach spaces, S: E — F a bounded operator and
T: E — G a surjective bounded operator such that
S+T: E—->F&G, x+—(Sx,Tx)
is Fredholm. Then T has a bounded right inverse.
Proof Because S + 7' is Fredholm there is a bounded operator A: F @ G — E such
that (S + 7T)A — I is compact. Set A(x, y) = A1x + A,y for (x,y) € F® G. Then
TA,—1: G—>G

is compact, hence 7’4, is Fredholm of index 0. Using the surjectivity of 7" and the
fact that any closed subspace of finite dimension or codimension in a Banach space
is complemented, it is easy to see that there is a bounded operator K: G — E (with
finite-dimensional image) such that 7' (4, 4+ K) is an isomorphism. O

Let ®:C— LPY

be the Seiberg—Witten map over X . By assumption, every point in G is regular, so in
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particular wq is regular, which means that D®(Sy): Lf W LPY s surjective. Let
@ be the spinor part of Sy and define Zg as in Section 2.3. Then

Iy + DO(So): LYY — L7

is Fredholm, so by Lemma 10.2.1 D®(Sy) has a bounded right inverse Q. (This can
also be deduced from Proposition 2.3.1 (ii).)

Let r: R — R be a smooth function such that r(¢) =1 for t <0 and r(¢) =0 for > 1.
For 7 > 1 set r¢(¢) =r(¢ —7) and let S, ; be the configuration over X which agrees
with S(v) away from the ends R4 x (£Y;) and satisfies

Sy, = (1- rr)Q‘j +r:S(v)

over Ry x (+Y;). Here «; denotes, as before, the translationary invariant monopole
over R x Y; determined by «; . For each v we have

[Sv,z =S()[|Lrw —0 as T — o0.
Therefore, when t is sufficiently large, the operator
DO(Sp)0 Q: LPY — LPY
will be invertible, and we set
O« = Q(DO(So,0)0 Q) LPY — P,

which is then aright inverse of D®(Sy ;). Itis clear that the operator norm || Q. —Q| —
0as T — o00.

For the remainder of the proof of Theorem 10.1.1, the term “constant” will always
refer to a quantity that is independent of t, T, unless otherwise indicated. The symbols
Ci,Cy, ... and cq,cy, ... will each denote at most one constant, while other symbols
may denote different constants in different contexts.

Consider the configuration space

Cj =oj+ Lf’_wj
over R x Y; and the Seiberg—Witten map

©;:Cj — L™,

As explained in Section 3.4 there is an identification

d
Ty + DO;j(@)) = 7+ Pa.

Geometry & Topology Monographs, Volume 15 (2008)



106 10 The gluing theorem

By the results of [14] the operator on the right hand side defines a Fredholm operator
Lf Wi s LPWj  and this must be surjective because of the choice of weight function
wj . In particular,

DO;j(aj): LT — LPvi (10.6)
is surjective, hence has a bounded right inverse P; by Lemma 10.2.1. (Here one cannot
appeal to Proposition 2.3.1 (ii).)

Let ©': C' — LP* be the Seiberg—Witten map over X 7). When Tinin > 7 + 1 then
by splicing Sy, in the natural way one obtains a smooth configuration S, 7 over
X There is a constant Co > 0 such that if

Tmin > T+ Cy (10.7)

then we can splice the right inverses O, and Pq,..., P, to obtain arightinverse Q1
of
DO'(Sor,r): LY — LP*

which satisfies

1007l < C(IIQ:II LY ||)
J

for some constant C; see Appendix C. Since || Q| is bounded in 7 (ie as a function
of 7), we see that || Q| is bounded in 7, T".

The inequality (10.7) will be assumed from now on.

We now introduce certain 1-forms that will be added to the configurations S, . in
order to make small changes to the holonomies Hol;. For any ¢ = (cy,...,¢y,) € R
define the 1-form 6. ; over X ) by

6, — {O outside U;-0=1[—Tj» T;]x Yj,
’ ier;_H_Tjdt on[-T;,T;]xY;, j=1,...,r,
where ri (1) = %rs(l). Set
E=RIxROx LP*XD:iAT®S).
For 0 <€ <1 let B¢ C E be the open e€-ball about 0. Define a smooth map ¢: E —C’

by
{(v,c.§) = Sv,r,T + Gc,r + Qr,Tév (10.8)

where 0 ; is added to the connection part of S, ;7.

When deciding where to add the perturbation 1-form 6. one has to balance two
concerns. One the one hand, because the weight function k increases exponentially as
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one approaches the middle of the necks [-7j,7;]x Y}, j =1,...,rg, it is desirable
to add 6., as close to the boundaries of these necks as possible. On the other hand, in
order for Lemma 10.2.4 below to work, the spinor field of S, ;7 needs to be “small”
in the perturbation region. We have chosen to add 6. ; at the negative end of the cutoff
region, where the spinor field is zero.

Although we will sometimes use the notation ¢(x), we shall think of ¢ as a function
of three variables v, ¢, &, and D;{ will denote the derivative of { with respect to the
J —th variable. Similarly for other functions on (subsets of) E that we will define later.
Set

o = max(oq,...,0r).

Notice that if rg = 0, ie if we are not gluing along any reducible critical point, then we
may take o = 0.

Lemma 10.2.2 There exists a constant C; > 0 such that for x € E the following hold:

@ D) ID* ()l < Crif |Ix|l < 1.
(i) [[D28(x)[| < Cre?F.
(i) | D3¢(x)[l < Cr.

Proof To prove (ii), note that if 7o > 0 and ¢ = (cy, ..., ¢x,) then
al (v, c, .
H Kv.c.6) = const-e% 7.
8(3]' Li”(
The other two statements are left to the reader. O

Let C| be the set of all S € C’ such that [S|g]eV, ¢(S|k) € @ (R?) and Hol, (S) #
—zj for j =1,...,r9. Then C] is an open subset of C’, and there are unique smooth
functions

nj: Cy — (—m, )

such that Hol; (S) = z; exp(in;(S)). Set n = (1, ..., nr,) and define

a1y

=(w 'ogqoRg,n,0):C;— E.

A crucial point in the proof of Theorem 10.1.1 will be the construction of a smooth local
right inverse of @, defined in a neighbourhood of 0. The map ¢ is a first approximation
to such a local right inverse. The construction of a genuine local right inverse will
involve an application of the quantitative inverse function theorem (see Lemma 10.2.7
below).
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108 10 The gluing theorem

From now on we will take 7 so large that K C X.; and
Hol " (So,) - (Hol; (So,0) ™" # —z;

for j =1,...,ry. Note that the left hand side of this equation is equal to Hol; (So,,7)
whenever T; > t + 1. There is then a constant € > 0 such that {(B¢) C C}, in which
case we have a composite map

E=Eo0( B.—E.

Choose A > 0 so that none of the operators flaj (j=1,.. ;,r)and I:Ia]/_ (j=1,....r")
has any eigenvalue of absolute value < A. (The notation H, was introduced in Section
6.1.) Recall that we assume the o; are small and nonnegative, so in particular we may
assume 60 < A.

Lemma 10.2.3 There is a constant C5 < oo such that

IE(0)]| < Cre@Mr.

Proof The first two components of E(0) = :’E\(SOJ,T) are in fact zero: the first one
because Sy ,7 = Sp over K, the second one because the d¢—component of

So,z —So = (1 —re)(@j — So)
vanishes on [1, 00) x (£Y;) since Sy and «; are both in temporal gauge there.

The third component of E(0) is ©'(Sp ., 7). It suffices to consider t so large that the
p—perturbations do not contribute to ®'(Sy ., 7), which then vanishes outside the two
bands of length 1 in [-7},Tj] x Y; centred at t = £(Tj —1—1/2), j =1,...,r.
Our exponential decay results say that for every k > 0 there is a constant C ]2 such that
for every (z,y) € Ry x (£Y;) we have

IVE(So =),y = Cre™".
Consequently,
)»r.

10 (So.2.7) oo < const- (e ~*7 4+ ¢72*7) < const- e~

This yields
IZO)] = 18/ (So,c,T) || Lr+ < const- P O
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Lemma 10.2.4 There is a constant C3 < oo such that for sufficiently large t the
following hold:

@ [DEO)] =Cs.
(ii) DE(0) is invertible and | DE(0)~!| < Cs.

Proof By construction, the derivative of E at 0 has the form

I 0 B
DEO)=1| 62 1 B2 |,
830 1

where the k—th column is the k—th partial derivative and / the identity map.

The middle top entry in the above matrix is zero because 6. . vanishes on K. The
middle bottom entry is zero because Sy 7 = «; on the support of 6. . and the spinor
field of «; is zero (for j =1,...,79). Adding 6. ; to S, therefore has the effect
of altering the latter by a gauge transformation over [-7; +t+1,—-7; + v +2]x Yj,
j = 1, ..., T,

We claim that 8 is bounded in 7, T for k = 1,2. For k =1 this is obvious from the
boundedness of Q. 7. For k = 2 note that the derivative of n;: C{ — (=, ) at any
Seclis

D)) =1 [ 7 (10.9)

j

where @ is an imaginary valued 1-form and ¢ a positive spinor. Because of the
weights used in the Sobolev norms, Dn(S) is (independent of S and) bounded in ©, T’
(see (10.4)). This together with the bound on Q. 1 gives the desired bound on ;.

Note that, for k = 2,3, ||6| is independent of 7" when t >> 0, and routine cal-
culations show that ||8;| — 0 as t — oo. (In the case of §, this depends on the
normalization (10.5) of the holonomy of S(v).)

Write DE(0) = x — y, where
I 0 By I 0 —pB;

x=[01B]. x'=l01-p

00 7 00 1[I

When 7 is so large that ||| ||[x~!|| <1 then of course |[yx~ || < |y|l |x~| <1,
hence x — y = (I — yx~1)x is invertible. Moreover,

=)' =xT =TI =y T = I =27y (TR,
k=1
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which gives

X2 ]

— o~ 0 ast—o00. |
E={lx= I

e =~ =x7 =
We now record some basic facts that will be used in the proof of Lemma 10.2.6 below.

Lemma 10.2.5 If E,, E,, E3 are Banach spaces, U; C Ej an open setfor j =1, 2,
and f: Uy — U,, g: U, — E3 smooth maps then the second derivate of the composite
map go f: Uy — Ej is given by

D*(go [)(x)(,2) = D*¢(f(x))(Df (x)y, Df (x)z)
+ Dg(f())(D? f(x)(y,2))
forx eU; and y,z € Eq.

Proof Elementary. |

It is also worth noting that embedding and multiplication theorems for LZ Sobolev
spaces on R* (k >0, 1 <¢ < 00) carry over to X (™) | and that the embedding and
multiplication constants are bounded functions of 7.

Furthermore, a differential operator of degree d over XT) which is translationary
invariant over necks and ends induces a bounded operator Li vd LZ whose operator
norm is a bounded function of 7.

Lemma 10.2.6 There is a constant C4 > 0 such that | D?>E(x)| < C4 whenever
|x] < C4_1 and T > Cy.

Proof We will say a quantity depending on x, t is s-bounded if the lemma holds with
this quantity in place of D?E.
Let E1, E,, E3 be the components of .

The assumption K C X.; ensures that E (v, ¢, &) is independent of c. It then follows
from Lemma 10.2.5 and the bound on Q. r that D?Z is s-bounded.

When v, ¢, & are small we have

Ez(v, ¢, S) = n(Sv,r,T + 96,‘[ + Qr,Té) =c+ U(SU,I,T + Qr,Té)-

Since Dn is constant, as noted above, we have D?1 = 0. From the bounds on D7 and
QO+, we then deduce that D?Z, is s-bounded.
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To estimate E3, we fix # > 0 and consider only T > /. It is easy to see that

83(x)|x:y

is s-bounded. By restricting to small x and choosing / large we may arrange that the
p—perturbations do not contribute to

E3,j 1= B3l[—1; +h.T—hxY;

for j =1,...,r. We need to show that each D? E3,; is s-bounded, but to simplify
notation we will instead prove the same for D?E 3 under the assumption that the p
perturbations are zero.

First observe that for any configuration (A4, ®) over X T) and any closed, imaginary
valued 1-form a we have

OA+a ®) = ®’(A,<I>)—|—(O,a-<b).
Moreover,
la-®@|Lre =Clla-e®@[, < Cllalap lle*@ll2p < C'llall2p [Pl L2+

for some constants C, C’ < co. Taking (A4, ®) = Sy, 7 + O 7€ and a = 0. we
see that Dy D, E3(x) is s-bounded for k =1, 2, 3.

Next note that the derivative of the Seiberg—Witten map ®’: C' — LP-* at a point
S/ + s has the form

DO'(S, + 51)s2 = Lsy + B(s1,52)

where B is a pointwise bilinear operator, and L a first order operator which is inde-
pendent of s; and translationary invariant over necks and ends. This yields

| DO'(S, + )| < const- (1 + [|s]l2,)- (10.10)
Moreover, D?>®’(S) = B for all S, hence there is a constant C” < oo such that
ID*6'(S)| < C”
for all T.

Combining the above results on ® with Lemma 10.2.5 we see that D; D; E5 is s-
bounded also when j,k # 2. m|

Lemma 10.2.7 There exist cs > 0 and Cg < oo such thatif 0 < €' < c5e < cg then
for sufficiently large t the following hold:

(i) &: B¢ — E isinjective.
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(ii) There is a (unique) smooth map E~': B — B¢ suchthat Eoc B~ =1.
(i) [|[D(E"Y)(x)|| < Cs forall x € Ber.

(iv) [|D*(E~1)(x)| < Cg forall x € Ber.

V) E7H0)] < Cge@Mr.

Proof For sufficiently large 7 we have
€ +[E(0)] <ese

by Lemma 10.2.3. Statements (i)—(iv) now follow from the inverse function theorem,
Proposition B.0.2, applied to the function x — E(x) — E(0), together with Lem-
mas 10.2.4 and 10.2.6. To prove (v), set 1 = E~!, x = E(0) and take T so large that

~

X € Ber. Since E is injective on B we must have /(x) = 0, so

12O = 1ACx) = O] = lIx]| sup [ DA

=€

Now (v) follows from (iii) and Lemma 10.2.3. O

From now on we assume that €, €/, T are chosen so that the conclusions of the lemma
are satisfied. Define

{=¢0E 7 Be—C.
Then clearly Eo E =1.
Thus, (v,¢) — Z(v, ¢,0) is a “gluing map”, ie for small v, ¢ it solves the problem
of gluing the monopole S(v) over X to get a monopole over X T) with prescribed
holonomy zje'“ along the path y; for j =1,...,rp.
Lemma 10.2.8 There is a constant C7 < oo such that for x € B¢/ one has

DS I D*E(x)]| < Cre".
Proof This follows from Lemma 10.2.2 and Lemma 10.2.7 and the chain rule. O

The following proposition refers to the situation of Section 10.1 and uses the notation
of Theorem 10.1.1.

Proposition 10.2.1 If (K’, V') is any kv-pair < (K, V) then G x U(1)"® can be
covered by finitely many connected open sets W in My x U(1)" such that if Ty, is
sufficiently large then for each W there exists a smooth map h: W — H ™) whose
image consists only of regular points and which satisfies foh = 1.
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: ~ o~ /
Here we do not need any assumptions on 17j;, 77; or on p;, p.

Proof Let (wg,z) € G x U(1)™ and consider the set-up above, with T so large that
K’ C X.; and € so small that

(X)|gr eV’ for every x € B.. (10.11)

Note that taking € small may require taking v (and hence T,,) large; see Lemma
10.2.7. For any sufficiently small open neighbourhood W C My x U(1)" of (wy, z)
we can define a smooth map v: W — Ci by the formula

v(w,a) = (w Yw), —i log(a/z), 0).

Here loge” = u for any complex number u# with |Im u| < 7, and i log(a/z) € R
denotes the vector whose j—th component is i log(a;/z;j). Because Eo Z = [ and the
Seiberg—Witten map is the third component of Z, the image of v consists of regular
monopoles. Let h: W — B| be the composition of v with the projection C' — Bj.
Unravelling the definitions involved and using (10.11) one finds that h has the required
properties.

How large Tini, must be for this to work might depend on (wy, z). But G x U(1)7®
is compact, hence it can be covered by finitely many such open sets W. If Ty, is
sufficiently large then the above construction will work for each of these W. |

10.3 Injectivity

We now continue the discussion that was interrupted by Proposition 10.2.1. Set

§=Soer, S=20).

Lemma 10.3.1 There is a constant Cg < oo such that for sufficiently large T one has
IS =8 Lre < Cge@o™MT||S = 8] || Lrx < Cs.

Proof Set E71(0) = (v, ¢, &) € B. For sufficiently large T we have

IS = SliLpe < 1Sv,er = So,c L% + 10e,e + Qe rE L2
< const- ([[v]| + € [lell + €]}

< const - (207

where we used Lemma 10.2.7 (v) to obtain the last inequality. Because || S — S/ Lok
is bounded in 7, T', and we assume 60 < A, the second inequality of the lemma follows
as well. O
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For positive spinors ® on X () it is convenient to extend the definition of Zg to
complex valued functions on X (7):

Iof = (=df. [ D).

(However, 73, will always refer to the formal adjoint of Zg acting on imaginary valued
functions.) When @ is the spinor part of S, S. S then the corresponding operators
T will be denoted 7, 7.7, respectively. (We omit the " on 7 to simplify notation.)
As in Section 2.2 we define

g={fely (XD:C): T, feLP"}

We can take the norm to be

1 ller = 1To flee + D1 f ().

X€EDb

Lemma 10.3.2 There is a constant Cy < oo such that if 1 is any of the operators
7,.7,7 then for all f € &' one has

1/ loo < C9(||If||LM s If(x)l).

X€EDb

Proof We first prove the inequality for I = 7 (the case of Z) is similar, or easier). If
X, is any component of X and 0 <7 < t then for some constant Cz < oo one has

1o = cons- 1l = (11 + 3 1£00)

x€bNX,

for all Lf functions f: (X¢).z — C. Here the Sobolev inequality holds because p >4,
whereas the second inequality follows from Lemma 2.2.1. We use part (i) of that lemma
if the spinor field of Sy is not identically zero on X, and part (ii) otherwise. (In the
latter case b N X, is nonempty.)

When 7, t are sufficiently large we can apply part (i) of the same lemma in a similar
fashion to the band [¢, 7 + 1] x Yj/ provided ¢ > T and a} is irreducible, and to the band
[t—1,t+1]xY; provided |t| < T; —7—1 and «; is irreducible. To estimate | /| over

these bands when a} resp. «; is reducible one can use Lemma 2.2.2 (ii). This proves

the lemma for I = 7 (and for I = ).
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We now turn to the case I = 7. Let ¢ denote the spinor part of S —S. Then
IZ/NlLre <N SLrs + 1Sl o

< |Zf | o + const- (nffnm Sy If(x)l) pllos.

X€Eb

By Lemma 10.3.1 we have |[¢||L»< — 0 as T — 0, so for sufficiently large T we get

IZ /s < const. (nzfnw Sy If(x)l).

X€EDb

Therefore, the lemma holds with I =7 as well. O

Lemma 10.3.3 There is a constant C1q < oo such that for all f,g € £ and ¢ €
LP*(X@;ST) one has

@ /gl =Croll S 1IgH-
() I/l =Cuoll Sl

where we use the Lf " norm on spinors and the £ norm on elements of £’ .

Proof By routine calculation using Lemma 10.3.2 with I = Z/ one easily proves (ii)
and the inequality

ld(fg)llLre = const-|| fllerlIglle -

Now observe that by definition g®] € Lf * where as before @/ denotes the spinor
field of the reference configuration S} . Applying (ii) we then obtain

I /g ®,llr* < const-|| fller g P} [lLr* < const-|| fller lglle,

completing the proof of (i). a

Recall from Section 2.4 that the Lie algebra LGy is the space of imaginary valued
functions in £’ that vanish on b.

Lemma 10.3.4 There is a constant Cy; > 0 such that for t > Cy; and all f € LG
one has

COMNZof g < IZS g = CullTof llp=.
Proof Let ¢ denote the spinor part of S-S /. Then
I/ liLy < const- (| flloollW Iy + df | L2rx (¥ ]12)

<const- |[Zf[|lLp<llyllLr«,

and similarly with Z/ instead of Z. The lemma now follows from Lemma 10.3.1. O
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We are going to use the inverse function theorem a second time, to show that the image
of the smooth map

I: LG, x Be — (),
(/. x) = exp(/)(¢(x))
contains a “not too small” neighbourhood of S. The derivative of TT at (0,0) is
DII(0,0): LG, @ E — LP*,
(f,x) I [ + DC(0)x.

To be concrete, let LGy & E have the norm ||(f,x)|| = || fller + x| £
Lemma 10.3.5 DTI(0, 0) is a linear homeomorphism.

Proof By Proposition 2.3.1, Z*Z: LG, — L?** is a Fredholm operator with the same
kernel as Z. Now, 7 is injective on LGy, because { maps into C| and therefore

[S|k] eV C BE. Since
W =T*I(LG})

is a closed subspace of L?** of finite codimension, we can choose a bounded operator
n: LPY > W
such that |y = I. Set
" =nT* LP* > w.
Then " LGy —> W
is an isomorphism. Furthermore,
index(Z* + DO'(S)) = dim M = dim My + o,

where “dim” refers to expected dimension (which in the case of My is equal to the
actual dimension of G), and the second equality follows from the addition formula for
the index (see Corollary C.0.1). Consequently,

index(Z¥ + DE(S)) = 0.
We now compute

*T B

(Z* + DE(S)) o DII(0,0) = ( o 1

):LQE,QBE—>WEBE, (10.12)
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where B: E — W . The zero in the matrix above is due to the fact that
~ A dl ~ ~
DESYIf = —| B/ (S)) =0,
dt|,

which holds because E;, E, are G—invariant, E3 is G;—equivariant, and E(S) = 0.

Since the right hand side of (10.12) is invertible, it follows that Z# + D@(S’) is a
surjective Fredholm operator of index 0, hence invertible. Of course, this implies that
DTI(0, 0) is also invertible. |

Lemma 10.3.6 There is a constant Cy, < oo such that for sufficiently large 7,
| DTI(0.0)~ " < Cr2e”".
Proof In this proof all unqualified norms are Lf * norms. It follows from (10.9),

(10.10) and Lemma 10.3.1 that D/E:(g ) is bounded in t, T'. Therefore there exists a
constant C < oo such that

Ixll e = IDES)Z S + DLO0)x)| < C| DO, 0)(f. x)]|
forall /€ LGy and x € E. From Lemma 10.3.4 and Lemma 10.2.8 we get
CH T/ < IZS
< [ DTI(0, 0)( /. x)]| + [ DEO)x]
< [[DTL(0,0)(f. x)Il + C7e°FIxl £
< (14 CC7¢H)|DII(0,0)(f, x)|.

This yields
I fller + llxll £ < const- e | DTI(0, 0)(f. x)I|. 0
Lemma 10.3.7 There is a constant C;3 < oo such that for sufficiently large t one has
ID*TI(f, %)|| < C13¢7F
forall f € LG, x € E suchthat || f| <1 and | x| < €.
Proof For the purposes of this proof it is convenient to rescale the norm on &’ so that
we can take C;o = 1 in Lemma 10.3.3.

If f,g €& then e/ g €&, and from Lemma 10.3.3 we obtain

o0

1
le/gll =3 /el = e Vgl

n=0
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and similarly with a spinor ¢ € Llp * instead of g.

The first two derivatives of exp: &' — 1+ &’ are

Dexp(f)g = gexp(f). D*exp(f)(g.h) = ghexp(f),

50 1D exp(/)1 102 exp(/)] < exp(ll f1D)-

Let 21 , 22 be the connection and spinor parts of ¢, respectively, and define Iy, IT,
similarly. Then R ~

M(f.x) = €1(x) —df.e” - Er(x).
We regard TI(f,x) as a function of the two variables f,x. Let D;II denote the

derivative of I1 with respect to the j—th variable. Similarly for the second derivatives
DjDyII.

Applying Lemma 10.2.8 and Lemma 10.3.3 we now find that
| DT (/. 3)] = D61 ()] < comst- e,
| D; D I (f, x)|| < const-e°®, j, k=12
for || ]| <1 and ||x|| < €. Since D; D;I1; =0 for j =1, 2, the lemma is proved. O

In the following, B(x;r) will denote the open r-ball about x (both in various Banach
spaces and in C’).

Lemma 10.3.8 There exist constants ry, r, > 0 such that for sufficiently large t the
image of TI contains the ball of radius r,e=3°% about S in C'; more precisely one has
B(S;r2e737%) C TI(B(0: r1e™27T)).

Proof We wish to apply the inverse function theorem Proposition B.0.2 to the map I1
restricted to a ball B(0; R), where R; € (0, €’] is to be chosen. For the time being let

M, L, k have the same meaning as in that proposition. By Lemma 10.3.7 we can take
M = Cy3¢e°7, and by Lemma 10.3.6 we have |L™!|| < Cj,¢°%. We need

0<k=|L7Y "= R M.

This will hold if
Ry < (C12Cr3) te™207,

When 7 is large we can take R; to be the right hand side of this inequality. By
Proposition B.0.2, TI(B(0; R)) contains the ball B(S; R,) where

1 1
Ry= SR Cpyle™" = SCRPCyle ™, O
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Theorem 10.1.1 is a consequence of Proposition 10.2.1 and the following proposition:

Proposition 10.3.1 Under the assumptions of Theorem 10.1.1, and using the same
notation, there is a kv-pair (K', V') < (K, V) such that f is injective on q~'(G) for
all sufficiently large Tip.

The proof of Proposition 10.3.1 occupies the remainder of this section.

For any natural number m which is so large that K C X, let V/ be the set of
all w € Bb(X m) such that there exist a representative S of w, and a configuration
= (A4, ®) over X representing an element of G, such that

_ _ _ 1
d(S, S) :=/ IS—S|? + VIS —8)? < —. (10.13)
Xom m

Note that dm((S), u(S)) = dn(S,S)

for any gauge transformation u over X.,,. In particular, V,, is T —invariant.

Lemma 10.3.9 Let w, € V’ forn=1,2,..., where m,, — oo. Then there exists
for each n a representative S,, of wy such that a subsequence of Sy converges locally
in Lp over X to a smooth configuration representing an element of G .

Proof By assumption there exist for each n a representative S, of w, and a configu-
ration S over X representing an element of G such that

dm,, (Sn,Sn) < i. (10.14)
Mmpy
After passing to a subsequence we may assume (since G is compact) that [S,] converges
in G to some element [S], and we can choose S smooth. Since My = M p » the local
slice theorem guarantees that for large n we can find u, € G, such that §n = un(gn)
satisfies

[[Sn = S|Lrw — 0.
Set S, = u,,(Sn) which is again a representative of w,. Let A, A, be the connection
parts of S, S,, respectively. Then (10.14) implies that Sy, —S, —>0and V A,,(Sn
Sy) — 0 locally in L? over X, hence also S, — S locally in L? over X . Now

Vai(Sn— §) =V47,(Sn— §n) + V/T(gn — §) + (/T_ /In)(Sn - §n),

and each of the three terms on the right hand side converges to 0 locally in L? over
X (the third term because of the continuous multiplication LY x L? — L? in R* for
p > 4). Hence S, — S locally in Lf over X . |
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Corollary 10.3.1 For sufficiently large n one has that R (V,) C V.

Lemma 10.3.10 Letw, €V, forn=1,2,..., where m, — 0o. Suppose q(wn|k)
converges in My, to an element g as n — oo. Then g € G, and there exists for each n
a representative S, of w, such that the sequence S, converges locally in Lf over X
to a smooth configuration representing g .

Proof LetS,,S, beasin the proof of Lemma 10.3.9. First suppose that [Sn] converges
in G to some element [S] where S is smooth. Choosing Sy, S, as in that proof we
find again that S,, — S locally in L? over X, hence

g =1limg(Splx) = q(S|k) =I[S].

We now turn to the general case when [S,] is not assumed to converge. Because G is
compact, every subsequence of [S,] has a convergent subsequence whose limit must
be g by the above argument. Hence [S,] — g. a

Suppose we are given a sequence {1, },=1,2,... of natural numbers tending to infinity,
and for each n an r—tuple 7'(n) of real numbers such that
Tmin(n) :=min T (n) > my.
J

Define q, and f, as in Theorem 10.1.1, with K" = X, and V' =V,
Lemma 10.3.11 Forn=1,2,... suppose Sy is a smooth configuration over X T)
representing an element wy, € q;l (G), and such that

f1(wn) = (w0.2) € G x U(1)"

as n — oo. There exists a constant Cy4 < 00 such that for sufficiently large v the
followmg holds for sufficiently large n. Let the map é‘ § n be defined as above and
set Sy = C n(0). Then there exists a smooth gauge transformation u, € G such that

lttn(Sn) — §n||Liw< < C14e(3a—k)r‘

Note: This constant Cy4 depends on (wq, z) but not on the sequence Sj, .

Before proving the lemma, we will use it to show that f, is injective on q, ~1(G) for some
n. This will prove Proposition 10.3.1. Suppose w,, w, € q;,, 1(G) and £, (w,) =f, (),
n=1,2,.... After passing to a subsequence we may assume that f,(w,) converges
to some point (wg, z) € G x U(1)"0. Combining Lemma 10.3.8, Lemma 10.3.11 and
the assumption 60 < A we conclude that if t is sufficiently large then for sufficiently
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large n we can represent w, and w), lg\y configurations {(xp) and &(x;,), r’e\spe/c\tively,
where x,, x,, € Be. Now recall that E o ¢ = I, and that the components 1, E, are
Gp—invariant whereas E3 is the Seiberg—Witten map. Comparing the definitions of f,
and E we conclude that

Xn =B (xn) = EC(x}) = x,,,

hence w, = w,, for large n. To complete the proof of Proposition 10.3.1 it therefore
only remains to prove Lemma 10.3.11.

Proof of Lemma 10.3.11 In this proof, constants will be independent of the sequence
Sy (as well as of T as before).

By Lemma 10.3.10 we can find for each n an Lg}loe gauge transformation v, over X
with v,|p = 1 such that S; = v,(S,) converges locally in Lf over X to a smooth
configuration S’ representing wo. A moment’s thought shows that we can choose the
v, smooth, and we can clearly arrange that S = Sy. Then for any 7 > 0 we have

limsup ||S;, — Sn L (x.,) = limsup || So — Sn lLrecx,) < const-¢™M7 (10.15)
n n

when t is so large that Lemma 10.3.1 applies.

For ¢t > 0 and any smooth configurations S over X.; consider the functional

.
E(S.0) =Y 4i(®(Slinxy,) + 9 (Sliyx=r)))
ji=1

r/

+ ) 4 (9 (Sl — 0(@))).
j=1

where in this formula {¢} x (£Y;) has the boundary orientation inherited from X;.
(Recall that the Chern—Simons—Dirac functional ¥ changes sign when the orientation
of the 3—manifold in question is reversed.) The assumption on A;, k} and 7;, 77'} in
Theorem 10.1.1 implies that E(S,¢) depends only on the gauge equivalence class of
S'. Since ¥ is a smooth function on the L% /2 configuration space by Lemma 3.2.1,
we obtain

E(Sp,t) = E(S,,t) = E(So, 1)

as n — 0o. By our exponential decay results (see the proof of Theorem 6.3.1),
E(Sp, 1) < const-e~2*  for 1 > 0.

It follows that
E(Sy.1) < const-e M for n > N()
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for some positive function N . By assumption the perturbation parameters p, p’ are
admissible, hence there is a constant C < co such that when T, (771,) > C, each of the
(r + ") summands appearing in the definition of E(S,,?) is nonnegative. Explicitly,
this yields

0 < F(Suli=1; ) +13x7;) — F(Sulir; m)—rxy;) < const-e ™,
0< 19(5,1|{,}XY]_/) — 19(0[}) < const-e M,
where the first line holds for 0 <7 <Tj(n) and j =1,...,r, the second line for r > 0
and j =1,...,7/, and in both cases we assume Tpin(n) > C and n > N(z).

In the following we will ignore the ends R4+ x Yj’, of X, ie we will pretend that X*# is
compact. If cx}, is irreducible then the argument for dealing with the end R4 X Yj/, is
completely analogous to the one given below for a neck [—7}, Tj] x Y}, while if a]’., is
reducible it is simpler. (Compare the proof of Proposition 6.4.1 (ii).)

For the remainder of the proof of this lemma we will focus on one particular neck
[=Tj(n), Tj(n)] x Y; where 1 < j <r. To simplify notation we will therefore mostly
omit j from notation and write 7'(n), Y, « etc instead of Tj(n),Y;, ;.

For 0 <t < T(n) set
By =[-T(n)+t,T(n)—t]x7Y,

regarded as a subset of X' T@m) By the above discussion there is a constant 7y > 0
such that when 7 is sufficiently large, S), will restrict to a genuine monopole over the
band By, 3 by Lemmas 4.1.1, 4.2.1 and 4.2.2 and will have small enough energy over
this band for Theorem 6.3.2 to apply. That theorem then provides a smooth

such that S} = ¥, (Sa|g,,) is in temporal gauge and

ISy —allLr«s,) = const- @M >y
Writing S/ =8y =(S/—a)+(@—8)+ (S-S5,
we get
limsup || S — S, | Lp-<(B,) =< const- (e207MT 4 plo=hr) (10.16)

n—o0

when ¢ > #; and t is so large that Lemma 10.3.1 applies.

To complete the proof of the lemma we interpolate between v, and v, in the overlap
region O; = X.; N B;—;. (This requires t > #; 4+ 1.) The choice of this overlap region
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is somewhat arbitrary but simplifies the exposition. Define

wy = 'ﬁnvgl: O, — U(1).

Then wy(S,) =S, on O.

Set x* = y(+(T — 1)), where y = yj is the path introduced in the beginning of this
chapter. If « is reducible then by multiplying each v, by a constant and redefining
wy, ) accordingly we can arrange that w,(x™) =1 for all n. These changes have
no effect on the estimates above.

Lemma 10.3.11 is a consequence of the estimates (10.15)—(10.16) together with the
following sublemma (see the proof of Proposition 6.4.1 (ii).)

Sublemma 10.3.1 There is a constant Cy5 < oo such that if t > Cy5 then

lim sup ||w, — 1||L§(Or) < Cyse20—M7,
n—o0

Proof of sublemma If « is irreducible then the sublemma follows from inequali-
ties (10.15), (10.16) and Lemmas 6.4.2, 6.4.4. (In this case the sublemma holds with
C15¢@M7 a5 upper bound.)

Now suppose « is reducible. We will show that

lim sup |wu(x7) — 1] < const- 297 (10.17)

n—oo

for large 7. Granted this, we can prove the sublemma by applying Lemma 6.4.2 and
Lemma 6.4.3 (ii) to each component of O;.

In the remainder of the proof of the sublemma we will omit # from subscripts. To
prove (10.17), define intervals

Jo=[-T-1,-T+7<], Ji=[-T+1,T—x1], Jo=[T—-1,T+1]

and for k =0,1,2 set y®) = y| J. - Let Hol® denote holonomy along y®) in the
same sense as (10.1), ie Hol® is the result of replacing the domain of integration /;
in that formula with Jj . Define §) € C by

Hol®(8) = Hol® (8" (1 4+ 8®), Kk =0,2,
HolV(8) = Hol ™ (8”) (1 + 61

where as usual we mean holonomy with respect to the connection parts of the configu-
rations. For large 7 the estimates (10.15) and (10.16) give

|5(k)| < const - (2017
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when 7 is sufficiently large.

Writing & = ]_[,2(=0(1 + 8% we have

2
z=Hol(§) = [ [ Hol® () = 7 Hol®(5") Hol " (S”) Hol® (5).
k=0

Now, by the definition of holonomy,

T(xt
wﬂwy@=%%%mMW$,

and there are similar formulas for Hol(k)(S ’). Because w(xT) =1 we obtain
z=h Hol(S) w(x™)~!.
Setting @ = Hol(S)z~! we get
wx )—1l=ah—-1=@-1)h+h-1.
Since by assumption ¢ — 1 as n — oo, we have

|lw(x™)— 1| < const- (|a — 1]+ Z |8(k)|) < const - ¢(20MT
k

for large n, proving the sublemma and hence also Lemma 10.3.11. |

This completes the proof of Proposition 10.3.1 and thus also the proof of Theorem 10.1.1.

10.4 Existence of maps ¢

Let G C My be as in Section 10.1. In this section we will show that there is always a
map ¢ as in (10.3) provided T acts freely on G and K is sufficiently large. It clearly
suffices to prove the same with B} (K) in place of B} (K).

Let B, M denote the configuration and moduli spaces over X with the same asymptotic
limits as By, My, but using the full group of gauge transformations G rather than Gy.

Because Gy acts freely on C, an element in By has trivial stabilizer in T if and only if
its image in B is irreducible, ie when its spinor field does not vanish identically on any
component of X .

Throughout this section, K will be a compact codimension 0 submanifold of X which
contains b and intersects every component of X .
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Proposition 10.4.1 If T acts freely on G then for sufficiently large K there exist a
T —invariant open neighbourhood V' C B} (K) of Rk (G) and a T —equivariant smooth
map q: V — My, such that g(w|g) = w forallw € G.

We first prove three lemmas. Let H C M™* be the image of G. Because T is compact,
the projection By — B is a closed map and therefore maps G to H. Let Hy C M*
be any precompact open subset which contains H and whose closure consists only of
regular points.

Lemma 10.4.1 If K is sufficiently large then Rg: M* — B*(K) restricts to an
immersion on an open neighbourhood of Hy.

By “immersion” we mean the same as in Lang [32]. Since a finite-dimensional subspace
of a Banach space is always complemented, the condition in our case is simply that the
derivative of the map be injective at every point.

Proof Fix w =[S] e ﬁo. We will show that Rg is an immersion at @ (hence in a
neighbourhood of w) when K is large enough. Since Hj is compact, this will prove
the lemma.

Let W C Lf " be a linear subspace such that the derivative at S of the projection
S + W — B* is a linear isomorphism onto the tangent space of M at w. Let § denote
that derivative. For ¢ > 0 so large that b C X.; let §; be the derivative at S of the
natural map S + W — B*(X:;). We claim that &, is injective for ¢ >> 0. For suppose
{wn} is a sequence in W such that [[wy||z>* =1 and &, (w,) = 0 for each n, where
ty — oo. Set K, = X, . Then

wn|Kn =Zo fn

for some f, € LG(K,), where ® is the spinor field of S'. After passing to a subsequence
we may assume that w, converges in Lf ¥ to some w € W (since W is finite-
dimensional). By Lemma 2.2.1 there exists for each #n a constant C, < oo such that
for all # € LG(K}) one has

121 = CallZohl .

It follows that f; converges in Lg over compact subsets of X to some function f.
We obviously have Zg f = w, hence f € LG and §(w) = 0. But this is impossible,
since w has norm 1. This proves the lemma. a

Lemma 10.4.2 If K is sufficiently large then the restriction map Hy — B*(K) is a
smooth embedding.
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Proof Because of Lemma 10.4.1 it suffices to show that Rg is injective on Hy when
K is large.

Suppose wp, ), € f_lo restrict to the same element in B(X,) forn =1,2,..., where
tn — 0o. Since H, is compact we may assume, after passing to a subsequence,
that w,,w, converge in Hy to w,’ respectively. By the local slice theorem we
can find representatives S, = (An, ®n), S, = (4, P)) for w,, ) respectively,
such that the sequence {S,} converges in C to some configuration S, and similarly
S, — S'. By assumption, S, = u,(S,) over X, for some u, € Lg. In particular,
duy = up- (A, — A}), so the sequence {u,} is locally bounded in Lg. After passing
to a subsequence we may assume that {u,} converges weakly in Lé’ over compact
subsets of X to some gauge transformation u. Then u(S) = S’. By Proposition
2.4.1 (iii) we have u € G, hence w = w’. When n is large then Hy — B(X.,) will be
injective in a neighbourhood of @ by Lemma 10.4.1, hence w, = w,, for n sufficiently
large. |

For the present purposes, we will call a Banach space E admissible, if x — | x|”
is a smooth function on E for some r > 0. (The examples we have in mind are L,’;
Sobolev spaces where p is an even integer.)

Lemma 10.4.3 Let B be any second countable (smooth) Banach manifold modelled
on an admissible Banach space. Then any submanifold Z of B possesses a tubular
neighbourhood (in the sense of [32]).

Proof According to [32, p96], if a Banach manifold admits partitions of unity then
any closed submanifold possesses a tubular neighborhood. Now observe that Z is
by definition locally closed, hence C = Z \ Z is closed in B. But then Z is a
closed submanifold of B\ C. In general, any second countable, regular 77 —space is
metrizable, hence paracompact (see Kelley [29]). Because B\ C is modelled on an
admissible Banach space, the argument in [32] carries over to show that B\ C admits
partitions of unity. Therefore, Z possesses a tubular neighbourhood in B\ C, which
also serves as a tubular neighbourhood of Z in B. |

Proof of Proposition 10.4.1 Choose K so large that Hy — B*(K) is an embedding,
with image Z, say. Let G denote the preimage of Hy in My.

Let B;*(K) be the open subset of By(K) consisting of those elements whose spinor
does not vanish identically on any component of K. Then the projection 7: By*(K) —
B*(K) is a principal T —bundle, and restriction to K defines a diffeomorphism

i Gy—>n1Z.

Geometry & Topology Monographs, Volume 15 (2008)



10.4 Existence of maps q 127

By Lemma 10.4.3 there is an open neighbourhood U of Hy in B*(K) and a smooth

map
p: U x[0,1] = B*(K)

such that p(x, 1) € Z forall x, and p(x,t) = x if x € Z or t = 0. (In other words,
p is a strong deformation retraction of U to Z.) After choosing a connection in the
T —bundle B;*(K) we can then construct a T —invariant smooth retraction

o N U)—» 7 (2)
by means of holonomy along the paths ¢ > p(z, x). Now set

g=1"top U - G,. m|
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CHAPTER 11

Applications

11.1 A model application

In this section we will show in a model case how the gluing theorem may be applied
in combination with the compactness results of Part I. Here we only consider gluing
along irreducible critical points. Examples of gluing along reducible critical points
will be given in Part III and in [23]. The main result of this section, Theorem 11.1.1,
encompasses both the simplest gluing formulae for Seiberg—Witten invariants (in
situations where reducibles are not encountered) and, as we will see in the next section,
the formula ¢ o d = 0 for the standard Floer differential.

Recall that the Seiberg—Witten invariant of a closed spin® 4—manifold (with b* > 1)
can be defined as the number of points (counted with sign) in the zero-set of a generic
section of a certain vector bundle over the moduli space. To obtain a gluing formula,
this vector bundle and its section should be expressed as the pullback of a vector bundle
E — B*(K) with section s, where K C X . In the proof of Theorem 11.1.1 below
we will see how the section s gives rise in a natural way to a map ¢ as in Theorem
10.1.1. Thus, the section s is being incorporated into the equations that the gluing map
is required to solve. (We owe this idea to [14, p99].)

We will now describe the set-up for our model application. Let X be as in Section 1.4
with r = 1 and ' > 0, and set Y = Y;. In other words, we will be gluing one single
pair of ends R4 x (£Y) of X, but X may have other ends R x Yj/ not involved in

the gluing. We assume X*# is connected, which means that X has one or two connected
components. For j = 1,...,r’ fix a critical point a]/. € Ryr. Let u be a 2—form and
J

p a perturbation parameter for Y, and let 1, p’; be similar data for Y;. Let each p, p’
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130 11 Applications

have small C! norm. To simplify notation we write, for o, 8 € ﬁy,
Mypg=MX:a..d). MD=mxD:a).

We make the following assumptions:

e (Compactness) At least one of the conditions (B1), (B2) of Section 1.4 holds
for some A;, A% >0,

e (Regularity) All moduli spaces over R x Y, R x Yj’ and X contain only regular
points, and

¢ (No reducibles) Given aq,0, € ﬁy and oz;. € ﬁy/, if there exist a broken
gradient line over R x Y from «; to o, and for each j a broken gradient line
over R x Y’ from oz] to ,B]’ then M (X;ay,a,,a’) contains no reducible. (It
then follows by compactness that M () contains no reducible when 7T is large.)

The regularity condition is stronger than necessary, because there are energy constraints
on the moduli spaces that one may encounter in the situation to be considered, but we
will not elaborate on this here.

Note that we have so far only developed a full transversality theory in the case when
Y and each Yj/ are rational homology spheres; in the remaining cases the discussion
here is therefore somewhat theoretical at this time.

Let K C X be a compact codimension 0 submanifold which intersects every component
of X. When T > 0 then K may also be regarded as a submanifold of X ™) and we
have restriction maps

Rop: Mz —B*(K), R:MD - B*(K).

These take values in 5* (K) rather than just in B (K) because of the unique continuation
property of harmonic spinors.

Suppose E — B* (K) is an oriented smooth real vector bundle whose rank d is equal
to the (expected) dimension of M (T) | Choose a smooth section s of E such that the
pullback section sy g = R* s is transverse to the zero-section of the pullback bundle

Eyp=R o ﬂE over M * Ny “for each pair «, . (Here the Sobolev exponent p > 4
should be an even integer to ensure the existence of smooth partitions of unity.) Set
s = (R")*s, which i is a section of E’' = (R')*E. We write Ma = Myo = Mg, and
Sq = S, etc. Let M o> M denote the zero-sets of Sq, 8’ respectively. By index
theory we have

0=dim M D =dim My +ny,

where ny = 0 if « is irreducible and n, = 1 otherwise. Thus, M o 1s empty if « is
reducible.
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Lemma 11.1.1 Ifw, € MT®) forn=1,2,..., where T (n) — oo, then a subse-
quence of wy, chain-converges to an element of M for some o € R* Moreover,
if wy = [Sy] chain-converges to [S] € M o then there exists for each n a smooth

up: XT@) 5 U(1) whose restriction to each end R 4 X Y] is null-homotopic and
such that the sequence u,(Sy) c-converges over X to S'.

Proof The statement of the first sentence follows from Theorem 1.4.1 by dimension
counting. Such maps u, exist in general for chain-convergent sequences when the wj,
all have the same asymptotic limits over the ends R4 x YJ.’ . O

Let J C H'(Y;Z) be the subgroup consisting of elements of the form z|y where z
is an element of H!(X*;7Z) satisfying z|Y]_/ =0 for j =1,...,r . This group J acts
on the disjoint union

permuting the sets in the union.
Lemma 11.1.2 The quotient M= Z\?”/J is a finite set.

Proof By Theorem 1.3.1 any sequence w, € M a,> " = 1,2,... has a chain-
convergent subsequence, and for dimensional reasons the limit (well-defined up to
gauge equivalence) must lre in some moduh space M B Furthermore if wy, chain-
converges to an element in M g then M a, is contained in the orbit J - M g for n> 0.
Therefore, each M « 18 a finite set, and only finitely many orbits J - M o are nonempty.
This is equivalent to the statement of the lemma. |

Note that J is the largest subgroup of H'(Y;Z) which acts on M?" in a natural way.
On the other hand, if M* is nonempty then, since H'(Y;Z) acts freely on Ry, only
subgroups J’ C J of finite index have the property that M*/J’ is finite.

Lemma 11.1.3 There is a compact codimension 0 submanifold Ko C X such that
the restriction map M — B(K) is injective.

Proof Let [Sj] € M ;> J =1,2, where each Sj is in temporal gauge over the ends
of X (and therefore decays exponentially). Suppose there exists a sequence of smooth
gauge transformations u,: X, — U(1) where #, — 0o, such that u,(S;) = S, over
X, . By passing to a subsequence we can arrange that u, c-converges over X to
some gauge transformation u with u(S;) = S,. If £ > 0 then u|{ﬁx(iy)\ will both be
homotopic to a smooth v: ¥ — U(1) with v(a;) = «». Hence My, , My, lie in the
same J —orbit, and Sy, S, represent the same element of M by Proposition 2.4.1 (iii).

Thus we can take Ko = X.; for t > 0. O
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Now fix K as in Lemma 11.1.3 and with K C K. Let {b1,..., by} be the image
of the restriction map Rg,: M — B(Kj). Choose disjoint open neighbourhoods
W; C B(Ky) of the points b;. If T >> 0 then

RKU(M(T)) cyU; W
by Lemma 11.1.1. For such 7" we get a natural map
e MD 5 M.
It is clear that if g’ is the map corresponding to a different choice of Ko and neigh-

bourhoods W; then g = g’ for T sufficiently large.

Theorem 11.1.1 For sufficiently large T the following hold:

(i) Every element of M jsa regular point in M ™) and a regular zero of s’.
(i) g is a bijection.
Proof If M is empty then, by Lemma 11.1.1, M s empty as well for T > 0,
and there is nothing left to prove.

We now fix b; and for the remainder of the proof omit j from notation. (Thus b = b;,
W = W; etc.) We will show that for 7" > 0 the set

BD =(weM®D : g, e W}

consists of precisely one element, and that this element is regular in the sense of (i).
This will prove the theorem.

By definition, b is the restriction of some wq € M « - Choose an open neighbourhood
V C B*(K) of b|g and a smooth map

b E|V—>Rd

which restricts to a linear isomorphism on every fibre. Choose an open neighbourhood
Vo C W of b such that Rg(Vy) C V. Let G4 C M, be a precompact open neigh-
bourhood of wq such that Rg, (G1) C Vy. The assumption that wg be a regular zero
of so means that the composite map

R mos
Gy > VISR

is a local diffeomorphism at wy. We can then find an injective smooth map

p: R > M,
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such that pomwoso Rg =1Id in some open neighbourhood G C G4+ of wy. In particular,
P~ Hwp) = {0} and p is a local diffeomorphism at 0. Set

gq=pomos: V= M,.

By Theorem 10.1.1 there is a kv-pair (K’, V') < (Ky, V) such that if 7> 0 then
q ' G consists only of regular monopoles and

f=goRg:q'G—>G
is a diffeomorphism. By Lemma 11.1.1 one has
BT =q7'6 ()71 (0) =1 (@o)

for T > 0. For such T the set BT consists of precisely one point, and this point is
regular in the sense of (i). O

11.2 The Floer differential

Consider the situation of Section 1.2. Suppose a perturbation parameter p of small C'!
norm has been chosen for which all moduli spaces M («, ) over R x Y are regular.
(This is possible at least when Y is a rational homology sphere, by Proposition 8.2.3.)
Fix oy, 0, € 73;‘, with

dim M(xq,ar) =2.

We will show that the disjoint union
M= |J M@,B)xMPB a)
BERY \{or1 02}

is the boundary of a compact 1-manifold. (In other words, the standard Floer differential
d satisfies d od =0 at least with Z /2 coefficients.) To this end we will apply Theorem
11.1.1 to the case when X consists of two copies of R x Y, say

X =RxY x{l1,2},

and we glue Ry x Y x {1} with R_ x Y x {2}. Thus r = 1, r’ = 2. We take
K =K UK;, where K; =[0,1]xY x{j}. In this case, B*(K) is the quotient of
C*(K) by the null-homotopic gauge transformations. The bundle E over B* (K) will
be the product bundle with fibre R2. To define the section s of E, choose 81,8, > 0
such that ¥ has no critical value in the set

(D (er2), ¥(a2) + 82] U [P (ery) — 81, P (ay)).
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This is possible because we assume Condition (O1) of Section 1.2. For any configuration
S over [0,1]x Y set

1
5(8) = [ 950 di =)~ (-1
0
Note 5;(S) does not change if we apply a null-homotopic gauge transformation to S'.

A configuration over K consists of a pair (S, S») of configurations over [0, 1] x Y.
Define a smooth function s: B*(K) — R? (ie a section of E) by

s([S1].[S2]) = (51(S1), 52(S52)).

If [S] belongs to some moduli space M (B, 82) over R x Y with B # ,82 in RY
then dtz?(S,) < 0 for all ¢ by choice of p. Since J = 0, the natural map M — M is
therefore a bijection.

Let s]/. be the pullback of s; to M () Here M) is defined using Equation (3.7)
with q = 0, and so can be identified with M (a1, ;). By Theorem 1.3.1 the set

ZD =f{wemD . s1(@) =0, sh(w) <0}

is compact for all 77 > 0. If 7" > 0 then, by Theorem 11.1.1, ZT) is a smooth
submanifold of M ™) and the composition of the two bijections

92T = 1D £ 7 S 41

yields the desired identification of M with the boundary of a compact 1-manifold.
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CHAPTER 12

Orientations

In this chapter we discuss orientations of moduli spaces and explain the sense in which
the ungluing map of Theorem 10.1.1 is orientation preserving (after reordering the
factors in the target space).

We will adopt the approach to orientations of Fredholm operators (and families of such)
introduced by Benevieri—Furi [8], which was brought to our attention by Shuguang
Wang [51]. This approach is more economical than the traditional one using determinant
line bundles in the sense that it produces the orientation double cover directly. It also
fits well in with gluing theory.

After reviewing Benevieri—Furi orientations in Section 12.1 we study orientations
of unframed and (multi)framed moduli spaces and the relationship between these
in Section 12.2. The framings require some extra care because of reducibles. The
orientation cover A — B = B(X; ) is defined by the family of Fredholm operators
75+ DOg parametrized by S € C (cf [14, p 130]). Any section of A (which is always
trivial; see Proposition 12.4.1 below) defines an orientation of the regular part of the
moduli space M for any finite, oriented subset b C X . If all limits «; are reducible
then any homology orientation of X determines a section of A; see Proposition 12.2.1
below. To relate ungluing maps to orientations we show that, in the notation of Section
10.2, any section of A — B determines a section of the orientation cover A" — B’.
(Here 1B, B’ are configuration spaces over X, XT) | respectively.) This is explained in
Section 12.4 after some preparation in Section 12.3 concerning framings. With this
background material in place, the result on ungluing maps, Theorem 12.4.1, is an easy
consequence of earlier estimates. Section 12.5 addresses the question of whether gluing
of orientations in the above sense is compatible with gluing of homology orientations
in the case when all limits «;, aj/. are reducible.
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12.1 Benevieri—-Furi orientations

We first review Benevieri—Furi’s concept of orientability of a Fredholm operator
L: E — F of index 0 between real Banach spaces. A corrector of L is a bounded
operator A: E — F with finite dimensional image such that L + A4 is an isomorphism.
We introduce the following equivalence relation in the set C(L) of correctors of L.
Given A, B € C(L) set

P=L+4, Q=L+ B.

Let Fy be any finite dimensional subspace of F containing the image of A — B.
Then QP~! is an automorphism of F which maps Fj into itself. We call 4 and B
equivalent if the map Fy — F, induced by QP~! is orientation preserving (which
holds by convention if Fy = 0). This condition is independent of Fy. The set C(L) is
now partitioned into two equivalence classes (unless £ = F' = 0), and we define an
orientation of L to be a choice of an equivalence class, the elements of which are then
called positive correctors. A corrector which is not positive is called negative. Given
€ = *£1, a corrector is called an e—corrector if it is positive or negative according to
the sign of €.

Benevieri—Furi consider Q! P instead of QP ™!, but it is easy to see that this yields
the same equivalence relation.

Note that the equivalence classes are open and closed subsets of C(L) with respect
to the operator norm. To see this, observe that C(L) is open among the bounded
operators £ — F of finite rank. Therefore, if B is a corrector sufficiently close to
a given corrector A4, then A; = (1 —¢)A + ¢B is a corrector for 0 < ¢ < 1. Since
im(A4; — A) Cim(A4) +im(B), it follows by continuity that the A; are all equivalent.
In particular, A and B are equivalent.

If L: E — F is a Fredholm operator of arbitrary index then for any nonnegative
integers m, n we can form the operator

Lyn: E®R™ - FOR", (x,0) (Lx,0). (12.1)

If L has index 0 then for any m there is a canonical correspondence between orienta-
tions of L and orientations of Ly, such thatif A4 is a positive corrector of L then
A @ Irm is a positive corrector of L, ;. If L has index k # 0 then we define an
orientation of L to be an orientation (in the above sense) of Lo x (if k > 0) or L_g o
Gf £ <0).

Note that if A is a corrector of L, , where n—m =index(L), and C an automorphism
of R™ then A is equivalentto 4o (/g & C) if and only if det(C) > 0, and similarly
for automorphisms of R”.
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A complex linear Fredholm operator carries a canonical orientation (in this case we
replace R by C in (12.1) and the orientation is then given by any complex linear
corrector).

We will now associate to any pair of oriented Fredholm operators L;: E; — Fj,
J = 1,2 an orientation of their direct sum

Ll@Lzl El@E2—>F1@Fz.

Let the orientation of L; be given by a corrector A; of (L;)m; n; , Where nj —mj; =
index(L;). Then we decree that

Ei®E,oR™"M pR™ - Fip F, dR" @ R"2,
(X1, X2, 1, y2) = A1(x1, y1) + A2(x2, 2)

is a (—=1)"indL2) corrector of (L; & L2)m, +man,+n,- The sign is chosen so that
the induced orientation of L & L, is independent of the choice of mj,n;. It is
easily verified that under the natural identification of the operators L, & L, and
L, ® L their orientations differ by the sign (—l)i“d(Ll)i“d(LZ) . If L3 is athird oriented
Fredholm operator then the natural identification of the operators (L; & L) & L3 and
L& (L, & L3) respects orientations.

We now consider families of Fredholm operators. Let E, F be Banach vector bundles
over a topological space T, with fibres E;,F; over ¢t € T'. (We require that these
satisfy the analogues of the vector bundle axioms VB 1-3 in Lang [32, pp41-2] in the
topological category.) Let L(E,F) denote the Banach vector bundle over 7' whose
fibre over ¢ is the Banach space of bounded operators E; — F;. Suppose / is a
(continuous) section of L(E,F) such that /(z): E; — F; is a Fredholm operator of
index 0 for every t € T'. If E; # 0 for every ¢ then there is a natural double cover
h — T, the orientation cover of h, whose fibre over ¢ consists of the two orientations
of h(¢). If U C T is an open subset and a a section of L(E,F) such that a(¢) has
finite rank for all 7 € U then a defines a trivialization of /i over the open set of those
t € U for which A(t) 4+ a(¢) is an isomorphism. An orientation of h is by definition a
section of /. If instead each h(¢) has index k # 0 then we define the orientation cover
/i and orientations of / by first turning / into a family of index 0 operators as above
and then applying the definitions just given for such families.

If h1(2), hy(¢) are two families of Fredholm operators parametrized by ¢ € T, and
h(t) = hy(t) @ h,(t), then the above direct sum construction of orientations yields an
isomorphism of Z/2-bundles over T,

o, S, (12.2)
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where ® refers to the operation on Z/2-bundles which corresponds to tensor product
of the associated real line bundles.

Wang [51] established a 1-1 correspondence between orientations of any family of
index 0 Fredholm operators (between fixed Banach spaces) and orientations of its
determinant line bundle. While we will make no use of determinant line bundles in this
book, we need to fix our convention for passing between orientations of a Fredholm
operator L: E — F of arbitrary index and orientations of its determinant line,

det(L) = A™ ker(L) ® A™* coker(L)*.

(This will only be used to decide how a homology orientation of a 4—-manifold induces
orientations of its moduli spaces.) Set n = dimker(L) and m = dim coker(L). Choose
bounded operators A1: E — R” and A,: R” — F which induce isomorphisms

Ay ker(L) > R",  Ap: R™ — coker(L).

(0 4,
Then A_(A1 O)

is a corrector of L,, , which also defines an isomorphism J4: det(L) — R. Moreover,
two such correctors A4, B are equivalent if and only if J4J 5 I preserves orientation. (To
see this, note that after altering 4;, B; by automorphisms of R™ or R" as appropriate
one can assume that Zj = Ej , in which case (1 —7)A +tB 1is a corrector of L,
for every t € R.) This provides a 1-1 correspondence between orientations of L and
orientations of det(L).

12.2 Orientations of moduli spaces

In the situation of Section 3.4 set

S=LP"(X;iN' @ST), Fi=LPY(X:iR), F=LP"(X;iAT®S")
(12.3)
and consider the family of Fredholm operators

SS:I$+D®SZS—>f2:f1@f2

parametrized by S = (4, ®) € C(X;@). This family is gauge equivariant in the sense
that

Su(s)(us) = uds(s)
for any s € Lf Y u € G, where as usual u acts trivially on differential forms and
by complex multiplication on spinors. Thus, if C is a corrector of (§5)¢ ., Where
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m —{ =ind(8g), then uCu~"' is a corrector of (3u(s))e,m - This defines a continuous
action of G on the orientation cover § such that the projection §>C (X:a) is G-
equivariant. The local slice theorem and Lemma 12.2.1 below then show that § descends
to a double cover A — B(X; ).

(Note that in the situation of Section 2.4, the local slice theorem for the group G at a
reducible point (A4, 0) € C is easily deduced from the version of Proposition 2.4.2 with
b consisting of one point from each component of X' where ® vanishes a.e.)

Lemma 12.2.1 Let the topological group G act continuously on the spaces Z, Z,
and let m: Z — Z be a G —equivariant covering map. Suppose any point in Z has
arbitrarily small open neighbourhoods U such that for any z € U the set

{geG :gzeU}

is connected. Then the natural map 7: Z /G — Z /G is a covering whose pullback to
Z is canonically isomorphic to w . Pull-back defines a 1-1 correspondence between
(continuous) sections of & and G —equivariant sections of w. If in addition G is
connected then any section of  is G —equivariant.

Proof Let p: Z — Z/G and q¢: Z — Z/G. If U is as in the lemma and s is a
section of 7 over U then forall ze U, g € G with gz € U one has

s(gz) = gs(2).

Hence s descends to a section of 7 over p(U). If in addition 7' U is the disjoint
union of open sets V; each of which is mapped homeomorphically onto U by m then
q(V;)Nq(Vy) = @ when j # k. Moreover, Uj q(Vj)=7"1p). O

The following proposition extends a well-known result in the case when X is closed
(see Morgan [38] and Salamon [45]). A related result was proved in Nicolaescu [41,
Proposition 4.4.18].

Proposition 12.2.1 If each Y; is a rational homology sphere and each «; is reducible
then any homology orientation of X canonically determines a section of . — B(X; ).

Proof We may assume p = 0, since rescaling p yields a homotopy of families §.
For any (4,0) € C(X;a) the operator 84,0y is the connected sum of the operators
—d* +d™* and D4. While the homology orientation of X determines an orientation
of —d* + d™* (whose cokernel we identify with H® @ H™ rather than H+ @ H°,
where H™T now denotes the space of self-dual closed L? 2—forms on X'), the family
of complex linear operators D4 carries a natural orientation which is preserved by the
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action of G. This yields a section of A over the reducible part B4 C B = B(X;a).
Since the map ([4, ®],7) — [4,tPD], 0 <¢ <1 is a deformation retraction of B to
B4 we also obtain a section of A over B. O

Returning to the situation discussed before Lemma 12.2.1, a section of A determines an
orientation of the regular part of the moduli space M *(X;@). As we will now explain,
it also determines an orientation of the regular part of M (X; ) for any finite oriented
subset b C X'. (By an orientation of b we mean an equivalence class of orderings, two
orderings being equivalent if they differ by an even permutation.)

Let WV be the space of spinors that may occur in elements of By (X @) ; more precisely,
W is the open subset of &, + Lf W consisting of those elements & such that b U
supp(®P) intersects every component of X . For any such & the operator

Ap :=ThTe =A+|D* LG — F (12.4)

is injective on LGy, hence
Vo :=F1/Ae(LGs)

has dimension b := |b| by Proposition 2.3.1 (i). Since ® — Ag is a smooth map from
@, + L™ into the space of bounded operators LG — F, the spaces Vg form a
smooth vector bundle V over V. Because W is simply connected, V is orientable.
To specify an orientation it suffices to consider those @ that do not vanish identically
on any component of X . Given such a ®, the operator (12.4) is an isomorphism, and
we decree that a b—tuple g1, ..., gp € F; spanning a linear complement of Ag(LGp)
is positive if the determinant of the matrix

(_iA;(gj)(xk))j,k=1,...,b
is positive, where (x, ..., xp) is any positive ordering of b.

It is natural to ask what it means for {g;} to be a positive basis for Vo when & = 0.
Section 12.7 answers this question in the case b = 1.

For the purpose of understanding ungluing maps it is convenient to introduce local
slices for the action of Gy, that are defined by compactly supported functions on
X. Given S = (4, ®) € Cf(X:a), choose compactly supported smooth functions
gj,hj: X = iR, j=1,...,b, such that

[ gihk = 6jk, (12.5)
X

where 4 is the Kronecker symbol, and such that (g1, ..., gp) represents a positive
basis for Vg . (Note that there is a preferred choice of /1y, which lies in the linear span
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of the g;’s.) We define the operator u: F; — F; by

b
/Lf=f—zgj/ Shj. (12.6)
j=1 X

Clearly, this is a projection operator whose kernel is spanned by g1, ..., g5 . Further-

more, W restricts to an isomorphism
A (LGp) — im(pu). (12.7)

Set Ié = poZy and

Su.s =Tk + DOg: S — im(1) ® F;. (12.8)

After composing with the inverse of (12.7), Ig becomes an operator of the same kind as
considered in Section 3.4. Therefore, the local slice theorem Proposition 2.4.2 applies,
and if S represents a regular point of M (X ;@) then an orientation of §,, s defines
an orientation of the tangent space Tjs)My (X:a).

We will now relate orientations of dg to orientations of §,, s . For any imaginary valued
function f on X let i/ f € R®? have coordinates fx fhj, j=1,....b. Choose
nonnegative integers £, m with m — £ = index(§g) and set
Vi & F &R S im(n) & F, &R @ R,
(xlaxz’ y) = (/"(’xlvx29 M/xli ,V)

To any corrector C of (8s)¢,, We associate a corrector Cp of (8,,5)¢ p+m given by

(Ou,8)t,6+m + Co =10 ((6s)e,m + O).
For gauge transformations # one has
(uCu™ Yy =uCeou™!,

where u acts by multiplication on spinors and trivially on the other components.
Moreover, the map C — Cy clearly respects the equivalence relation for correctors. We
define a 1-1 correspondence between orientations of §g and orientations of §, g as
follows: If C is a positive corrector of (§5)¢ , then Cp is a (=1)bind@s) _corrector of
(Ou,8)e,b+m- (The sign is chosen so as to make Diagram (12.13) below commutative.)

If [S] is a regular point of M (X ;@) then the above defined correspondence between
orientations of §s and orientations of M (X a) at [S] does not depend on the choice
of the 2b—tuple g1, ..., gp, 11, ..., hp, because the space of such 2bh—tuples supported
in a given compact subset of X is path-connected in the C°°—topology.
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The relationship between the orientations of M * = M*(X;a) and M = M} (X ;&)
can be described explicitly as follows (assuming M * is regular). Let M;™* be the
part of M that lies above M *. Then 7: M}* — M* is a principal U(1)®—bundle
whose fibres inherit orientations from U(1)?. If (vy,...,v4_p) is a (d —b)—tuple of
elements of the tangent space T, M™* which maps to a positive basis for Ty ()M ™,
and (vg—p+1.-...Vq) a positive basis for the vertical tangent space of My* at w,
then (vq,...,vyg) is a positive basis for Ty, M*.

12.3 Gluing and the Laplacian

We continue the discussion of the previous section, but we now consider the situation
of Section 10.1, so that the ends of X are labelled as in Section 1.4 and b C X is the
set of start-points of the paths yji ,j=1,...,rp.

We define the function spaces S” and F' = F| @F, over X (T) just as the corresponding
spaces S, F etc over X, replacing the weight function w by k. We also define the
space W’ of spinors over X (T) and the oriented vector bundle V' — W' in the same
way as ¥V — W, using the same set b.

Let S = (A4, ®) €C be a configuration over X such that S —.S, is compactly supported,
where S, is the reference configuration over X . For large T, consider the glued
configuration S’ = (4’, ®') over X (7); this is the smooth configuration over X 7)
which agrees with S over int(X.7). (This notation will also be used in later sections.
For the time being we are only interested in the spinors.) Let g = (gy,..., gp) be as
in the previous section.

Lemma 12.3.1 If g represents a positive basis for Vg then g also represents a positive
basis for VC'I), when Ty, is sufficiently large.

(In this lemma it is not essential that X be a 4—manifold or that S* be a spinor bundle,
one could just as well use the more general set-up in Section 2.1, at least if p >dim X .)

Proof There is one case where the lemma is obvious, namely when @ does not vanish
on any component of X and g; = Ag f;j, where f; is compactly supported. We will
prove the general case by deforming a given set of data ®, g to one of this special
form. We begin by establishing a version of the lemma where “positive basis” is
replaced by “basis” and one considers compact families of such data ®, g. To make
this precise, choose p > 0 such that supp(g;) C X:, for each j, and let T, > p.
Let T" C LY(X;S*) and ' C C*°(X; (iR)?) be the subspaces consisting of those
elements that vanish outside X.,. Let I (resp. I'7) be the set of pairs (¢, g) e I/ xT"”
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such that ®, + ¢ € W (whence ®/ + ¢ € W') and such that g represents a basis for
Vo, +4 (TESP. Vél>{7+¢)'

Sublemma 12.3.1 If K is any compact subset of I then K C I't for Tyin > 0.

Assuming the sublemma for the moment, choose ¢ € I'” such that on each component
of X exactly one of @, ¢ is zero. Choose smooth functions fj: X —iR, j=1,...,b,
which are supported in X:, and satisfy fj(xg) =i, where (x1,...,Xp) is a positive
ordering of b. Choose a small € > 0 and set gj = Ag¢4 fj. Choose a path ((¢), g(¢)),
0<t=<1inT from (P, g) to (P + €¢, g) such that g(r) = g for 0 <7 <€ and

d+1rp, 0<t<e,
b (1) = +t¢ €
d+epp, e<t=<I.

Let ®(¢) be the glued spinor over X (T) obtained from ® (). By the sublemma, if
Tnin > 0 then for 0 <7 <1 one has (®(¢),g(¢)) € I'7. Since g represents a positive
basis for V&y e it follows by continuity that g must represent a positive basis for
Vg - This proves the lemma assuming the sublemma.

Proof of Sublemma 12.3.1 Suppose to the contrary that for n = 1,2, ... there are
(¢(n),g(n)) € K\ I'r@y, where Tyin(n) — oo. We may assume (¢(n), g(n)) —
(¢,g) in K. Let V be the linear span of g¢,...,gp and V,, the linear span of
g1(n), ..., gp(n). Set

O, =P+ p(n).

By assumption there exists a nonzero f, € LG, with Ag, fy € V. Choose real
numbers o0, T with p <o < 7. Since Ag fn = 0 outside Xy, unique continuation
implies that f, cannot vanish identically on X.;, so we may assume that

||fn||Lg(X,) =1

We digress briefly to consider an injective bounded operator J: E — F between
normed vector spaces and for fixed m a sequence of linear maps P,: R™ — E which
converges in the operator norm to an injective linear map P. Then there is a constant
C < oo such that |le|| < C||Je|| for all e in a neighbourhood U of P(S™~!). For
large 7 one must have P,(S™~ ') C U, hence

[ Pux|l = Cl|J Pux]|

for all x e R™.

Geometry & Topology Monographs, Volume 15 (2008)



144 12 Orientations

We apply this result with m = b, E = Lf(X), F = LP(X), J the inclusion map,
Pyx =3 ;xjgj(n),and Px =73, xjg;j. We conclude that there is a constant C < 00
such that for sufficiently large n one has

lollr < Cllvllz
for all v € V},. For such n,

I full L2 (x.p) = const- ([[AfullLr + ||fn||L§)
[Aq;, fullpr + |||<D;1|2fn||Lf +1)
Ay, fullLr + ||®;,||if [ full e + 1)

1A fullze + 1)

< const-

< const-

~_~ A~ ~ ~—~

< const -

= const,
where except in the first term all norms are taken over X.;.

Let ¢, 1//]/. be the spinor parts of o}, cx}, respectively. Fix n for the moment and write

p = Tj(n)—p. Define ¢ similarly. Over [—p, p] x Y; we then have

where d; = % and Ay, = Ay, + |j|?. If h is any continuous real function on
[—p. p] x Y; satistying (—8% + Ay;)h =0 on (—p, p) x ¥; then for any nonnegative
integer kK and r € [-o + 1,5 — 1] one has

170l ok —1,e+11x7;) = const- (Al L2—pyxr) + 12 L2¢yxy)))

where the constant is independent of 7, ¢. (To see this, expand / in terms of eigenvectors
of Ay, and note that each coefficient function ¢ satisfies an equation ¢’ = A2,
A € R, which yields (¢2)” = 2(c’)* +2(Ac)? > 0. Combine this with the usual elliptic
estimates.) Similarly, if /2 is any bounded continuous function on [p, 00) x Yj’ satisfying
(—8% + Ad,})h =0 on (p, 00) X Yj’ then for any nonnegative integer k and ¢ > o one
has

17ll ok (te,0411x 7y = const- (12l L2gpyxry)s
for some constant independent of 7.
After passing to a subsequence, we may therefore assume that f,, converges in Lé’
over compact subsets of X to some function f, whose restriction to each end of X

must be the sum of a constant function and an exponentially decaying one, the constant
function being zero if the limiting spinor over that end (y; or wj’.) is nonzero. In
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particular, f € LGy. Furthermore,

Aq>0+¢f € V, ”f”Lg(Xt) =1

Since Ag,4¢ is injective on LGy this contradicts the assumption that V' is a linear
complement of Ag_ 44(LGy) in Fi.

This completes the proof of Sublemma 12.3.1 and thus the proof of Lemma 12.3.1. O

12.4 Orientations and gluing

Let S, S’ be as in the beginning of Section 12.3. For the time being we will consider
a map pu defined by fixed but arbitrary b—tuples {g;}, {h;} of imaginary valued,
compactly supported, smooth functions on X satisfying the duality relation (12.5),
where b is any nonnegative integer. We will show that an orientation of §,, s canonically
determines an orientation of §, ¢ for large Tpi,. Set

Fu=im(pn) ® Fa, F, =im(u) & F;.
Choose 7 > 1 so large that the functions g, /; are all supported in X, and define
Se =LY (X.;iA' @ ST).
Let S°T be the subspace of S consisting of those elements that are supported in X,
and define F;7 C F), similarly. Set
CF=8,+8CV.

In other words, C7 is the set of all Lf loc Configurations S over X such that § — S,
is supported in X.(;_1). (The 7 —1 is chosen here because of the nonlocal nature of
our perturbations.) Suppose we are given a bounded operator

C: S: @R » FT @R™ (12.9)

with finite dimensional image, where m — £ = index(8,s). Clearly, C induces linear
maps

SeR' > F oR™, S &R - F, ®R"
(the latter when T, > 7); these will also be denoted by C. Fix an ro—tuple of paths
¥ = (¥1,....¥r) asin Section 10.1, and for any imaginary valued 1-form a on X )
let Hy(a) € R" have coordinates

Hyj(a):=/ ia, j=1,...,r9.
vi
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Lemma 12.4.1 There exists a constant C < oo with the property that if C is any map
as above and S any element of C*® such that

D:=6,5+CSOR" > F, &R"
is invertible, then
E:=8,5+H,+CS @R > F, @R @ R" (12.10)

is invertible when Tpin > C(||[ D7 4+ 1).

Proof Let P; be a bounded right inverse of the operator (10.6). As in Appendix C, if
Timin > const - (| DL + Zj | Pj||) then we can splice D~!, Py,..., P, to obtain a
right inverse R of

Susr+C S @R - F & R™.
(The present situation is slightly different from that in the appendix, but the construction
there carries over.) Furthermore,

| RI| < const- (1D7! [+ 3 11 271)-
J
Let f: R — R be a smooth function such that f(z) =0 for t <1/2 and f(¢) = 1 for
t>1. Set
qi@t)=fT; —t+)f(Tj — 7 —1).
Thus, g; approximates the characteristic function of the interval [-7} + t, T; — t]. For
c=(c1,....cry) € R let n(c) be the imaginary valued 1—form on X given by
; 7o T .
n(e) = outside | J;2,[-7;. Tj] x ¥j,
—QTj) Yejgjidt on[-T;,Tj1xY;, j=1,...,r0.
For the present purposes it is convenient to rearrange summands and regard E as
mapping into (F,, & R™) & R™. Set
L=R+n (F,&@R" &R -5 @R

Then E L takes the matrix form

I0
12.11
( B I ) +o, ( )
where for large Tin one has ||B|| < const- ||R| and [o| < const- Tr;ixll, the constants

being independent of S, 7. As in the proof of Lemma 10.2.4 we conclude that EL is
invertible when Tppni, > const- (|| 8] + 1), which holds if Ty, > const- (|| D71 +1).
Since E has index 0, it is invertible whenever E L is surjective. O
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Lemma 12.4.2 Suppose C, C are two maps as in (12.9) which define correctors
of (8,,,8)¢,m~» and let y, ¥ be two ro—tuples of paths as in Section 10.1. Then for
sufficiently large Ty, the following holds: C and C define equivalent correctors
of (8u,8)e,m if and only if H, + C and Hy + C define equivalent correctors of

((S,LL,S’)K,ro+m-

Proof We will use the same notation as in Lemma 12.4.1 and its proof. Let D, E be
defined as D, E, replacing C, y by C, y . Observe that the image of D — D is contained
in N @ R™ for some finite dimensional subspace N C F.F, and the image of E — E
is then contained in (N @ R™) @ R’ (again rearranging summands). Moreover,

EE'=EL(EL)™",

and E L has the form

D'R 0
(/31 I)+01, (12.12)

where ||B1] is bounded and |o{| — 0 as Twin — o0, and D' = Su,s + C. From the
description (12.11) of EL we see that £ E~! also has the shape (12.12).

If se flf and p denotes restriction to X.;, then
||,05/Rs —p5D_1s||Lp,w < const - ||5|| lpRs — pD ™ Ls| Low
< const- | Tyga -1 DI (107114 Y 1P 1) -l .

It follows that as 7Ty, — 00, the determinant of the endomorphism of (N @&R™)pR’0
induced by EE~! approaches the determinant of the endomorphism of N @ R™
induced by DD, a

Consider again the situation before Lemma 12.4.1. Given an orientation of §,, g we
define a glued orientation of §,, s for Tiin > 0 as follows. Let C be a positive corrector
(8u,8)e,m of the kind (12.9). Then we decree that H), + C is a positive corrector of
(Ou,87)¢,ro+m» Where the summands are ordered as in (12.10). By continuity we can
extend this to an orientation of §, s/ for Tiyin > 27. Now fix T with Tiy;, > 27, and
let A, s (resp. Ay, s/) denote the set consisting of the two orientations of §,, g (resp.
du,s7). From Lemma 12.4.1 and Lemma 12.4.2 we obtain a natural map

)‘M,S —> )“M,S"

There are two cases that we are interested in: One is when b =0 (so that A, § = Ag).
The other is when b = |b| and (g1, ..., gp) defines a positive basis for Vg . Now letting
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w refer to the second case, the preceeding discussion yields the following commutative
diagram of bijections:
A S — A S’
) { (12.13)
Aus — Aus.

V4
1,loc

Turning to the global picture, and taking b = 0, let C’ [7] denote the set of all L
configurations S over XT) such that S — S/ is supported in X.r. Then the gluing
operation S > S’ defines a homeomorphism u: C:* — C'I*], and Lemma 12.4.1 and
Lemma 12.4.2 establish an isomorphism between the orientation cover of C'* and the
pullback by u of the orientation cover of C'[?). Combining this with Proposition 12.4.1
below we see that any section of A — B determines a section of the orientation cover

A — B'. (Here B, B’ mean the same as in the beginning of Section 10.2 with b = &).

Proposition 12.4.1 If X,a are as in Section 3.4 then the orientation cover . —
B(X ;@) is trivial.

Proof We may assume X is connected. Let b C X consist of a single point. Let
7. By — B be the projection, where B = B(X; @) etc. Since B is the quotient of By
by the natural U(1) action, the local slice theorem and Lemma 12.2.1 imply that any
section of 7*A descends to a section of A. It therefore suffices to show that 7*A is
trivial, or equivalently, that for any loop £ in B that lifts to By the pullback £*A is
trivial. Since C — By, is a (principal) fibre bundle, such a loop is the image of a path
z: [0, 1] — C such that z(1) = u(z(0)) for some u € Gy. After altering the loop £ by
a homotopy one can arrange that u = 1 and z(¢) = S, (for all ¢) outside a compact
subset of X .

(Here is one way to construct such a homotopy. For 0 <s <1 let & = {; * Es be the
composite of the two paths (both defined for 0 <7 < 1)

&s(1) = (1= 5)z(1) + 550,
Zs(1) = (1= 0)&s (1) + 1v5(85(0)),

where v is a path in G such that vy = u, and v; = 1 outside a compact subset of X .
Clearly, & = o is homotopic to z relative to {0, 1}. Moreover, vs(&5(0)) = &(1),
and &,(¢) = S, where v =1.)

Now let —X be the Riemannian manifold X with the opposite orientation and corre-
sponding spin® structure. Starting with X U (—X') we form, for any 7" > 0, a compact
manifold W) by gluing the j—th end of X with the j—th end of —X to obtain a
neck [—7j,T;j]xYj. Let S be any configuration over —X which agrees with «; over
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the j—th end, and z; (r) the configuration over WT) obtained by gluing S and z (7).
Then z; maps to a loop £1 in B(WT)). By Proposition 12.4.1 the orientation cover
L1 — B(W D) is trivial. Now Lemma 12.4.1 and Lemma 12.4.2 yield an isomorphism
of Z/2-bundles £*A — €74 when Ty, is large, hence £*A is trivial. O

We now consider the situation of Theorem 10.1.1. Let b = |b|. Choose an orientation
of A — B, and let A’ — B’ have the glued orientation. Given an orientation of b, this
orients the regular parts of My and M, b(T).

Theorem 12.4.1 In the situation of Theorem 10.1.1, if Ty, is sufficiently large then
the diffeomorphism

F:q'G—->U1)xG, o~ (Hol(w),q(w))

is orientation preserving.

Proof In view of Proposition 10.2.1 it suffices to show that, for any given point
(z,w) € U(1)" x G, the inverse F~! is orientation preserving at (z, ) when Tp, is
sufficiently large.

Consider the set-up in Section 10.2, with @: R¢ — M, orientation preserving. Let
7: C(K) — B(K) be the projection. Then f := @ ! ogom maps a small neighbour-
hood of So|x in C(K) to R?. Let

C LY(K;iN' @ST) - RY

be the derivative of f at Sg. Let u be as in (12.6), with @ the spinor part of Sy. For
0<t=1set

S(t)=(1~1)So+1S0,r—2, () =38y 50);

S0) =-S5 +1Soe21. 80 =5, 5,

(Thus, the 7 in the proof of Theorem 10.1.1 corresponds to the present v —2.) In
the following, constants will be independent of 7, T'. Because ¢(w’|gx) = ' for all
' € G, we see that C defines a positive corrector of

8(t)o.q: S — Fu @R

for t = 0. Hence, if 7 > const (for a suitable constant) then C will define a positive
corrector of 8(¢)g,4 for 0 <¢ < 1. We want to show that if 7 > const then

E;:=80)+H,+CS - F, @R R’
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is an isomorphism for 0 < ¢ < 1 when Ty, > 0. This is a Fredholm operator of
index 0, so it suffices to show that it is surjective. As in the proof of Lemma 12.4.1 we
can, for T > const and 7, > t + const, construct a right inverse R of

§()+C S —F, ®R?

such that || R| is bounded independently of 7, 7. Set L = R + n as in the said proof.
For notational convenience we will here regard E; L as acting on

(F, @ RY) @ R,
Then there is the matrix representation

_ (@ @)+ OR §(1)n
Bl = ( HyR Hyn )
By Lemma 10.3.1 one has, for t > const,
1" (@®) + OR=TI]=("@) =& ()R]
< const- ||S (1) — §(1)||L§’J< < const-e20MT,

Furthermore, for t > const,

16" (t)n|l < const-e®*T =1,
| Hy, R|| < const,
| Hyn—I|| < (t—const)- Tl

Recalling the assumption 0 < 60 < A, we see that if T > const then E;L (and hence
E;) will be invertible for 0 <7 < 1 when Ty, > 0. Since H, + C is a positive
corrector of §’(1)g 44 it must also be a positive corrector of §"(0)g ,,+4, Which in
turn is equivalent to F being orientation preserving at F~1(z, ). a

12.5 Homology orientations and gluing

In this section we will describe the “gluing of orientations” of Section 12.4 in terms of
homology orientations in the simplest cases. This result will be needed in Part III.

Let X be as in Section 1.4 with » = 1, ie only one pair of ends R4 x (£Y) is being
glued. Suppose Y and each Yj’ are rational homology spheres. We assume the glued
manifold X* is connected, so that X has at most two components. As in Section 10.1
let y be apathin X (1) running once through the neck [T, T|x Y, with starting-point
Xxo and endpoint x;. If X is connected then we assume xy = Xx1.
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As before in this chapter, we will denote by H T (X) the space of self-dual closed L?
2—forms on X . It is useful to observe here that orientations of A (X) can be specified
solely in terms of the intersection form on X . (We made implicit use of this already in
the definition of homology orientation in Section 1.1.) To see this, let V' be any real
vector space with a nondegenerate symmetric bilinear form B: V' xV — R of signature
(m,n), where m > 0 (the case m = 0 being trivial). Let VT denote the space of all

linearly independent m—tuples (vy,...,vs) of elements of V' such that B is positive
definite on the linear span of vy,. .., U,. Then VT has exactly two path-components,
and two such m—tuples (vy,...,Vy) and (wyq,..., Wy) lie in the same component

if and only if the matrix (B(vj, wk));j k=1,...,m has positive determinant. In the case
when B is the intersection form of X', a choice of a component of Yt determines
orientations of both H1(X) and HT (X D)) (since the intersection forms of X and
X are canonically isomorphic).

Given the ordering of the ends R x (£Y) of X there is a natural 1-1 correspondence
between homology orientations of X and of X*. In general one can specify a homology
orientation by choosing ordered bases for H°, H! and H™, or equivalently, for the
dual groups. (If the 4—manifold in question is connected then we will usually take
(1) as basis for H%.) If X has two components then the correspondence is given by
replacing the basis (xo) for Hy(X*) with the ordered basis (xg, x;) for Hy(X). If
X is connected then we replace a given ordered basis (ey,...,eg) for Hi(X) (where
¢ = b; (X)) with the ordered basis (—[y], ei,...,ep) for H(X*), and we call this
the glued homology orientation of X*. (The sign in front of [y] is related to a sign
appearing in the formula for Hol; in (10.1).)

Now fix homology orientations of X, X* which are compatible in the above sense.
Let B, B’ be the configuration spaces over X, X (™) with reducible limits. According
to Proposition 12.2.1 the chosen homology orientations determine an orientation o
of A — B and an orientation o’ of A’ — B’. On the other hand, A’ inherits a glued
orientation o from (X, 0) as specified in Section 12.4.

Proposition 12.5.1 (i) If X is connected then o' = 0.
(i) If X has two components, then o’ = ¢ if and only if b;(X) + b™ (X) is odd.

The sign in (ii) will be dealt with in Section 12.6 by introducing appropriate sign
conventions.

Proof Let S, = (A,,0) be a reference configuration over X as in Section 10.1 with
reducible limit over each end. To simplify notation we will now write S, 4 instead
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of S,, Ay. Let S’ = (A’,0) be the glued reference configuration over X (). Set
Ly=d* @ Dy, so that
Ss=—d*+L4:S—F

Set by =bi(X), bT =bT(X), m = dim ker(8s) and £ = dim coker(L 4).

Choose smooth loops £, ...,{,1 in X,y representing a positive basis for H;(X;R)
and define

Bl:Lf(X:O,iAl)eRb‘, a|—>(—/ ia) .
j=1,...b1

.....

Choose a bounded complex-linear map
Bz: Llp(X:(), S+) — C™2

whose composition with the restriction to X- defines an isomorphism ker(D4) — C™2,
Set
B =B +By Sp— R @C™ =R™

Choose smooth imaginary-valued closed 2—forms wq, ..., wp+ on X which are sup-
ported in X.o and such that the cohomology classes [—iw],...,[—iwp+] form a
positive basis of a positive subspace for the intersection form of X . Then the self-dual
parts a)1+ - ,a)[;L . map to a basis for coker(d 1) onboth X and X () | which in both
cases is compatible with the chosen orientation of Ht = coker(d ™)*. Choose smooth
sections wp+ 41, - .., wg of Sy which are supported in X:o and map to a positive basis
for the real vector space coker(D,4) (with its complex orientation).

The remainder of the proof deals separately with the two cases.
Case (i) X is connected.

Let g: X — iR be a smooth function supported in X:¢ and with [ g =i. Then for
large T the orientations o', 0 of dg/ are both represented by the following corrector of

(Bs)e+1,m+1°
SeROR' > F oROR™,
12
(€ 1,2) > (g + ) zjo;, Hy&, BE),
j=1
where H,& means H, applied to the 1-form part of &.

Case (ii) X has two components Xy, X1, where x; € X;.
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Thus, R4 XY C Xy and R4 x (—=Y) C X;. For j =0, 1 choose a smooth function
gj: Xj — iR supported in (Xj).o and with [ g;j =i. Set

:SORBR @R - F &R" R,
{
E.1.2.1") > (180 + ) _ zjwj. BE. 1),
j=1
C,:S®RBROR" > F @RS R",
£

E.0.0.2) > (1go+1'g1 + Y zjowy, HyE. BE).
j=1

When T is large, C" and C,, are both correctors of (8s5/)¢+2 m+1 Which represent
the orientations o', 0 of §s, respectively. Let C be the corrector of (85/)¢+42 m+1
which has the same domain and target spaces as C,,, and which is obtained from C’ by
interchanging summands as follows. If

(x.y.2)e (S @R)BR BR,
Cx,y,2)=w,v,w) e FOR" B R

then C(x,z,y) = (4, w,v). As explained in Section 12.1, the correctors C, C’ are
equivalent if and only if £ + m is even. Set

E=46g+C, E,,=85/+C,,.

We have (C, — O, 1,1,2) = ({t'gy, HE—1',0),

so the image N of C, — C has dimension 2. We need to compute the determinant of
the automorphism of N induced by E, E ~1. Let s,s’ €R and set

(€. t.1',2) = E"(sgy,5,0).
Write £ = (a,¢) e T((iA' ®ST). Then

—d*a+1tgo=sg1, t' =5 (12.14)
Integrating the first equation gives ¢ = s. The equation

EyE'=(C,—QE " +1

now yields
E)/E_l(sgl’sl’o) = ((S +S,)gl’ H)/E’ 0)
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Note that £ depends on s alone, so we can write a = a(s). Set n = H,(a(1)). Then
E,E ~1|y is represented by the matrix

(o0)

so C, C,, are equivalent correctors if and only if n < 0. We will show that > 0 when
T is large. This implies that C’, C,, are equivalent correctors if and only if £ + m is
odd. Since D, is complex linear, this will prove part (ii) of the proposition.

Let {T},} be a sequence tending to co and, working over X (Tn) | set
(S}’h Sm 07 Zn) - E_l (Sngl ’ 07 O)v
or more explicitly,

8s/(En)+ D znjwj = su(g1 — o). BEx =0,
J

where s, > 0 is chosen such that

€nllL2x0) = 1-

(Because the supports of g¢ and g; are disjoint, Equation (12.14) shows that a £ 0
over X.o when s # 0.) Write &, = (a,, ¢»). Equation (12.14) yields

snllgls = —/(an,dgl) =< lldg1ll2.
hence the sequence s, is bounded. An analogous argument applied to the equation

L)+ znjwj =0
J

shows that the sequence z, is bounded as well. Thus, §s/(&,) is supported in X.g, and
for each k > 0 the C¥—norm of 8/(&,) is bounded independently of 7. Now recall
from Section 3.4 that over the neck [—T}, T,] X Y the operator §g/ can be expressed
in the form % + P, where

0 —d* 0
P=|—-d xd 0
0 0 —-0p

for some spin® connection B over Y. Because of our nondegeneracy assumption on
the critical points, the kernel of P consists of the constant functions in i Q°(Y"). There
is also a similar description of §g/ over the ends R 4 x Yj’ . In general, if (% +P)=0
over a band [0, t] x Y and ¢ involves only eigenvectors of P corresponding to positive
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eigenvalues then for any nonnegative integer £ and 1 <¢ < t — 2, say, there is an
estimate
1€k fe,e411xw) < const-e P IE || L2(¢oyx )

where p is the smallest positive eigenvalue of P. This result immediately applies to
&, over the ends R4 X Yj/ . Over the neck [—Ty, Ty] X Y one can write &, = const -
i dt+§& +&, where E,jt involves only eigenvectors corresponding to positive/negative
eigenvalues of P. One then obtains C¥ —estimates on &F in terms of its L2—-norm
over {F7y} x Y. It follows that after passing to a subsequence we may assume that

&n c-converges over X to some pair & = (a, @) satisfying [|€]|12(x.,) = 1. Of course,
we may also assume that the sequences sy, z, converge, with limits s, z, say. Then

s+ zjwj =s(g1—g0). BE=0.
J

Moreover,
E=dcidt+¢L on Ry x(4Y),

where {1 decays exponentially and

H.
¢ =— lim M.

n—o00 2Tn

On the other hand, Stokes’ theorem yields

/ *an:_/ d*an:_/ Sngo = —Snl,
{=Tn}xY (X0):0 (X0):0

Hence ci-Vol(Y) = / *a = lim/ *dpy = —SI.
{0}xY nJ{—Tu}xY

Thus, ¢-Vol(Y) = —s < 0. If ¢ =0 then £ # 0 would decay exponentially on all ends
of X and satisfy 6g& = 0, contradicting B§ = 0. Therefore, ¢ <0, and Hy (a,) >0
for large n.

This shows that n > 0 when T is large. O

12.6 Components

Let again X, @ be as in Section 3.4 and suppose X is the disjoint union of open subsets

Xi,...,X,. If § is a configuration over X and Sj its restriction to X; then g is
the direct sum of the operators ds, . Moreover,
B=DB;x--xBy,
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where B; = B(Xj;x(j)) for a suitable vector () of critical points. If we denote by
A; the pullback to B = B(X;a) of the orientation cover A; — B; then by (12.2) we
have an isomorphism of Z/2-bundles

A ® @ hg —> A, (12.15)

where A — B is the orientation cover. If now X and its asymptotic limits are as in
Section 10.1 and o; an orientation of A; then (12.15) defines a direct sum orientation
of A, which in turn yields a glued orientation & of A’ — B(X™);&’). Suppose now
that ¢ = 2 and that for each pair of ends R4 x (£Y;) being glued (j =1,...,r), one
of these ends lies in X and the other one in X5 . In this case we define

01#0y 1= (=1)70G1+D5, (12.16)

where i = index(ds,). The sign is chosen so that (among other things) the operation
# is associative in the following sense: Suppose ¢ = 3 and that for each pair of ends
being glued, one is contained in X, and the other one is contained in either X; or X3.
Then it makes sense to glue first X7 and X, and then add X3, or one can start with
X, and X3. It is now easy to check that

(01#02)#03 = 01#(02#03) (1217)
as orientations of A.

Returning to the situation of (12.16), suppose X, X, are the connected components of
X and that all ends of X are modelled on rational homology spheres. Let a homology
orientation of X; be given by an ordered basis U; for H'(X;) and a maximal linearly
independent subset V; of H 2(X 7) on which the intersection form is positive. Then we
define the glued homology orientation of X* to be (—1)2T ADG1(X2)+b¥(X2) (imes
the one given by the concatenated ordered basis Uy U, of H'(X*) and the ordered
subset ViV, of H?(X*"). Let 0j and o’ be the orientations of A; and A’ given by the
homology orientations of X; and X # respectively. If all asymptotic limits over X are
reducible then one easily checks, using Proposition 12.5.1, that

o1#oy =0'.

If one thinks of homology orientations as orientations of the operator D = —d* +d+
(acting on Sobolev spaces with small positive weights) then the above defined gluing
of homology orientations corresponds to the #—operation on orientations of D, hence
it is associative in the sense of (12.17).
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12.7 Orientation of V),

In Section 12.2 the question arose what it means for {g;} to be a positive basis for Vg
when ® = 0. The following proposition answers this question when b = 1. This result
is not needed elsewhere in Part II, but will be used in Part III.

Proposition 12.7.1 Let X be as in Section 1.3. Suppose X is connected, b = 1,
and consider the bundle V — W = Lf (X;S™) with all weights o; positive. Then
g € CX(X:iR), represents a positive basis for Vy if and only if [, g/i > 0.

Proof It suffices to prove that g = i/ represents a positive basis when | v >0. Let
b = {x}. By Proposition 2.3.2 we may assume / > 0, h(x) > 0 and supp(h) C X:p.
The proposition is then a consequence of the following lemma.

Lemma 12.7.1 Let X, h be as above and v a smooth positive tunction on X whose
restriction to each end R x Y is the pullback of a function vj on Ry . Suppose f is
areal function on X satisfying

_ pw
(A+v)f=h, dfelL]".
Then f >0, and f >0 where h > 0.

The proof will make use of the following elementary result, whose proof is left to the
reader.

Sublemma 12.7.1 Suppose a, u are smooth real functions on [0, o0) such that u” =
au,a >0, u(0) > 0 and u is bounded. Then u > 0 and u’ < 0. |

Proof of Lemma 12.7.1 We first study the behaviour of /" onanend R4 xY;. We
omit j from notation and write ¥ = Y; etc. Set f = f|r, xy . By Proposition 2.2.1
the assumption df € Lf ' implies that f(z,-) converges uniformly towards a constant
function ¢ as ¢t — co. Let {e,} be a maximal orthonormal set of eigenvectors of Ay
with corresponding eigenvalues A2. Write

f(¢,y) = Z”v(t)ev(J/)-

Then ul) = (A2 +V)uy.

By the sublemma, either u, = 0 or u,u/, < 0. Consequently,

2 _ 2
[Yf @0y =30
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is a decreasing function of ¢, and
max [f(¢, y)| = ¢
yeyYy
for all ¢ > 0. In particular, if ¢ < 0 then there exists a (¢, y) € Ry x Y with f(z, y) <c.
Hence, if inf f < 0 then the infimum is attained.
Now, at any local minimum of f* one has
vf=h—Af>h,

so f > 0 everywhere. But then every zero of f is an absolute minimum, so f > 0
where /2 > 0. This proves the lemma and thereby also Proposition 12.7.1. |
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CHAPTER 13

Parametrized moduli spaces

Parametrized moduli spaces appear in many different situations in gauge theory, eg in
the construction of 4—manifold invariants [15; 45] and Floer homology [14], and in
connection with gluing obstructions (see Part III). A natural setting here would involve
certain fibre bundles whose fibres are 4—manifolds. We feel, however, that gauge theory
for such bundles in general deserves a separate treatment, and will therefore limit
ourselves, at this time, to the case of a product bundle over a vector space. However,
we take care to set up the theory in such a way that it would easily carry over to more
general situations.

The main goal of this chapter is to extend the gluing theorem and the discussion of
orientations to the parametrized case.

13.1 Moduli spaces

As in Section 1.3 let X be a spin® 4-manifold with Riemannian metric g and tubular
ends ]I_%+ xYj, j=1,...,r. Let W be a finite-dimensional Euclidean vector space
and g = {gw}wew a smooth family of Riemannian metrics on X all of which agree
with g outside X.o. We then have a principal SO(4)-bundle Pso(g) — X x W whose
fibre over (x,w) consists of all positive g,,—orthonormal frames in 7 X .

In the notation of Section 3.1 let Pgrc — PgL+ be the spin® structure on X . Denote
by Pspinc(g) the pullback of Pso(g) under the projection Pgre X W — Pgp+ X W.
Then Pspinc () is a principal Spin®(4)-bundle over X" x W.

For j =1,...,r let o € C(Y;) be a nondegenerate smooth monopole. Let C(gw)
denote the Lf " configuration space over X for the metric g,, and limits o i, where

159



160 13 Parametrized moduli spaces

p,w are as in Section 3.4. We will provide the disjoint union

C®) = J Clgw) x {w}

weW

with a natural structure of a (trivial) smooth fibre bundle over W. Let
Vi Pspinc (8) — Pspinc (g0) X W (13.1)

be any isomorphism of Spin‘(4)-bundles which covers the identity on X x W and
which outside X.; x W is given by the identification Pspinc (gw) = Pspinc (g0). There
is then an induced isomorphism of SO(4)-bundles

Pso(g) = Pso(go) x W,

since these are quotients of the corresponding Spin®(4)-bundles by the U(1)-action.
Such an isomorphism v can be constructed by means of the holonomy along rays of the
form {x} x R 4w where (x,w) € X x W, with respect to any connection in Pspinc (8)
which outside X.; x W is the pullback of a connection in Pspinc (go). Then v induces
a G = G(X;a)—equivariant diffeomorphism

C(gw) = C(go) (13.2)

for each w, where the map on the spin connections is obtained by identifying these with
connections in the respective determinant line bundles and applying the isomorphism
between these bundles induced by v. Putting together the maps (13.2) for all w yields
a bijection
vi: C(g) = C(go) X W.

If ¥ is another isomorphism as in (13.1) then v«(V4)~! is smooth, hence we have
obtained the desired structure on C(g). Furthermore, because of the gauge equivariance
of v4 we also get a similar smooth fibre bundle structure on

Bi(®) = | Bt (gw) x {w} (13.3)
weW
for any finite subset b C X. The image of (S,w) € C(g) in B(g) will be denoted
[S, w].

We consider the natural smooth action of T on B (g) where an element of T maps
each fibre Bp(gy) into itself in the standard way. (There is another version of the
gluing theorem where T acts nontrivially on W; see below.)

The principal bundle Pspinc(g) also gives rise to Banach vector bundles S(g), F(g),
F,(g) over W whose fibres over w € W are the spaces S(gw), F(gw), F2(gw) resp.
defined as in (12.3) using the metric g,, on X .
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Let ©: C (g) = F,(g) be the fibre-preserving monopole map whose effect on the fibre
over w € W is the left hand side of Equation (3.10), interpreted in terms of the metric
gw. If we conjugate ©) by the appropriate diffeomorphisms induced by v then we
obtain the smooth G—equivariant map

Oy: C(go) X W — F1(go),

(4. 0.w) (m@ T, ®)F - (@), Y viler)- V;‘,‘*aw(cb))

J

where the perturbation m is smooth, hence ® is smooth. Here v,y denotes the isomor-
phism that v induces from the Clifford bundle of (X, g,,) to the Clifford bundle of
(X, go), and {e;} is alocal g, —orthonormal frame on X . Finally, if we temporarily
let V) denote the g,,—Riemannian connection in the tangent bundle of X then

aw = VW(V(W)) v,
Note that a,, is supported in X.;.

In situations involving parametrized moduli spaces there will often be an additional
perturbation which affects the equations only over some compact part of X . For the
gluing theory one can consider quite generally perturbations given by an isomorphism
v and a smooth G—equivariant map

0: C(X-t, g0) X W — (F2)*(go)

for some t > 0, using notation introduced in Section 12.4. We require that the derivative
of o at any point be a compact operator. Let

Q: C(g) > Fa(g) (13.4)

be the map corresponding to ©, := O, + 0. We define the parametrized moduli
space My(g) to be the image of ®~1(0) in By(g). By construction, v, induces a
homeomorphism

Me(g) > ©71(0)/Go.

A pointin My (g) is called regular if the corresponding zeros of ®, are regular (a regular
zero being one where the derivative of ®, is surjective). This notion is independent of v.
By the local slice theorem, the set of regular points in M (g) is a smooth submanifold
of B (g).
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13.2 Orientations

Fix orientations of the vector space W and of the set b. For any S € C(g,,) let

85wt S(gw) = F(gw)

be the Fredholm operator §g defined in terms of the metric g,,, now using the perturbed
monopole map (13.4). The orientation cover of this family descends to a double cover
A(g) — B(g). (Note that the perturbation o can be scaled down, so that an orientation
of A(g) for 0 = 0 determines an orientation for any other 0.) Clearly, any section of
A(g) over B(go) extends uniquely to all of B(g). On the other hand, a section of A(g)
determines an orientation of the regular part of M (g), as we will now explain.

Let TVC(g) C TC(g) be the subbundle of vertical tangent vectors. We can identify

T(‘fg W)C (g) = S(gw)- A choice of an isomorphism v; as in (13.1) determines a bundle

homomorphism
Pi: TC(g) — T"C(g)

which is the identity on vertical tangent vectors. This yields a splitting
T(s,w)C(8) = S(gw) ®W

into vertical and horizontal vectors (the latter making up the kernel of P; and being
identified with W through the projection).

In general, a connection in a vector bundle £ — W determines for every element u
of a fibre E,, alinear map 7, £ — E,,, namely the projection onto the vertical part
of the tangent space. Moreover, if # = 0 then this projection is independent of the
connection. Together these projections form a smooth map TE — E. Let

Py: TFr(g) = F2(8)
be such a map for £ = F,(g) determined by some isomorphism v;.
Now let I*: TC(g) — Fi(g)

be the map which sends s € T(‘g W)C (g) to (Z5(s),w), where the * refers to the metric
gw. Set

§:=T%0 P; 4+ P, o DO: TC(g) - F(g).

where DO is the derivative of the map (13.4). By restriction of § we obtain bounded
operators

35w T(s,wmC (@) = F(gw).
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Since the restriction of § ¢ , to the vertical tangent space S(gw) is equal to the Fredholm
operator dg,, we conclude that § 5 ,, is also Fredholm, and

ind(dg ) =ind(8s,w) +d,
where d = dim W.

Choose nonnegative integers £, m with ind(ds ) =m—£ and an orientation preserving
linear isomorphism 4: W — RY. If C is any corrector of (8s,w)e,m then

S5 +h+C S(gw) ®WOR" - F(g,) @R G R™

is an injective Fredholm operator of index 0, hence an isomorphism. The map C —
h + C respects the equivalence relation for correctors. We can therefore define a 1-1
correspondence between orientations of ds ,, and orientations of g ,, by saying that
if C is a positive corrector of (§s,)¢,m then 7+ Cisa (—1)dind@s.w) _corrector of

(85.w)t,dtm-

Fix S € C{(gw), choose a map 1 as in (12.6), and let

é;j,,S,W = S(gw) SW— fu(gw)

be the operator obtained from §g , by replacing g by o Zg (cf (12.8)). Just
as in the unparametrized case we define a 1-1 correspondence between orientations
of §5, and orientations of §,, ¢, by decreeing that if C is a positive corrector of

(85.w)t—d,m (Where we now assume £ > d) then Cp is a (—1)bindGs.) _corrector of
(810.5 w)l—b,d+m-

Now suppose [S,w] € M (g). Working in the trivialization v; and using the local
slice theorem for the metric g, one finds that [S, w] is a regular point of M} (g) if and
only if §,, ¢, is surjective, and in that case the projection Cy (g) — Bj (g) induces an
isomorphism

ker(éu,s,w) :) T[S,W] MET (g)

This establishes a 1-1 correspondence between orientations of §s ,, and orientations
of Tis.wM{(g). This correspondence is obviously independent of P,, and it is
independent of P; because the set of such operators form an affine space. It is also
independent of p for reasons explained earlier.

This associates to any orientation of A(g) an orientation of the regular part of M (g).
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164 13 Parametrized moduli spaces

13.3 The gluing theorem

We continue the discussion of the previous section, but we now specialize to the case
when the ends of X are Ry x(£Y}), j=1,...,r and R+ij’, j=1,...,r, with
nondegenerate limits «; over Ry x (£Y;) and oz} over Ry x Yj/, as in Section 10.1.
Let the paths ]/j:l:, yj and b C X be as in that section. The family of metrics g on X
defines, in a natural way, a smooth family of metrics {g(7T, w)}wew on X ™) for any 7'.
We retain our previous notation for configuration and moduli spaces over X, whereas
those over X7 will be denoted C'(g), Bi(g), M éT) (g) etc. Fix an isomorphism v as
in (13.1).

We first discuss gluing of orientations. The isomorphism v defines a corresponding
isomorphism over X ™) and operators Py, P, over both X and X )| We then get
families of Fredholm operators §, 8’ parametrized by C(g),C’(g) resp. The procedure
in Section 12.4 for gluing orientations carries over to this situation and yields a 1-1
correspondence between orientations of § and orientations of §'. Given S € C*%(g.,),
if Asw and Ag , denote the set of orientations of dg,,, and &g ,, resp., and similarly
for the glued configuration S’ € C’(gw), then we have a commutative diagram of
bijections:
)\.S’W —> )\. S’ w
\ \

AS,W - AS’,W
The analogue of Diagram (12.13) in the parametrized situation also commutes.

Now fix an orientation of A(g) — By(g) and let A’(g) — B} (g) have the glued orienta-
tion. These orientations determine orientations of the regular parts of the moduli spaces
My(g) and M h(T )(g), respectively, as specified in the previous section.

As before, a choice of reference configuration in C(gg) gives rise to a glued reference
configuration in C’(go) and a holonomy map

By (go) — U(1)".

Composing this with the map M b(T) (8) — By (go) defined by the chosen isomorphism
v yields a holonomy map

Hol: M{D(g) — U1)™.
Fix an open T —invariant subset G C My(g) whose closure is compact and contains

only regular points.
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13.3 The gluing theorem 165

By a kv-pair we mean as before a pair (K, V'), where K C X is a compact codimen-
sion 0 submanifold which contains b and intersects every component of X, and V' is
an open T —invariant neighbourhood of Rg (G) in

By(K.g) = | Bo(K. gu) x {w}.

weW

Now fix a kv-pair (K, V) satisfying similar additional assumptions as before: firstly,
that V' C B (K, g); secondly, that if X, is any component of X" which contains a
point from b then X, N K is connected.

Suppose q: V= My(g)

is a smooth T —equivariant map such that g(w|g) = w for all w € G. (We do not require
that ¢ commute with the projections to W.) Choose A;, k} > 0. Let “admissibility of
@'” be defined in terms of the parametrized moduli spaces M, éT) (g) (see Definition
7.1.3).

Theorem 13.3.1 Theorem 10.1.1 holds in the present situation if one replaces My and
M éT) by My(g) and M, éT)(g), respectively. Moreover, the diffeomorphism F defined
as in Theorem 12.4.1 is orientation preserving.

Proof The proofs carry over without any substantial changes. |

There is another version of the theorem (which will be used in Part III) where the
family of metrics g is constant (ie g, = go for every w) and T acts smoothly on the
manifold W. One then has a product action of T on

Mpy(g) = My x W,

and the theorem holds in this setting as well. In fact, the action of T affects the proof
in only one way, namely the requirement that K be T -invariant. To obtain this, let
dist be a T —invariant metric on the set W compatible with the given topology (arising
for instance from a T —invariant Riemannian metric) and replace the definition of d,,
in (10.13) by

dm((S,w), (S, w)) = [ IS —S|? +|VA(S — S)|P + dist(w, W).

Then V,, will be T —invariant.
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13.4 Compactness

In contrast to gluing theory, compactness requires more specific knowledge of the
perturbation o, so we will here take 0 = 0. We observe that the notion of chain-
convergence has a natural generalization to the parametrized situation, and that the
compactness theorem Theorem 1.4.1 carries over to sequences

[Ap. ®p.wi] € Mo(XTO) (T (n), wy): @)

provided the sequence w,, is bounded (and similarly for Theorem 1.3.1). The only new
ingredient in the proof is the following simple fact: Suppose B is a Banach space, E, F
vector bundles over a compact manifold, L, L": T'(E) — I'(F) differential operators
of order d and K: I'(E) — B alinear operator. If L satisfies an inequality

1y < CULSzp_, +1KS]1B)
and L, L’ are sufficiently close in the sense that
=L Ny, <€l fllzp
for some constant € > 0 with eC < 1, then L’ obeys the inequality

1/llp < (1 =€Cy C(IL' fllgr_, + K/ 115)-
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Part 111

An application

We will now use the analytical results that we have obtained to prove a gluing formula
for Seiberg—Witten invariants of certain 4—manifolds containing a negative definite
piece. The formula describes in particular the behaviour of the Seiberg—Witten invariant
under blow-up and under the rational blow-down procedure introduced by Fintushel—
Stern [18]. The formula was first proved by Fintushel-Stern for blow-up in [17] and
for rational blow-down in [18]. Their results were extended to generalized rational
blow-down by Park [42]. Detailed proofs of various versions of the formula have been
given by Nicolaescu [41], Bauer [6] (using refined Seiberg—Witten invariants) and
Kronheimer—Mrowka [31] (using Floer homology).

Apart from providing a detailed and elementary proof of a version sufficient for many
applications, this part will show how the parametrized version of our gluing theorem
can be used to handle at least the simplest cases of obstructed gluing, thereby providing
a unified approach to a wide range of gluing problems.
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CHAPTER 14

A generalized blow-up formula

14.1 Statement of result

We first explain how the Seiberg—Witten invariant, usually defined for closed 4—
manifolds, can easily be generalized to compact, connected spin® 4-—manifolds Z
whose boundary Y’ = 0Z satisfies b;(Y’) = 0 and admits a metric g of positive
scalar curvature. As usual we assume that 57 (Z) > 1. Let {Yj/ } be the components of
Y’, which are rational homology spheres. Let Z be the manifold with tubular ends
obtained from Z by adding a half-infinite tube R4 x Y. Choose a Riemannian metric
on Z which agrees with 1 x g on the ends. We consider the monopole equations
on Z perturbed solely by means of a smooth 2—form @ on Z supported in Z as in
Equation (3.3). Let M = M (Z ) denote the moduli space of monopoles over Z that
are asymptotic over R4 X Yj’ to the unique (reducible) monopole over Yj’ . For generic
w1 the moduli space M will be free of reducibles and a smooth compact manifold of
dimension

dim M = 2h(Y') + }1((:1(52)2 —0(Z2)) =14 b1(Z)-bT(2),

(see Chapter 9). Choose a base-point x € Z and let M, be the framed moduli space
defined just as M except that we now only divide out by those gauge transformations
u for which u(x) = 1. Let L. - M be the complex line bundle whose sections are
given by maps s: M, — C satisfying

s(u(w)) =u(x)-s(w) (14.1)

for all w € M, and gauge transformations u. A choice of homology orientation of Z
determines an orientation of M , and we can then define the Seiberg—Witten invariant
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170 14 A generalized blow-up formula

of Z just as for closed 4-manifolds:

SW(Z) = {(cl(}L)k, [M]) if dimM =2k >0,
0 if dim M is negative or odd.

The use of L rather than L~! prevents a sign in Theorem 14.1.1 below. (Another
justification is that, although M, — M is a principal bundle with respect to the
canonical U(1)-action, it seems more natural to regard that action as a left action.)
This invariant SW(Z) depends only on the homology oriented spin®-manifold Z, not
on the choice of positive scalar curvature metric g on Y’; the proof of this is a special
case of the proof of the generalized blow-up formula, which we are now ready to state.

Theorem 14.1.1 Let Z be a compact, connected, homology oriented spin® 4—man-
ifold whose boundary Y’ satisties b1 (Y') = 0 and admits a metric of positive scalar
curvature. Let b (Z) > 1, and suppose Z is separated by an embedded rational
homology sphere Y admitting a metric of positive scalar curvature,

Z =2,y Zy,

where b1(Zo) = b*(Zy) = 0. Let Z have the orientation, homology orientation and
spin® structure inherited from Z . Then

SW(Z)=SW(Z;) if dimM(Z)=>D0.

We will show in Section 14.2 that dim M (2 0) < —1. (A particular case of this was
proved by different methods in [18, Lemma 8.3].) The addition formula for the index
then yields

dim M(Z) = dim M(Zy) + 1 + dim M (Z;) < dim M(Z,).
The following corollary describes the effect on the Seiberg—Witten invariant of both

ordinary blow-up and rational blow-down:

Corollary 14.1.1 Let Zo, Z, Z be compact, connected, homology oriented spin®
4-manifolds with —0Z; = 0Zy = 0Z; = Y as spin® manifolds, where Y is a spin°
rational homology sphere admitting a metric of positive scalar curvature. Suppose
b+(Zl) > 1, b1(Zy) = bl(Z(/)) =0 and by(Zy) = b+(26) =0. Let

Z=2Z0Uy 7, Z'=Z)UyZ

have the orientation, homology orientation and spin® structure induced from Zy, Z,,
Z1. Then
SW(Z)=SW(Z') if dimM(Z')>0.
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Proof Set ny =dim M(+Zy) and W = Zo Uy (—Zo). Then
—l=dmMW)=ny+14+n_,
hence n4 = —1. Thus
dim M(Z) = dim M(Z;) > dim M(Z') > 0.
The theorem now yields

SW(Z) =SW(Z;) = SW(Z'). O

14.2 Preliminaries

Let X be a connected spin® Riemannian 4—manifold with tubular ends Ry x ¥;,
J =1,...,r, as in Section 1.3. Suppose each Y; is a rational homology sphere
and h;(X) = 0 = b+ (X). We consider the monopole equations on X perturbed
only by means of a 2—form p as in Equation (3.3), where now p is supported in a
given nonempty, compact, codimension 0 submanifold K C X . Let «j € Ry; be the
reducible monopole over ¥; and M, = M (X ;a; 11;0) the moduli space of monopoles
over X with asymptotic limits & = («q, ..., a,). This moduli space contains a unique
reducible point w(u) =[4(n), 0]. Let Q} x denote the space of (smooth) self-dual
2—forms on X supported in K, with the C*° topology. Let p and w be the exponent
and weight function used in the definition of the moduli space M, , as in Section 3.4.

Lemma 14.2.1 Let R be the setof all u € Q} x such that the operator
Daqy: LY (S§) — LPY(Sy) (14.2)
is either injective or surjective. Then R is open and dense in Q} K-

Of course, whether the operator is injective or surjective for a given u € R is determined
by its index, which is independent of .

Proof By Proposition 2.3.1 (ii) and the proof of Proposition 5.1.2, the operator
d¥: ker(d*)n L™ — L2

is an isomorphism. Therefore, if A, is a reference connection over X with limits «;
as in Section 3.4 then there is a unique (smooth) ¢ = a(u) € Lf Y with

d*a =0, dta=—FT(4,)—ip.
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172 14 A generalized blow-up formula

Hence we can take A(u) = A, 4+ a(u). Since the operator (14.2) has closed image, it
follows by continuity of the map u +— A(u) that R is open in Q} -

To see that R is dense, fix u € Q} g and write 4 = A(u). Let W be a Banach space
of smooth 1—forms on X supported in K as provided by Lemma 8.2.1. Using the
unique continuation property of the Dirac operator it is easy to see that 0 is a regular
value of the smooth map

h: W x (LYY (SH)\ {0}) - L?™(Sy).
0, @)~ D g+in®.

In general, if fi: E — F; and f,: E — F, are surjective homomorphisms between
vector spaces then fi|xer £, and f2|ker 4, have identical kernels and isomorphic coker-
nels. In particular, the projection 7: #~1(0) — W is a Fredholm map whose index at
every point agrees with the index m of D,4. By the Sard-Smale theorem the regular
values of & form a residual (hence dense) subset of W . If n € W is a regular value
then we see that D44, is injective when m < 0 and surjective when m > 0. Since
the topology on W is stronger than the C'°° topology it follows that R contains points
of the form p + d 1 arbitrarily close to . O

Lemma 14.2.2 Suppose the metric on each Y; has positive scalar curvature. Let R’
be the set of all . € Qj{, x such that the irreducible part M ‘f is empty and the operator
D4y in (14.2) is injective. Then R’ is open and dense in Q} K

Proof Recall that M lf has expected dimension 2m — 1, where m = indc D 4(y) -

Suppose m > 0. We will show that this leads to a contradiction. Let R” be the set of all
IS Q} g for which M), is regular. (Note that the reducible point is regular precisely
when D 4(,,) is surjective.) From Lemma 14.2.1 and Proposition 8.2.1 one finds that
R” is dense in Q} k- (Starting with a given p, first perturb it a little to make the
reducible point regular, then a little more to make also the irreducible part regular.)
But for any i € R” the moduli space M), would be compact with one reducible point,
which yields a contradiction as in [21]. Therefore, m < 0.

We now see, exactly as for R”, that R’ is dense in Q} x - To prove that R’ is open we
use a compactness argument together with the following fact: For any given po € R’
there is a neighbourhood U of w(g) in B(X; &) such that

* —_—
MMﬂU—@

for any u € Q} x With ||t — ol p sufficiently small. To prove this we work in a slice
at (A(uo),0), ie we represent w () (uniquely) by (A4, 0) where d*(A — A(uo)) =0,
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and we consider a point in M lf represented by (A + a,¢) where d*a = 0. Note
that since b1 (X) = 0, the latter representative is unique up to multiplication of ¢ by
unimodular constants.

Observe that there is a constant C; < oo such that if ||u — ol is sufficiently small
then

¥ liLrw < Cill DayllLrw
for all ¢ € Lf’w. Hence if L = (d* +d™, D) then for such u one has
[sllzr-w < Ca|| Ls|| Lo-w

forall s € Lf " Denoting by SW,, the Seiberg—Witten map over X for the perturbation
form v we have

0=SWy(Ad+a,¢)—SWy(4,0) = (da—Q(p), Dag +ag),
where Q is as in (3.3). Taking s = (a, ¢) we obtain
Isllzpw < CallLs||Lrw < Csllsl|Z2rw < Calls|Zow.
Since s # 0 we conclude that
sl = Cyl.
Choose § € (0,C, 1) and define
U ={[A(ko) +b.¥]: (. ¥)llLrw <8, d™b=0}.
If || — pollp is so small that |4 — A(po)|| L =< C4_1 — & then
(A +a—A(po). D)Ly = sy — A= A(ro)llLp = 8.
hence [A +a,¢] ¢ U. m|

14.3 The extended monopole equations

We now return to the situation in Theorem 14.1.1. Set X; = Z j for j =0,1. Choose
metrics of positive scalar curvature on Y and Y’ and a metric on the disjoint union
X = Xy U X; which agrees with the corresponding product metrics on the ends. Let
Y be oriented as the boundary of Zj, so that Xy has an end R4 x ¥ and X an end
R4 x (=Y. Gluing these two ends of X we obtain as in Section 1.4 a manifold X T
for each T' > 0.

Choose smooth monopoles « over Y and ozj’. over Yj’ (these are reducible and unique
up to gauge equivalence). Let S, = (4,, ,) be a reference configuration over X
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174 14 A generalized blow-up formula

with these limits over the ends, and S,’, the associated reference configuration over
X ™) Adopting the notation introduced in the beginning of Section 10.2, let C be
the corresponding Lf ¥ configuration space over X and C’ the corresponding Lf o«
configuration space over X 7). For any finite subset b C X.g = Zo U Z; let Gy, Gy,
be the corresponding groups of gauge transformations that restrict to 1 on b.

As in Section 14.2 we first consider the monopole equations over X and X ) perturbed
only by means of a self-dual 2—form p = o + pt1, where p; is supported in Z;.
The corresponding moduli spaces will be denoted M (X) and M‘T) = M(x D). Of
course, M (X) is a product of moduli spaces over Xy and X :

M(X) = M(Xo) x M(X;).

By Lemma 14.2.2 we can choose ¢ such that M (X)) consists only of the reducible
point (which we denote by wyeq = [Ared, 0]), and such that the operator

Dy, LYY (S§) — L7 (Sg,) (14.3)

red *
is injective. By Proposition 8.2.1 and unique continuation for self-dual closed 2—forms
we can then choose w; such that
e M(X,) is regular and contains no reducibles,

e the irreducible part of M @) js regular for all natural numbers 7T .
Set k = —indc (D 4,,) > 0.

If k£ > 0 then weq is not a regular point of M (Xy) and we cannot appeal to the gluing
theorem, Theorem 10.1.1, for describing M T) when T is large. We will therefore
introduce an extra parameter z € C¥ into the Dirac equation on Zj, to obtain what we
will call the “extended monopole equations”, such that wg becomes a regular point
of the resulting parametrized moduli space over Xy. This will allow us to apply the
gluing theorem for parametrized moduli spaces, Theorem 13.3.1.

We are going to add to the Dirac equation an extra term S(A4, ®, z) which will be a
product of three factors:

(i) aholonomy term /4 (to achieve gauge equivariance),
(ii) a cutoff function g(A, ®) (to retain an apriori pointwise bound on ®),

(iii) a linear combination ) z;v; of certain negative spinors (to make wreq regular).

We will now describe these terms more precisely.
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(i) Choose an embedding f: R* — int(Z,), and set xo = f(0) and Uy = f(R%).
For each x € Uy let yx: [0, 1] = Uy be the path from x( to x given by

yx() = ff 71 (x).

For any spin® connection 4 over Uy define the function /4: Uy — U(1) by

ha(x) = exp (— /[0 i —Ared)),

cf Equation (10.1). Note that &4 depends on the choice of A4, which is only
determined up to modification by elements of G.

(i) Set Ko = f(D*), where D* C R* is the closed unit disk. Choose a smooth
function g: B*(Ko) — [0, 1] such that g(4,®) = 0 when [|®| ook, = 2 and
g(A,®) =1 when [|®| ook, < 1. Extend g to B(Kp) by setting g(A4,0) = 1
for all 4.

(iii) By unique continuation for the formal adjoint D:’;red there are smooth sections
Yi,..., ¥y of SX,O supported in Ky and spanning a linear complement of the image
of the operator D 4, in (14.3).

red

For any configuration (4, ®) over X and z = (z1,...,zx) € CK define
k
B(A, @.2) = g(A. @) ha Y V).
j=1
Note that for gauge transformations # over X one has
u(xo) hyay =uhy.
Since g is gauge invariant, this yields
Bw(A),u ®,u(xg)z) =u-p(A,®,z).
The following lemma is useful for estimating the holonomy term /i 4:
Lemma 14.3.1 Let a = ) ajdxj be a 1—-form on the closed unit disk D" in R",

n > 1. For each x € D" let J(x) denote the integral of a along the line segment from
0 to x, ie

n 1
J(x)= X aj(tx) dt.
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Then for any ¢ > 1 and r > gn and nonnegative integer k there is a constant C < 0o
independent of a such that

11z (pmy = CllallLy (pny-

Proof If b is a function on D" and y the characteristic function of the interval [0, 1]

then
1 1
/ / b(tx)dt dx = / b(x) f 7 x (7 x]) dr dx
D Jo Dn 0
1
= / (Jx|'™" — 1) b(x) dx.
n—1 Dn
From this basic calculation the lemma is easily deduced. |

It follows from the lemma that a — h 4,4, defines a smooth map Lf (Ko:iAl) —
L‘f (Ko) provided p > 4¢q > 16. Hence, if p > 16 (which we henceforth assume) then

C(Ko) xCK > LP(Ky:S7), (A, ®),2) > B(4, D, z)

is a smooth map whose derivative at every point is a compact operator. Here C(Kj) is

the Lf configuration space over Kj.

The extended monopole equations for ((4, ®),z) € C x C¥ are
Fi+ip—Q(®) =0, (4

Dsd+ (A, D,z) =0.

(Compare the holonomy perturbations of the instanton equations constructed by Don-
aldson [13, 2 (b)].) Define actions of G and G’ on C x Ck and ¢’ xCk respectively by

u(S,z) = (u(S), u(xo)2).
Then the left hand side of (14.4) describes a G —equivariant smooth map C x ck > prw,

For € > 0 let Bezk C C* denote the open ball of radius e about the origin, and D€2k
the corresponding closed ball. For 0 <€ <1 set

«My(X) = {solutions ((4, ®),z) € C x B2 to (14.4)} / Go,
This moduli space is clearly a product of moduli spaces over Xy and X;:
eMp(X) = e My, (Xo) x My, (X1),

where b; = b N Xj.
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Noting that the equations (14.4) also make sense over X 7) we define

M) = {solutions (A, ®).z) € C' x B to (14.4)} / ql.
We define *My(X) and GMb(T) in a similar way as ¢ M(X) and ¢ M éT), but with
ka in place of ng.
Choose a base-point x; € Z1. We will only consider the cases when b is a subset of
{x0.x1}, and we indicate b by listing its elements (writing ¢ My, x, and ¢M etc).
Lemma 14.3.2 Any element of "M (X,) or "M T) has a smooth representative.

Proof Given Lemma 14.3.1 this is proved in the usual way. a

Lemma 14.3.3 There is a C < oo independent of T such that |®| s < C for all
elements [A, ®, z] of "M (X) or ‘M)

Proof Suppose |®| achieves a local maximum > 2 at some point x. If x & K then
one obtains a bound on |®(x)| using the maximum principle as in [30, Lemma 2]. If
x € K¢ then the same works because then g(A4, ®) =0. a

Lemma 14.3.4 'M(X) and 'M' D) are compact for all T > 0.

Proof Given Lemma 14.3.1 and Lemma 14.3.3, the second approach to compactness
carries over. O

We identify My, (Xo) with the set of elements of ; My, (Xo) with z =0, and similarly
for moduli spaces over X, X T) Tt is clear from the definition of B(A, ®, z) that wreq
is a regular point of | M (Xy). Since | M,(Xo) has expected dimension 0, it follows
that wreq is an isolated point of | My, (Xo). Because My, (Xp) is compact, there is an
€ such that ¢ M, (Xo) consists only of the point wrq4. Fix such an € for the remainder
of the chapter.

Lemma 14.3.5 If w, € <M T") with T,, — oo then a subsequence of {w,} chain-
converges to (wreq, w) for some w € M (X1).

Proof Again, this is proved using the second approach to compactness. a

Corollary 14.3.1 If T > 0 then (M) contains no element which is reducible
over Z1.
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14.4 Applying the gluing theorem

Let Hol = Hol; be defined as in Equation (10.1) in terms of a path in X ™) from Xo
to x1 running once through the neck.

By Proposition 10.4.1, if K1 = (X1).¢ with t > 0 then there is a U(1)—invariant open
subset V1 C By, (K1) = Bx, (K1) containing Rk, (Mx, (X1)), and a U(1)-equivariant
smooth map

q1: Vi — My, (X1)

such that ¢ (w|k,) = o for all w € My, (X;). Here Rk, denotes restriction to K.
It follows from Lemma 14.3.5 that if 7" is sufficiently large then w|g, € V; for all
we M,

€ X1

Proposition 14.4.1 For all sufficiently large T the moduli space EM)ST ) is regular
and the map
MDD = M (X1), o q1(0]k,) (14.5)

is an orientation preserving U(1)—equivariant diffeomorphism.

Proof We will apply the version of Theorem 13.3.1 with (in the notation of that
chapter) T acting nontrivially on W. Set
G = Mxy,x, (X) = {wreq} ¥ My, (X1),
K =KyUKj,
V = By, (Ko) x Vi x B2

Note that G is compact and Gb(K) = Gp(K). Define
q: V_)G’ (a)O’wl?Z) = (a)red,‘h(wl))-

In general, an element (u¢, ;) € U(1)? acts on appropriate configuration and moduli
spaces like any gauge transformation u with u(x;) =u;, j =0, 1, and it acts on Bezk
by multiplication with uo. Then clearly, ¢ is U(1)?—equivariant, so by the gluing
theorem there is a compact, codimension 0 submanifold K’ C X containing K and
a U(1)?—equivariant open subset V' C B;nyl(K/) X B€2k containing Rg/(G) and

satisfying Rg (V') C V and such that for all sufficiently large T the space
HD ={(w.2) e MI) : (wlg.2) eV}

consists only of regular points, and the map

HD - U(1) X Myy 5, (X),  (0,2) > (Hol(®), (0rea, 41 (@K,)))  (14.6)

Geometry & Topology Monographs, Volume 15 (2008)



14.4 Applying the gluing theorem 179

is a U(1)2—equivariant diffeomorphism. But it follows from Lemma 14.3.5 that HT) =
GM)SOT,)XI for T > 0, and dividing out by the action of U(1) x {1} in (14.6) we see that
(14.5) is a U(1)—equivariant diffeomorphism.

We now discuss orientations. Let X have the direct sum homology orientation inherited
from Xy and X; (corresponding to the direct sum orientation of the operators —d* +
d™ ; see Section 12.6). Then the map (14.6) is orientation preserving by Theorem 13.3.1.
Using Proposition 12.7.1 it is a simple exercise to show that ¢ My, x, (X) = My, (X;)
preserves orientations if and only if b;(X;) + AT (X;) is even. On the other hand,
(ug,1) €e U(1) x {1} acts on U(1) in (14.6) by multiplication with ual . Recalling our
convention for orienting framed moduli spaces (see the last paragraph of Section 12.2)
we find that the signs cancel and the map (14.5) does preserve orientations. O

Proof of Theorem 14.1.1 For large T let L — .M () be the complex line bundle
associated to the base-point x; as in Section 14.1. For j = 1,...,k the map

sjt M) — €, [A,®, 2]+ Hol(4) - z;

is U(1)—equivariant in the sense of (14.1) and therefore defines a smooth section of L.
The sections s; together form a section s of the bundle E = G}k I whose zero set is
the unparametrized moduli space M (T It is easy to see that s is a regular section
precisely when M T isa regular moduli space, which by Corollary 14.3.1 and the
choice of w1 holds at least when T is a sufficiently large natural number. In that case
s71(0) = M) as oriented manifolds. Set

1
(= 5dim MT >,

so that dim M (X;) = 2(k + £). If £ is not integral then SW(Z;) =0 = SW(Z) and
we are done. Now suppose £ is integral and let 7' be a large natural number. Choose a
smooth section s’ of E' = @e IL such that o = 5’| p7(1) is a regular section of E'| (1,
or equivalently, such that s @ s is a regular section of E @ E' = @kH]L. Then

SW(Z,) =#(s ®s")"1(0) = #571(0) = SW(2),

where the first equality follows from Proposition 14.4.1, and # as usual means a signed
count. d
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APPENDIX A

Patching together gauge transformations

In the proof of Lemma 4.1.1 we encounter sequences S, of configurations such that
for any point x in the base-manifold there is a sequence v, of gauge transformations
defined in a neighbourhood of x such that v,(Sy) converges (in some Sobolev norm)
in a (perhaps smaller) neighbourhood of x. The problem then is to find a sequence u,
of global gauge transformations such that u,(S,) converges globally. If v,, w, are
two such sequences of local gauge transformations then v,w,; I will be bounded in the
appropriate Sobolev norm, so the problem reduces to the lemma below.

This issue was discussed by Uhlenbeck in [50, Section 3]. Our approach has the
advantage that it does not involve any “limiting bundles”.

Lemma A.0.1 Let X be a Riemannian manifold and P — X a principal G —bundle,
where G is a compact subgroup of some matrix algebra M,(R). Let M,(R) be
equipped with an Adg —invariant inner product, and fix a connection in the Euclidean
vector bundle E = P xaq; M,(R) (which we use to define Sobolev norms of au-
tomorphisms of E). Let {U;}7° |, {V;i}72, be open covers of X such that U; € V;

for each i . We also assume that each V; is the interior of a compact codimension 0
submanifold of X , and that dV; and 0V intersect transversally for all i # j . For each
iandn=1,2,... let v, be a continuous automorphism of P|y, . Suppose ViV !

j.n
converges uniformly over V; N'V; foreach i, j (as maps into E ). Then there exist

e asequence of positive integers ny <ny <---,

e for each positive integer k an open subset Wy, C X with

k k
UviewecJv.

i=1 i=1
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182 A Patching together gauge transformations

o foreach k and n > ny a continuous automorphism wy_, of P|w, ,

such that the following hold:
(i) If1<j <k andn>ny then w;j , = wg , on Uzj=1 U;.
(ii) Foreach i,k the sequence wy vi_nl converges uniformly over Wy N V;.

(ili) If1 < p < oo, and m > n/p is an integer such that v; , € Lr’;uloc forall i,n
then wy , € L?  forall k and n > ny,. If in addition

m,loc
—1 ..
sup [[vi,nv5 ull e, vy <00 foralli,
n
then sup ||wk,nvi_,n1 ||L11;1(ka,i) < 00 forall k,i.
n=nj

The transversality condition ensures that the Sobolev embedding theorem holds for
ViN'V; (see Adams [1]). Note that this condition can always be achieved by shrinking
the V;’s a little.

Proof Let N’ C LG be a small Adg invariant open neighbourhood of 0. Then
exp: LG — G maps N’ diffeomorphically onto an open neighbourhood N of 1. Let
f: N — N’ denote the inverse map. Let Aut(P) the bundle of fibre automorphisms
of P and gp the corresponding bundle of Lie algebras. Set N = P xaq; N C gp and
let exp~': N — Aut(P) be the map defined by f.

Set wy , =v1,, and Wy = V7. Now suppose w ,, Wy have been chosen for 1 <k <,
where £ > 2, such that (i)—(iii) hold for these values of k. Set z,, = wg_l,,,(vg,n)_l on
Wy_1NVy. According to the induction hypothesis the sequence z, converges uniformly
over Wy_; N Vg, hence there exists an integer ny > ny_; such that y, = (z, Z)_lzn
takes values in N for n > ny.

Choose an open subset VW C X which is the interior of a compact codimension 0
submanifold of X', and which satisfies

£—1

U Ui c W S WE—I .

i=1
We also require that 3}V intersect dV; N dV; transversally for all 7, j. (For instance, one
can take W = a~1([0, €]) for suitable €, where a: X — [0, 1] is any smooth function
with ¢ = 0 on Uf;} Ui and @ =1 on Wy_1.) Choose also a smooth, compactly
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A Patching together gauge transformations 183

supported function ¢: Wy_; — R with ¢|yy = 1. Set Wy = WU V; and for n > ny
define an automorphism wy , of P|w, by

We—1,n on W,
Wen = | Zng, exp(pexp™! Yn)vgn  on Wy NV,
ZneVen on Vg \ supp(¢).
Then (i)—(iii) hold for k£ = £ as well. To see that (iii) holds, note that our transversality
assumptions guarantee that the Sobolev embedding theorem holds for W;_; N V; and
for all V; N V;. Since mp > n, L7, is therefore a Banach algebra for these spaces

(see [1]). Recalling the proof of this fact, and the behaviour of L2, under composition
with smooth maps on the left (see McDuff—Salamon [37, p 184]), one obtains (iii). O
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APPENDIX B

A quantitative inverse function theorem

In this appendix E, E’ will be Banach spaces. We denote by B(E, E’) the Ba-
nach space of bounded operators from E to E’. If T € B(E, E’) then ||T| =
supjxj<1 ITx|l. If U C E isopen and f: U — E’ smooth then Df(x) € B(E, E)
is the derivative of f at x € U. The second derivative D(Df)(x) € B(E,B(E, E’))
is usually written D? f(x) and can be identified with the symmetric bilinear map
E x E — E’ given by

: 9
D f()(p2) = 5ol [t sy+ i),
(0,0)

The norm of the second derivative is

ID2f) = sup [D*f(x)(.2)l.
(RNEIES

Forr>01let B, ={x e E : ||x|| <r}.

Lemma B.0.2 Let e, M > 0 be positive real numbers such that e M < 1, and suppose
f: Be = E is a smooth map satisfying

SO =0 DfO)=1I: [D*f(x)| <M forxeBe.
Then f restricts to a diffeomorphism f~! B¢/ 5 Be)s.
The conclusion of the lemma holds even when e M = 1; see Proposition B.0.2 below.
Proof The estimate on D? f gives

IDf (x) = I = |Df (x) = DFO)|| = M| x]|. (B.1)
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186 B A quantitative inverse function theorem

Therefore the map

1
hx)= f(x)—x = /0 (Df(tx)—I)x dt
satisfies

M
1G] = TIIXIIZ,
172:(x2) = (x| < €M |22 — x|

forall x, x1, x, € Be. Hence for every y € B/, the assignment x +— y —/(x) defines
a map Be — B. which has a unique fix-point. In other words, f maps f !B, /2
bijectively onto B/>. Moreover, Df(x) is an isomorphism for every x € Be, by
(B.1). Applying the contraction mapping argument above to f around an arbitrary
point in B then shows that f is an open map. It is then a simple exercise to prove
that the inverse g: Be/p — f_lBE/z is differentiable and Dg(y) = (Df(g(y)))~!
(see Dieudonné [10, 8.2.3]). Repeated application of the chain rule then shows that g
is smooth. d

For r > 0 let B, C E be as above, and define B, C E’ similarly.
Proposition B.0.2 Let ¢, M be positive real numbers and f: B — E’ a smooth map
such that f(0) =0, L = Df(0) is invertible and
ID?f(x)|| <M forall x € Be.
Setk = ||[L7V||7! —eM and € = ¢||L™"||7!. Then the following hold:
(i) If k > 0 then f is a diffeomorphism onto an open subset of E’ containing

Bé//z.

(i) Ifx >0 and g: B;,/2 — Be is the smooth map satistying f o g = I then for all

X € Be and y € B’

¢r/2 On€ has

IDF )L IDgWIl <™, ID*g()ll < M.

The reader may wish to look at some simple example (such as a quadratic polynomial)
to understand the various ways in which these results are optimal.

Proof (i) For every x € B, we have

IDf )L™ =1 < IDf(x) = LI |IL7 | <eM|IL7H] < 1,
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hence Df(x) is invertible. Thus f is a local diffeomorphism by Lemma B.0.2. Set
h(x)= f(x)—Lx.If x1,x, € B¢ and x{ # x, then

1/ (x2) = F el Z 1L (x2 = x )| = [12(x2) = A(x )| > K [[x2 — x4,
hence 1 is injective. By choice of €’ the map
f=foL" B, ,—>E

/

is well defined, and for every y € B, /2 One has

ID2 f(»Il < M|L72

Because EM|L7Y2=eM| L7} <1,
Lemma B.0.2 says that the image of f contains every ball Bé /2 with 0 < § < €', hence
also Bé//z'

(i) Setc=1—Df(x)L™!. Then

o0
Df(x)"'=L"1 Z ",
n=0
I~ =t

hence IDf ()Y <

< — =
I—|le]l  T—eM| L7
This also gives the desired bound on Dg(y) = Df(g(y))~!.

To estimate D?g, let Iso(E, E') C B(E, E’) be the open subset of invertible operators,
and let ¢: Iso(E, E') — B(E’, E) be the inversion map: t(a) =a~!. Then ¢ is smooth,
and its derivative is given by

Di(a)b = —a"'ba™!
(see Dieudonné [10]). The chain rule says that
Dg=10Dfog,
D(Dg)(y) = Du(Df(g(y))) o D(Df)(g(y)) o Dg(p).
This gives

ID(DYN < IDf (gD~ 1> IDD (gD - I1Dg(»)
<k 2.M-k7 O
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APPENDIX C

Splicing left or right inverses

Let X be a Riemannian manifold with tubular ends as in Section 1.4 but of arbitrary
dimension. Let £ — X be a vector bundle which over each end R4 x (£Y;) (resp.
R4 x Yj’ ) is isomorphic (by a fixed isomorphism) to the pullback of a bundle £; — Y;
(resp. E J’ — Yj/ ). Let F — X be another bundle of the same kind. Let D: T'(E) —
I'(F) be a differential operator of order d > 1 which is translationary invariant over
each end and such that for each j the restrictions of D to R4 x Y; and R4 x (—Yj)
agree in the obvious sense. The operator D gives rise to a glued differential operator
D': T(E')—T(F') over X where E’, F' are the bundles over X (7 formed from
E, F resp. Let k,£,m be nonnegative integers and 1 < p < oco. Let L,I;(X; F).g
denote the subspace of L,’; (X; F) consisting of those elements that vanish a.e. outside
X.o. We can clearly also identify L,f (X; F).o with a subspace of L,f (XD F'y. Let

VLY (Xo:E)®R' > LY (X: F),p ®R™
be a bounded operator and set

P=D+V:L} ,(X:E)®R"'> LY(X:F)®R",
(5,) = (Ds,0) + V(sxy, X)-

Define the operator P’ = D'+ V over XT) similarly.

Proposition C.0.3 If P has a bounded left (resp. right) inverse Q then for Ty, >
C1]| Q|| the operator P’ has a bounded left (resp. right) inverse Q" with || Q’|| < C>|| Q|-
Here the constants Cy, C; < oo depend on the restriction of D to the ends R x (£Y})
but are otherwise independent of P .
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190 C Splicing left or right inverses

For left inverses this was proved in a special case in Lemma 5.4.1, and the general case
is not very different. However, we would like to have the explicit expression for the
right inverse on record, since this is used both in Section 10.2 and in Section 12.4.

Proof Choose smooth functions f1, f>: R — R such that (f;(2))?>+(f2(1—1))> =1
forall #,and fx(¢t) =1 fort <1/3, k =1,2. Define f: X — R by

J1(t/(2T;)) oneachend Ry xYj,
B =1 f2(t/(2Tj)) oneachend Ry x (—Yj),

1 elsewhere,

where ¢ is the first coordinate on R4 x (£Y;). If 5" is a section of F’ let the section
B(s') of F be the result of pulling 5" back to X7} by means of 7¢T}, multiplying
by B, and then extending trivially to all of X ". (The notation 74T} was introduced in
Section 1.4.) If x € R™ set B(s’, x) = (B(s’), x). For any section s of E we define a
section B(s) of E’ as follows when Tiyin > 3/2. Outside [T + 1, T; —1]x Y} we set
B(s)=s. Over [=T;,Tj]xY; let B(s) be the sum of the restrictions of the product Bs
to [0, 273]x ¥; and [0, 27}] x (—Y;), identifying both these bands with [T}, Tj] x Y;
by means of the projection 7T+ XT3 — X (I 1f x € R set B(s, x) = (B(s). x).
Note that B B

BB=1.

Now suppose Q is a left or right inverse of P. Define
R=B0B: LY XD FyeR" > L! (XD E)e®R"
If QP = I then a simple calculation yields

IR'P'—1I| <CTlQll.

min

Therefore, if T, > C||Q|| then R’ P’ is invertible and Q' = (R’ P’)"' R’ is a left
inverse of P’. Similarly, if PQ = I then

IP'R —I||<CTt 0l

hence Q' = R’(P'R’)~! is aright inverse of P’ when Ty, > C|| Q|| In both cases the
constant C depends on the restriction of D to the ends R4 x (£Y;) but is otherwise
independent of P. As for the bound on ||Q’||; see the proof of Lemma 10.2.4. O

From the proposition one easily deduces the following version of the addition formula
for the index, which was proved for first order operators in [14].
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C Splicing left or right inverses 191

Corollary C.0.1 If
D: Ly, ,(X;E)— L{(X;F)
is Fredholm, then for sufficiently large Ty,
D LY (XD E)— L(x D F
is Fredholm with ind(D’) = ind(D). |
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