Volume 16 (2009)

Download this article
For screen
For printing
Recent Volumes
Volume 1, 1998
Volume 2, 1999
Volume 3, 2000
Volume 4, 2002
Volume 5, 2002
Volume 6, 2003
Volume 7, 2004
Volume 8, 2006
Volume 9, 2006
Volume 10, 2007
Volume 11, 2007
Volume 12, 2007
Volume 13, 2008
Volume 14, 2008
Volume 15, 2008
Volume 16, 2009
Volume 17, 2011
Volume 18, 2012
Volume 19, 2015
The Series
All Volumes
 
About this Series
Ethics Statement
Purchase Printed Copies
Author Index
ISSN 1464-8997 (online)
ISSN 1464-8989 (print)
 
MSP Books and Monographs
Other MSP Publications

The spectra ko and ku are not Thom spectra: an approach using THH

Vigleik Angeltveit, Michael Hill and Tyler Lawson

Geometry & Topology Monographs 16 (2009) 1–8

DOI: 10.2140/gtm.2009.16.1

Bibliography
1 V Angeltveit, M Hill, T Lawson, Topological Hochschild homology of l and ko arXiv:0710.4368
2 A Blumberg, R Cohen, C Schlichtkrull, Topological Hochschild homology of Thom spectra and the free loop space arXiv:0811.0553
3 R R Bruner, Ext in the nineties, from: "Algebraic topology (Oaxtepec, 1991)", Contemp. Math. 146, Amer. Math. Soc. (1993) 71–90 MR1224908
4 L G Lewis Jr., J P May, M Steinberger, J E McClure, Equivariant stable homotopy theory, Lecture Notes in Math. 1213, Springer (1986) MR866482 With contributions by J. E. McClure
5 M Mahowald, Ring spectra which are Thom complexes, Duke Math. J. 46 (1979) 549–559 MR544245
6 M Mahowald, Thom complexes and the spectra bo and bu, from: "Algebraic topology (Seattle, Wash., 1985)", Lecture Notes in Math. 1286, Springer (1987) 293–297 MR922932
7 Y B Rudyak, The spectra k and kO are not Thom spectra, from: "Group representations: cohomology, group actions and topology (Seattle, WA, 1996)", Proc. Sympos. Pure Math. 63, Amer. Math. Soc. (1998) 475–483 MR1603140