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Absolute Galois groups viewed from small quotients
and the Bloch–Kato conjecture
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JÁN MINÁČ

In this survey we concentrate on the relations between the structure of small Galois
groups, arithmetic of fields, Bloch–Kato conjecture, and Galois groups of maximal
pro–p–quotients of absolute Galois groups.
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Dedicated to Professor Paulo Ribenboim with admiration, respect and friendship on
the occasion of his 80th birthday

1 Introduction

The second author fondly remembers how a number of years ago Paulo Ribenboim
helped him to escape to the West and immediately upon his arrival welcomed him with
beautiful lectures on the Galois group of the Pythagorean closure of Q. Ribenboim’s
lectures, writings, and research have influenced us strongly, and in particular this paper
reflects his influence on the choice of topics and our way of thinking about them. The
paper is a selective survey of results on small quotients of absolute Galois groups and
their relations with the Bloch–Kato conjecture. It is by no means a comprehensive
historical survey. Instead, it focuses only on some selective topics from the work of the
authors and their collaborators.

The main idea of our paper, and a key point we want to illustrate, is that already
relatively small quotients of absolute Galois groups encode substantial information
about them. Absolute Galois groups of fields play a central role in arithmetic, geometry,
and topology. Yet these profinite groups are mysterious and not much is known about
the fundamental problem of characterizing absolute Galois groups among all profinite
groups. Therefore, it is natural to investigate the maximal pro–p–quotients of absolute
Galois groups for a fixed prime p which are in general much simpler than the absolute
Galois groups. But even these pro–p–quotients are quite mysterious and one would
like to find more manageable, yet interesting, quotients of maximal pro–p–quotients
of absolute Galois groups. One extremely interesting family of such quotients are the
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32 Sunil K Chebolu and Ján Mináč

W –groups defined in Section 6. These are pro–p–groups of nilpotent class at most 2

and they have exponent dividing p2 . So they are rather simple groups in comparison
with the maximal pro–p–quotients of absolute Galois groups. Nevertheless, when the
primitive p th root of unity is contained in the base field, these groups carry complete
information about the entire Galois cohomology with Fp–coefficients of the absolute
Galois groups. This is a consequence of the Bloch–Kato conjecture which was proved
recently by Rost and Voevodsky with C. Weibel’s patch; see Voevodsky [33; 32] for an
overview of the proof, and other references (Haeasemeyer and Weibel [11]; Mazza,
Voevodsky and Weibel [19]; Rost [27; 28]; Suslin and Joukhovitski [30]; Voevodsky
[34]; and Weibel [35; 36; 37]), for the foundation and completion of the proof, and
some further exposition. Therefore, it is clear that the W –groups of fields are good
candidates for thorough investigation.

The plan of this survey paper is as follows. We begin with Šafarevič’s early work as
a motivation for studying the Galois module structure of p–power classes of fields.
This is interesting even in the case when we consider just cyclic extensions of degree
p . We show that the answer in this case already leads to a description of relatively
small pro–p–quotients of absolute Galois groups called T–groups. We then describe
some recent results on the Galois module structure of Galois cohomology. After that
we give a description of W –groups, their relationship with Witt rings of quadratic
forms, Galois cohomology, valuations, and the structure of maximal pro–p–extensions.
Here the Bloch–Kato conjecture plays a very important role, especially in the case
n D 2 which was established by Merkurjev and Suslin almost 30 years ago. At the
conclusion of the paper we touch upon our recent work with D. Benson and J. Swallow
in progress whose goal is to provide a refinement of the Bloch–Kato conjecture with
group cohomology, combinatorics, and Galois theoretic consequences.

2 Some work of Šafarevič

Šafarevič initiated the very interesting program of studying Galois groups of maximal p–
extensions. Let F be a field and Fsep the separable closure of F . Given a prime number
p , let F.p/ be the maximal p–extension over F . Thus F.p/ is the compositum in
Fsep of all Galois extensions K=F which have degree a power of p . Let GF .p/ WD

Gal.F.p/=F / be the Galois group of the maximal p–extension. In 1947 Šafarevič
showed that if Qp � F , ŒF W Qp � <1, and if F does not contain a primitive p th
root of unity, then GF .p/ is a free pro–p–group on ŒF WQp �C 1 generators. The key
part of Šafarevič’s argument was the determination of the number d.H / of minimal
generators for all open subgroups H of GF .p/. This number d.H / is equal to
dimFp

H=ˆ.H /, where ˆ.H /DH p ŒH;H � is the Frattini subgroup of H . By local
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Absolute Galois groups and the Bloch–Kato conjecture 33

class field theory it follows that d.H /D dimFp
K�=K�

p where K is the fixed field
of H and K� D Knf0g is the multiplicative group of K . We can calculate d.H /

explicitly in terms of invariants of the extension K=F . It turns out that

dimFp
K�=K�

p
� 1D ŒK W F �.dimFp

F�=F�
p
� 1/:

Thus

d.H /� 1D .d.GF .p//� 1/ŒK W F �

and therefore the number of generators d.H /, for each H open subgroup of GF .p/,
grow in the same way as if GF .p/ were a free pro–p–group. It was the insight of
Šafarevič that in fact this property is enough to prove that GF .p/ is a free pro–p–group.
Šafarevič did not use the convenient language of profinite groups as this terminology
was not available at that time. Similarly, the language of Galois cohomology appeared
much later, and all became wide-spread only after the appearance of Serre’s lecture
notes in 1964; see [29] for the latest edition of Serre’s book. In particular, now we can
rewrite the above equation as

dimFp
H 1.H;Fp/� 1D .dimFp

H 1.GF .p/;Fp/� 1/ŒGF .p/ WH �:

Let G be a pro–p–group with dimFp
H r .G;Fp/ <1 for 1 � r � n. Following H.

Koch we can set the nth partial Euler–Poincaré characteristic �n.G/ as

�n.G/D

nX
rD0

.�1/r dimFp
H r .G;Fp/:

Koch proved that if W is a system of open subgroups of G which form a neighbourhood
basis at 1 and �n.U / D ŒG W U ��n.G/ for all U in W , then the cohomological
dimension cd.G/ of G is at most n. Because cd.G/D 1 if and only if G is a free
pro–p–group, we see that Koch’s criterion for cd.G/ � n generalises Šafarevič’s
criterion for GF .p/ being a free pro–p–group.

3 The Bloch–Kato conjecture

We briefly recall the Bloch–Kato conjecture for the novice. This conjecture will be
used in this article at various places. Let F be a field that has a primitive p th root �p
of unity. Consider the Kummer sequence

1 �! �p �! F�sep
x!xp

�! F�sep �! 1
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34 Sunil K Chebolu and Ján Mináč

of modules over the absolute Galois group GF , where �p denotes the group of p th
roots of unity. The boundary map

H 0.GF ;F
�
sep/D F�!H 1.GF ;Fp/

in the induced long exact sequence in Galois cohomology extends naturally to a map

T .F�/!H�.GF ;Fp/;

where T .F�/ is the tensor algebra on F� and H�.GF ;Fp/ is the Galois cohomology
ring of GF . Bass and Tate verified that the Steinberg relations .a/[ .1� a/D 0 for
a¤ 0; 1 hold in H�.GF ;Fp/. Milnor K–theory K�.F / is a graded ring obtained by
taking the quotient of T .F�/ by the graded two-sided ideal generated by the elements
a˝ .1� a/, a 2 F�nf1g. Thus we get a map, known as the norm-residue map,

�WK�.F /=pK�.F / �!H�.F;Fp/

from the reduced Milnor K–theory to the Galois cohomology of F . The Bloch–Kato
conjecture claims that the norm-residue map � is an isomorphism. The case p D 2

was implicitly conjectured by J. Milnor in 1970; see [21]. The Milnor conjecture was
eventually proved by Voevodsky [33; 32]. For this spectacular work Voevodsky was
awarded a Fields medal in 2002. His work used some sophisticated machinery such as
motivic cohomology operations and the development of A1 –stable homotopy theory.
The proof of the Bloch–Kato conjecture is even more subtle. Although Voevodsky
announced a proof of the Bloch–Kato conjecture in 2003, not until September 2007
were all of the details for the Rost–Voevodsky proof made available by Voevodsky,
Rost and Weibel; see [27; 28; 30; 34; 35; 36; 37]. The work on the proof of the
Bloch–Kato conjecture and the resulting theorem has already had tremendous impact
on contemporary mathematics and is expected to have an even broader impact in the
coming years. Note that the Bloch–Kato conjecture gives a presentation of the rather
mysterious Galois cohomology H�.F;Fp/ by generators and relations. In particular,
it tells us that H�.F;Fp/ is generated by one dimensional classes.

4 Classical Hilbert 90 and absolute Galois groups

Šafarevič’s approach to GF .p/ made clear that the p th power class group F�=F�
p

is a very useful and fundamental object to study. In 1960 Faddeev began to study the
Galois module structure of p th power classes of cyclic extensions of local fields, and
during the mid 1960s he and Borevič established the Galois module structure of p th
power class groups of local fields using basic arithmetic invariants attached to these
extensions. (See Faddeev [10] and Borevič [5]).
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Absolute Galois groups and the Bloch–Kato conjecture 35

In the theory of quadratic forms, the exact sequence of square class groups associated
with the quadratic extension KDF.

p
a/, a2F�nF�

2 , char.F /¤ 2 has been playing
an important role. This sequence is

1! fF�
2
; aF�

2
g ! F�=F�

2 iF=K

�! K�=K�
2 NK=F

�! F�=F�
2 �
! B.F /;

where iF=K is induced by the inclusion map F!K and NK=F WK
�=K�

2
!F�=F�

2

is the map induced by the norm map K�! F� , and � is the homomorphism from
F�=F�

2 to the Brauer group B.F / defined by bF�
2
!
��

a;b
F

��
in B.F /, where��

a;b
F

��
is the class of the quaternion algebra�a; b

F

�
D
˚
f0Cf1i Cf2j Cf3ij j fl 2 F; i2

D j 2
D�1; ij D�j i

	
in the Brauer group of F . (See Lam [15, Theorem 3.2, p. 200].) Observe that this
sequence completely determines the size of K�=K�

2 provided we know the size
NK=F .K

�/=F�
2 . In fact, this sequence determines the structure of K�=K�

2 as
an F2ŒGal.K=F /�–module provided we know NK=F .K

�/=F�
2 and of course also

F�=F�
2 . Therefore it is desirable to extend the work of Borevič and Faddeev from

the case of local fields to general fields. Borevič, Faddeev and Šafarevič used local
class field theory to establish their results in the case of local fields. However, in Mináč
and Swallow [26] it was observed that it is possible to determine the structure of the
Fp ŒGal.K=F /�–module K�=K�

p in the case when a primitive p th root of unity is
contained in F using just Hilbert 90 in place of local class field theory. In Mináč,
Schultz and Swallow [22], the work of [26] was extended to all cyclic extensions K=F

of degree pn with no restriction on the base field. The remarkable feature of the final
result is that K�=K�

p can be written as a sum of cyclic modules over Fp ŒGal.K=F /�
of dimensions over Fp all powers of p with the possible single cyclic module exception
of dimension pmC 1, 0�m� n� 1.

As an example we formulate here the main result of [22] when the exceptional summand
does not occur. For the more complicated case when the exceptional summand does
occur, we refer the reader to [22]. Let F be any field. Consider a cyclic Galois
extension K=F with Galois group G DGal.K=F /D h�i, a cyclic group of order pn .
We set J DK�=K�

p . Then J has the obvious FpG –module structure.

Theorem 4.1 Assume that F does not contain any primitive p th root of unity. Then
the FpG –module J decomposes as

J Š Y0˚Y1˚ � � �˚Yn;

where Yi is a direct sum of cyclic FpG –modules of dimension pi .
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Moreover, the multiplicity of cyclic summands of dimension pi in Yi is completely
determined by the filtration of F�K�

p by norm groups

K�
p
�K�

p
NK=F .K

�/�K�
p

NKn�1=F .K
�
n�1/� � � � � F�K�

p

where, for each i D 0; 1; : : : n, Ki is the unique subfield of K which has dimension
pi over F . Indeed if

Yi D
L

I Cpi

where Cpi is the cyclic FpG –module of dimension pi , then the cardinality of I is just

dimFp

�
NKi=F .K

�
i /K

�p�ı�
NKiC1=F .K

�
iC1/

�
K�

p
;

where we set NKnC1=F .K
�
nC1

/ to be f1g. Further set ŒK�i �DKiK
�p
=K�

p and set
Hi D Gal.K=Ki/. Then we have Galois descent in the sense that ŒK�i �D J Hi — the
fixed elements of J under the action of Hi .

The results in the case when F contains a primitive p th root of unity are similar,
but technically more challenging due to the occurrence of the exceptional module
mentioned earlier.

These results are remarkable because of the absence of summands of dimensions not
equal to a power of p . (Except in the case of exceptional summands which have
dimension pmC1.) These results severely restrict possible small quotients of absolute
Galois groups. We shall illustrate this by describing a result from a recent paper by
Benson, Lemire and Swallow [3].

We call a pro–p–group R elementary abelian if it has the form RD
Q

I Cp , where Cp

is a cyclic group of order p , and I is some possibly infinite index set. We say that a
pro–p–group G is a T –group if G contains a maximal closed subgroup N , N ¤G ,
of exponent dividing p . Then N is a normal subgroup of G and the factor group
G=N acts naturally on N via conjugation. Furthermore, the subgroup N is uniquely
determined by G provided that G is neither an elementary abelian group of order
greater than p nor the direct product of an elementary abelian group and a nonabelian
group of order p3 of exponent p if p > 2, and the dihedral group of order 8 if pD 2.
Given any profinite group A with a closed normal subgroup B of index p , the factor
group A=Bp ŒB;B� is a T –group. Now suppose that E=F is a cyclic field extension
of degree p . We define the T –group of E=F to be TE=F WD GF=G

p
E
ŒGE ;GE �,

where GF and GE are absolute Galois groups of F and E respectively. (For the
benefit of topologists, in order to avoid a possible confusion, we remark that the name
“T-group” is not motivated by Kazhdan’s property (T), and in fact we do not know of any
connection between T-groups and groups with property (T) in Kazhdan’s sense.) We
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Absolute Galois groups and the Bloch–Kato conjecture 37

shall now classify those T–groups which are realisable as TE=F for fields containing
a primitive p th root of unity.

In order to illustrate the restrictions on those T–groups which are realisable as TE=F

for fields which contain a primitive p th root of unity we shall introduce a simple set
of invariants which determine T–groups up to isomorphism. We shall then see that
for p > 2 we obtain restrictions on possible invariants of T–groups which are TE=F

for suitable E=F . On the other hand there are no restrictions in the case p D 2. The
proof of these statements can be found in [3].

For a pro–p–group A, denote Z.A/ its center and Z.A/Œp� the elements of Z.A/ of
order dividing p . Let A.n/ be the nth group in the central series of A. Thus A.1/DA,
and A.nC1/ D ŒA.n/;A�. Here we always consider closed subgroups of A. Hence
A.nC1/ is the closed subgroup of A generated by commutators Œx;y�, x 2A.n/ , y 2A.
For a T –group A we define:

t1 D dimFp
H 1

�
Z.A/Œp�

Z.A/\A.2/
;Fp

�

ti D dimFp
H 1

�
Z.A/Œp�\A.i/

Z.A/\A.iC1/

;Fp

�
2� i � p

�Dmax
˚
i W 1� i � p;Ap

�A.i/
	

These invariants are convenient for describing the Fp ŒA=N �–module N associated
with our T –group A; see [3, Section 1]. We have

Proposition 4.2 For arbitrary cardinalities ti , i D 1; 2; : : : ;p , and � with 1��� p ,
the following are equivalent:

(1) The ti and � are invariants of some T –group.
(2) (a) If � < p , then t� � 1, and

(b) If �D p and ti D 0 for all 2� i � p , then t1 � 1.

Moreover, T–groups are uniquely determined up to isomorphism by these invariants.

Theorem 4.3 For p an odd prime, the following are equivalent.

(1) A is a T –group with invariants ti and � satisfying
(a) � 2 f1; 2g

(b) t2 D �� 1, and
(c) ti D 0 for 3� i < p .
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(2) AŠ TE=F for some cyclic extension E=F of degree p such that F contains a
primitive p th root of unity.

Now suppose p D 2. Then each T –group is isomorphic to TE=F for some cyclic
extension of degree 2.

It is interesting to note that these strong restrictions on possible T–groups occurring as
TE=F are consequences of the classical Hilbert 90 theorem which can now be viewed
as the Bloch–Kato conjecture in degree 1, as it just involves basic Kummer theory
which depends on Hilbert 90. For the realisation of given T–groups with invariants
described in our theorem one uses constructions of cyclic extensions E=F of degree p

with prescribed groups F�=F�
p and NE=F .E

�/=F�
p developed in Mináč, Schultz

and Swallow [22], which in turn uses results in Efrat and Haran [7] realising certain
semidirect products and free pro–p–products as absolute Galois groups. This theorem
provides restrictions on possible relations in GF .p/; see [3].

5 Higher Galois cohomology and the Bloch–Kato conjecture

In [22] it was shown that the classical theorem Hilbert 90 is the key for determining
the Fp ŒGal.E=F /�–module structure of E�=E�

p in the case of cyclic extensions of
degree pn . But E�=E�

p is also K1.E/=pK1.E/. On the other hand Merkurjev and
Suslin established in [20] an analogue of the Hilbert 90 theorem for Milnor K–theory
in degree 2. Further it turned out that the analogue of Hilbert 90 for higher Milnor
K–theory is essentially equivalent to the Bloch–Kato conjecture. This follows from
the work of Merkurjev, Suslin, Rost and Voevodsky. Therefore it was a natural idea
to extend results on Galois module structure of p–power classes to Galois module
structure of Kn.E/=pKn.E/ for any positive integer n. This was achieved in Lemire
et al [17] in the case when E=F is a cyclic extension of prime degree p and the
primitive p th root of unity �p is in F . (An extension of this work for the case of cyclic
extension of degree pn is work in progress.) Some of the main results are explained in
this section on the language of Galois cohomology as we freely use the Bloch–Kato
conjecture.

Let G be the Galois group of E=F . Write E D F. p
p

a/; a 2 F� and let .a/:.�p/ 2
H 2.F;Fp/ denote the cup product of .a/; .�p/ 2H 1.F;Fp/. For each n 2N set also:

‡1W dimFp

�
annH n�1.F;Fp/

.a/:.�p/=ann.a/
�

and
‡2W dimFp

H n�1.F;Fp/=annH n�1.F;Fp/
.a/:.�p/:
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Here H i.F;Fp/ D H i.GF ;Fp/ is the i th Galois cohomology, GF is the absolute
Galois group of F and ann is an abbreviation for the annihilator. Thus for example
annH n�1.F;Fp/

.a/:.�p/ is the kernel of the cup product

.a/:.�p/:�WH
n�1.F;Fp/!H nC1.F;Fp/:

Set U to be the absolute Galois group of E and consider H n.U;Fp/DH n.E;Fp/ as
an Fp ŒG�–module. In [17] we prove the following theorem. Our symbol cor below
denotes the corestriction map H n.E;Fp/!H n.F;Fp/ and res means the restriction
map resWH n.F;Fp/!H n.E;Fp/.

Theorem 5.1 If p > 2 and n 2N then

H n.E;Fp/ŠX1˚X2˚Y ˚Z;

where

(1) X1 is a trivial Fp ŒG�–module of dimension ‡1 , and

X1\ res H n.F;Fp/D f0g:

(2) X2 is a direct sum of ‡2 cyclic Fp ŒG�–modules of dimension 2.

(3) Y is a free Fp ŒG�–module of rank

dimFp
Im
�
corW H n.E;Fp/!H n.F;Fp/

�
=.a/:H n�1.F;Fp/:

(4) Z is a trivial Fp ŒG�–module of dimension

z D dimFp
H n.F;Fp/=..�p/H

n�1.F;Fp/C cor H n.E;Fp// and

Z � res.H n.F;Fp//:

We see in particular that there is no cyclic summand of dimension larger than 2 but
smaller than p .

A similar, but different theorem is valid in the case when pD 2. (See [17, Theorem 2].)
Our decomposition of G–modules H n.F;Fp/ are not canonical but they allow a
canonical equivalent reformulation. Let I be the augmentation ideal of Fp ŒG�. Then
from the analysis of the proof in Theorem 5.1, one sees that our theorem is equivalent
to the statements below. (Here we abbreviate H n.E;Fp/ as H n.E/.)

(1) For each 3� i � p; I i�1H n.E/\H n.E/G D Ip�1H n.E/.

(2) IH m.E/\H m.E/G D res.�p/:H m�1.F /C res corH m.E/.

(3) 0! ann.a/!H n�1.E/
.a/:�
�! H m.F /

res
�!H m.E/G

cor
�! .a/:ann.a; �p/! 0.
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As we mentioned earlier this work uses in an essential way the key ingredients of
the proof of the Bloch–Kato conjecture, namely Hilbert 90 and the exact sequence in
Milnor K–theory. However, in the case of nD 2, we do not need the recent proof but
we can use instead results from the mid-1980s: the seminal results of Merkurjev and
Suslin [20].

In the case when characteristic of F is p and G D Gal.E=F /D Z=pnZ is a cyclic
group of prime power order all Galois modules KmE=psKmE , s D 1; 2; : : : over
Z=psZŒG� were classified; see Bhandari et al [4] and Mináč, Schultz and Swallow [23].

These results and ideas were applied to the development of an analog of Schreier’s
formulas for the growth of the dimension of Galois cohomology over Fp in Labute et
al [14]. In Labute et al [13] applications to the characterization of Galois Demuškin
groups via Galois modules were obtained. (Demuškin groups are Poincaré groups of
cohomological dimension two, and Galois Demuškin groups are Poincaré groups which
are also Galois groups of maximal p–extensions.)

Recall now that for a pro–p–group G with finite cohomology groups H i.G;Fp/ for
0� i � n, the nth partial Euler–Poincaré characteristic �n.G/ is defined as

�n.G/D

nX
iD0

.�1/ihi.G/:

Suppose now that GDG.p/ for a field F containing a primitive p th root of unity, and
suppose G has finite rank. Having determined �n.G/, we have obtained a strengthening
of a result of Koch [12, Theorem 5.5]:

Theorem 5.2 [16, Corollary 2] Suppose that �p 2 F , and let n 2N . The following
are equivalent:

(1) cd.G/� n.

(2) �n.N /D p�n.G/ for all open subgroups N of G of index p .

(3) �n.V /D p�n.U / for all open subgroups U of G and all open subgroups V of
U of index p .

6 Galois theoretic connections

We will explain the role played by certain Galois groups called W –groups in arithmetic.
To set the stage, we begin with our notation.

Let F be a field of characteristic not equal to 2. We shall introduce several subexten-
sions of Fsep .
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Absolute Galois groups and the Bloch–Kato conjecture 41

� F .2/ = compositum of all quadratic extensions of F .

� F .3/ = compositum of all quadratic extensions of F .2/ that are Galois over F .

� Fq = compositum of all Galois extensions K=F such that ŒK W F � D 2n , for
some positive integer n.

All of these subextensions are Galois and they fit in a tower

F � F .2/ � F .3/ � Fq � Fsep:

We denote their Galois groups (over F ) as

GF �!Gq �!G
Œ3�
F
.D GF / �!G

Œ2�
F
�! 1:

Observe that G
Œ2�
F

is just
Q

i2I C2 , where I is the dimension of F�=F�
2 over F2 .

GF is the absolute Galois group of F . Although the quotients Gq are much simpler
than GF we are far from understanding their structure in general. F Œ3� and its Galois
group over F are considerably much simpler and yet they already contain substantial
arithmetic information of the absolute Galois group. The groups G

Œ3�
F
.DGF / are called

W –groups.

To illustrate this point, consider WF the Witt ring of quadratic forms; see [15] for the
definition. Then we have the following theorem.

Theorem 6.1 [25] Let F and L be two fields of characteristic not 2. Then WFŠWL

(as rings) implies that GF Š GL as pro–2–groups. Further if we assume additionally in
the case when each element of F is a sum of two squares that

p
�1 2 F if and only if

p
�1 2L, then GF Š GL implies WF ŠWL.

Thus we see that GF essentially controls the Witt ring WF and in fact, GF can be
viewed as a Galois theoretic analogue of WF . In particular, GF detects orderings of
fields. (Recall that P is an ordering of F if P is an additively closed subgroup of
index 2 in F� .) More precisely, we have:

Theorem 6.2 [24] There is a one-to-one correspondence between the orderings of a
field F and cosets f�ˆ.GF / j � 2 GFnˆ.GF /and �2D 1g. Here ˆ.GF / is the Frattini
subgroup of GF , which is just the closed subgroup of GF generated by all squares in
GF . The correspondence is as follows:

�ˆ.GF / �! P� D
˚
f 2 F� j �.

p
f /D

p
f
	
:
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This theorem was generalised considerably for detecting additive properties of mul-
tiplicative subgroups of F� in Mahé, Mináč and Smith [18]. In this paper (see [18,
Section 8]) it was shown that GF can be used also for detecting valuations on F . The
work on extending these ideas is in progress; see Chebolu, Efrat and Mináč [6] and
forthcoming papers.

Also in [1, Corollary 3.9] it is shown that GF Š GL if and only if k�.F / Š k�.L/.
Here k�.A/ denotes the Milnor K–theory (mod 2) of a field A. In particular, in [1,
Theorem 3.14] it is shown that if R is the subring of H�.GF ;F2/ generated by one
dimensional classes, then R is isomorphic to the Galois cohomology H�.GF ;F2/ of
F . Thus we see that GF also controls Galois cohomology and in fact H�.GF ;F2/

contains some further substantial information about F which H�.GF ;F2/ does not
contain. These results can be extended to the case when p > 2 and F contains a
primitive p th root of unity; see [6; 2; 3]. In summary, GF is a very interesting object.
On the one hand GF is much simpler than GF or Gq , yet it contains substantial
information about the arithmetic of F . In fact, consider the case when p > 2 and
F contains a primitive p th root of unity. Then let G D GF be the absolute Galois
group of F . The descending p–central series of G is defined inductively by G.1/DG ,
and G.iC1/ D .G.i//p ŒG.i/;G�, for i � 1: Thus G.iC1/ is the closed subgroup of G

generated by all powers hp and all commutators Œh;g�D h�1g�1hg , where h 2 G.i/

and g 2G . Then the fixed fields F .i/ of G.i/ are precisely analogue of fields

F D F .1/ � F .2/ � F .3/ � � � � � F .i/ � � � �

introduced above in the case p D 2 and i D 1; 2 and 3.

The special case of the main theorem in Efrat and Mináč [8] then states:

Theorem 6.3 For p > 2 and for G D GF as above, G.3/ is the intersection of all
normal subgroups N of G such that G=N is isomorphic to one of f1g, Cp2 , and Mp3

(the modular group of order p3 which is the unique nonabelian group of order p3 and
exponent p2 ).

The analogous result in the case p D 2 was discovered by Villegas [31] in a different
formalism. In [25, Corollary 2.18] this result was reformulated and reproved using the
descending 2–central sequence of GF . Namely, then G.3/ DG

.3/
F

is the intersection
of all open normal subgroups N of G such that G=N is isomorphic to f1g;C2;C4 , or
to the dihedral group of order 8. The main ingredients in the proofs of the above results
is the Bloch–Kato conjecture in degree 2 which was proved in [20]. The case p D 2

was the first breakthrough in the case of general fields made by Merkurjev who used
some K–theoretic calculations due to Suslin. For this particular case there is now an
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elementary proof available due to Merkurjev; see Elman, Karpenko and Merkurjev [9].
If p > 2, in the cohomology group H 2.Cp2 ;Fp/ we have elements not expressible as
sums of products of elements in H 1.Cp2 ;Fp/. To handle these elements, in [8] there
is a detailed consideration of the Bockstein homomorphism

BG WH
1.G;Fp/!H 2.G;Fp/:

In fact, in [8] not the full strength of Merkurjev–Suslin theorem was used. The essential
tool was the injectivity of the map

K2.F /=p K2.F /!H 2.F;Fp/:

In [6], the surjectivity of this map is used to obtain restrictions on presentation of
groups GF .p/ via generators and relations.

Let 1!R!S!G! 1; where GDGF .p/ with F as above, S a free pro–p–group
with minimal number of generators (see [12, Chapter 4]), and R is the subgroup of S

of relations in G . Then we have:

Theorem 6.4 ([6] for any p , [25] for p D 2.) Let S � S .2/ � S .3/ � � � � be the
p–descending series of S . Then we have

Rp ŒR;S �DR\S .3/:

Observe that for any minimal presentation of any pro–p–group G as above, we have
Rp ŒR;S � � R

T
S .3/ , as R � S .2/ . The equality in the case when G D GF .p/ is

the consequence of the surjectivity of the norm residue map

K2.F /=p K2.F /!H 2.GF .p/;Fp/:

which follows from the Merkurjev–Suslin theorem.

From the above theorem, one can deduce that if G is any pro–p–group such that
R� S .3/ , and G DGF .p/, then G is a free pro–p–group.

Example 6.5 Let G be a pro–p–group on n generators a1; a2; : : : ; an for n � 2

subject to relations ŒŒai ; aj �; ar �D 1 for all 1� i < j � n and 1� r � n. Then G is
not GF .p/ for any field F containing a primitive p th root of unity.

Chebolu, Efrat and Mináč, in [6] and forthcoming papers, consider further restrictions
on possible groups GF .p/ by exploring its quotients G

Œ3�
F
DGF .p/=GF .p/

.3/ and
close connections between properties of G

Œ3�
F

and the existence of nontrivial valuations
on F .
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We now outline a joint project with Benson and Swallow in which our goal is to obtain
a refinement of the Bloch–Kato conjecture. Associated to the field F , we have a natural
tower of subfields F .n/ of the separable closure Fsep defined as follows: F .1/ D F ,
F .2/ is the compositum of all cyclic extensions of degree p over F , and for n � 3,
F .n/ is the compositum of all cyclic extensions of degree p over F .n�1/ which are
Galois over F . We call this tower the filtration tower associated to F . We define (in
agreement with the notation we used above) the Galois groups

G
Œn�
F
WD Gal.F .n/=F / and G

.n/
F
WD Gal.Fsep=F

.n//;

which fit in a sequence 1!G
.n/
F
!GF !G

Œn�
F
! 1, where GF is the absolute Galois

group Gal.Fsep=F /. In [6] (see also [2]), we have shown that the decomposable part
of H�.G

Œ3�
F
;Fp/ — that is, the subalgebra of H�.G

Œ3�
F
;Fp/ generated by degree-one

elements over Fp — is isomorphic to H�.F;Fp/ under the inflation map. The impor-
tant question therefore is to determine how an indecomposable class in H�.G

Œ3�
F
;Fp/

decomposes under the various inflation maps along the filtration tower. By the Bloch–
Kato conjecture, we know that it decomposes completely into one-dimensional classes
when it goes all the way up to the separable closure. But what happens in between? A
precise knowledge of this gives a refinement of the Bloch–Kato conjecture. We have
shown (using the Bloch–Kato conjecture in degree 2!) that every indecomposable class
in H 2.G

Œn�
F
;Fp/ decomposes into one-dimensional classes when it goes to the next

level

H 2.G
ŒnC1�
F

;Fp/

under the inflation map. Thus we have obtained a second cohomology refinement of
the Bloch–Kato conjecture. The goal of our joint project with Benson and Swallow
is to understand this refinement of the Bloch–Kato conjecture for higher cohomology.
This is work in progress.
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partial Euler–Poincaré characteristics, J. Reine Angew. Math. 613 (2007) 147–173
MR2377133
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