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Realizing families of Landweber exact homology theories

PAUL G GOERSS

I discuss the problem of realizing families of complex orientable homology theories
as families of E1–ring spectra, including a recent result of Jacob Lurie emphasizing
the role of p–divisible groups.

55N22; 55N34, 14H10

A few years ago, I wrote a paper [10] discussing a realization problem for families of
Landweber exact spectra. Since Jacob Lurie [27] now has a major positive result in
this direction, it seems worthwhile to revisit these ideas.

In brief, the realization problem can be stated as follows. Suppose we are given a flat
morphism

gW Spec.R/ �!Mfg

from an affine scheme to the moduli stack of smooth 1-dimensional formal groups. Then
we get a 2–periodic homology theory E.R;G/ with E.R;G/0 ŠR and associated
formal group

G D Spf.E0CP1/

isomorphic to the formal group classified by g . The higher homotopy groups of
E.R;G/ are zero in odd degrees and

E.R;G/2n Š !
˝n
G

where !G is the module of invariant differentials for G . The module !G is locally free
of rank 1 over R, and free of rank 1 if G has a coordinate. In this case E.R;G/� D

RŒu˙1� where u 2E.R;G/2 is a generator. The fact that g was flat implies E.R;G/

is Landweber exact, even if G doesn’t have a coordinate.

Now suppose we are given a flat morphism of stacks

gW X �!Mfg:

Then for each affine open Spec.R/!X , we get a spectrum E.R;G/ and, because
there are no phantom maps between these spectra (see Hovey and Strickland [18]), we
get a presheaf O>

X
on X in the homotopy category with

O>X .Spec.R/!X /DE.R;G/:
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50 Paul G Goerss

A naı̈ve version of the realization problem is this: can this presheaf EX be lifted to a
presheaf (or sheaf) Otop

X
of E1–ring spectra? If so, how unique is this lift?

I call this naı̈ve because, at the very least, we want some hypotheses on X and the
morphism gW X �!Mfg . For example, we might want to specify that X be an
algebraic stack, or a Deligne–Mumford stack, and we might want to specify that the
morphism g be representable. Even having done this, I don’t suppose anyone expects a
positive answer in this generality; there are simply too many flat maps to Mfg . Indeed,
Lurie’s result in Theorem 4.9 below requires that g factor as

X
f // Mp.n/ // Mfg

where Mp.n/ is a moduli stack of p–divisible groups and f is appropriately étale.
As a consequence, we don’t just have a family of formal groups over X , but a very
special family of p–divisible groups: a much more rigid requirement. See Remark
4.10 for more on this point.

Nonetheless, the original problem has its allure and its motivation in stable homotopy
theory, and it’s worth remembering this. One flat map to Mfg is the identity map
Mfg!Mfg itself, and we could ask whether the realization problem can be solved
for all of Mfg . Put aside, for the moment, the fact that Mfg is not an algebraic stack,
let alone a Deligne–Mumford stack.

If the realization problem could be solved, we would have an equivalence

S0 '
�! holim

Mfg
Otop

fg

where S0 is the stable sphere and the homotopy limit is over the category of flat
morphisms Spec.R/!Mfg . We’d also get a descent spectral sequence

H s.Mfg; !
˝t /H) �2t�sS0:

By considering the Čech complex of the cover Spec.L/!Mfg , where L is the Lazard
ring, we have

ExtsMU�MU .†
2tMU�;MU�/ŠH s.Mfg; !

˝t /

and we would have a derived algebraic geometry version of the Adams–Novikov
spectral sequence.

Alas, Otop
fg probably doesn’t exist: we would have to use the fpqc–topology on Mfg

and, as I mentioned above, there are too many flat maps. Nonetheless, stable homotopy
theory often behaves as if Otop

fg exists. For example, the Hopkins–Ravenel chromatic
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Realizing families of Landweber exact homology theories 51

convergence theorem [33] and various chromatic fracture squares are predicted exactly
by the geometry of Mfg . A useful comparison chart is in Hopkins and Gross [16,
Section 2] and much of the algebra is expanded in the later sections of Goerss [9]

There are four sections below. The first two sections are background on formal groups
and Mfg . The third section makes a precise statement of the realization problem and
discusses the Hopkins–Miller theorem. This theorem states that the realization problem
has a positive answer for the moduli stack of generalized elliptic curves. The final
section discusses p–divisible groups and Lurie’s result.

This paper is a fleshed out version of a talk given at the conference New Topological
Contexts for Galois Theory and Algebraic Geometry at the Banff International Research
Station in March of 2008. The conference was organized by Andrew Baker and Birgit
Richter. I would like to thank the referee and the editors for careful proofreading of
this paper; any mistakes which remain are mine.

1 Cohomology theories and formal groups

Let’s begin with a discussion of how formal groups and their invariant differentials
arise in stable homotopy theory. The following is a slight generalization of the usual
notion of a 2-periodic cohomology theory.

1.1 Definition Let E�.�/ be a cohomology theory. Then E� is 2–periodic if

(1) the functor X 7!E�.X / is a functor to graded commutative rings;

(2) for all integers k , E2kC1 DE2kC1.�/D 0;

(3) E2 is a projective module of rank 1 over E0 ; and

(4) for all integers k , the cup product map .E2/˝k !E2k is an isomorphism.

Note that E2 is an invertible module over E0 and E�2 is the dual module. If E2

is actually free, then so is E2 D E�2 and a choice of generator u 2 E2 defines an
isomorphism E0Œu

˙1�Š E� . (The shift from E2 to E2 will be explained in a mo-
ment.) This happens in many important examples — complex K–theory is primordial.
However, there are elliptic cohomology theories for which E2 does not have a global
generator, so we insist on this generality.

From such cohomology theories we automatically get a formal group. Recall that if R

is a ring and I �R is an ideal, then the formal spectrum

Spf.R; I/D Spf.R/
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52 Paul G Goerss

is the functor which assigns to each commutative ring A the set of homomorphisms

f W R �! A

so that f .I/ is nilpotent. We have an isomorphism of functors

colim Spec.R=In/D Spf.R/:

In many cases, I is understood and dropped from the notation. Also, R and the I –adic
completion of R have the same formal spectrum, so we usually assume R is complete.
As a simple example, for Spf.ZŒŒx��/ we have I D .x/ and this functor assigns to A

the nilpotent elements of A.

If E� is a 2–periodic homology theory, then E0CP1 is complete with respect to the
augmentation ideal

I.e/
def
D zE0CP1 D Kerf E0CP1!E0.�/ g

and, using the H –space structure on CP1 , we get a commutative group object in
formal schemes

GE D Spf.E0CP1/:

This formal group is smooth and one-dimensional in the following sense. Define the
E0 –module !G by

!G D I.e/=I.e/2 Š zE0S2
ŠE2:

This module is locally free of rank 1, hence projective, and any choice of splitting of
I.e/! !G defines an homomorphism out of the symmetric algebra

SE0
.!G/ �! E0CP1:

which becomes an isomorphism after completion. For example, if E2 is actually free
we get a noncanonical isomorphism

E0CP1 ŠE0ŒŒx��:

Such an x is called a coordinate.

There is also a natural correspondence between morphisms of cohomology theories
and morphisms of formal groups.

Let  W D�.X /!E�.X / be a natural ring operation between two 2-periodic cohomol-
ogy theories. By evaluating at X D � we obtain a ring homomorphism f W D0!E0

and by evaluating at CP1 we obtain a homomorphism of formal groups

�W GE �! f �GD :
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The following result can be found in Kashiwabara [20] and Butowiez and Turner [4].
The notion of Landweber exactness is taken up below.

1.2 Proposition Let D� and G� be two Landweber exact 2-periodic cohomology
theories. Then the assignment

 7! .f; �/

induces a one-to-one correspondence between ring operations

 W D�.�/!E�.�/

and homomorphisms of pairs

.f; �/W .D0;GD/! .E0;GE/:

Furthermore,  is a stable operation if and only if � is an isomorphism.

1.3 Remark (Formal group laws) The standard literature on chromatic homotopy
theory, such as Adams [1] and Ravenel [32], emphasizes formal group laws. If E�.�/

is a two-periodic theory with a coordinate, then the group multiplication

GE �GE D Spf.E0.CP1 �CP1//! Spf.E0CP1/DGE

determines and is determined by a power series

xCF y D F.x;y/ 2E0ŒŒx;y��Š Spf.E0.CP1 �CP1/:

This power series is a 1–dimensional formal group law. With 2–periodic theories,
we can insist that the formal group law be in degree zero. For complex oriented
cohomology theories in general, the gradings become important.

Homomorphisms can also be described by power series. If G1 and G2 are two formal
groups with coordinates over a base ring R, then a homomorphism of formal groups
�W G1!G2 is determined by a power series �.x/ 2RŒŒx�� so that

�.xCF1
y/D �.x/CF2

�.y/

where F1 and F2 are the associated formal groups. The homomorphism � is an
isomorphism if �0.0/ is a unit.

1.4 Remark (Invariant differentials) We have defined the module !GE
as the

conormal module of the embedding

eW Spec.E0/! Spf.E0CP1/DGE

Geometry & Topology Monographs, Volume 16 (2009)



54 Paul G Goerss

defined by the basepoint. This definition extends to any formal group over a base ring
R. At first glance, this doesn’t look very invariant or very differential. We address
these points.

First, !G has the following invariance property. If �W G1!G2 is a homomorphism
of formal groups over a ring R, then we get an induced map

d�W !G2
! !G1

described locally as follows. If a formal group has a coordinate x , then I.e/�RŒŒx��

is the ideal of power series with f .0/D 0 and any element of !G can be written

f .x/C I.e/2 D f 0.0/xC I.e/2:

Then, writing �W G1!G2 as a power series we have

(1-1) d�.f .x/C I.e/2/D f .�.x//C I.e/2 D �0.0/f 0.0/C I.e/2:

Thus d� is multiplication by �0.0/.

Second, while the last formula looks slightly differential, but we can do better: !G is
naturally isomorphic to the module of invariant differentials on G . This can be defined
as follows. Let �G denote the module of continuous differentials on G ; for example,
if G has a coordinate x , then there is an isomorphism

�G ŠRŒŒx��dx:

There are then three maps

dp1; dm; dp2W �G!�G�G

induced by the two projections and multiplication. A differential � is invariant if

dm.�/D dp1.�/C dp2.�/:

Invariant differentials form an E0 –module; call this module x!GE
for the moment.

If G has a coordinate x , then x!G is the free R–module generated by the canonical
invariant differential

�G D
dx

Fy.x; 0/

where Fy.x;y/ is the partial derivative of the associated formal group law. It is an
exercise to calculate that if �W G1! G2 is a homomorphism of formal groups with
coordinate, then d�W x!G2

! x!G1
is determined by

(1-2) d�.�G2
/D �0.0/�G1

:
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Finally, when G has a coordinate, then we get an isomorphism

!G D I.e/=I.e/2! x!G

f .x/C I.e/2 7! f 0.0/�x :

This isomorphisms is natural in homomorphisms (by Equations (1-1) and (1-2)). In
particular, it doesn’t depend on the choice of coordinate and thus extends to the more
general case as well. Because of this we drop the notation x!G

2 The moduli stack of formal groups

Let Mfg be the moduli stack of formal groups: this is the algebraic geometric object
which classifies all smooth 1-dimensional formal groups and their isomorphisms. Thus,
if R is a commutative ring, the morphisms

GW Spec.R/ �!Mfg

are in one-to-one correspondence with formal groups G over R. Furthermore, the
2-commutative diagrams

Spec.S/
H

((QQQQQQQ

f

��

Mfg

Spec.R/
G

66mmmmmmm

correspond to pairs .f W R! S; �W H
Š // f �G /.

2.1 Remark Recall that schemes can be defined in at least two equivalent ways. First,
schemes are defined as locally ringed spaces .X;OX / which have an open cover, as
locally ringed spaces, by affine schemes. This is the point of view of Grothendieck
[12]. Equivalently, schemes can be defined as functors from rings to sets which are
sheaves in the Zariski topology and have an open cover, as functors, by functors of the
form

A 7! Rings.R;A/:
If X is a scheme, in the first sense, we get a scheme in the second sense by defining
X.R/ to the set of all morphisms of schemes

Spec.R/!X:

This is the point of view of Demazure and Gabriel [8]. It is the second definition that
generalizes well. A stack is then a sheaf of groupoids on commutative rings satisfying
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56 Paul G Goerss

an effective descent condition (see Laumon [24, Section 3]). For example, Mfg assigns
to each ring R the groupoid of smooth one-dimensional formal groups over Spec.R/.1

2.2 Remark A scheme is more than a sheaf, of course, in that it must have an open
cover by affine schemes. Similarly, we have algebraic stacks, which have a suitable
cover by schemes. Here is a short explanation.

A morphism M!N of stacks is representable if for all morphisms X !N with X

a scheme, the 2–category pull-back (or homotopy pull-back)

X �NM

is equivalent to a scheme. A representable morphism then has algebraic property P

(flat, smooth, surjective, étale, etc.) if all the resulting morphisms

X �NM!X

have that property.

A stack M is then called algebraic2 if

(1) every morphism Y !M with Y a scheme is representable; and

(2) there is a smooth surjective map qW X !M with X a scheme.

The morphism q is called a presentation. Note that an algebraic stack may have many
presentations; indeed, flexibility in the choice of presentations leads to interesting
theorems. See Neumann [31], for an example of this phenomenon. If the presentation
can be chosen to be étale, we have a Deligne–Mumford stack.

2.3 Remark The stack Mfg is not algebraic, in this sense, as it only has a flat
presentation, not a smooth presentation. If we define fgl to be the functor which
assigns to each ring R the set of formal group laws over R, then Lazard’s theorem
[25] says that

fglD Spec.L/

where L is (noncanonically) isomorphic to ZŒt1; t2; : : :�. The map

fgl �!Mfg

1As in [24, Section 2], we should really speak of categories fibered in groupoids, rather than sheaves
of groupoids — for f �g�G is only isomorphic to .gf /�G . However, there are standard ways to pass
between the two notions, so I will ignore the difference.

2The notion defined here is stronger than what is usually called an algebraic (or Artin) stack, which
requires a cover only by an algebraic space. Algebraic spaces are sheaves which themselves have an
appropriate cover by a scheme. Details are in [24].
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Realizing families of Landweber exact homology theories 57

which assigns a formal group law to its underlying formal group is flat and surjective,
but not smooth since it’s not finitely presented. This difficulty can be surmounted in
two ways: enlarge the notion of an algebraic stack to include flat presentations or note
that Mfg can be written as the 2-category inverse limit of a tower of the algebraic
stacks of “buds” of formal groups and is, thus, proalgebraic; see Smith [37].

2.4 Remark A sheaf in the fpqc–topology on Mfg is a functor F on the category of
affine schemes over Mfg which satisfies faithfully flat descent. Thus, for each formal
group G over R we get a set (or ring, or module, etc.)

F.R;G/D F.GW Spec.R/!Mfg/

and for each 2–commuting diagram

Spec.S/
H

((QQQQQQQ

f

��

Mfg

Spec.R/
G

66mmmmmmm

a restriction map F.S;H / ! F.R;G/. This must be a sheaf in the sense that if
qW S !R is faithfully flat, then there is an equalizer diagram

F.R;G/ // F.S; q�G/ //// F.S ˝R S;p�G/

where I have written p for the inclusion R! S ˝R S .

For example, define the structure sheaf Ofg to be the functor on affine schemes over
Mfg with

Ofg.R;G/DOfg.GW Spec.R/!Mfg/DR:

More generally, we consider module sheaves F over Ofg . Such a sheaf is called
quasicoherent if, for each 2–commutative diagram, the restriction map F.R;G/!
F.S;H / extends to an isomorphism

S ˝R F.R;G/Š F.S;H /:

This isomorphism can be very nontrivial, as it depends on the choice of isomorphism
�W H ! f �G which makes the diagram 2–commute.

A fundamental example of a quasicoherent sheaf is the sheaf of invariant differentials
! with

!.R;G/D !G
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58 Paul G Goerss

the invariant differentials on G . This is locally free of rank 1 and hence all powers
!˝n , n 2 Z, are also quasicoherent sheaves. The effect of the choice of isomorphism
in the 2–commuting diagram on the transition maps for !˝n is displayed in Equations
(1-1) and (1-2).

2.5 Remark Consider the 2–category pull-back

fgl�Mfg fgl

where fglD Spec.L/ is the functor of formal group laws. The pull-back is the functor
which assigns to each commutative ring the set of triples .F1;F2; �/ where F1 and
F2 are formal group laws and � is an isomorphism of their underlying formal groups.
Given that these formal groups have a chosen coordinate, the isomorphism � can be
expressed as an invertible power series �.x/D a0xC a1x2C � � � . Thus the pull-back
is the affine scheme on the ring

W DLŒa˙1
0 ; a1; : : :�:

The pair .L;W / forms a Hopf algebroid; that is, a groupoid in affine schemes. Fur-
thermore, the category of quasicoherent sheaves on Mfg is equivalent to the category
of .L;W /–comodules.

To get a functor in one direction, let F be a quasicoherent sheaf. Then

M D F.fgl!Mfg/

is an L–module. One of the two projections fgl�Mfg fgl! fgl shows

F.fgl�Mfg fgl!Mfg/ŠW ˝L M

and the other projection supplies the comodule structure map. I will say something
about how you pass from comodules to sheaves at the beginning of the next section.

It is here we see the flexibility of choosing the presentation. For example, if we work
localized at some prime p and consider the stack

Spec.Z.p//�Mfg
def
D Z.p/˝Mfg

then we could use the scheme of p–typical formal group laws as our cover and
obtain a different category of comodules closely related (up to issues of grading)
to .BP�;BP�BP /–comodules. This would then be equivalent to the category of
Z.p/˝ .L;W /–comodules as both would be equivalent to quasicoherent sheaves on
Z.p/˝Mfg .
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2.6 Remark (The height filtration) If G is a formal group over a field F we can
always choose a coordinate. If F is of characteristic p for some prime p , then the
homomorphism pW G!G can be written

p.x/D uxpn

C � � �

for some u ¤ 0 and 1 � n � 1. (If n D 1, p D 0W G ! G .) The number n is
an isomorphism invariant and, if F is separably closed, a complete invariant, by the
theorem of Lazard [25]. This notion of height can be extended to formal groups over
an arbitrary Fp –algebra or even to formal groups over schemes over Fp , but some care
is needed if G does not have a coordinate.

Consider a formal group G over an Fp –algebra R. If we let f W R ! R be the
Frobenius, we get a new formal group G.p/ D f �G . We then have a diagram

G

##GGGGGGGGG F
//

f

**
G.p/

��

// G

��
Spec.R/

f

// Spec.R/

where the square is a pull-back. The homomorphism F is the relative Frobenius. We
know that if

�W G!H

is a homomorphism of formal groups over R for which d� D 0W !H ! !G , there is
then a factoring

G
F

//

�

((
G.p/

 

// H

Then we can test d to see if we can factor further.3

For example, let � D pW G!G be p th power map. Then we obtain a factoring

G
F

//

p

((
G.p/

V1

// G

This yields an element
dV1 2 Hom.!G ; !G.p//

3See [9, Section 5] for a proof of these facts in this language.
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and we can factor further if dV1D 0. Since G is of dimension 1, !G.p/ Š !
˝p
G

; since
!G is invertible,

Hom.!G ; !
˝p
G
/D Hom.R; !˝p�1

G
/:

Thus dV defines an element4 v1.G/ of !˝p�1
G

. If v1.G/ D 0, then we obtain a
further factorization

G
F

//

p

**
G.p/

F .p/

//
G.p2/

V2

// G

and an element v2.G/ 2 !
˝p2�1
G

. This can be continued to define elements vn.G/ 2

!
˝pn�1
G

and G has height at least n if v1.G/D � � � D vn�1.G/D 0. We say G has
height exactly n if vn.G/ 2 !

˝pn�1
G

is a generator.

The elements vn.G/ defined in this way are isomorphism invariants. For example if G

is a formal group over an Fp algebra R, then

p.x/D u1xp
C � � � :

The element u1 is not an isomorphism invariant, but if �Ddx=Fy.x; 0/ is the standard
invariant differential, then

v1.G/D u1�
˝p�1

2 !
˝p�1
G

is an invariant.

Because of this invariance property, the assignment G 7! v1.G/ defines a global section
v1 of the sheaf !˝p�1 on the closed substack

Fp˝Mfg
def
DM.1/�Mfg

In this way we obtain a sequence of closed substacks

� � � �M.nC 1/�M.n/� � � � �M.1/�Mfg

where M.nC 1/ �M.n/ is defined by the vanishing of the global section vn of
!˝pn�1 . Thus M.n/ classifies formal groups of height at least n. The relative open

H.n/DM.n/�M.nC 1/

classifies formal groups of height exactly n. Lazard’s theorem, rephrased, says that
H.n/ has a single geometric point given by a formal group G of height n over any
algebraically closed field F . The pair .F ;G/ has plenty of isomorphisms, however, so
H.n/ is not a scheme; indeed, in the language of [24] it is a neutral gerbe; see [37].

4Over a base scheme which was not affine, v1.G/ is a global section.
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One way to think of neutral gerbes is as the classifying stack which assigns to any
commutative ring R the groupoid of torsors for some group scheme. In this case, we
can take the following group scheme. Let �n be some fixed formal group defined
over the finite field Fp and let Aut.�n/ be the group scheme which assigns to each Fp

algebra R the group of automorphisms of i��n over R. Here I write i W Fp!R for
the inclusion. Then H.n/ is the classifying stack for Aut.�n/.

This group scheme is quite familiar to homotopy theorists. To be specific, let �n be the
Honda formal group over Fp ; this is the p–typical formal group law with p.x/D xpn

.
Then Aut.�n/ is the affine group scheme obtained from the Morava stabilizer algebra
(See [32, Section 6.2]) and the group of Fpn –points of Aut.Fp; �n/ is the Morava
stabilizer group Sn . By definition, Sn is the automorphisms of �n over Fpn .

2.7 Remark (Landweber’s criterion for flatness) We will be concerned with mor-
phisms N !Mfg of stacks which are representable and flat. We defined this notion
above, but the Landweber exact functor theorem uses the height filtration to give an
easily checked criterion for flatness. This we now state, first giving a global formulation,
then giving a way to check this locally.

We begin by noting that the closed inclusion j WM.nC 1/!M.n/ is actually an
effective Cartier divisor. This means the following. Let O.n/ be the structure sheaf
of M.n/. Then the global section vn 2H 0.M.n/; !˝pn�1/ defines an injection of
sheaves

0!O.n/ vn //// !˝pn�1 :

This yields a short exact sequence

0! !˝�.p
n�1/

vn // O.n/ //// j�O.nC 1/! 0:

This identifies !˝�.p
n�1/ with the ideal defining the closed inclusion M.nC 1/ in

M.n/.

Now let f W N !Mfg be a representable morphism of stacks and let

N .n/DM.n/�Mfg N �N :

Then N .nC 1/ � N .n/ remains a closed inclusion and if f is flat, it remains an
effective Cartier divisor; that is,

0!ON .n/
vn // !˝pn�1
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remains an injection. Landweber’s theorem [23] now says that this is sufficient.5 That
is, suppose that for all primes p and all integers n, the morphism

vnW ON .n/! !˝pn�1

is an injection. Then f W N !M is flat. For proofs in the language of stacks see
Miller [30], Neumann [31], and Hollander [14]. The first of these (which has an extra
hypothesis) was inspired directly by Mike Hopkins, the second had input from Mark
Behrens.

Locally this can be unwound as follows. Let Spec.R/!Mfg be a formal group with
a coordinate x . Define u0 D p and recursively define elements un by

p.x/D unxpn

C � � �

modulo .p;u1; : : : ;un�1/. Then we can rewrite the equations above as saying that,
for all primes p and all n, the multiplication

unW R=.p;u1; : : : ;un�1/!R=.p;u1; : : : ;un�1/

is an injection.

Much of the proof of Landweber’s result is formal, using only that the closed inclusions
M.nC1/�M.n/ are effective Cartier divisors. But in the end, one must use something
about formal groups, and Neil Strickland has pointed out crucial ingredient turns out to
be Lazard’s uniqueness theorem in the following strengthened form.

2.8 Proposition Let G1 and G2 be two formal groups of the same height over an Fp

algebra R. Then there is a sequence of étale extensions

R�R1 �R2 � � � �

so that G1 and G2 become isomorphic over R1 D colim Rn .

This is what is actually proved by Lazard in [25]. See also [32, Appendix 2.2], and
[9, Theorem 5.25] for this result over arbitrary base schemes. There are additional
references in [9]. If RD F is field, the extension adjoins roots of certain separable
polynomials; hence if F is separably closed, G1 and G2 were already isomorphic.

5For proofs in the language of stacks, see Miller [30], Goerss [9], Neumann [31], and Hollander [14].
The first two of these were inspired directly by Mike Hopkins, the third had input from Mark Behrens.

Geometry & Topology Monographs, Volume 16 (2009)



Realizing families of Landweber exact homology theories 63

3 The realization problem

The Landweber Exact Functor Theorem was originally proved to provide homology
theories. This begins with periodic complex cobordism MUP� , which is obtained
from ordinary complex cobordism by adjoining an invertible element of degree 2:

MUP�X D ZŒu˙1�˝Z MU�X

The representing spectrum is _n†
2nMU , the Thom spectrum of the universal bundle

over Z�BU . Notice that the wedge summands keep track of the virtual dimension
over the individual components. We have

MUP0 DL and MUP0MUP DW:

Now suppose we are given a ring R and a formal group G with a coordinate over
R. The choice of coordinate defines a map of rings L!R and we can examine the
functor

X 7!R˝L MUP�X:

Landweber’s criterion guarantees that this functor yields a homology theory E.R;G/�.
A theorem of Hovey and Strickland [18] says that there are no phantom maps between
such theories and this implies that E.R;G/ is actually a homotopy commutative ring
spectrum. To get the multiplication map, for example, note that

E.R;G/0E.R;G/ŠR˝L W ˝L R

still satisfies Landweber’s criterion; hence the morphism

R˝L W ˝L R!R

which classifies the identity from G to itself defines the multiplication. This is as
natural as can be: we get a functor from formal groups with coordinate to the stable
homotopy category.

I’d next like to eliminate the reliance on the coordinate. A formal group need not have
a coordinate and, even if it does, I’d rather not choose one.

3.1 Remark (From comodules to sheaves) Suppose we are given an .L;W / co-
module M ; we’d like to produce a quasicoherent sheaf FM on Mfg . Let

GW Spec.R/!Mfg
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be flat. Consider the diagram with all squares pull-backs:

X1
////

��

X0

f //

��

Spec.R/

G
��

fgl�Mfg fgl //// fgl
q

// Mfg

Here I have written fgl for Spec.L/ and fgl�Mfg fgl for Spec.W /. The scheme X0

represents the functor which assigns to each commutative R–algebra A the set of
coordinates of G over A. If I could choose a coordinate for G , we’d get a noncanonical
isomorphism

X0 Š Spec.W ˝L R/:

Since such a choice is always possible locally, we conclude f is an affine morphism
of schemes. Since q is faithfully flat, so is f and to specify FM .R;G/ I need only
specify a quasicoherent sheaf on X0 together with descent data. This sheaf is the
pull-back of the sheaf on fgl determined by M ; the descent data is determined by the
comodule structure and the commutative diagram.

This elaborate description is a choice-free way of naming F.R;G/. If we can choose
a coordinate for G , then we get an isomorphism

FM .R;G/ŠR˝L M:

Now suppose Spec.R/!Mfg is flat and classifies the formal group G . Define a
homology theory by

E.R;G/�X D FMUP�X .R;G/

where FM is the sheaf associated to the comodule M . By Hovey and Strickland’s
result, quoted above, this is a homotopy commutative ring theory. Moreover we have

E.R;G/0 ŠR; E.R;G/2kC1 D 0;

the associated formal group is G and E.R;G/2k Š !˝k
G

. In this way, we get a
presheaf

E.�;�/W Flat=Mfg �! Ho.Spectra/

from the category of flat maps with affine source over Mfg to the stable homotopy
category realizing the graded structure sheaf O� D f!˝�g. Here and throughout we
assume ! is in degree 2, for topological reasons.

The realization problem asks to what extent the presheaf E.�;�/ can be lifted to the
category of E1 ring spectra.
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Since the geometry of Mfg is not so good — it is not an algebraic stack, for example
(see 2.3) — I don’t suppose anyone expects an affirmative answer to this question;
there are simply too many flat maps. (For further comments on this point, see the
introduction.) One way to cut down the class of morphisms is to restrict attention to
stacks with more structure. Over an algebraic stack, for example, we can work with the
smooth-étale topology (see Laumon [24, Section 12]), and over a Deligne–Mumford
stack we can work with the étale topology. Thus, I will formulate the question as
follows:

3.2 The realization problem Let M!Mfg be a representable and flat morphism
from an algebraic stack and let

OM� D f!˝�g

denote the graded structure sheaf on M in an appropriate topology. Is there a presheaf
of E1–ring spectra Otop

S
with an isomorphism of associated sheaves

.Otop
S
/� ŠOM�?

If so, how unique is this? What is the homotopy type of the space of all realizations?

3.3 Example Even in this generality, the problem might not have a general solution.
For example, we could take M D Spec.R/ and GW Spec.R/!Mfg to be any flat
map and the Zariski topology on Spec.R/. Then a positive solution to the realization
problem would say that representing spectrum E.R;G/ of the resulting Landweber
exact homology theory had the structure of an E1–ring spectrum. This is not very
likely. More on this point below in Remark 4.10.

There is a very important example of a positive solution of the realization problem: the
moduli stack of elliptic curves. Standard references on elliptic curves include [36] and
[21]; the stack was introduced in [6] and thoroughly studied in [7].

3.4 Remark (The moduli stack of elliptic curves) Let S be a scheme. Then an
elliptic curve over S

C
q //

S
e

oo

is a proper, smooth curve over S , with geometrically connected fibers of genus 1 and
with a given section e . Such curves have a natural structure as an abelian group scheme
S with e as the identity section. By taking a formal neighborhood of e in C we obtain
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a formal group Ce . There is a stack Mell (called M1;1 in the algebraic geometry
literature or genus 1 with 1 marked point) classifying elliptic curves; that is, morphisms

C W S !Mell

are in one-to-one correspondence with elliptic curves over S . This stack was produced
in Œ6� and is one of the original examples of a stack. The assignment C !Ce produces
a morphism of stacks

Mell �!Mfg

which is representable and flat and we could ask about the realization problem for
Mell . The sheaf ! on Mfg restricts to the sheaf on Mell which assigns to each
elliptic curve C over S the sheaf !C on S of invariant differentials of C . The global
sections

H 0.Mell ; !
˝t /

are the modular forms of weight t (and level one); they assemble into a graded ring.
From [5] we have an isomorphism

ZŒc4; c6; �
˙1�=.c3

4 � c2
6 D .12/3�/ŠH 0.Mell ; !

˝�/:

where c4 , c6 , and � are the standard modular forms of weight (degrees) 4, 6, and 12
respectively.

3.5 Remark (The compactification of Mell ) There is a canonical compactification
SMell of the moduli stack Mell . One way to construct this as follows.

Locally in S any elliptic curve is a nonsingular subscheme of P2 obtained from a
Weierstrass equation

y2
C a1xyC a3y D x3

C a2x2
C a4xC a6:

Any such curve is called a Weierstrass curve; more generally, we define a Weiertrass
curve C over a scheme S to be a pointed morphism of schemes

C
//
S

e
oo

which can be given Zariski-locally by a Weierstrass equation. (The marked point of a
Weierstrass curve is the point eD Œ0; 1; 0�). Although not every Weierstrass curve is an
elliptic curve, we do get an embedding

Mell �!MWeier

into a moduli stack of Weierstrass curves and the morphism Mell !Mfg factors
through this embedding:

Mell !MWeier!Mfg:
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This is a consequence of the fact that, for any Weierstrass curve C , the marked point
e D Œ0; 1; 0� is always smooth and the smooth locus on C has a natural structure as an
abelian group scheme with e as the identity.

The morphism MWeier!Mfg is not good, however, for two reasons: first, it is not flat
(see Rezk [34, Section 20]) and, second, the geometry of MWeier is not very good. For
example, because the automorphism group of the cusp curve y2 D x3 is not an étale
group scheme, this stack cannot be a Deligne–Mumford stack. (See [24], Théorème
8.1.) However, the sheaves !˝t yield sheaves on MWeier and a calculation from [34]
and [2] (following Deligne [5], of course) implies that there is an isomorphism of
graded rings

ZŒc4; c6; ��=.c
3
4 � c2

6 D .12/3�/ŠH 0.MWeier; !
˝�/:

A Weierstrass curve C is an elliptic curve and, hence, smooth if �.C / is invertible.
We define

SMell �!MWeier

to be the substack of curves C so that the sections c3
4
.C /, c2

6
.C /, and �.C / generate

!˝12
C

; that is, in formulas, we have:

.c3
4.C /; c

2
6.C /;�.C //D !

˝12
C

:

There is an inclusion Mell �
SMell ; however, we also allow other curves — for example,

we allow curves where c4.C / is invertible. In effect, we allow nodal, but not cusp,
singularities. Thus

y2
D x2.x� 1/

is allowed, but y2 D x3 is not.6 The resulting map

SMell �!Mfg

is flat and SMell has good geometry.

3.6 Remark (Étale maps to SMell ) To get some feel for the geometry of SMell ,
define the j–invariant

j W SMell �! P1

C 7�!Œc3
4.C /;�.C /�:

Then from [7, Section V1.1] we learn that j identifies P1 as the coarse moduli stack of
SMell — the scheme which most closely approximates the sheaf of isomorphism classes

6One important generalized elliptic now allowed is the Tate curve over ZŒŒq�� which is singular at
q D 0 ; see [7, Section VII]. The morphism Spf.ZŒŒq��/! SMell classifying the Tate curve identifies
Spf.ZŒŒq��/ as formal neighborhood of the singular generalized elliptic curves.
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of generalized elliptic curves.(See [7, Section I.8] for precise definitions.) Furthermore,
the fiber at any j –value is the classifying stack of a finite group scheme.

Note that while the geometry of the j–invariant is somewhat complicated, SMell is
still smooth of dimension 1. (See [7].) In particular, if Spec.R/! SMell is étale,
then R is smooth of dimension 1 over Z. There are classical examples of such affine
morphisms; see, for example, [19]. The one emphasized in usual sources ([36, Section
III.1]) is the Legendre curve

y2
D x.x� 1/.x��/

over ZŒ1=2�Œ�; .�2��/�1�. There is also the Deuring curve ( [36, Proposition A.1.3])

y2
C 3�Cxy D x3

over ZŒ1=3�Œ�; 1=.�3C1/�. Both the Legendre curve and the Deuring curve are smooth,
because we’ve inverted the discriminant �. A wide example of nonsmooth curves can
be obtained by base change from the curve

y3
Cxy D x3

C �

over ZŒ�; 1=.1C 2433�/�. (We invert 1C 2433� to make the singular locus of this
curve exactly � D 0.) An observation, which I learned from Hopkins, is that these
three curves form an affine étale cover of SMell .

Here is the famous positive answer to the realization problem; see Hopkins [15].

3.7 Theorem (Hopkins–Miller) The realization problem for

SMell �!Mfg

has a solution in the étale topology: there is a presheaf Otop
ell

of E1–ring spectra realiz-
ing the graded structure sheaf Oell� . The space of all realizations is path connected.

If we define tmf to be the homotopy global sections

tmf def
D holim
SMell

Otop
ell

where the homotopy limit is over all étale morphisms Spec.R/! SMell . There is a
descent spectral sequence

(3-1) H s. SMell ; !
˝t /H) �2t�stmf

and modular forms are, by definition,

H 0. SMell ; !
˝�/ŠH 0.MWeier; !

˝�/Š ZŒc4; c6; ��=.c
3
4 � c2

6 D .12/3�/:
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Hence topological modular forms. The question of which modular forms are homotopy
classes is quite interesting. For example, c6 and the discriminant � are not; however
2c6 and 24� are. See [15].

The calculation of ��tmf has been made completely. While not yet explicitly in print,
it can be easily deduced from [34] and [2], both of which follow [17]. There is a
curious feature of the answer: while the E2 term does not display any obvious duality,
the homotopy groups of tmf have a very strong duality very similar to Serre duality
for projective schemes. I know of no good explanation for this — the differentials
and extensions in the spectral sequence conspire in an almost miraculous fashion to
give the result — but there must be one in derived algebraic geometry. Compare also
Mahowald–Rezk duality [28].

3.8 Warning Note that topological modular forms have often been defined to be the
zero-connected cover of what I’ve called tmf. However, to even decide if this makes
sense, you need to calculate ��tmf and notice that the resulting answer takes a very
special form.

3.9 Example (Topological automorphic forms) Work of Mark Behrens and Tyler
Lawson [3] solve the realization problem for certain Shimura varieties, which are
moduli stacks of highly structured abelian varieties. The extra structure is needed
to get formal groups of higher heights. The problem is that the only abelian group
schemes of dimension one are the additive group Ga , the multiplicative group Gm , and
elliptic curves; from these we only get formal groups of height 1, 1, and 2. To get
formal groups of height greater than 2, one must use higher dimensional abelian group
schemes A, but then one must add enough structure so that the formal completion Ae

of A at the identity splits off a natural summand of dimension one. It takes a while
to define such objects — so I won’t do it here — but it turns out they’ve been heavily
studied in number theory. See, for example, [22].

3.10 Remark (The role of E1–ring spectra) Why do I (following my betters, no-
tably Mike Hopkins) insist on highly structured ring spectra in the realization problem?
There are two reasons.

(1) (Practical) Asking for E1–ring spectra allows for algebraic geometry (ie, ring
theoretic) input into the constructions.

(2) (Aesthetic) The stack Mell with its E1 structure sheaf becomes a central exhibit
in the world of derived algebraic geometry: we learn something inherently new
about elliptic curves.
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4 Lurie’s theorem and p–divisible groups

The formal group of an elliptic curve is part of a richer and more rigid structure. At
this point we pick a prime p and work over Spf.Zp/; that is, p is implicitly nilpotent
in all our rings. This has the implication that we will we working in the p–complete
stable category.

4.1 Definition Let R be a ring and G a sheaf of abelian groups on R–algebras. Then
G is a p–divisible group of height n if

(1) pk W G!G is surjective for all k ;

(2) G.pk/ D Ker.pk W G ! G/ is a finite and flat group scheme over R of rank
pkn ;

(3) colim G.pk/ŠG .

4.2 Remark (1) If G is a p–divisible group, then completion at e 2 G gives an
abelian formal group Gfor � G , not necessarily of dimension 1. The quotient G=Gfor

is étale over R; thus we get a natural short exact sequence

0!Gfor!G!Get! 0:

This is split over fields, but not in general.

(2) If C is a smooth elliptic curve, then C.p1/D colim C.pn/ is p–divisible of
height 2 with formal part of dimension 1.

(3) Formal groups need not be p–divisible groups as there is no reason to suppose

colim G.pk/ŠG

over a ring which is not local and complete. Nor can one assume that a formal group is
a subgroup a p–divisible group.

(4) (Rigidity) If G is a p–divisible group over a scheme S , the function which
assigns to each geometric point x of S the height of the fiber Gx of G at x is constant.
This is not true of formal groups, as the example of elliptic curves shows. Indeed, if G

is p–divisible of height n with Gfor of dimension 1, then the height of Gfor can be
any integer between 1 and n.

For a simple example of this phenomenon, take n> 1 and let

S D Spec.Z=.pn/Œu1�/
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and G the formal group obtained from the p–typical formal group law F with p–series

pF .x/D pxCF u1xp
CF xp2

:

Then if x is the point given by the maximal ideal .p;u1/, Gx has height 2; however,
if x is point given the ideal .p;u1�1/, then Gx has height 1. This example is closely
related to the Johnson–Wilson theory E.2/� . It is not at all clear that this formal group
has anything to do with a p–divisible group. See, however, [13], where the authors do
have some success at the prime 3.

4.3 Example (p–divisible groups and localization) The following example, which I
learned from Charles Rezk, shows that p–divisible groups arise naturally in homotopy
theory.

Let E DEn be a Morava E–theory; this is a 2–periodic theory with a noncanonical
isomorphism

E0 DW .Fpt /ŒŒu1; : : : ;un�1��

and whose formal group is a universal deformation of a height n–formal group. (See
Examples 4.11 and 4.12 below for more on deformations.) Since E0 is complete

G DGE D Spf.E0CP1/

is a p–divisible group of height n. Indeed,

map.CP1;E/'map.colim BCpk ;E/' lim map.BCpk ;E/

and, by applying �0 we get

Spf.E0CP1/Š colim Spec.E0BCpk /D colim G.pk/:

When we apply the localization functor Ln�1 DLE.n�1/ , we have

map.CP1;Ln�1E/ Ln�1 map.CP1;E/oo // Ln�1 map.BCpk ;E/

yielding
G

Ln�1E
�! colim Spec.�0Ln�1 map.BCpk ;E//

as the inclusion of the formal part of a p–divisible group. This map is not an isomor-
phism; indeed, the rank of

G
Ln�1E

.p/

over �0Ln�1E is pn�1 while the rank of

Spec.�0Ln�1 map.BCp;E//

is pn . This last group scheme is the p–torsion in the p–divisible group.
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Dealing with examples such as this is one of the deeper technical aspects of the original
Hopkins–Miller proof of the existence of tmf.

4.4 Definition Let Mp.n/ be the moduli stack of p–divisible groups of height n

and with dim Gfor D 1.

4.5 Remark The stack Mp.n/ is not an algebraic stack, but rather proalgebraic. This
can be deduced from the material in the first chapter of Messing [29].

4.6 Remark There is a morphism of stacks:

Mp.n/ �!Mfg

G 7�!Gfor

By definition, there is a factoring of this map as

Mp.n/ �! U.n/ �!Mfg

through the open substack of formal groups of height at most n. It is worth noting
right away that the map Mp.n/! U.n/ doesn’t have a section. See Remark 4.2.

4.7 Remark (The geometry of Mp.n/) This stack is something of an mysterious
object, despite years of work by many people. Basic references include [29]. As an
example of what is known, it has one geometric point (ie, isomorphism class of an
algebraically closed field) for each integer h, 1� h� n, given by the p-divisible group

Gh D �h � .Z=p
1/n�h:

Here �h is a formal group of height h and Z=p1 is the colimit of the étale group
schemes

Z=pn
D Spec.F Œx�=.xpn

�x//:

The morphism Mp.n/! U.n/ is then surjective on geometric points, but it is far from
being an isomorphism. For example, the automorphism group of Gh is

Aut.�h/�Gln�h.Zp/:

4.8 Remark The morphism Mp.n/!Mfg is not representable. This follows from
the statement about automorphisms in the previous remark, but let’s go into some detail.
Consider the two-category pull-back

PH
//

��

Mfg.n/

��
Spec.R/

H
//// Mfg
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where H is a formal group. By definition, PH is the functor which assigns to each
commutative ring A, the groupoid of triples .f;G; �/ where f W R!A is a ring map,
G is a p–divisible group of height n over A and �W Gfor! f �H is an isomorphism.
Put another way, PH .A/ is the groupoid sheaf of extensions

(4-1) 0! f �H !G!Get! 0

over A. Isomorphisms fix f �H , but not Get . If PH was actually equivalent to a
scheme, then a short exact sequence of the form (4-1) would have no automorphisms,
but this is evidently not the case. To be specific, let RD xFp be the algebraic closure
of Fp and let �h be a formal group of height h, 1� h< n over xFp . Then there is a
split extension

0! �h! �h � .Z=p
1/n�h

! .Z=p1/n�h
! 0:

There are no maps from .Z=p1/n�h to �n ; therefore, the automorphisms of this
extension are Gln�h.Zp/.

We now can state Lurie’s realization result [27]. Since we are working over Zp , one
must take care with the hypotheses of here: the notions of algebraic stack and étale
must be the appropriate notions over Spf.Zp/.

4.9 Theorem (Lurie) Let M be an algebraic stack equipped with an étale morphism

M �!Mp.n/:

Then the realization problem for the composition

M �!Mp.n/ �!Mfg

has a canonical solution; that is, the space of all solutions is connected and has a
preferred basepoint.

4.10 Remark This theorem directly confronts the conundrum of Example 3.3. We
can use this result to realize a Landweber exact theory as an E1 ring spectrum only if
the associated formal group is the formal part of p–divisible group. This is a strong
hypothesis. It works, for example, for p–complete K–theory, but not evidently for the
p–completed analog of Johnson–Wilson theories E.n/� . See Remark 4.2 (4).

There is a deeper point, which I have put off discussing until now. The homotopy
groups E� of an E1–ring spectum E support more structure than that of a graded
commutative ring. In particular, the operad action maps

.E†n/C ^†n
E^n

!E
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have induced maps in homotopy, which give rise to power operations in E� . This has
a significant impact on the realization problem for if gW Spec.R/!Mfg is a flat map
classifying a formal group G , there is no particular reason to suppose the geometry of
the formal group would specify the structure of the power operations. However, if g

factors
Spec.R/ // Mp.n/ // Mfg

these power operations should be specified by the subgroup structure of the p–divisible
group.

4.11 Example (Serre–Tate theory) As an addendum to this theorem, Lurie points
out the morphism �WM!Mp.n/ is étale if it satisfies the Serre–Tate theorem; thus,
for example, we recover the Hopkins–Miller Theorem 3.7, at least for smooth elliptic
curves.7

To state the Serre–Tate theorem we need the language of deformation theory. Let M
be a stack over Mp.n/ and A0=F be an M–object over a field F , necessarily of
characteristic p since we are working over Spf.Zp/. Recall that an Artin local ring
.R;m/ is a local ring with nilpotent maximal ideal m. If qW R! F be a surjective
morphism of rings, then a deformation of A0 to R is an M–object A over R and a
pull-back diagram

A0
//

��

A

��
Spec.F/ // Spec.R/

Deformations form a groupoid functor DefM.F ;A0/ on an appropriate category of
Artin local rings. The Serre–Tate theorem holds if the evident morphism

DefM.F ;A0/ �! DefMp.n/.F ; �A0/

is an equivalence. This result holds for elliptic curves, but actually in much wider
generality (see [29]).

4.12 Remark (Deformations of p–divisible groups) The deformation theory of
p–divisible groups and formal groups is well understood and a simple application of
Schlessinger’s general theory [35]. For formal groups, this is Lubin–Tate theory [26].
If � is a formal group of height n over a perfect field F , then Lubin–Tate theory says
that the groupoid-valued functor DefMfg.F ; �/ is discrete; that is, the natural map

DefMfg.F ; �/! �0DefMfg.F ; �/

7Lurie [27] suggests an argument for completing the proof of the Hopkins–Miller Theorem, once we
know the realization result for the open substackMell of smooth elliptic curves.
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is an equivalence. Furthermore, �0DefMfg.F ; �/ is prorepresented by a complete local
ring R.F ; �/; that is, there is a natural isomorphism

�0DefMfg.F ; �/Š Spf.R.F ; �//:

A choice of p–typical coordinate for the universal deformation of � over R.F ; �/
defines an isomorphism

W .F/ŒŒu1; : : : ;un�1��ŠR.F ; �/

where W .�/ is the Witt vector functor.

A similar result holds for p–divisible groups. Let G be a p–divisible group over an
algebraically closed field F . Then we have split short exact sequence

0!Gfor!G!Get! 0:

Since F is algebraically closed, there is an isomorphism

(4-2) Get Š .Z=p
1/n�h

where h is the height of Gfor . Since Get has a unique deformation up to isomorphism,
by the definition of étale, a choice of isomorphism (4-2) now identifies deformations
of G as extensions

0!Hfor!H ! .Z=p1/n�h
! 0

where Hfor is a deformation of Gfor . The exact sequence of sheaves of groups

0! Zn�h
!Qn�h

! .Z=p1/n�h
! 0

now identifies the isomorphism class of extension as an element in

Hom.Zn�h;Hfor/:

Thus we conclude that the groupoid-valued functor DefMp.n/.F ;G/ is discrete and
�0DefMp.n/.F ;G/ is prorepresented by

R.F ; �/ŒŒt1; : : : ; tn�h��ŠW .F/ŒŒu1; : : : ;uh�1; t1; : : : ; tn�h��:

Note that this is always a power series in n� 1 variables. Similar results hold for
perfect fields by Galois descent.

Using this remark it is possible to give a local criterion for when a morphism of stacks
M!Mp.n/ is étale. It is in this guise that Lurie’s theorem appears in [3].

4.13 Remark The proof of Theorem 4.9 has two large steps. The first is to define
and prove the existence of an analog of the stack M appropriate for derived algebraic
geometry — which can be thought of as algebraic geometry with E1–ring spectra as the
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basic object. This yields a stack .M;Otop/ where the structure sheaf is now a sheaf of
E1–ring spectra. The second is to show that the resulting algebraic object .M;Otop/ is
the realization required; that is, to construct an isomorphism .M;Otop

� /Š .M;OM�/.
For this, there must be some homotopy theoretic input; this is the local Hopkins–Miller
theorem. This says that the Lubin–Tate theory E.F ; �/ obtained from the deformations
of a height n–formal group over a perfect field F is an E1–ring spectrum and the
space of all E1–structures is contractible (see Goerss and Hopkins [11]).
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[7] P Deligne, M Rapoport, Les schémas de modules de courbes elliptiques, from: “Mod-
ular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp,
Antwerp, 1972)”, Lecture Notes in Math. 349, Springer (1973) 143–316 MR0337993

[8] M Demazure, P Gabriel, Groupes algébriques. Tome I: Géométrie algébrique,
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