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ˇ–family congruences and the f–invariant

MARK BEHRENS

GERD LAURES

In previous work, the authors have each introduced methods for studying the 2–line of
the p–local Adams–Novikov spectral sequence in terms of the arithmetic of modular
forms. We give the precise relationship between the congruences of modular forms
introduced by the first author with the Q–spectrum and the f–invariant of the second
author. This relationship enables us to refine the target group of the f–invariant in a
way which makes it more manageable for computations.

55T15; 55P42, 11F11

1 Introduction

Adams [1] studied the image of the J–homomorphism

J W �t .SO/! �S
t

by introducing a pair of invariants

d D dt W �
S
t ! �tK

e D et W ker.dt /! Ext1;tC1
A .K�;K�/

where A is a certain abelian category of graded abelian groups with Adams operations.
(Adams also studied analogs of d and e using real K–theory, to more fully detect
2–primary phenomena.) In order to facilitate the study of the e–invariant, Adams used
the Chern character to provide a monomorphism

�S W Ext1;tC1
A .K�;K�/ ,!Q=Z:

Thus, the e–invariant may be regarded as taking values in Q=Z. Furthermore, he
showed that for t odd, and k D .tC1/=2, the image of �S is the cyclic group of order
denom.Bk=2k/, where Bk is the k th Bernoulli number.

The d and e–invariants detect the 0 and 1–lines of the Adams–Novikov spectral
sequence (ANSS). Laures [12] studied an invariant

f W ker.et /! Ext2;tC2

TMF� TMF
�

1
6

�.TMF
�

1
6

�
�
;TMF

�
1
6

�
�
/
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which detects the 2–line of the ANSS for �S
� away from the primes 2 and 3. He

furthermore used Miller’s elliptic character to show that, if t is even and k D .tC2/=2,
there is a monomorphism

�2W Ext2;tC2

TMF� TMF
�

1
6

��TMF
�

1
6

�
�
;TMF

�
1
6

�
�

�
,!DQ

ı�
D

Z
�

1
6

�C .M0/QC .Mk/Q

�
where D is Katz’s ring of divided congruences and Mk is the space of weight k

modular forms of level 1 meromorphic at the cusp. It is natural to ask for a description
of the image of the map �2 in arithmetic terms.

1.1 Remark Laures [12] studied more general congruence subgroups � � SL2.Z/
and associated cohomology theories E� which also led to results for the primes 2 and
3. The spectrum TMF is just the spectrum ESL2.Z/ when 6 is inverted. In this paper
we shall not be considering the f–invariant associated to more general congruence
subgroups � and 6 shall always be a unit.

Attempting to generalize the J fiber-sequence

J !KOp

 `�1
����!KOp

the first author introduced a ring spectrum Q.`/ built from a length two TMFp –
resolution. Behrens [4, Theorem 12.1] showed that for p � 5, the elements ˇi=j ;k 2

.�S
� /p of Miller, Ravenel and Wilson [14] are detected in the Hurewicz image of Q.`/.

This gives rise to the association of a modular form fi=j ;k to each element ˇi=j ;k .
Furthermore, the forms fi=j ;k are characterized by certain arithmetic conditions.

The purpose of this paper is to prove that the f–invariant of ˇi=j ;k is given by the
formula

f .ˇi=j ;k/D
fi=j ;k

pkE
j
p�1

(Theorem 4.2):

In particular, since the 2–line of the ANSS is generated by the elements ˇi=j ;k , the
p–component of the image of the map �2 is characterized by the arithmetic conditions
satisfied by the elements fi=j ;k .

Hornbostel and Naumann [8] computed the f–invariant of the elements ˇi=1;1 in
terms of Katz’s Artin–Schreier generators of the ring of p–adic modular forms. While
their result is best suited to describe f–invariants of infinite families, it is difficult to
explicitly get one’s hands on their output. Direct computations with q–expansions are
limited by the computability of q–expansions of modular forms, hence are generally
not well suited for infinite families of computations. In low degrees, however, our
formula can directly be used to compute with q–expansions. We demonstrate this by
giving some sample calculations of some f–invariants at the prime 5.
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ˇ–family congruences and the f–invariant 11

1.2 Remark It is natural to ask if the results of this paper can be extended to the
primes 2 and 3. A difficulty arises because the cohomology theory TMF fails to be
Landweber exact without inverting 6, and this in turn is related to the fact that the
associated moduli stack of elliptic curves has geometric points with automorphism
groups divisible by the primes 2 and 3. If one substitutes the group SL2.Z/ with a
small enough congruence subgroup so that the associated moduli stack is actually an
algebraic space, then the corresponding f–invariant detects the 2–line of the 2– and
3–primary Adams–Novikov spectral sequences. However, the results of Behrens [4]
break down, because they rely on the approximation theorem of Behrens and Lawson
[5], and the analog of this approximation theorem for these congruence subgroups does
not hold. In fact, the approximation theorem is not even true at the prime 2 for the full
congruence subgroup SL2.Z/.

We outline the organization of this paper. In Section 2, we review the f–invariant. In
Section 3, we review the spectrum Q.`/, and use it to construct an invariant f 0 so that

fi=j ;k D f
0.ˇi=j ;k/:

In Section 4 we show that the f–invariant is directly expressible in terms of the invariant
f 0 . In Section 5, we give our sample 5–primary calculations.

2 The f–invariant

This section reviews the f–invariant and its various aspects in homotopy theory and
geometry. Our main source is Laures [12; 13].

2.1 Theorem Let D be the ring of divided congruences defined by Katz in [10], that
is, the ring of all inhomogeneous modular forms for SL2.Z/ whose q–expansion is
integral, and let Mt be the subspace of modular forms of homogeneous weight t . Then
for all k > 0 there is a homomorphism

f W �S
2k �!DQ

ı�
D

Z
�

1
6

�˚ .M0/Q˚ .MkC1/Q

�
whose kernel is the third Adams–Novikov filtration for MU

�
1
6

�
.

2.2 Remark Laures [12] actually defines the f–invariant to take values in the subspace
of

DQ=
�
D

Z
�

1
6

�˚ .M0/Q˚ .MkC1/Q

�
spanned by inhomogeneous sums of modular forms of weights between 0 and kC 1.
Of course, there is no harm in regarding the invariant as taking values in the larger
group above.
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12 Mark Behrens and Gerd Laures

The construction of f is closely related to the construction of the classical e–invariant
by Adams [1]. Let T be a flat ring spectrum and let

sW X �! Y

be a stable map from a finite spectrum into an arbitrary one. Suppose further that the
d –invariant of s vanishes. This simply means that s vanishes in T–homology. Then
we have a short exact sequence

T�Y �! T�Cs �! T�†X;

where Cs is the cofiber of s . We can think of the sequence as an extension of T�X by
T�Y as a T�T–comodule. This is the classical e–invariant of s in T–theory.

Next, suppose that
e.s/ 2 ExtT�T .T�X;T�Y /

vanishes, that is, the exact sequence of T�T–comodules splits and we choose a splitting.
We also choose a T–monomorphism

�W Y �! I

into a T–injective spectrum I . For instance, we can take I D T ^Y . Then there is a
map

t W Cs �! I

which is the image of �� under the induced splitting map

ŒY; I �Š HomT�T .T�Y;T�I/ �! HomT�T .T�Cs;T�I/Š ŒCs; I �:

In particular, the map t coincides with � on Y . Let F be the fiber of the map �. Then
s lifts to a map

xsW X �! F

which makes the diagram

†�1Cs

†�1t
��

// X
s //

xs

��

Y

id
��

†�1I // F // Y

commute.

2.3 Lemma d.xs /D 0
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ˇ–family congruences and the f–invariant 13

Proof In the split exact sequence

HomT�T .T�†X;T�†F / �! HomT�T .T�Cs;T�†F / �! HomT�T .T�Y;T�†F /

the map †xs� restricted to Cs is in the image of the splitting and hence has to vanish.
The claim follows since the map from Cs to †X is surjective in T–homology.

Lemma 2.3 implies that we again get a short exact sequence

T�F �! T�Cxs �! T�†X

which we can splice together with the short exact sequence

T�†
�1Y �! T�†

�1I �! T�F:

This gives an extension of T�†
�1Y by T�†X of length 2, that is, an element

f .s/ 2 Ext2T�T .T�X;T�Y /:

In the case X D S2k , Y D S0 and T D TMF
�

1
6

�
, the image of f .s/ under the

injection
�2W Ext2 ,!DQ=.DZŒ 1

6
�˚ .M0/Q˚ .MkC1/Q/

is the second author’s f–invariant. The map �2 will be reviewed in Section 4.

We close this section with an alternative description of the f–invariant. First recall
from [13] that a framed manifold M represents a framed bordism class in second
Adams–Novikov filtration if and only if it is the corner of a .U; f r/2 manifold W .
The boundary of W is decomposed into two manifolds with boundaries W 0 and W 1 .
The stable tangent bundle of W comes with a splitting

TW Š .TW /0˚ .TW /1

and the bundles .TW /i are trivialized on W i . Therefore, we get associated classes

.TW /i 2K.W;W i/:

Let expT be the usual parameter for the universal Weierstrass cubic

y2
D 4x3

�E4xCE6

and let
expK .x/D 1� e�x
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14 Mark Behrens and Gerd Laures

be the standard parameter for the multiplicative formal group. Then following theorem
is a consequence of Proposition 4.1.4 of [13] after applying the complex orientation of
the h2i–spectrum:

S0 //

��

K

��
T // K ^T

2.4 Theorem Let s be represented by M under the Pontryagin–Thom isomorphism.
Then we have

f .s/D

�Y
i;j

xiyj

expK .xi/ expT .yj /
; ŒW; @W �

�
:

Here, .xi/ and .yj / are the formal Chern roots of .TW /0 and .TW /1 respectively.

We remark that there also are descriptions of the f–invariant in terms of a spectral
invariant which is analogous to the classical relation between the e–invariant and the
�–invariant. We refer the reader to von Bodecker [6] and Bunke and Naumann [7].

3 The spectrum Q.`/ and the invariant f 0

For a Z Œ1=N �–algebra R we shall let Mk.�0.N //R denote the space of modular
forms of weight k over R of level �0.N / which are meromorphic at the cusps. For
N D 1 we shall simplify the notation by writing

.Mk/R WDMk.�0.1//R:

Let TMF0.N / denote the corresponding spectrum of topological modular forms with
N inverted (see Behrens [2, Section 1.2.1] and [3, Section 5]). For primes p > 3,
�� TMF0.N /p is concentrated in even degrees, and we have

(3.1) �2k TMF0.N /p ŠMk.�0.N //Zp
:

3.2 Remark One could view the isomorphism of (3.1) as a consequence of the fact
that the spectrum TMF0.N /

�
1
6

�
is equivalent to the spectrum E�0.N / of [12], or as a

consequence of the fact that the descent spectral sequence

H s
�
M�0.N /

ell

�
1
6

�
; !˝t

�
) �2t�s TMF0.N /

�
1
6

�
is concentrated on s D 0.
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ˇ–family congruences and the f–invariant 15

Fix a pair of distinct primes p and `. Behrens [2] introduced a p–local spectrum
Q.`/, defined as the totalization of a certain semi-cosimplicial spectrum

Q.`/D Tot.Q.`/�/

where Q.`/� has the form

(3.3) Q.`/� D

0@TMFp
!

!

TMF0.`/p
�

TMFp

!

!

!

TMF0.`/p

1A :
In [4, Section 4] the spectrum Q.`/ is reinterpreted as the smooth hypercohomology
of a certain open subgroup of an adele group acting on a certain spectrum. The semi-
cosimplicial spectrum Q.`/� is actually a semi-cosimplicial E1–ring spectrum, so
the spectrum Q.`/ is an E1–ring spectrum. In particular, there is a unit map

(3.4) �W S !Q.`/:

The spectrum Q.`/ is designed to be an approximation of the K.2/–local sphere. More
precisely, the spectrum Q.`/K.2/ is given as the homotopy fixed points of a subgroup

(3.5) �` � S2

of the Morava stabilizer group acting on the Morava E–theory E2 [3] and this subgroup
is dense if ` generates Z�p [5]. The spectrum Q.`/ is E.2/–local. In [4, Theorem 12.1]
it is proven that elements ˇi=j ;k 2 ��.SE.2// of [14] are detected by the map

SE.2/!Q.`/:

(It is not known if Q.`/ detects the entire divided beta family at the primes 2 and 3.)

Taking the homotopy groups of the semi-cosimplicial spectrum Q.`/� , (3.3) gives a
semi-cosimplicial abelian group

(3.6) C.`/�2k WD

0@.Mk/Zp

!

!

Mk.�0.`//Zp

�

.Mk/Zp

!

!

!

Mk.�0.`//Zp

1A :
It is shown in [4, Section 6] that the morphisms

d0; d1W .Mk/Zp
!Mk.�0.`//Zp

� .Mk/Zp
;
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16 Mark Behrens and Gerd Laures

induced by the initial coface maps of the cosimplicial abelian group C.`/�
2k

, are given
on the level of q–expansions by:

d0.f .q// WD .`
kf .q`/; `kf .q//(3.7)

d1.f .q// WD .f .q/; f .q//(3.8)

The Bousfield–Kan spectral sequence for computing �� Tot.Q.`/�/ gives a spectral
sequence

(3.9) H s.C.`/�/t ) �t�sQ.`/:

For p > 3, this spectral sequence collapses for dimensional reasons [4, Corollary 5.2],
giving us the following lemma.

3.10 Lemma The edge homomorphism

H 2.C.`/�/t ! �t�2.Q.`//

is an isomorphism for t � 0 mod 4.

3.11 Lemma There is a map of spectral sequences

Exts;t
BP�BP

.BP�;BP�/

��

+3 �t�sS.p/

��

��
H s.C.`/�/t +3 �t�sQ.`/

from the Adams–Novikov spectral sequence for the sphere to the Bousfield–Kan spectral
sequence for Q.`/.

To prove Lemma 3.11 we shall need the following lemma.

3.12 Lemma Suppose that R� is a semi-cosimplicial commutative S–algebra, E

is a commutative S–algebra, and � W E!R0 is a map of commutative S–algebras.
Then there is a canonical extension of � to a map of semi-cosimplicial commutative
S–algebras

�� WE^�C1
!R�

where

E^�C1
D

0BBB@E

�^1
���!

1^�
���!

E ^E

�^1^1
����!

1^�^1
����!

1^1^�
����!

E ^E ^E � � �

1CCCA
is the canonical cosimplicial E–resolution of the sphere.
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ˇ–family congruences and the f–invariant 17

Proof A semi-cosimplicial commutative S–algebra is a functor

�inj! fcommutative S–algebrasg

where �inj is the category of finite ordered sets and order preserving injections. Let m

be the object of �inj given by

mD f0; 1; : : : ;mg

and for 0� i � n define �mi W 0!m by �mi .0/D i . The map �s is defined to be the
composite

E^sC1
..�s

0
/�ı�/^���^..�

n
n/�ı�/

����������������! .Rs/^sC1
�sC1

���!Rs

where �sC1 denotes the sC 1–fold product. The maps �s are easily seen to assemble
into a map of semi-cosimplicial spectra.

Proof of Lemma 3.11 Lemma 3.12 implies that there exists a map of semi-cosimplicial
spectra

1�W TMF^�C1
p !Q.`/�

and hence a map from the Bousfield–Kan spectral sequence for TMF^�C1
p to the

Bousfield–Kan spectral sequence for Q.`/� . However, since TMF�C1
p is the canonical

TMFp –injective resolution of S , the Bousfield–Kan spectral sequence for TMF^�C1
p

is the TMFp –Adams–Novikov spectral sequence for S . Since TMFp is complex
orientable, there is a map of ring spectra BP ! TMFp , and therefore a map from
the BP –Adams–Novikov spectral sequence to the TMFp –Adams–Novikov spectral
sequence.

The short exact sequences of BP�BP–comodules

0! BP�! BP�Œp
�1�! BP�=p

1
! 0

0! BP�=p
1
! BP�=p

1Œv�1
1 �! BP�=.p

1; v11 /! 0

give rise to long exact sequences in Ext, and the connecting homomorphisms give a
composite

(3.13) ıv1;pW Ext0;t
BP�BP

.BP�;BP�=.p
1; v11 //

ıv1
��! Ext1;t

BP�BP
.BP�;BP�=p

1/

ıp
�! Ext2;t

BP�BP
.BP�;BP�/:

The computations of [14] imply the following lemma.

3.14 Lemma The homomorphism ıv1;p of (3.13) is an isomorphism for t > 0.
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18 Mark Behrens and Gerd Laures

Since the spectrum TMF
�

1
6

�
is Landweber exact, the spectrum TMFp is complex

orientable. Since TMFp is p–local, it admits a p–typical complex orientation, and a
choice of p–typical complex orientation

BP ! TMFp! TMF0.`/p

sends v1 to a non-zero multiple of the Hasse invariant Ep�1 mod p . The complex

C.`/�=pk is a complex of modules over the ring Zp Œv
pk�1

1
�. The short exact sequences

0! C.`/�! C.`/�Œp�1�! C.`/�=p1! 0

0! C.`/�=p1! C.`/�=p1Œv�1
1 �! C.`/�=.p1; v11 /! 0

give rise to long exact sequences in H� , and the connecting homomorphisms give a
composite

ıv1;pW H
0.C.`/�=.p1; v11 //t

ıv1
��!H 1.C.`/�=p1/t

ıp
�!H 2.C.`/�/t :

Using Lemmas 3.10 and 3.14, we have the following diagram, for t > 0.

(3.15) �4t�2S.p/ // �4t�2Q.`/

Ext2;4t
BP�BP�

.BP�;BP�/ //

KS

f 0

**

H 2.C.`/�/4t

Š

OO

Ext0;4t
BP�BP

.BP�;BP�=.p
1; v1

1
//

Š ıv1;p

OO

// H 0.C.`/�=.p1; v1
1
//4t

ıv1;p

OO

Since p is odd and Ext2;m
BP�BP

.BP�;BP�/ is concentrated in degrees m� 0 mod 4,
the invariant f 0 may be regarded as an invariant defined on the entire 2–line of
the ANSS. Moreover, because �4t�2S.p/ contains no elements of Adams–Novikov
filtration less than 2, the invariant f 0 may be regarded as giving a homotopy invariant
through the composite

�4t�2S.p/! Ext2;4t
BP�BP

.BP�;BP�/
f 0

�!H 0.C.`/�=.p1; v11 //4t :

We shall find that this invariant f 0 is closely related to the f–invariant of the second
author.

We end this section by describing some of the salient features of the invariant f 0 .
Namely, we shall show:
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ˇ–family congruences and the f–invariant 19

(i) the homomorphism f 0 is a monomorphism, and if ` generates Z�p , the homo-
morphism f 0 is almost an isomorphism, and

(ii) the groups H 0.C.`/�=.p1; v1
1
//4t admit a precise arithmetic interpretation in

terms of congruences of q–expansions of modular forms.

The injectivity and almost surjectivity of f 0

Because v2 is invertible in C.`/�=.p1; v1
1
/, there is a factorization:

(3.16) Ext2;4t
BP�BP

.BP�;BP�/
f 0 // H 0.C.`/�=.p1; v1

1
//4t

Ext0;4t
BP�BP

.BP�;BP�=.p
1; v1

1
//

Š ıv1;p

OO

Lv2

// Ext0;4t
BP�BP

.BP�;BP�=.p
1; v1

1
/Œv�1

2
�/

x�

OO

Recall from [14] that for t > 0 the groups

Ext0;4t
BP�BP

.BP�;BP�=.p
1; v11 // and Ext0;4t

BP�BP
.BP�;BP�=.p

1; v11 /Œv
�1
2 �/

are generated by elements ˇi=j ;k for certain combinations of indices i , j and k . As
usual, ˇi=j denotes the element ˇi=j ;1 .

3.17 Proposition (i) The map Lv2
of (3.16) is injective, and the cokernel is an

Fp–vector space with basis˚
p̌n=j W n� 2;pn < j � pn

Cpn�1
� 1

	
:

(ii) The map x� of (3.16) is injective, and if ` generates Z�p , it is an isomorphism.

Proof (i) follows directly from the calculations of [14].

(ii) follows from the fact that the map x� factors as

Ext0;4t
BP�BP

.BP�;BP�=.p
1; v1

1
/Œv�1

2
�/

x� //

x�0

Š

((QQQQQQQQQQQQQQQQQ
H 0.C.`/�=.p1; v1

1
//4t

H 0
c .S2; ��E2=.p

1; v1
1
//Gal

4t

x�00

88rrrrrrrrrrrrrr

where x�0 is the Morava change-of-rings isomorphism, and x�00 is given by the composite:

H 0.C.`/�=.p1; v11 //4t
!
�!
Š

H 0.�`; ��M2E2/
Gal
4t

�
�!H 0

c .S2; ��M2E2/
Gal
4t
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20 Mark Behrens and Gerd Laures

Here, ! is the isomorphism given by Behrens [4, Corollary 7.7] where �` is the
subgroup of S2 of (3.5), the spectrum M2E2 is the second monochromatic layer of
E2 , and � is the monomorphism induced by the inclusion of the subgroup. Lemma 11.1
of [4] states that � is an isomorphism if ` generates Z�p . Note that the same argument
in Ravenel [15, Theorem 6.1] computing ��MnBP applies to compute

��M2E2 Š .��E2/=.p
1; v11 /:

We conclude that f 0 is injective, and if ` generates Z�p , the only generators of
H 0.C.`/�=.p1; v1

1
// not in the image of f 0 are those corresponding to the Greek

letter elements p̌n=j for j > pn .

The arithmetic interpretation of the groups H 0.C.`/�=.p1; v1
1
//

The groups H 0.C.`/�=.p1; v1
1
//4t are computed by the colimit of groups

H 0.C.`/�=.p1; v11 //4t D colim
k

colim
jDspk�1

s�1

B2t=j ;k

where
B2t=j ;k DH 0.C.`/�=.pk ; v

j
1
//4tC2j.p�1/:

Using the fact that v1 corresponds, modulo p , to a non-zero multiple of the Hasse
invariant Ep�1 in the ring of modular forms, we have

B2t=j ;k D ker

0BBB@M2tCj.p�1/

.pk ;E
j
p�1

/

d0�d1
����!

M2tCj.p�1/

.pk ;E
j

p�1
/

˚

M2tCj.p�1/.�0.`//

.pk ;E
j

p�1
/

1CCCA :
Serre [10, Proposition 4.4.2] showed that two modular forms f1 and f2 over Z=pk

are linked by multiplication by E
j
p�1

(for j � 0 mod pk�1 ) if and only if the
corresponding q–expansions satisfy

f1.q/� f2.q/ mod pk :

Using this, and (3.7)–(3.8), the following theorem is proven in [4].

3.18 Theorem [4, Theorem 11.3] There is a one-to-one correspondence between
the additive generators of order pk in Bt=j ;k and the modular forms f 2MtCj.p�1/

(modulo pk ) satisfying:

(1) We have t � 0 mod .p� 1/pk�1 .

Geometry & Topology Monographs, Volume 16 (2009)



ˇ–family congruences and the f–invariant 21

(2) The q–expansion f .q/ is not congruent to 0 mod p .

(3) We have ordq f .q/ >
t

12
or ordq f .q/D

t�2
12

.

(4) There does not exist a form f 0 2 Mt 0 such that f 0.q/ � f .q/ mod pk for
t 0 < t C j .p� 1/.

(5)` There exists a form g 2Mt .�0.`// satisfying f .q`/�f .q/� g.q/ mod pk .

3.19 Remark It follows from [4, Corollary 11.7], that a modular form satisfying
(1)–(5) corresponding to f 0.x/ is independent of the choice of the prime `.

4 The relation between f and f 0

Let ` be a generator of Z�p . We start with a cohomology class

x 2 Ext2;2t
BP�BP

.BP�;BP�/

with corresponding invariant

(4.1) f 0.x/ 2 Bt=j ;k DH 0.C �.`/=.pk ; v
j
1
//2tC2j.p�1/:

Note that since p is odd, t must be even. By Theorem 3.18, a representative of f 0.x/
is a Z=pk–modular form ' of weight tC j .p�1/ for SL2.Z/ which satisfies certain
congruences. We view ' as a divided congruence, more precisely, as an element of

D˝Z=pk :

4.2 Theorem The f–invariant of the class x is given by

p�kE
�j
p�1

.' � q0.'//

where q0 is the zeroth Fourier coefficient, and j ; k are given by (4.1).

The proof of Theorem 4.2 will be deferred to the end of the section.

4.3 Remark For t > 0, Theorem 3.18 (3) implies that there exists a representative '
of f 0.x/ with q0.'/D 0. Since the modular form fi=j ;k of [4] is such a representative
of f 0.ˇi=j ;k/, Theorem 4.2 implies that

f .ˇi=j ;k/D
fi=j ;k

pkE
j
p�1

:
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4.4 Corollary The class
pkE

j
p�1

f .x/

is congruent to a Z=pk–modular form ' of weight t C j .p� 1/ up to modular forms
of weights j .p�1/ and tCj .p�1/. Moreover, ' satisfies the conditions .1/–.5/ of
3.18.

4.5 Remark We pause to explain how the expression in Theorem 4.2 may be regarded
as an element of the subgroup

DQ

DZ.p/
C .M0/QC .Mt /Q

�
DQ

D
ZŒ

1
6
�
C .M0/QC .Mt /Q

in a way that more clearly accounts for the indeterminacy of the f–invariant. Katz
showed that D is a dense subspace of V , the ring of generalized p–adic modular
functions [11]. The ring V has an action by the group Z�p through Diamond operators,
and the weight t subspace Vt is canonically identified by

Vt Š .M�/Zp
ŒE�1

p�1�t :

We therefore have:
DQ

DZ.p/
C .M0/QC .Mt /Q

Š
VQ

V C .M0/Qp
C .Mt /Qp

Taking the weight t subspace we get:

.Vt /Q

Vt C .Mt /Qp

Š

 
.M�/Qp

ŒE�1
p�1

�

.M�/Zp
ŒE�1

p�1
�C .M�/Qp

!
t

D

 
.M�/Zp

.p1;E1
p�1

/

!
t

The expression p�kE
�j
p�1

� clearly may be regarded as an element of the group above.

Let T be TMF
�

1
6

�
and

M .2/
D ��T ^T

be the Hopf algebroid of cooperations of T . An element of M .2/ is a modular form in
two variables which is meromorphic at 1 and has (away from 6) an integral Fourier
expansion [12].

Consider the map of semi-cosimplicial spectra

1�W TMF^�C1
p !Q.`/�
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of Lemma 3.12. Applying the functor ��.�/, we get a map of semi-cosimplicial
abelian groups

�2k.T
�C1

p /DM
.�C1/

k
! C �.`/2k

which in low degrees gives the following commutative diagram:

.Mk/Zp

d0�d1 //

D

��

.M
.2/

k
/Zp

�

��
.Mk/Zp

d0�d1 // Mk.�0.`//Zp
� .Mk/Zp

4.6 Lemma The induced map in cohomology

H 0.M
.�C1/
� =.p1;E1p�1// �!H 0.C �.`/=.p1; v11 //

is an isomorphism.

Proof By Hovey and Strickland [9], there is a change-of-rings isomorphism

H 0.M
.�C1/
� =.p1;E1p�1//D Ext0TMF� TMFp

.�� TMFp; �� TMFp =.p
1;E1p�1//

Š Ext0BP�BP .BP�;BP�=.p
1; v11 /Œv

�1
2 �/:

The lemma follows from the isomorphism x� of Proposition 3.17.

Next we explain how to get from an element in

H 0.M�=.p
1;E1p�1//Š Ext0

M .2/.M�;M�=.p
1;E1p�1//

to a congruence in
DQ=.D

ZŒ
1
6
�
˚ .M0/Q˚ .Mk/Q/:

For this, we first describe how a class ' in

Ext0
M .2/.M�;M�=.p

1;E1p�1//

gives rise to a class in
Ext2

M .2/.M�;M�/:

We use the geometric boundary theorem.

4.7 Theorem [16] Write E�.X / for the E�–term of the T–based Adams–Novikov
spectral sequence which conditionally converges to the homotopy of the T–nilpotent
completion of X . Let

W
f
�!X

g
�! Y

h
�!†W
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be a cofiber sequence of finite spectra with T�.h/ D 0. Assume further that Œs� 2
E

t;�Ct
2

.Y / converges to s . Then ı Œs� converges to h�.s/ where ı is the connecting
homomorphism to the short exact sequence of chain complexes

0 �!E1.W / �!E1.X / �!E1.Y / �! 0:

For a multiindex I let
M.I/DM.i0; : : : ; in�1/

be the generalized Moore spectrum with

BP�M.I/D†�jjI jj�nBP�=.p
i0 ; v

i1

1
; : : : ; v

in�1

n�1
/

where
jjI jj D

X
j

2ij .p
j
� 1/:

Each M.I/ admits a self map

†2in.p
n�1/M.I/ �!M.I/

which induces multiplication by vin
n . Its fiber is M.I; in/. We apply the geometric

boundary theorem to the sequences

†2i1.p�1/M.i0/
vi

1 // M.i0/ // †M.i0; i1/ // †2i1.p�1/C1M.i0/

and

S
pi0

// S // †M.i0/ // S1 :

For
' 2E0

2.M.i0; i1//D Ext0
M .2/.M�;M�=.p

i0 ;E
i1

p�1
//

we have

ı' D
hd0' � d1'

E
i1

p�1

i
2E1

2.M.i0//D Ext1
M .2/.M�;M�=p

i0/

and

ıı' D

�
p�i0

2X
iD0

.�1/id i
hd0' � d1'

E
i1

p�1

i�
2E2

2.S/D Ext2
M .2/.M�;M�/

where d i denote the differentials of the cobar complex

.��T /2k D �2kT �C1
ŠM

.�C1/

k
:
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The maps of ring spectra

T
q0

// KZŒ1=6�
ch0

// HQ

induce the following map of semi-cosimplicial spectra:

T
�^1 //
1^� //

1

��

T ^T
�^1^1 //
1^�^1 //
1^1^� //

q0^1

��

T ^T ^T

ch0ıq0^q0^1

��
T

�^1 //
q0^� // KZŒ1=6� ^T

�^1^1 //
ch0^�^1 //

ch0^q0^� //
HQ ^KZŒ1=6� ^T

Taking �2k.�/, and using [12, Theorem 2.7], we get the following map of semi-
cosimplicial abelian groups

.��
T
/2k

�

��

M
.1/

k

d0
//

d1
//

D �0

��

M
.2/

k

d0
//

d1
//

d2
//

�1

��

M
.3/

k

�2

��
.��

T;K ;H
/2k

.Mk/ZŒ1
6
�

d0
//

d1
//
D

ZŒ
1
6
�

d0
//

d1
//

d2
//
DQ

In .��
T;K ;H

/2k , we have

d1

�
D

Z
�

1
6

��� .Mk/Q �DQ

d2

�
D

Z
�

1
6

��� .M0/Q �DQ

Therefore, by modding out by these subgroups of DQ , we get a map:

.��
T
/2k

x�

��

M
.1/

k

d0
//

d1
//

D x�0

��

M
.2/

k

d0
//

d1
//

d2
//

x�1

��

M
.3/

k

x�2

��
.x��

T;K ;H
/2k

.Mk/Z
�

1
6

� d0
//

d1
//
D

Z
�

1
6

� d0
//

d1
//

d2
//
DQ=..M0/QC .Mk/Q/

The first coface maps of the semi-cosimplicial abelian group .x��
T;K ;H

/2k are given by

d0
D �; d1

D q0
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and the second ones by
d0
D �; d1

D d2
D 0

where � the canonical inclusion. The induced map in cohomology is the inclusion

�2W Ext2
M .2/.M�;M�/ ,!DQ=..D/ZŒ1=6�˚ .M0/Q˚ .Mk/Q/:

Hence we have
x��ıı' D p�i0E

�i1

p�1
.' � q0.'//

and the proof of the theorem is completed.

5 Examples at p D 5

Below are some computations of the q–expansions of the modular forms fi=j ;k repre-
senting f 0.ˇi=j ;k/ at p D 5. The q–expansions of the corresponding f–invariants, by
Theorem 4.2, are given by

f .ˇi=j ;k/D p�kE
�j
p�1

fi=j ;k.q/:

The computations were performed using the MAGMA computer algebra system, with
`D 2, as follows.

(1) A basis fF˛.q/g of q–expansions of forms in M24i satisfying Theorem 3.18 (3)
was generated.

(2) A basis fGˇ.q/g of q–expansions of holomorphic forms in

M24i�4j .�0.`//Z=5k

was generated.

(3) Basic linear algebra is used to calculate a basis of linear combinations
P
˛ a˛F˛

such that X
˛

a˛.F˛.q
2/�F˛.q//�

X
ˇ

bˇGˇ.q/ mod 5k :

5.1 Note The following modular forms are normalized so that the leading term has
coefficient 1. Therefore, they may differ from the f 0–invariants of ˇi=j ;k by a multiple
in Z�p .

f1=1;1 D�
2 D

q2C2�q3Cq7Cq12C2�q13Cq17C2�q18C2�q22C2�q23C3�q28C

q32C 4 � q33C q37C 2 � q42C 2 � q43C q47C 2 � q48C q52C 2 � q53C 2 �

Geometry & Topology Monographs, Volume 16 (2009)

http://magma.maths.usyd.edu.au/magma/


ˇ–family congruences and the f–invariant 27

q62C2�q63Cq67C3�q68C2�q73C2�q77C4�q78C2�q82C2�q83C

q92C 4� q93C q97C 3� q98CO.q100/ mod 5

f2=1;1 D�
4 D

q4C 4q5C 4q6C 2q9C 4q10C 3q14C 3q15C 3q16C 4q19C 2q20C 3q21C

2q24C2q26Cq29C3q30C2q34C4q35C3q36C3q39C2q44C3q45Cq51C

4q54C3q55Cq56C2q59C4q60C2q64C3q65C3q66C4q69C4q70C2q76C

q79C 4q80C 4q81C q84C 4q85C q86C 3q89C 3q90C q91C 4q94C 4q96C

4q99CO.q100/ mod 5

f3=1;1 D�
6 D

q6Cq7C2q8C3q9C3q11C2q12C2q13Cq16C4q17Cq18C4q19C2q22C

4q24C3q26C3q27C3q28C3q29C4q31C4q32C4q33C4q34Cq36Cq37C

4q38C3q39C4q41Cq42C4q44C4q46C4q48C4q49Cq51C2q53C4q54C

3q56C4q58Cq62C4q63C3q64C3q66C4q67C3q68Cq69C2q72C4q73C

q74C q76C 4q77C 3q78C 4q79C q82C 3q84C 2q86C q87C 4q88C 4q89C

3q91C q92C 2q93C 4q94C 3q96C 3q97C q98C 2q99CO.q100/ mod 5

f4=1;1 D�
8 D

q8C 3q9C 4q10C 2q11C q12C 4q13C 4q14C 3q15C 2q16C q19C 3q21C

4q22C2q24C4q26C4q27C4q28C4q29C3q31C4q33Cq34C4q35C3q37C

q38C 2q39C q43C 3q44C 2q47C 4q51C 2q52C q53C 3q54C q56C q57C

3q58C2q59C4q60C4q61C2q63C3q65C2q66Cq67C4q68C2q69C2q71C

q73C q74C 2q76C 2q78C 3q79C 2q81C 3q82C 4q85C 4q86C q87C q89C

3q90C q91C 3q92C 3q93C 3q94C 4q97C 3q98C 4q99CO.q100/ mod 5

f5=5;1 D�
10 D

q10C 2q15C q35C q60C 2q65C q85C 2q90CO.q100/ mod 5

f25=29;1 D�
50C 4�42E24

4
C 3�41E27

4
D

3q41C 2q42C 4q43C 4q44C 3q47C 2q48C 3q49C q50C q51C q52C 2q54C

q56C4q58Cq59C4q61C4q62Cq63C3q64Cq66C4q67C3q68C3q69Cq71C

q74C2q75C2q76C3q78C4q79C2q81C3q82C2q83C4q84C2q88C3q89C

4q91 C q92 C 2q94 C 2q96 C q98 C q102 C q104 C 4q106 C 3q107 C 3q108 C

2q109 C 4q111 C 4q112 C 4q114 C 3q116 C 2q118 C 2q119 C q121 C 4q122 C

3q123Cq124Cq126C2q127Cq129C4q132Cq134C4q136C4q138Cq139C

q141C 3q143C q144C q147C 3q149CO.q150/ mod 5

f25=5;2 D�
50 D

q50C10q55C15q60C5q65C5q70C12q75C15q80C20q85C10q90C5q95C

15q100 C 10q105 C 20q110 C 5q115 C 20q125 C 20q135 C 15q140 C 20q145 C

10q150CO.q151/ mod 25
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