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The spectra ko and ku are not Thom spectra:
an approach using THH

VIGLEIK ANGELTVEIT

MICHAEL A HILL

TYLER LAWSON

We apply an announced result of Blumberg–Cohen–Schlichtkrull to reprove (under
restricted hypotheses) a theorem of Mahowald: the connective real and complex
K–theory spectra are not Thom spectra.

55P42; 55P43, 55N20

The construction of various bordism theories as Thom spectra served as a motivating
example for the development of highly structured ring spectra. Various other examples
of Thom spectra followed; for instance, various Eilenberg–MacLane spectra are known
to be constructed in this way (see Mahowald [5]). However, Mahowald [6] proved
that the connective K–theory spectra ko and ku are not the 2–local Thom spectra of
any vector bundles, and that the spectrum ko is not the Thom spectrum of a spherical
fibration classified by a map of H-spaces. Rudyak [7] later proved that ko and ku are
not Thom spectra p–locally at odd primes p .

There has been a recent clarification of the relationship between Thom spectra and
topological Hochschild homology. Let BF be the classifying space for stable spherical
fibrations.

Theorem (Blumberg–Cohen–Schlichtkrull [2]) If Tf is a spectrum which is the
Thom spectrum of a 3–fold loop map f W X ! BF , then there is an equivalence

THH.Tf /' Tf ^BXC:

(Here THH.Tf / is the topological Hochschild homology of the Thom spectrum Tf ,
which inherits an E3 –ring spectrum structure; see Lewis et al [4, Chapter IX].) Paul
Goerss asked whether this theorem could be combined with the previous computations
of the authors [1] to give a proof that ku and ko are not Thom spectra under this 3–fold
loop hypothesis. This paper is an affirmative answer to that question.
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The forthcoming Blumberg–Cohen–Schlichtkrull paper includes a more careful analysis
of the topological Hochschild homology of Thom spectra in the case of 1–fold and 2–
fold loop maps, and should provide weaker conditions for these results to hold. However,
in order to construct THH one must assume that the Thom spectrum has some highly
structured multiplication, which is not part of the assumptions in Mahowald’s original
proof that ko is not a Thom spectrum.

Many of the computations were done using Bruner’s Ext package [3]. In particular,
we used these not only to aid in the computation of the relevant Ext groups but also to
determine some of the Massey products needed for the ko–case.

1 The case of ku

Assume that ku, 2–locally, is the Thom spectrum Tf of a 3–fold loop map. We then
obtain an equivalence:

THH.ku/' ku^XC ' ku ^
ko
.ko^XC/

Splitting off a factor of ku from the natural unit S0! XC , it thus suffices to show
there is no ko–module Y such that smashing over ko with ku gives the reduced object
THH.ku/.

The homotopy of THH.ku/ in degrees below 10 has ku�–module generators �1 and
�2 in degrees 3 and 7 respectively, subject only to the relation 2�2 D v

2
1
�1 for v1 the

Bott element in �2ku (see Angeltveit, Hill and Lawson [1]). A skeleton for such a
complex Y could be constructed with cells in degree 3, 7, and 8.

If we had such a ko–module Y , we could iteratively construct maps

†3ko!†3ko_†7ko! .†3ko_†7ko/[� .C†
7ko/! Y

by attaching a 3–cell, a 7–cell (which has 0 as the only possible attaching map), and an
8–cell via some attaching map � .

However, this requires us to lift the attaching map for the 8–cell along the map

�7.†
3ko_†7ko/

��

Z˚Z

.2;1/

��
�7.†

3ku_†7ku/ Z˚Z

The element we need to lift is .v2
1
; 2/, but the image is generated by .2v2

1
; 0/ and

.0; 1/.
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This contradiction is essentially the same as that given by Mahowald assuming that ku

is the Thom spectrum of a spherical fibration on a 1–fold loop space [6].

Remark The analogue of this argument fails for the Adams summand at odd primes.
The essential difference is that at odd primes, the element vp

1
in the Adams–Novikov

spectral sequence is a nullhomotopy of p2 times the p ’th torsion generator in the
image of the J–homomorphism, whereas at p D 2 the element v2

1
is a nullhomotopy

of 4�C �3 .

2 The case of ko

Similarly to the previous case, suppose that we had THH.ko/' ko^ YC for a space
Y , and hence the reduced object satisfies THH.ko/' ko^ Y . Then

THH.koIHF2/' HF2 ^
ko

THH.ko/' HF2 ^Y:

The A�–comodule structure on H�.Y / would then be a lift of the coaction of A.1/�D
��.HF2^ko HF2/ on THH�.koIHF2/. In particular, this determines the action of Sq1

and Sq2 .

The groups THH�.koIHF2/ through degree 20 have generators in degree 0, 5, 7, 8,
12, 13, 15, 16, and 20. The groups as a module over A.1/ are presented in Figure 1.
In this, dots represent generators of the corresponding group, straight lines represent
the action of Sq1 , curved lines represent Sq2 , and the box indicates that the entire
picture repeats polynomially on the class in degree 16.

Lemma 2.1 Suppose that there was a lift of the 20–skeleton of THH.ko/ to a spectrum
W with cells in degrees 5, 7, 8, 12, 13, 15, 16, and 20. Then the attaching map for
the 16–cell over the sphere would be 2�–torsion.

Proof This is a consequence of the calculations of [1], as follows. Modulo the image
of the 13–skeleton, the reduced object THH.ko/ has cells in degrees 15, 16, and 20,
with the generator in degree 16 attached to 4 times the generator in degree 15 and the
generator in degree 20 attached to 2v2

1
times the generator in degree 15.

Figure 1: ��.THH.koIHF2// as an A.1/–module
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Figure 2: The Adams spectral sequence for U

However, the Hurewicz map S=4! ko=4 is an isomorphism on �4 , and so any lift of
the attaching map for the 20–cell would have to lift to a generator of �19.†

15S=4/.
However, the image of this generator modulo the 15–skeleton is the element

2� 2 �19.†
16S/:

This forces the attaching map for the 16–cell to be 2�–torsion, as desired.

We now apply this to show the nonexistence of such a spectrum by assuming that we
have already constructed a 16–skeleton for it.

Theorem 2.2 Suppose that we have .2–locally/ a suspension spectrum Z of a space
such that ko^Z agrees with THH.ko/ through degree 19, with cells in degrees 5, 7,
8, 12, 13, 15, and 16. The attaching map for the next necessary cell .in degree 20/

does not lift to the homotopy of Z .

Proof Let M be the 15–skeleton of Z , and U the 8–skeleton. There exists a cofiber
sequence

U !M !Q!†U

where U is the unique connective spectrum whose homology is an “upside-down
question mark” starting in degree 5, and Q is the unique connective spectrum whose
homology is a “question mark” starting in degree 12. (For this reason, the spectrum
M is informally called the Spanish question.) By the previous lemma, it suffices to
show that any attaching map for the 16–cell cannot be 2�–torsion.

The following charts display the final results of the Adams spectral sequence for the
homotopy of U (Figure 2) and Q (Figure 3). The nontrivial differentials for U are
deduced from corresponding differentials for the sphere.

We note two things about the homotopy of U .

Geometry & Topology Monographs, Volume 16 (2009)



The spectra ko and ku are not Thom spectra: an approach using THH 5

Figure 3: The Adams spectral sequence for Q

� First, by comparison with the sphere, there are no hidden multiplication-by-4
extensions in total degree 19. The image of �19†

5S is an index 2 subgroup
isomorphic to .Z=2/2 .

� Second, let x be any class in total degree 11. As �–multiplication surjects onto
degree 11, we would have xD �y for some y in total degree 10. However, then
as �–multiplication is surjective onto total degree 17 we would have �y D �z

for some z , and therefore

��x D �3z D 4�z:

However, by the previous note there can be no hidden multiplication-by-4
extensions in degree 19, so ��x D 0.

The attaching map f W †�1Q! U for M must be a lift of the corresponding ko–
module attaching map ko^f W †�1ko^Q! ko^U for ko^M . We display here the
Adams charts computing the homotopy groups of the function spectra parametrizing
the possible attaching maps.

Figure 4 displays the Adams spectral sequence chart for the homotopy of

F.†�1Q;U /'†DQ^U:

The Adams spectral sequence chart for

Fko.†
�1ko^Q; ko^U /' ko^F.†�1Q;U /

is shown in Figure 5.

We note that there is a unique nontrivial attaching map over ko; the homotopy computa-
tions of [1] show that the attaching map ko^ f must be the unique nontrivial element
in �0 of ko^ F.†�1Q;U /. In the figure, this class is circled. The lift to the sphere
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−9 −7 −5 −3 −1 1 3
0

2

4

Figure 4: The Adams E2 –term for F.†�1Q;U /

must be of Adams filtration 2 or higher, as a lift of Adams filtration 1 would give the
cohomology of M visible squaring operations Sq8 out of dimensions below 8.

We then note that the product .ko^ f /� is nontrivial, and lifts to the unique map .f �/
over the sphere which is an �–multiple. It has Adams filtration 4.

Figure 6 is an Adams spectral sequence chart for the homotopy of M. The indi-
cated arrows are not necessarily differentials; they describe the unique nontrivial map
gW †�1Q!U of Adams filtration 3 in Ext. We note that g and f agree on multiples
of �, and so these do describe d3 differentials on multiples of �.

In particular, there must be a d3 differential out of degree .t � s; s/ D .19; 2/. By
comparing with the spectral sequences for Q and U , we find that the only other
possible differential supported on a class in total degree 19 would be a d5 on the class
in degree .19; 1/. However, this class is �y for the class y in bidegree .12; 0/, and as
previously noted we must have ��f .y/D 0 where f is the attaching map. Therefore,
the specified d5 differential does not exist and the class in degree .19; 1/ survives to
homotopy.

Figure 7 describes the Adams E3 page for the homotopy of ko^M . The indicated
differentials are the image of ko^ g D ko^ f .

Comparing these, we find that the (marked) attaching map ko^ h for the 16–cell has
two possible lifts to a map h over the sphere up to multiplication by a 2–adic unit:

−9 −7 −5 −3 −1 1 3
0

2

4

6

•

Figure 5: The Adams E2 –term for ko^ F.†�1Q;U /
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Figure 6: The Adams E2 –term for M , with map of filtration 3

there is one map in Adams filtration 1 and one map in Adams filtration 2. These two
lifts differ by a 2–torsion element (as the image is torsion-free), and so the element
2�h is uniquely defined. One possible choice of h is marked in Figure 6.

We claim that there is a hidden extension 2�h¤ 0.

As a result, by Lemma 2.1 the attaching map for the 20–cell cannot possibly lift.

Let Oh denote the composition of h with the projection from M to Q. Then our earlier
picture of the Adams E2 term for Q shows that � Oh is 2–torsion in ��Q, and the class
2�h can therefore be detected by the Toda bracket hf; � Oh; 2i. Multiplying this by �,
we find

hf; � Oh; 2i�D f .h� Oh; 2; �i/:

However, Bruner’s Ext program shows that the Massey product h� Oh; 2; �i is the nontriv-
ial element in bidegree .20; 4/ in ��Q. This Massey product detects the Toda bracket,
and the element h� Oh; 2; �i� has a nontrivial image under f . By multiplicativity, we
conclude that h� Oh; 2; �i does so too, so the original bracket was non-trivial.

0 2 4 6 8 10 12 14 16 18 20 22
0

2

4

6

8

•

Figure 7: The Adams E3 –term for ko^M
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(The indeterminacy in the element f .h� Oh; 2; �i/ consists of elements f .y�/ for y 2

��Q. The only nonzero such image, however, is an element in ��U of bidegree
.19; 6/, as we ruled out the possibility that the element in bidegree .20; 1/ has nonzero
image under f .)
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