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The construction of E1 ring spaces
from bipermutative categories

J P MAY

The construction of E1 ring spaces and thus E1 ring spectra from bipermutative
categories gives the most highly structured way of obtaining the K–theory commu-
tative ring spectra. The original construction dates from around 1980 and has never
been superseded, but the original details are difficult, obscure, and slightly wrong.
We rework the construction in a much more elementary fashion.

18C20, 18D10, 18D50, 19D23, 55P48

Introduction

Bipermutative categories give the most important input into multiplicative infinite loop
space theory. The classifying space of a permutative category is an E1 space. We
would like to say that the classifying space of a bipermutative category is equivalent to
an E1 ring space. That is a deeper statement, but it is also true.

My first purported proof of this passage, in [11], was incorrect. It was based on a
nonexistent E1 operad pair. I wrote the quite difficult paper [16] to correct this.
Although the correction is basically correct, there are two rather minor errors of detail
in [16] and the paper is quite hard to read. Fixes for the errors were in place in the
early 1990’s, but were never published.1 While writing the prequel [17], I rethought
the technical details and saw that the easier fix leads to quite elementary ideas that
make the harder fix unnecessary. I will give the details here, since they substantially
simplify [16]. In a sense the change is trivial. The minor errors referred to above only
concern considerations of basepoints, and I will redo the theory in a way that allows
the basepoints to take care of themselves, following [17, 1.4]. This changes the ground
categories of our monads to ones made up of unbased spaces, and the change trivializes
the combinatorial descriptions of the relevant monads.

1The more substantial fix is purely combinatorial and was given to me by Uwe Hommel in the early
1980’s. That correction was submitted to JPAA, where [16] appeared, in 1986. The editors declined to
publish it since the correction was relatively minor and was unreadable in isolation. The introduction of
[4] exaggerated the errors in [16], which helped spur this simplified reworking.
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Since the treatment of basepoints is so crucial, we state our conventions right away.
We consider both based and unbased spaces in Sections1 and 2. We work solely with
unbased spaces in Sections 3–13; we alert the reader to a relevant change of notations
that is explained at the start of Section 3. We also fix the convention that when we say
that a map is an equivalence, we mean that it is a weak homotopy equivalence.

In fact, the mistakes had nothing to do with bipermutative categories. As I will recall,
my work [9; 16] and that of Woolfson [23] includes two different and entirely correct
ways of constructing .F

R
F /–spaces from bipermutative categories. This is quite

standard and, by now, quite elementary category theory. By pullback, .F
R

F /–spaces
are .yG

R
yC /–spaces, where yG

R
yC is the category of ring operators associated to an E1

operad pair .C ;G /. The minor errors concerned the construction of .C ;G /–spaces,
that is, E1 ring spaces, from .yG

R
yC /–spaces. With the details here, that construction

is now also mainly elementary category theory.

The diagram in Figure 1 will serve as a guide to the revised theory. It expands the top
two lines of the diagram from [12] that we focused on in the prequel [17, 0.1].

PERM CATS

��

BIPERM CATS

��
F �CATS

B

��

.F
R

F /�CATS

B

��
F �SPACES

��

.F
R

F /�SPACES

��
yC �SPACES

��

OO

.yG
R
yC /�SPACES

��

OO

. yC ; yG /�SPACES

��

OO

C �SPACES

OO

.C ;G /�SPACES

OO

E1 SPACES E1 RING SPACES

Figure 1: Guiding diagram
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The intermediate pairs of downwards pointing arrows are accompanied by upwards
pointing arrows, as we will explain, but our focus is on the downwards arrows, whose
bottom targets are the inputs of the additive and multiplicative black box of the prequel
[17]. We shall work mainly from the bottom of the diagram upwards, and the following
list of sections may help the reader follow the logic.

1. Operads, categories of operators, and F–spaces
2. Monads associated to categories of operators
3. The comparison between C–spaces and yC–spaces
4. Pairs of operads and pairs of categories of operators
5. Categories of ring operators and their actions
6. The definition of . yC ; yG /–spaces
7. The monad xJ associated to the category J D yG

R
yC

8. The comparison of . yC ; yG /–spaces and J –spaces
9. Some comparisons of monads
10. The comparison of .C ;G /–spaces and . yC ; yG /–spaces
11. Permutative categories in infinite loop space theory
12. What precisely are bipermutative categories?
13. The construction of .F

R
F /–categories from bipermutative categories

14. Appendix A. Generalities on monads
15. Appendix B. Monads and distributivity

We review the input of additive infinite loop space theory in Sections 1-3, which largely
follow May and Thomason [20]. The central concept is that of the category of operators
yC constructed from an operad C . This gives a conceptual intermediary between
Segal’s F–spaces, or �–spaces, and E1 spaces. We recall this notion in Section 1,
and we discuss monads associated to categories of operators in Section 2. A key point
is to compare monads on the categories of based and unbased spaces. We give based
and unbased versions of the parallel pair of arrows relating F–spaces and yC–spaces
in Section 1 and Section 2. Departing from [20], we give an unbased version of the
parallel pair of arrows relating C–spaces and yC–spaces in Section 3. The comparison
uses the two-sided monadic bar construction that was advertised in [17, Section 8] and
used in [20], but with simplifying changes of ground categories as compared with those
used in [20].

We then give a parallel review of the input of multiplicative infinite loop space theory,
largely following [16]. Here we have three pairs of parallel arrows, rather than just
two, and we need the intermediate category of . yC ; yG /–spaces that is displayed in
Figure 1. This category has two equivalent conceptual descriptions, one suitable for
the comparison given by the middle right pair of parallel arrows and the other suitable
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for the comparison given by the bottom right pair of parallel arrows. The equivalence
of the two descriptions is perhaps the lynchpin of the theory.

We recall the precise definition of an action of one operad on another and of one
category of operators on another in Section 4. We introduce categories of ring operators
and show that there is a category of ring operators J D yG

R
yC associated to an operad

pair .C ;G / in Section 5. Actions of J specify the .yG
R
yG /–spaces of Figure 1. We

also elaborate the comparison of F–spaces with yC–spaces given in Section 1 to a
comparison of .F

R
F /–spaces with J –spaces in Section 5. That gives the top right

pair of parallel arrows in Figure 1.

We define . yC ; yG /–spaces in Section 6. They are intermediate between J –spaces and
.C ;G /–spaces, being less general than the former and more general than the latter. To
compare these three notions, we work out the structure of a monad xJ whose algebras
are the J –spaces in Section 7. This is where the theory diverges most fundamentally
from that of [16]. We define xJ on a ground category that uses only unbased spaces,
thus eliminating the need for all of the hard work in [16]. This change also leads to
considerable clarification of the conceptual structure of the theory.

We use this analysis to construct the middle right pair of parallel arrows of Figure 1,
comparing . yC ; yG /–spaces to J –spaces, in Section 8. We use it to compare monads on
the ground category for J –spaces and on the ground category for . yC ; yG /–spaces in
Section 9. This comparison implies the promised equivalence of our two descriptions of
the category of . yC ; yG /–spaces. Using our second description, we construct the bottom
right pair of parallel arrows of Figure 1, comparing .C ;G /–spaces to . yC ; yG /–spaces,
in Section 10. This comparison is just a multiplicative elaboration of the comparison
of C–spaces and yC–spaces in Section 3.

The theory described so far makes considerable use of general categorical results about
monads and, following Beck [3], about how monads are used to encode distributivity
phenomena. These topics are treated in Appendices A and B.

With this theory in place, we recall what permutative and bipermutative categories
are in Section 11 and Section 12. Some examples of bipermutative categories will be
recalled in the sequel [18]. There are several variants of the definition. We shall focus
on the original precise definition in order to relate bipermutative categories to E1 ring
spaces most simply, but that is not too important. It is more important that we include
topological bipermutative categories, since some of the nicest applications involve
the comparison of discrete and topological examples. In line with this, all categories
throughout the paper are understood to be topologically enriched and all functors and
natural transformations are understood to be continuous. We sometimes repeat this for
emphasis, but it is always assumed.
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We explain how to construct E1 spaces from permutative categories in Section 11
and how not to construct E1 ring spaces from bipermutative categories in Section 12.
We recall one of the two correct passages from bipermutative categories to .F

R
F /–

categories in Section 13. Applying the classifying space functor B D jN.�/j, we
obtain .F

R
F /–spaces, from which we can construct E1 ring spaces.

There is a more recent foundational theory analogous to that reworked here, which is
due to Elmendorf and Mandell [4]. As recalled in the prequel [17], their work produces
(naive) E1 symmetric spectra, and therefore commutative symmetric ring spectra,
from (a weakened version of) bipermutative categories. Most importantly, they show
how to construct algebra and module spectra as well as ring spectra from categorical
data.2 However, their introduction misstates the relationship between their work and
the 1970’s work. The 1970’s applications all depend on E1 ring spaces and not just
on E1 ring spectra. That is, they depend on the passage from bipermutative categories
to E1 ring spaces, and from there to E1 ring spectra. Such applications, some of
which are summarized in the sequel [18], are not accessible to foundations based on
diagram ring spectra. We reiterate that a comparison is needed.

1 Operads, categories of operators, and F–spaces

We review the input data of additive infinite loop space theory, since we must build
on that to describe the input data for multiplicative infinite loop space theory. We first
recall the definition of a category of operators D and the construction of a category of
operators yC from an operad C . We then recall the notion of a D–space for a category
of operators D , and finally we show how to compare categories of D–spaces as D
varies. Aside from the correction of a small but illuminating mistake, this material is
taken from [20], to which we refer the reader for further details.

Recall that F denotes the category of finite based sets nD f0; 1; : : : ; ng, with 0 as
basepoint, and based functions. The category F is opposite to Segal’s category � [21],
and F–spaces are just �–spaces by another name. Let … �F be the subcategory
whose morphisms are the based functions �W m �! n such that j��1.j /j � 1 for
1 � j � n, where jS j denotes the cardinality of a finite set S . Such maps are
composites of injections (��1.0/ D 0) and projections (j��1.j /j D 1 for 1 � j �

n). The permutations are the maps that are both injections and projections. For an
injection �W m �! n, define †� �†n to be the subgroup of permutations such that3

2In work in progress with Vigleik Angeltveit, we define algebras and modules on the E1 space level,
which is completely new, and we elaborate the theory of this paper to give a comparison between E1
rings, modules, and algebras of spaces and of spectra.

3This is a slight correction of [20, 1.2], the need for which was observed in [16, page 11].
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�.Im�/ D Im� . We shall later make much use of the subcategory ‡ � … whose
morphisms are the projections.4 Note that 0 is an initial and terminal object of … and
of F , giving a map 0 between any two objects, but it is only a terminal object of ‡ .

Definition 1.1 A category of operators is a topological category D with objects
nDf0; 1; : : : ; ng, n�0, such that the inclusion …�!F factors as the composite of an
inclusion …�D and a surjection "W D �!F , both of which are the identity on objects.
We require the maps D.q;m/ �!D.q;n/ induced by an injection �W m �! n to be
†�–cofibrations. A map �W D �! E of categories of operators is a continuous functor
� over F and under …. It is an equivalence if each map �W D.m;n/ �! E .m;n/ is
an equivalence.

Recall that we understand equivalences to mean weak homotopy equivalences. More
details of the following elementary definition are given in [20, 4.1]; see also Notations
4.5 below. The cofibration condition of the previous definition is automatically satisfied
since the maps in question are inclusions of components in disjoint unions. As in [17],
we require the 0th space of an operad to be a point.

Definition 1.2 Let C be an operad. Define a category yC by letting its objects be the
sets n for n� 0 and letting its space of morphisms m �! n be

yC .m;n/D
a

�2F .m;n/

Y
1�j�n

C .j��1.j /j/:

When nD 0, this is to be interpreted as a point indexed on the unique map m �! 0
in F . Units and composition are induced from the unit id 2 C .1/ and the operad
structure maps 
 . If the C .j / are all nonempty, yC is a category of operators. The
inclusion of … is obtained by using the points �DC .0/ and id2C .1/. The surjection
to F is induced by the projections C .j / �! �.

Remark 1.3 There is a unique operad P such that P.0/ and P.1/ are each a point
and P.j / is empty for j > 1. The category yP is …. There is also a unique operad
N such that N .j / is a point for all j � 0. Its algebras are the commutative monoids,
and yN DF .

Remark 1.4 There is a trivial operad Q �P such that Q.0/ is empty (violating our
usual assumption), Q.1/ is a point, and Q.j / is empty for j > 1. The category yQ is
‡ . Some of our definitions and constructions will be described in terms of categories
of operators, although they also apply to more general categories which contain ‡ but
not …, or which map to F but not surjectively.

4‡ is Greek Upsilon and stands for unbased; we have discarded the injections from … , keeping only
the surjections. The injections correspond to basepoint insertions in …–spaces fX ng .
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Definition 1.5 Let D be a category of operators. A D–space Y in T is a continuous
functor D �! T , written n 7! Yn . It is reduced if Y0 is a point. It is special if the
following three conditions are satisfied.

(i) Y0 is aspherical (equivalent to a point).

(ii) The maps ıW Yn �! Y n
1

induced by the n projections ıi W n�! 1, ıi.j /D ıi;j ,
in ‡ are equivalences.

(iii) If �W m �! n is an injection, then �W Xm �!Xn is a †�–cofibration.

It is very special if, further, the monoid �0.Y1/ is a group. A map f W Y �!Z of D–
spaces is a continuous natural transformation. It is an equivalence if each fnW Yn�!Zn

is an equivalence.

Except for the very special notion, the definition applies equally well if we only require
‡ �D and do not require the map to F to be a surjection.

Definition 1.6 Let D ŒT � denote the category of D–spaces in T .

An F–space structure on a …–space Y encodes products. The canonical map �nWn�!1
that sends j to 1 for 1� j �n prescribes a map Y0�!Y1 when nD0 and a canonical
n–fold product Yn�!Y1 when n> 0. When Y is special, which is the case of interest,
this product induces a monoid structure on �0.Y1/, and similarly with F replaced
by a general category of operators. The cofibration condition (iii) is minor, and a
whiskering construction given in [20, Appendix B] shows that it results in no loss of
generality: given a Y for which the condition fails, we can replace it by an equivalent
Y 0 for which the condition holds. In fact, the need for this condition and for the more
complicated analogues used in [16] will disappear from the picture in the next section.

For a based space X , there is a …–space RX that sends n to the cartesian power
X n and in particular sends 0 to a point; RX satisfies the cofibration condition if the
basepoint of X is nondegenerate. The category … encodes the operations that relate
the powers of a based space. The specialness conditions on Y state that its underlying
…–space behaves homotopically like RY1 .

There is an evident functor L0 from …–spaces to based spaces that sends Yn to Y1 .
It was claimed in [20, 1.3] that L0 is left adjoint to R, but that is false. There is a
unique map 0 �! 1 in …, and, since .RX /0 is a point, naturality with respect to this
map shows that for any map of …–spaces Y �!RX , the map Y1 �! .RX /1 DX

must factor through the quotient Y1=Y0 . The left adjoint L to R is rather the functor
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that sends Y to Y1=Y0 . In the applications, Y is often reduced, and we could restrict
attention to reduced D–spaces at the price of quotienting out by Y0 whenever necessary.

Defining LY D Y1=Y0 , we have the adjunction

(1-7) …ŒT �.LY;X /ŠT .Y;RX /:

This remains true for special …–spaces and nondegenerately based spaces.

There is a two-sided categorical bar construction

B.Y;D ;X /D jB�.Y;D ;X /j;

where D is a small topological category, X W D �! T is a covariant functor, and
Y W D �!T is a contravariant functor [10, Section 12]. If O is the set of objects of
D , then the space of q–simplices is

Y �O D �O � � � �O D �O X

or, more explicitly, the disjoint union over tuples of objects ni in O of

Ynq
�D.nq�1; nq/� � � � �D.n0; n1/�Xn0

:

The faces are given by the evaluation maps of Y , composition in D , and the evaluation
maps of X . The degeneracies are given by insertion of identity maps. This behaves
just like the analogous two-sided bar constructions of [17, Sections 8–9], and has the
same rationale. As there, we prefer to ignore model categorical considerations and
use various bar constructions to deal with change of homotopy categories in this paper.
The following result is [20, 1.8]. When specialized to "W yC �!F , it gives the upper
left pair of parallel arrows in Figure 1.

Theorem 1.8 Let �W D �! E be an equivalence of categories of operators. When
restricted to the full subcategories of special objects, the pullback of action functor
��W E ŒT � �!D ŒT � induces an equivalence of homotopy categories.

Sketch proof Via � and the composition in E , each E .�;n/ is a contravariant functor
D �!T ; via the composition of E , each E .m;�/ is a covariant functor E �!T .
For Y 2D ŒT �, define

.��Y /n D B.E .�;n/;D ;Y /:
This gives an extension of scalars functor ��W D �!E . Notice that ��Y is not reduced
even when Y is reduced. The following diagram displays a natural weak equivalence
between Y and ����Y .

Y B.D ;D ;Y /
B.�;id id/ //"oo ��B.E ;D ;Y /D ����Y:
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Its left arrow has a natural homotopy inverse �. Similarly, for Z 2 E ŒT �, the following
composite displays a natural weak equivalence between ����Z and Z .

���
�Z D B.E ;D ; ��Z/

B.id;�;id/ //B.E ;E ;Z/
" //Z:

The categorically minded reader will notice that these maps should be viewed as the
unit and counit of an adjunction fattened up by the bar construction.

While the functor �� takes us out of the subcategory of reduced objects, we could
recover reduced objects by quotienting out .��Y /0 . For our present emphasis, all we
really care about is the mere existence of the functor �� , since our goal is to create
input for the infinite loop space machine that we described in [17, Section 9]. Thus the
distinction is of no great importance. However, it is thought provoking, and we show
how to eliminate it conceptually in the next section.

2 Monads associated to categories of operators

We are going to change our point of view now, since the change here in the one operad
case will illuminate the more substantial change in the two operad case. We recall the
following general and well-known result in the form that we gave it in [16, 5.7]. It
works in greater generality, but the form given there is still our focus here. Since this
by now should be standard category theory known by all algebraic topologists, we shall
not elaborate the details. We usually write � and � generically for the product and
unit of monads.

Construction 2.1 Let D be a topological category and let „ be a topologically
discrete subcategory with the same objects. Let „ŒU � denote the category of „–spaces
(functors „ �! U ) and let D ŒU � denote the category of D–spaces (continuous
functors D �!U ). We construct a monad D in „ŒU � such that D ŒU � is isomorphic
to the category of D–algebras in „ŒU �. For an object n2„ and a „–space Y , .DY /n
is the categorical tensor product (or left Kan extension)

D.�;n/˝„ Y:

More explicitly, it is the coequalizer displayed in the diagram`
�Wq!m D.m;n/�Yq

// //
`

m D.m;n/�Ym
//D.�;n/˝„ Y;

where the parallel arrows are given by action maps „.q;m/�Yq �! Ym and composi-
tion maps D.m;n/�„.q;m/�!D.q;n/. Then DY is a D–space (and in particular
a „–space) that extends the „–space Y . If Y is a D–space, the inclusion of „ in
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D induces a map DY �!D ˝D Y Š Y that gives Y a structure of D–algebra, and
conversely.

The point to be emphasized is that we can use varying subcategories „ of the same
category D , giving monads on different categories that have isomorphic categories of
algebras. In the previous section, we considered a category of operators D and focused
on „ D …. Then Construction 2.1 gives the monad D on the category …ŒT � that
was used in [20]. In particular, when D D yC , it gives the monad denoted yC there.
We think of these as reduced monads. Their construction involves the injections in …,
which encode basepoint identifications.

However, it greatly simplifies the theory here if, when constructing a monad associated
to a category of operators D , we switch from … to its subcategory ‡ of projections
and so eliminate the need for basepoint identifications corresponding to injections. We
emphasize that we do not change D , so that we still insist that it contains …. With this
switch, Construction 2.1 specializes to give an augmented monad DC on the category
‡ŒU �. In particular, when D D yC , it gives a monad yCC . The following definitions
and results show that we are free to use DC instead of D for our present purposes;
compare Remark 3.11 below.

Definition 2.2 Let D be a category of operators. A D–space Y in U is a continuous
functor D �!U , written n 7! Yn . It is reduced if Y0 is a point. It is special if the
following two conditions are satisfied.

(i) Y0 is aspherical (equivalent to a point).

(ii) The maps ıW Yn �! Y n
1

induced by the n projections ıi W n�! 1, ıi.j /D ıi;j ,
are equivalences.

It is very special if, further, the monoid �0.Y1/ is a group. A map f W Y �!Z of D–
spaces is a continuous natural transformation. It is an equivalence if each fnW Yn�!Zn

is an equivalence.

Definition 2.3 Let D ŒU � denote the category of D–spaces in U .

For purposes of comparison, we temporarily adopt the following notations for the
categories of algebras over the two monads that are obtained from D by use of
Construction 2.1.

Definition 2.4 Let D be a category of operators.
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(i) Let DCŒ‡;U � denote the category of algebras over the monad on ‡ŒU � asso-
ciated to D .

(ii) Let DŒ…;T � denote the category of algebras over the monad on …ŒT � associ-
ated to D .

In fact, we have two other such categories of algebras over monads in sight. One is
DCŒ‡;T �, which is isomorphic to DŒ…;T � and to the category of D–algebras in
T . The other is DŒ…;U �, which is isomorphic to DCŒ‡;U � and to the category of
D–algebras in U .

The situation here is very much like that discussed in [17, Section 4]. If we have an
action of D on a ‡–space Y , then the maps 0 �! n of … � D , together with a
choice of basepoint in Y0 , give the spaces Yn basepoints. The injections in … also
give the unit properties of the products on a D–space Y . Using ‡ and U rather than
… and T means that we are not taking the basepoints of the Yn and the analogues of
insertion of basepoints induced by the injections in … as preassigned.

The following result is analogous to [17, 4.4].

Proposition 2.5 Let D be a category of operators, such as yC for an operad C .
Consider the following four categories.

(i) The category D ŒU � of D–spaces in U .

(ii) The category DCŒ‡;U � of DC–algebras in ‡ŒU �.

(iii) The category D ŒT � of D–spaces in T .

(iv) The category DŒ…;T � of D–algebras in …ŒT �.

The first two are isomorphic and the last two are isomorphic. When restricted to reduced
objects (Y0 D �), all four are isomorphic. In general, the forgetful functor sends
D ŒT � isomorphically onto the subcategory of D ŒU � that is obtained by preassigning
basepoints to 0th spaces Y0 and therefore to all spaces Yn .

We have the analogue of Theorem 1.8, with the same proof.

Theorem 2.6 Let �W D �! E be an equivalence of categories of operators. When
restricted to the full subcategories of special objects, the pullback of action functor
��W E ŒU � �!D ŒU � induces an equivalence of homotopy categories.
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3 The comparison between C–spaces and yC–spaces

To begin with, let us abbreviate notations from the previous section. Let us write
V D ‡ŒU � for the category of ‡–spaces. This category plays a role analogous to U .
We then write DŒV �DDCŒ‡;U � for a category of operators D . From here on out,
we shall always use augmented monads rather than reduced ones, and we therefore
drop the C from the notations. This conflicts with usage in the prequel [17] and in all
previous work in this area, but hopefully will not cause confusion here. We will never
work in a based context in the rest of this paper.

Now specialize to D D yC . Our change of perspective simplifies the passage from yC–
spaces to C–spaces of [20, Section 5]. For an unbased space X , define .RX /n DX n ,
with the evident projections. For an ‡–space Y , define LY D Y1 . Since we have
discarded the injection 0 �! 1 in …, there is no need to worry about the distinction
between reduced and unreduced ‡–spaces, and we have the adjunction

(3-1) V .LY;X /ŠU .Y;RX /:

Here the counit of the adjunction is the identity transformation LR �! Id, and the
unit ıW Y �! RLY is given by the maps ıW Yn �! Y n

1
. The first of the following

observations is repeated from [20, 5.2–5.4], and the second follows by inspection. The
reader may wish to compare the second with the analogous but more complicated result
[20, 5.5], which used … and T instead of ‡ and U .

Notations 3.2 A morphism  in F is effective if  �1.0/ D 0; thus the effective
morphisms in … are the injections, including the injections 0W 0 �! n for n� 0. An
effective morphism  is ordered if  .i/ <  .j / implies i < j . Let E �F denote
the subcategory of objects fng and ordered effective morphisms  .

Lemma 3.3 Any morphism � in F factors as a composite  ı � , where � is a
projection and  is effective, uniquely up to a permutation of the source of  . If
 W m �! n is effective, there is a permutation � 2 †m such that  ı � is ordered.
If  is ordered, then  ı � is also ordered if and only if � 2 †. / � †m , where
†. /D†r1

� � � � �†rn
, rj D j 

�1.j /j.

Lemma 3.4 For an ‡–space Y , . yC Y /0 D Y0 and, for n� 1,

. yC Y /n D
a

 2E .m;n/

� Y
1�j�n

C .j �1.j /j/

�
�†. / Ym:
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The following analogues of [20, 5.6–5.8] are now easy. Since we have performed no
gluings along injections, at the price of retaining factors C .0/ in the description of
yC Y , no cofibration conditions are required.

Lemma 3.5 Assume that C is †–free, in the sense that each C .j / is †j–free. If
f W Y �! Y 0 is an equivalence of ‡–spaces, then so is yCf .

Recall the monad C U
C on U from [17, 4.1]. In line with the conventions at the

beginning of this section, we abbreviate notation to C in this paper, so that

(3-6) CX D
a

m�0

C .m/�†m
X m:

Here and below, we must remember that the empty product of spaces is a point. For
m� 0, �m is the unique effective morphism m�! 1 (which is automatically ordered),
and the following result is clear.

Lemma 3.7 Let X 2 U . Then L yC RX � . yC RX /1 D CX , and the natural map
ıW yC RX �!RL yC RX DRCX is an isomorphism.

Lemma 3.8 Assume that C is †–free. If Y is a special ‡–space, then so is yC Y ,
hence yC restricts to a monad on the category of special ‡–space.

Proof Applying Lemma 3.5 to the horizontal arrows in the commutative diagram

yC Y
yC ı //

ı
��

yC RLY

Š ı
��

RL yC Y
RL yC ı

//
RL yC RLY

we see that its left vertical arrow is an equivalence.

We can now compare yC–spaces in V to C–spaces in U in the same way that we
compared the analogous categories of based spaces in [20, page 219]. We use the
two-sided monadic bar construction of [8], the properties of which are recalled in [17,
Section 8]. We recall relevant generalities relating monads to adjunctions in Appendix
A. We use properties of geometric realization proven in [8] and the following unbased
analogue of [8, 12.2], which has essentially the same proof.
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Lemma 3.9 For simplicial objects Y in the category V , there is a natural isomorphism
�W j yC Y j �! yC jY j such that the following diagrams commute.

jY j
j�j //

� !!CC
CC

CC
CC

j yC Y j

�

��
yC jY j

and j yC yC Y j
j�j //

yC�ı�
��

j yC Y j

�

��
yC yC jY j �

// yC Y

If .Y; �/ is a simplicial yC–algebra, then .jY j; j�j ı ��1/ is a yC–algebra.

Theorem 3.10 If C is †–free, then the functor R induces an equivalence from the
homotopy category of C–spaces to the homotopy category of special yC–spaces.

Proof Lemma 3.7 puts us into one of the two contexts discussed in general categorical
terms in Proposition 14.3. Let X be a C–space and Y be a yC–space. By (iii) and (iv)
of Proposition 14.3, R embeds the category of C–spaces as the full subcategory of the
category of yC–spaces consisting of those yC–spaces with underlying ‡–space of the
form RX . By (i) and (ii) of Proposition 14.3, CL is a yC–functor and we can define a
functor ƒW yC ŒU � �! C ŒU � by

ƒY D B.CL; yC ;Y /:

By Corollaries 14.4 and 14.5, together with general properties of the geometric realiza-
tion of simplicial spaces proven in [8], we have a diagram

Y B. yC ; yC ;Y /
ı //"oo B.RCL; yC ;Y /ŠRƒY

of yC–spaces in which the map " is a homotopy equivalence with natural homotopy
inverse � and the map ı D B.ı; id; id/ is an equivalence when Y is special. Thus the
diagram displays a natural weak equivalence between Y and RƒY . When Y DRX ,
the displayed diagram is obtained by applying R to the analogous diagram

X B.C;C;X /
Š //"oo B.CL; yC ;RX /DƒRX

of C–algebras, in which " is a homotopy equivalence with natural inverse �.

Remark 3.11 In [20], the focus was on the generalization of the infinite loop space
machine of [8] from C–spaces in T to yC–spaces in T . For that purpose, it was
essential to use the approximation theorem and therefore essential to use the monads
in T and …ŒT � that are constructed using basepoint type identifications. It is that
theory that forced the use of the cofibration condition Definition 1.5 (iii). However, we
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are here only concerned with the conversion of yC–spaces to C–spaces, and for that
purpose we are free to work with the simpler monads on U and V D ‡ŒU � whose
algebras are the C–spaces and yC–spaces in U . From the point of view of infinite
loop space machines, we prefer to convert input data to C–spaces and then apply the
original machine of [8] rather than to generalize the machine to yC–spaces.

4 Pairs of operads and pairs of categories of operators

With this understanding of the additive theory, we now turn to the multiplicative theory.
We first recall some basic definitions from [16, Section 1] since they are essential to
understanding the details. However, the reader should not let the notation obscure the
essential simplicity of the ideas. We are just parametrizing the structure of a ring space,
or more accurately rig space since their are no negatives, and then generalizing from
operations on products X n to operations on Yn , where, when Y is special, Yn looks
homotopically like Y n

1
.

The category F is symmetric monoidal (indeed, bipermutative) under the wedge
and product. On objects, the operations are sum and product interpreted by ordering
elements in blocks and lexicographically. That is, the set m _ n is identified with
mCn by identifying i with i for 1� i �m and j with j Cm for 1� j � n, and
the set m^ n is identified with mn by identifying .i; j /, 1 � i �m and 1 � j � n

with ij , with the ordering ij < i 0j 0 if i < i 0 or i D i 0 and j < j 0 . The wedge and
smash product of morphisms are forced by these identifications. We fix notations for
standard permutations.

Notations 4.1 Fix nonnegative integers k , jr for 1� r � k , and ir;q for 1� r � k

and 1� q � jr .

(i) Let � 2†k . Define �hj1; : : : ; jki to be that permutation of j1 � � � jk elements
which corresponds under lexicographic identification to the permutation of smash
products

� W j1 ^ � � � ^ jk �! j��1.1/ ^ � � � ^ j��1.k/:

(ii) Let �r 2†jr
, 1� r � k . Define �1˝� � �˝�k to be that permutation of j1 � � � jk

elements which corresponds under lexicographic identification to the smash
product of permutations

�1 ^ � � � ^ �k W j1 ^ � � � ^ jk �! j1 ^ � � � ^ jk :
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(iii) Let Q run over the set of sequences .q1; : : : ; qk/ such that 1� qr � jr , ordered
lexicographically. Define � D �.fk; jr ; ir;qg/ to be that permutation of

†Q .�1�r�k ir;qr
/D�1�r�k .†1�q�jr

ir;q/

elements which corresponds under block sum and lexicographic identifications
on the left and right to the natural distributivity isomorphism_

Q

� ^
1�r�k

ir;qr

�
Š

^
1�r�k

� _
1�q�jr

ir;q
�
:

Definition 4.2 Let C and G be operads with C .0/D f0g and G .0/D f1g. Write 

for the structure maps of both operads and id for the unit elements in both C .1/ and
G .1/. An action of G on C consists of maps

�W G .k/�C .j1/� � � � �C .jk/ �! C .j1 � � � jk/

for k � 0 and jr � 0 which satisfy the following distributivity, unity, equivariance,
and nullity properties. Let

g 2 G .k/ and gr 2 G .jr / for 1� r � k

c 2 C .j / and cr 2 C .jr / for 1� r � k

cr;q 2 C .ir;q/ for 1� r � k and 1� q � jr :

Further, let
cJr
D .cr;1; : : : ; cr;jr

/ 2 C .ir;1/� � � � �C .ir;jr
/

and
cQ D .c1;q1

; : : : ; ck;qk
/ 2 C .i1;q1

/� � � � �C .ik;qk
/:

(i) �.
 .gIg1; : : : ;gk/I cJ1
; : : : ; cJk

/D �.gI�.g1I cJ1
/; : : : ; �.gk I cJk

//.

(ii) 
 .�.gI c1; : : : ; ck/I �Q�.gI cQ// � D �.gI 
 .c1I cJ1
/; : : : ; 
 .ck I cJk

//.

(iii) �.idI c/D c .

(iv) �.gI idk/D id.

(v) �.g� I c1; : : : ; ck/D �.gI c��1.1/; : : : ; c��1.k// �hj1; : : : ; jki.

(vi) �.gI c1�1; : : : ; ck�k/D �.gI c1; : : : ; ck/ �1˝ : : :˝ �k .

(vii) �.1/D id 2 C .1/ when k D 0.

(viii) �.gI c1; : : : ; ck/D 0 when any jr D 0.
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Here (i), (iii), (v), and (vii) relate the � to the internal structure of G , while (ii), (iv),
(vi), and (viii) relate the � to the internal structure of C .

We have an analogous notion of an action of a category of operators K on a category
of operators D . Again, we fix notations for some standard permutations.

Notations 4.3 Let �W m�! n and  W n�! p be morphisms in F . For nonnegative
integers ri , 1� i �m, define skD� �.i/Dkri . Define �k. ; �/ to be that permutation
of sk letters which corresponds under lexicographic ordering to the bijection^

 �.i/Dk

ri �!

^
 .j/Dk

^
�.i/Dj

ri

that permutes the factors ri from their order on the left (i increasing) to their order on the
right (j increasing and, for fixed j , i increasing). Here sk D 1 and �k. ; �/W 1�! 1
is the identity if there are no i such that  �.i/ D k . Define �. ; �/ to be the
isomorphism in …p with coordinates the �k. ; �/. For morphisms f W m �! n and
gW n �! p in a category of operators D , write �k.g; f /D �k.".g/; ".f //, and write
�.g; f / for their product in Dp .

Let D0 be the trivial category, which has one object � and its identity morphism.

Definition 4.4 Let D and K be categories of operators. An action � of K on D
consists of functors �.f /W Dm �!Dn for f 2K .m;n/ which satisfy the following
properties. Let ".f /D �W m �! n.

(i) On objects, �.f / is specified by

�.f /.r1; : : : ; rm/D .s1; : : : ; sn/; where sj D^�.i/Dj ri :

(ii) On morphisms .�1; : : : ; �m/ of …m �Dm , �.f / is specified by

�.f /.�1; : : : ; �m/D .!1; : : : ; !n/; where !j D^�.i/Dj �i :

(iii) On general morphisms .d1; : : : ; dm/ of Dm , �.f / satisfies

".�.f /.d1; : : : ; dm//D .!1; : : : ; !n/; where !j D^�.i/Dj ".di/:

(iv) For morphisms �W m �! n of …�K , �.�/ is specified by

�.�/.d1; : : : ; dm/D .d��1.1/; : : : ; d��1.n//

(v) For morphisms f W m �! n and gW n �! p in K , the isomorphisms �.g; f /
in …p � C p specify a natural isomorphism �.g ıf / �! �.g/ ı�.f /.
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If ��1.j / is empty, then the j th coordinate of �.f / is 1 in (i) and the j th coordinate
is id 2 C .1/ in (ii)–(iv). (Compare Definition 4.2 (vii)).

In what should by now be standard bicategorical language, the �.n/, �.f /, and �.g; f /
specify a pseudofunctor �W K �! Cat . We do not assume familiarity with this, but it
shows that the definition is sensible formally. The definition itself specifies an action of
… on any category of operators D and an action of any category of operators K on
both … and F . However, our interest is in . yC ; yG /, where .C ;G / is an operad pair
with G acting on C . To connect up definitions, we first use Notations 4.3 to recall
how composition is defined in the category of operators yC associated to an operad C .

Notations 4.5 For an operad C , write .�I c1; : : : ; ck/, or .�I c/ for short, for mor-
phisms in yC .m;n/. Here �W m �! n is a morphism in F and cj 2 C .j��1.j /j/,
with cj D 0 2 C .0/ if ��1.j / is empty. For . I d/ 2 yC .n;p/, composition in yC is
specified by

. I d/ ı .�I c/D
�
 ı�I �1�k�p 
 .dk I � .j/Dkcj / �k. ; �/

�
:

Notations 4.6 Recall that we have canonical morphisms �nW n �! 1 in F that send
j to 1 for 1 � j � n. Together with the morphisms of …, they generate F under
the wedge sum. Notice that ^1�r�k�jr

D �j1���jr
. We define an embedding � of the

operad C in the category of operators yC by mapping c 2 C .n/ to the morphism
.�nI c/W n �! 1. Using wedges in F and cartesian products of spaces C .j /, we
define maps

yC .j1; 1/� � � � � yC .jk ; 1/ �! yC .j1C � � �C jk ;k/:
The operadic structure maps 
 are recovered from these maps and composition

yC .k; 1/� yC .j1C � � �C jk ;k/ �! yC .j1C � � �C jk ; 1/:

The following result is [16, 1.9], and more details may be found there.

Proposition 4.7 An action � of an operad G on an operad C determines and is
determined by an action of yG on yC .

Sketch proof We have the embeddings � of C in yC and G in yG . An action � of G

on C is related to the corresponding action � of yG on yC by

(4-8) ��.gI c1; �; ck/D �.�gI �c1; : : : ; �ck/:

Given � on the categories, this clearly determines � on the operads. Conversely, given
the combinatorics of how yG and yC are constructed from G and C , there is a unique
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way to extend (4-8) from the operads to the categories. Looking at Definition 4.4, we
see that if f W m�! n is a morphism of yG with ".f /D � and ci is a morphism of yC ,
1� i �m, then the j th coordinate of �.f I c1; : : : ; cm/ depends only on those ci with
�.i/ D j , and f has coordinates fj 2 G .j��1.j /j/ that allow use of the operadic
� to specify the categorical �. Details are in [16, 1.9]. Formulas (i), (iii), and (v) of
Definition 4.2 correspond to the requirement that the �.f / be functors. Formulas (ii),
(iv), and (vi) correspond to the naturality requirement of Definition 4.4(v). Formulas
(vii) and (viii) are needed for compatible treatment of 1 2 G .0/ and 0 2 C .0/.

5 Categories of ring operators and their actions

We can coalesce a pair of operator categories .D ;K / into a single wreath product
category K

R
D . The construction actually applies to any pseudofunctor � from any

category G to Cat , but we prefer to specialize in order to fix notations.

Definition 5.1 Let � be an action of K on D , where K and D are categories of
operators. The objects of K

R
D are the n–tuples of finite based sets (objects of F )

for n � 0. We write objects as .nIS/, where S D .s1; : : : ; sn/. There is a single
object, denoted .0I �/, when nD 0; we think of � as the empty sequence. The space
of morphisms .mIR/ �! .nIS/ in K

R
D isa

�2F .m;n/

"�1.�/�
Y

1�j�n

D

� ^
�.i/Dj

ri ; sj
�
; "W K �!F ;

where the empty smash product is 1. Typical morphisms are written .f I d/, where
f 2K .m;n/ and d D .d1; : : : ; dn/. If ".f /D � , then dj 2 D.^�.i/Dj ri ; sj /. For
a morphism .gI e/W .nIS/ �! .pIT /, composition is specified by

.gI e/ ı .f I d/D
�
g ıf I e ı�.g/.d/ ı �.g; f /

�
:

More explicitly, with ".g/ D  , the k th coordinate of e ı �.g/.d/ ı �.g; f / is the
compositeV

 �.i/Dk ri
�k. ;�///

V
 .j/Dk

V
�.i/Dj ri

�k.g/.� .j/Dkdj / //
V
 .j/Dk sj

ek //tk :

The object .0I �/ is terminal, with unique morphism .mIR/�! .0I �/ denoted .0I �/;
the morphisms .0I �/ �! .nIS/ are of the form .0I d/ D .idI d/ ı .0I idn/, where
0W 0 �! n, idW n �! n in F on the left, and idn

2 C .1/n on the right.

We write the morphisms of …
R
… in the form .�I�/, where

�D .�1; : : : ; �n/W .r��1.1/; : : : ; r��1.n// �! .s1; : : : ; sn/:
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Here either ��1.j / is a single element i or it is empty, in which case r��1.n/ D 1.
We interpolate an analogous definition that is a follow–up to Remarks 1.3 and 1.4. It
will play an important role in our theory.

Definition 5.2 Let ‡
R
‡ denote the subcategory of …

R
… obtained by restricting

all morphisms to be in ‡ , thus using only projections. Similarly, define ‡
R

D and
K

R
‡ exactly as in the previous definition, but starting from the actions of ‡ on D

and K on ‡ that are obtained by restricting the specifications of Definition 4.4 from
… to ‡ .

The following observation helps analyze the structure of K
R

D .

Lemma 5.3 There are inclusions of categories

D � ‡
R

D �…
R

D �K
R

D �K
R
…�K

R
‡ �K :

For maps .gI�/W .nIS/ �! .pIT / in K
R
… and .�I d/W .mIR/ �! .nIS/ in

…
R

C ,
.gI�/ ı .�I d/D .1I� ı�.g/.d// ı .g�I �.g; �//:

The subcategories ‡
R

D and K
R
‡ generate K

R
D under composition.

Proof All but the first and last inclusions are obvious. The first inclusion sends an
object n to .1In/ and a morphism d to .idI d/. The last sends an object n to .nI 1n/

and a morphism f W m �! n to .f I idn/. As noted in [16, 1.6], the displayed formula
is obtained by composing the legs of the following commutative diagram, where, for
1� j � n and 1� k � p ,

r0j D r��1.j/; r00k D^ .j/Dkr��1.j/; s0k D^ .j/Dksj :

.pIR00/

.idI�.g/.c//

%%JJJJJJJJJ

.nIR0/

.gIid/
99ttttttttt

.idIc/

%%JJJJJJJJJ
.pIS 0/

.idI�/

$$IIIIIIIII

.mIR/
.�Ic/

//

.�Iid/
::ttttttttt

.nIS/
.g;�/

//

.gIid/
99ttttttttt

.pIT /

Any morphism .f I d/W .mIR/ �! .nIS/ factors as the composite

.mIR/
.f Iidn/ //.nIR0/

.idId/ //.nIS/

where, with � D ".f /, r0j D^�.i/Dj ri . This proves the last statement.
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With these constructions on hand, we define a category of ring operators in analogy with
our definition of a category of operators. While our interest is in the case J DK

R
D ,

the general concept is convenient conceptually. For an injection

.�I�/W .mIR/ �! .nIS/

in …
R
…, define †.�; �/ to be the group of automorphisms .� I �/W .nIS/�! .nIS/

such that .� I �/Im.�I �/� Im.�I �/.

Definition 5.4 A category of ring operators is a topological category J with objects
those of …

R
… such that the inclusion …

R
…�!F

R
F factors as the composite of

an inclusion …
R
…�J and a surjection "W J �!F

R
F , both of which are the

identity on objects. We require the maps J ..`IQ/; .mIR// �!J ..`IQ/; .n;S//

induced by an injection .�; �/W .mIR/�! .nIS/ in …
R
… to be †.�I�/–cofibrations.

A map �W I �!J of categories of operators is a continuous functor � over F
R

F
and under …

R
…. It is an equivalence if each map

�W I ..mIR/; .nIS// �!J ..mIR/; .nIS//

is an equivalence.

When J D yG
R
yC for an operad pair .C ;G /, the cofibration condition is automatically

satisfied since the maps in question are inclusions of components in disjoint unions. In
fact, with our new choice of details, the cofibration condition is not actually needed for
the theory here. So far, we have been following [16], but we now diverge and things
begin to simplify. We define J –spaces without cofibration conditions and we ignore
basepoints, which take care of themselves.

Definition 5.5 Let J be a category of ring operators. A J–space in U is a
continuous functor ZW J �!U , written .nIS/ 7!Z.nIS/. It is reduced if Z.0I �/

and Z.1I 0/ are single points. It is semispecial if the first two of the following four
conditions hold, and it is special if all four conditions hold.

(i) Z.0I �/ is aspherical.

(ii) The maps ı00W Z.nIS/�!
Q

1�j�nZ.1I sj / with coordinates induced by .ıj I id/
are equivalences.

(iii) Z.1I 0/ is aspherical.

(iv) The maps ı0W Z.1I s/ �!Z.1; 1/s with coordinates induced by .1I ıj / are
equivalences.

It is very special if, further, the rig �0.Z.1I 1// is a ring. A map Z�!W of J –spaces
is an equivalence if each Z.nIS/ �!W .nIS/ is an equivalence.
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Remark 5.6 When

J D yG
R
yC

for an operad pair .C ;G /, the restriction of a J–space Z to the subcategory yC of
J is a yC–space Z˚ and the restriction of Z to the subcategory yG is a yG–space Z˝ .

Definition 5.7 Let J ŒU � denote the category of J –spaces in U .

Except for the very special notion, Definitions 5.5 and 5.7 apply equally well if we relax
our requirements on J to only require ‡

R
‡ , rather than …

R
…, to be contained in

J and do not require the map from J to F
R

F to be a surjection. This leads us to
our new choice of ground category for the multiplicative theory.

Definition 5.8 A .‡
R
‡/–space is a functor ‡

R
‡ �!U , and we write W for the

category of .‡
R
‡/–spaces. Changing notations from the additive theory, for a space

X we let RX denote the .‡
R
‡/–space that sends .0I �/ to a point and sends .nIS/

to X s1���sn for n� 1.

Now comparisons of definitions give the following basic results, which are [16, 2.4
and 2.6], where more details may be found.

Proposition 5.9 Let J DF
R

F . Then the functor RW U �!W embeds the cate-
gory of commutative rig spaces X in the category of J –spaces as the full subcategory
of objects of the form RX .

Sketch proof For a J–space RX , the maps induced by .idI�2/W .1I 2/ �! .1I 1/
and .�2I id/W .2I 12/ �! .1I 1/ give the addition and multiplication X �X �! X .
The elements 0 2X and 1 2X are induced by the injections .0I �/W .0I �/ �! .1I 1/
and .0I id/W .0I �/ �! .1I 1/ in …

R
…. There is a unique way to extend a given

.N ;N /–structure on X to an action of J on RX .

This result means that an .F
R

F /–space structure on RX is determined by its re-
striction to a commutative rig space structure on X .

Proposition 5.10 Let J D yG
R
yC for an operad pair .C ;G /. Then the functor

RW U �!W embeds the category of .C ;G /–spaces X in the category of J –spaces
as the full subcategory of objects of the form RX .
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Sketch proof The restriction of an action of J on RX to the operads C and G

embedded in the subcategories yC and yG give the additive and multiplicative operad
actions on X . There is a unique way to extend a .C ;G /–structure on X to an action
of J on RX .

Again, this means that a .yG
R
yC /–space structure on RX is determined by its restriction

to a .C ;G /–space structure on X .

By the same proof as those of Theorems 1.8 and 2.6, we have the following result. It
shows in particular that the homotopy category of special .F

R
F /–spaces is equivalent

to the homotopy category of special .yG
R
yC /–spaces, where .C ;G / is the canonical

E1 operad pair of [17, Section 3].

Theorem 5.11 Let �W I �!J be an equivalence of categories of operators. When
restricted to the full subcategories of special objects, the pullback of action functor
��W J ŒU � �!I ŒU � induces an equivalence of homotopy categories.

6 The definition of . yC ; yG /–spaces

Recall that we are writing V for the category of ‡–spaces and W for the category of
.‡
R
‡/–spaces. We need a pair of adjunctions analogous to the adjunction relating U

and V (originally denoted .L;R/) that was used to compare monads in the additive
theory. Recall that we are now writing R for the evident functor U �!W . We can
factor R through V .

Definition 6.1 For a space X , write R0X D fX ng for the associated ‡–space. For
a ‡–space Y , let R00Y be the .‡

R
‡/–space that sends .0I �/ to a point (the empty

product) and sends .nIS/ to Ys1
� � � � �Ysn

for n> 0. Note that RX DR00R0X . Let
L0Y be the space Y1 (previously denoted LY ). For an .‡

R
‡/–space Z , let L00Z

be the ‡–space given by the spaces Z.1I s/, s � 0, and let LZ DL0L00Z DZ.1I 1/.

It is easy to see what these functors must do on morphisms. Some details are given in
[16, 4.1], but the adjunctions claimed in that result are in fact not adjunctions because
of basepoint and injection problems analogous to the mistake pointed out in Section 1.
The following result is an elementary unbased substitute. Its proof relies only on the
universal property of cartesian products.

Lemma 6.2 The diagram in Figure 2 displays two adjoint pairs of functors and their
composite.
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U
R0 //

R

��
V

R00 //

L0
oo W

L00
oo

L

^^

Figure 2: Two adjoint pairs of functors and their composite.

Now let .C ;G / be an operad pair and abbreviate J D yG
R
yC . Proposition 5.10

suggests the following definition of the intermediate category mentioned in the intro-
duction.5

Definition 6.3 Let J D yG
R
yC for an operad pair .C ;G /. A . yC ; yG /–space is an

object Y 2 V together with a J–space structure on R00Y . It is special if Y is special.
A map f W Y �! Y 0 of . yC ; yG /–spaces is a map in V such that R00f is a map of
J –spaces. Thus, by definition, the functor R00W V �! W embeds the category of
. yC ; yG /–spaces as the full subcategory of J –spaces of the form R00Y .

7 The monad xJ associated to the category J

To compare . yC ; yG /–spaces to J –spaces on the one hand and to .C ;G /–spaces on the
other, we must first analyze the monad associated to a category of ring operators.

Definition 7.1 Let xJ denote the monad on the category W such that the category
of J–spaces is isomorphic to the category of xJ–algebras in W . Define functors
zJ W V �! V and J W U �!U by zJ DL00 xJR00 and J DL0 zJR0 DL xJR.

The construction of xJ is a special case of Construction 2.1. Ignoring the monadic
structure maps, we must find an explicit description of the functor xJ in order to relate it
to the adjunctions of Lemma 6.2. This is where the main simplification of [16] occurs.
We need some notations.6 Recall the description of yC from Lemmas 3.3 and 3.4.

Remarks 7.2 Observe that an ordered effective morphism �W m �! n in F decom-
poses uniquely as �D�m1

_� � �_�mn
, where mj D j�

�1.j /j and m1C� � �Cmj Dm.

5In [16], . yC ; yG /–spaces were called . yC ;G /–spaces to emphasize the partial use of actual products
implicit in their definition. I now feel that the earlier notation gives a misleading perspective.

6The details to follow come from [16, Section 7], but the combinatorial mistakes related to injections
in …

R
… that begin in [16, 7.1(ii)] have been circumvented by avoiding basepoint identifications.
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Such � determine and are determined by partitions M D .m1; : : : ;mn/ of m. In
turn, for an object .mIR/ of ‡

R
‡ , such a partition M determines a partition of

R D .r1; : : : ; rm/ into n blocks, R D .R1; : : : ;Rn/, where Rj is the j th block
subsequence of mj entries. When m D 0, we have a unique (ordered) effective
morphism 0W 0�! n, a unique empty partition M of 0, and a unique empty sequence
R. There are no effective morphisms m �! 0 when m> 0.

Notations 7.3 Consider an object .mIR/ of ‡
R
‡ , where m�0 and RD .r1; : : : ; rm/

with each ri � 0. In part (i), we use this notation but think of .mIR/ as .mj IRj /

where 1� j � n.

(i) Fix s � 0. Say that a morphism �W ^1�i�mri �! s in F is R–effective
if for every h, 1 � h � m, and every q , 1 � q � rh , there is a sequence
Q D .q1; : : : ; qm/ in which 1 � qi � ri for 1 � i � m such that qh D q and
�.Q/¤ 0. Let E .RI s/ denote the set of R–effective morphisms �, and define

C .RI s/D
a

�2E .RIs/

Y
1�t�s

C .j��1.t/j/:

Further, define †.mIR/ to be the group of automorphisms of .mIR/ in ‡
R
‡ .

(ii) Fix S D .s1; : : : ; sn/, where sj � 0. For a partition M D .m1; : : : ;mn/ of m

with derived partition RD .R1; : : : ;Rn/ of R, define

J .M IR;S/D
Y

1�j�n

G .mj /�C .Rj I sj /:

Further, define †.M IR/D
Q

1�j�n†.mj IRj /�†.mIR/.

Remark 7.4 We clarify some special cases. When sD 0 in (i) and when nD 0 in (ii),
empty products of spaces are interpreted to be a single point. If mD 0 in (i), the smash
product over the empty sequence R is interpreted as 1 and we allow � to be 0W 1�! 0
or any injection 1 �! s in F . If m > 0 and any one ri D 0, then R–effectiveness
forces all ri D 0 and we allow �D 0W 0 �! s.

Remark 7.5 For later reference, we record when an R–effective map � in (i) can be
in ‡ �F in the cases s D 0 and s D 1. When s D 0, we can only have mD 0 and
�D 0W 1 �! 0 or m> 0, all ri D 0, and �D idD 0W 0 �! 0. When s D 1, we can
only have mD 0 and �D idW 1 �! 1 or m> 0, all ri D 1, and �D idW 1 �! 1.
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Proposition 7.6 Let Z 2 W . Then . xJZ/.0I �/D Z.0I �/ and, for n > 0 and S D

.s1; : : : ; sn/,

. xJZ/.nIS/D
a
.M IR/

J .M IR;S/�†.M;R/Z.mIR/;

where the union runs over all partitions M D .m1; : : : ;mn/ of all m � 0 and all
sequences RD .r1; : : : ; rm/.

Proof We prove this by extracting correct details from [16, Section 7]. To begin with,
observe that if �0W ^1�i�mr0i �! s is a map in F that is not R0–effective, then it is
a composite � ı^1�i�m!i where !i W r0i �! ri is a projection and � is R–effective.
Indeed, suppose that �0.Q/D 0 for all sequences Q with hth term q , where 1� q� rh .
Then �0 D .�0 ı ^1�i�m�i/ ı ^1�i�m�i , where �i D �i D idW r0i �! r0i for i ¤ h,
�hW r0

h
�! r0

h
� 1 is the projection that sends q to 0 and is otherwise ordered, and

�hW r0
h
� 1 �! r0

h
is the ordered injection that misses q . The required factorization is

obtained by repeating this construction inductively.

By Construction 2.1 and Definitions 1.2 and 5.1, . xJZ/.nIS/ is a quotient ofa
.mIR/

a
.�I�/

Y
1�j�n

.G .j��1.j /j/�
Y

1�t�sj

C .j��1
j .t/j/ /�Z.mIR/;

where .�I�/ runs over the morphisms .mIR/�! .nIS/ in F
R

F , which means that
� 2F .m;n/ and �D .�1; : : : ; �n/, where �j 2F .^�.i/Dj ri ; sj /. The quotient is
obtained using identifications that are induced by the morphisms of ‡

R
‡ , namely the

projections, which we think of as composites of proper projections and permutations.

In the description just given, we may restrict attention to those .�I�/ such that � D
�m1
_ � � � _�mn

for some partition M of m and �D .�1; : : : ; �n/, where �j is Rj–
effective. Indeed, if .�0I�0/ is not of this form, it factors as .�I�/. I!/ where .�I�/
is of this form and  and the coordinates of ! are projections. To construct  and ! ,
we use the observation above and record which elements other than 0 of the sets m and
the rj are sent to 0 by �0 and the �0j . Then j��1.j /j D j.�0/�1.j /j for 1 � j � n,
j��1.t/j D j.�0/�1.t/j for 1� t � sj , and any morphism .g0I c0/W .m0IR0/�! .nIS/

in J such that ".g0I c0/D .�0I�0/ factors as .gI c/. I!/ for some morphism .gI c/

such that ".gI c/D .�I�/. Up to permutations, .gI c/D .g0I c0/ as elements ofY
1�j�n

G .j��1.j /j/�
Y

1�t�sj

C .j��1.t/j/:

This reduction takes account of the identifications defined using proper projections but
ignoring permutations; the identifications defined using permutations are taken account
of by passage to orbits over the †.M IR/.
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Specializing .nIS/ to .1I s/ and then specializing .1I s/ to .1I 1/ we obtain the follow-
ing descriptions of the functors zJ DL00 xJR00 and J DL0 zJR0 .

Corollary 7.7 Let Y 2 V and X 2U . Then

. zJY /s D
a
.mIR/

.G .m/�C .RI s/ /�†.mIR/ Yr1
� � � � �Yrm

and JX is obtained by setting s D 1 and replacing Yr by X r .

The passage to orbits in Proposition 7.6 is well-behaved by the following observation.
It is [16, 7.4], and the proof is a straightforward inspection.

Lemma 7.8 Assume that C and G are †–free. Then the action of †.mIR/ on
G .m/�C .RI s/ is free. Therefore the action of †.M IR/ on J .M IR;S/ is free.

This implies the following analogue of Lemma 3.5.

Proposition 7.9 Assume that C and G are †–free. If f W Z �!Z0 is an equivalence
of .‡

R
‡/–spaces, then so is xJf . Therefore, if f W Y �! Y 0 is an equivalence of

‡–spaces, then so is zJf , and if f W X �! X is an equivalence of spaces, then so is
Jf W JX �! J Y .

8 The comparison of . yC ; yG /–spaces and J–spaces

We can now compare . yC ; yG /–spaces and J –spaces by mimicking the comparison of
C–spaces with yC–spaces given in Lemmas 3.7 and 3.8 and Theorem 3.10. We need
three preliminary results.

Proposition 8.1 Let Y 2 V . Then the natural map

ı00W xJR00Y �!R00L00 xJR00Y �R00 zJY

is an isomorphism. Therefore zJ inherits a structure of monad from xJ and the functor
R00 embeds the category of zJ–algebras as the full subcategory of the category of
xJ–algebras consisting of those xJ–algebras of the form R00Y .

Proof By our description of xJ , we see that . xJR00Y /.0I �/ is a point and, for n> 0,

. xJR00Y /.nIS/D
a
.M IR/

Y
1�j�n

.G .mj /�C .Rj I sj / /�†.mIR/ Yr1
� � � � �Yrm

:
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On the other hand,

.R00 zJY /.nIS/D
Y

1�j�n

a
.mIR/

.G .m/�C .RI sj / /�†.mIR/ Yr1
� � � � �Yrm

:

The map ı00 gives the identification that is obtained by commuting disjoint unions past
cartesian products and assembling block partitions. By Proposition 14.3, the second
statement is a formal consequence of the first.

We restate the second statement since it is pivotal to our later comparison of . yC ; yG /–
spaces and .C ;G /–spaces.

Corollary 8.2 The categories of . yC ; yG /–spaces and zJ–algebras are isomorphic.

There are other comparisons of functors that one might hope to make and that fail.
We record some of them. These failures dictate the conceptual outline of the theory.
They clarify why we must introduce the notion of a semispecial .‡

R
‡/–space and

why we must use the intermediate category of . yC ; yG /–spaces rather than compare
.C ;G /–spaces and J –spaces directly.

Remark 8.3 Note that . xJZ/.1I s/ depends on all Z.mIR/ and not just the Z.1I s/.
Therefore L00 xJZ is not isomorphic to zJL00Z , in contrast to Lemma 3.7. Similarly,
. zJY /1 depends on all Ys and not just Y1 . Therefore L0 zJY is not isomorphic to JL0Y .
Again, for a space X , zJR0X is not isomorphic to R0JX . In fact, . zJR0X /n is not
even equivalent to .JX /n . Thus xJZ need not be special when Z is special and zJY

need not be special when Y is special.

Proposition 8.4 Assume that C and G are †–free. If Z is a semispecial .‡
R
‡/–

space then so is xJZ , hence xJ restricts to a monad on the category of semispecial
.‡
R
‡/–spaces.

Proof Applying Proposition 7.9 to the horizontal arrows in the diagram

. xJZ/.nIS/
xJ ı00 //

ı00

��

. xJR00L00Z/.nIS/

Š ı00

��
.R00L00 xJZ/.nIS/

R00L00 xJ ı00
// .R00L00 xJR00L00Z/.nIS/

we see that its left vertical arrow is an equivalence.
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As promised, we can now compare . yC ; yG /–spaces in V to xJ–spaces in W by simply
repeating the proof of Theorem 3.10. We again use the two-sided monadic bar construc-
tion of [8] together with the monadic generalities in Appendix A, general properties of
geometric realization, and the following analogue of Lemma 3.9, whose proof is just
like that of [8, 12.2].

Lemma 8.5 For simplicial objects Z in the category W , there is a natural isomor-
phism �W j xJZj �! xJ jZj such that the following diagrams commute.

jZj
j�j //

� !!DD
DD

DD
DD

j xJZj

�

��
xJ jZj

and j xJ xJZj
j�j //

xJ �ı�
��

j xJZj

�

��
xJ xJ jZj �

// xJZ

If .Z; �/ is a simplicial xJ–algebra, then .jZj; j�j ı ��1/ is a xJ–algebra.

Theorem 8.6 If C and G are †–free, then the functor R00W V �! W induces an
equivalence from the homotopy category of special . yC ; yG /–spaces to the homotopy
category of special J –spaces.

Proof We repeat the proof of Theorem 3.10. Again, Proposition 8.1 puts us into
one of the two contexts discussed in general terms in Proposition 14.3. Let Y be a
. yC ; yG /–space and Z be a J–space. By Proposition 14.3, zJL00 is a xJ–functor, and we
can define a functor ƒ00W xJ ŒW � �! zJ ŒV � by sending a xJ–algebra Z to the zJ–algebra

ƒ00Z D B. zJL00; xJ ;Z/:

By Corollaries 14.4 and 14.5, together with general properties of the geometric realiza-
tion of simplicial spaces proven in [8], we have a diagram

Z B. xJ ; xJ ;Z/
ı00 //"oo B.R00 zJL00; xJ ;Z/ŠR00ƒ00Z

of xJ –spaces in which the map " is a homotopy equivalence with natural homotopy
inverse � and the map ı00 D B.ı00; id; id/ is an equivalence when Z is semispecial.
Thus the diagram displays a natural weak equivalence between Z and R00ƒ00Z . When
ZDR00Y , the displayed diagram is obtained by applying R00 to the analogous diagram

Y B. zJ ; zJ ;X /
Š //"oo B. zJL00; xJ ;R00Y /Dƒ00R00Y

of zJ–algebras, in which " is a homotopy equivalence with natural inverse �.
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9 Some comparisons of monads

To clarify ideas and to set up the comparison of .C ;G /–spaces and . yC ; yG /–spaces, we
define and compare several other monads and functors related to those already specified.
We again fix J D yG

R
yC with associated monad xJ on W . Recall that zJ DL00 xJR00

and J D L0 zJR0 D L xJR. Taking C or G to be the operad Q of Remark 1.4, the
following definition is a special case of Definition 7.1.

Definition 9.1 Let xC denote the monad on W whose algebras are the ‡
R
yC–spaces

and let xG denote the monad on W whose algebras are the yG
R
‡–spaces.

Similarly, the following result is a special case of Proposition 8.1.

Proposition 9.2 Let Y 2 V . The natural maps

ı00W xC R00Y �!R00L00 xC R00Y and ı00W xGR00Y �!R00L00 xGR00Y

are isomorphisms. Therefore the monad structures on xC and xG induce monad struc-
tures on L00 xC R00 and L00 xGR00 such that the functor R00 embeds the category of
L00 xC R00–algebras Y isomorphically onto the full subcategory of xC–algebras of the
form R00Y and embeds the category of L00 xGR00–algebras Y isomorphically onto the
full subcategory of xG–algebras of the form R00Y .

Proposition 9.3 The monad L00 xC R00 can be identified with the monad yC .

Proof Inspection of the case G DQ of Corollary 7.7 makes clear that the underlying
functors can be identified. The structure maps of the monads agree under the identifica-
tions since they are induced by the structure maps of the operad C .

The analogue for G is not true, and we introduce an abbreviated notation.

Definition 9.4 Define zG to be the monad L00 xGR00 and let zGŒV � denote the category
of zG–algebras in V .

We now appeal to Beck’s results on distributivity and monads, which are summarized
in Theorem 15.2 below. We used monads in V and W to compare . yC ; yG /–spaces
to J –spaces and we will use monads in GŒU � and zGŒV � to compare .C ;G /–spaces
to . yC ; yG /–spaces in the next section. Beck’s results will allow us to complete that
comparison conceptually.
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For any pair of monads, C and G say, on the same category V , there is a notion of an
action of G on C , spelled out in Definition 15.1. When G acts on C , C restricts to a
monad on GŒV �. As is made precise in Theorem 15.2, it is equivalent that C G is a
monad on V such that C G–algebras in V are the same as C–algebras in GŒV �. The
shift in perspective that this allows is crucial to our intermediate use of . yC ; yG /–spaces.

As Theorem 15.2 also makes precise, a third equivalent condition is that G acts
on C if and only if there is a natural map �W GC �! C G that makes appropriate
diagrams commute. We agree to call such a map � a distributivity map since it encodes
distributivity data. We have three results that arise from this perspective and tie things
together. The first two will be given here and the third in the next section. It may
be helpful to the reader if we first list the relevant endofunctors on our three ground
categories.

xC ; xG; xC xG; xJ on W(9-5)

yC ; zG; yC zG; zJ on V(9-6)

C; G; C G; J; on U :(9-7)

All of these functors except J are monads, as we shall see, and inclusions of operad
pairs induce a number of obvious maps between them. Our promised three results, one
for each of W , V , and U , show how these monads and maps are related.

Theorem 9.8 There is a distributivity map x�W xG xC �! xC xG which makes the following
diagram commute.

xG xC
x� //

��

xC xG

��
xJ xJ

x�
// xJ xJ xJ

x�
oo

The composite xG xC �! xJ in the diagram is an isomorphism of monads on W .

Sketch proof Modulo our variant monads, this is a version of [16, 6.12], where more
details can be found. The diagram and the constructions of the monads dictate the
definition of x� , and a precise formula for the map is dictated by the commutation
relation in Lemma 5.3. Diagram chases show that � satisfies the properties of a
distributivity map specified in Theorem 15.2(iii). It follows that xG acts on xC , so
that xC is a monad on xGŒW � and xC xG is a monad on W with the same algebras. The
displayed diagram itself implies that its composite is a map of monads. It is surjective
because G

R
‡ and ‡

R
C generate J under composition, and inspection shows that

it is injective. More conceptually, a xJ–space Z is a xC xG by pullback and, conversely,
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suitably compatible actions of G
R
‡ and ‡

R
C on Z determine an action of J on

Z . This implies that a xC xG–algebra is the same thing as a xJ–algebra, so that the two
monads have the same algebras. In turn, by the monadicity of the forgetful functor
from J –spaces to W (as in [17, Appendix A]), that implies that the map of monads
xC xG �! xJ is an isomorphism.

Using Theorem 15.2 together with Propositions 9.2, and 14.3, we find that the following
result, which is a version of [16, 6.13], is a formal consequence of the previous one.

Theorem 9.9 The composite displayed in the following diagram is a distributivity
map z�W zG yC �! yC zG .

zG yC DL00 xGR00L00 xC R00

z�

��

.L00 xGı00 xC R00/�1

// L00 xG xC R00

L00x�R00

��
yC zG DL00 xC R00L00 xGR00 L00 xC xGR00

L00 xC ı00 xGR00oo

The natural composite
yC zG �! zJ zJ �! zJ

is an isomorphism of monads yC zG �! zJ on V .

The following key result is now immediate from Corollary 8.2 and Theorem 15.2.

Corollary 9.10 The categories of . yC ; yG /–spaces, of yC zG–algebras in V , and of yC–
algebras in zGŒV � are isomorphic.

10 The comparison of .C ; G /–spaces and . yC ; yG /–spaces

Again, let .C ;G / be an operad pair, so that G acts on C . We have the monads C

and G on U of the prequel [17, 4.1]. As a reminder, recall that we have changed
notations from there, so that CX here is as specified in (3-6), and similarly for GX .
We have isomorphisms of categories C ŒU �Š C ŒU � and G ŒU �ŠGŒU �. In [17], we
gave a monadic description of E1 ring spaces using monads that take account of
the basepoint 0 and its role as a zero for the multiplication. Here we are ignoring
basepoints and, using the language of Appendix B, we have the following alternative
version of [17, 4.8]. Again, the difference is just a question of whether or not basepoints
are thought of as preassigned.
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Proposition 10.1 The monad G on U acts on the monad C , so that C induces
a monad, also denoted C , on the category GŒU � of G–algebras. The category of
.C ;G /–spaces is isomorphic to the category of C–algebras in GŒU �.

Proof Taking [17, 1.4] into account, the proof is the same as that of [17, 4.8], whose
missing details (from [11, Section VI.1]) can be read off directly from Definition 4.2.

Since G acts on C , Theorem 15.2 gives a corresponding distributivity map. The
following result, which combines versions of [16, 6.11 and 6.13], describes it.

Theorem 10.2 The distributivity map �W GC �! C G is the composite of the maps
�1 and �2 defined by the commutativity of the upper and lower rectangles in the
following diagram.

GC DL0 zGR0L0 yC R0

�1

��

.L0 zGı0 yC R0/�1

//
L0 zG yC R0

L0z�R0

��

J DL0 zJR0

�2

��

L0 yC zGR0
//Šoo

L0 yC ı0 zGR0

��
C G L0 yC R0L0 zGR0

Thinking of .C ;G /–spaces as multiplicatively enriched C–spaces, we have in effect
changed ground categories from U to GŒU �. Since yG acts on yC , as explained in
Section 4, one might well expect the monad yG to act on the monad yC , but that is
false.7 However, as we saw in the previous section, the monad zG does act on yC . We
could extract an explicit description of zG by specializing the explicit description of
L00 xJR00 given in Corollary 7.7 and using the generalization of Remark 7.5 to s > 1.
We omit the details since we have no need for them. However, we observe that Remark
7.5 implies the following result.

Lemma 10.3 For Y 2 V , the space . zGY /0 can be identified with G.Y0/, and the
space L0Y D . zGY /1 can be identified with G.Y1/.

This implies the following analogue of Lemma 3.7. Recall that .L;R/ there is the
same as .L0;R0/ here.

7Vigleik Angeltveit showed me convincingly exactly how this fails, and he pointed out some faulty
details in a purported description of the monad zG given in an earlier draft of this paper.
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Lemma 10.4 Let X 2 U . Then . zGR0X /0 D G.�/, L0 zGR0X � . zGR0X /1 D GX ,
and the natural map L0 zGıW L0 zGY �!L0 zGR0L0Y DGL0Y is an isomorphism.

Of the previous three results, only the last statement of Lemma 10.4 is on the main line
of development. Returning to the desired comparison of .C ;G /–spaces and . yC ; yG /–
spaces, the following result puts us into the framework of Appendix A.

Lemma 10.5 The adjunction .L0;R0/ induces an adjunction

GŒU �.L0Y;X /Š zGŒV �.Y;R0X /:

Proof It is obvious that L0 takes zG–algebras Y to G–algebras since L0 zGY DGL0Y

and we can restrict the action maps accordingly. We claim that R0 takes G–algebras
X to zG–algebras R0X . To see this conceptually, we can modify slightly the definition
of an operad pair by allowing C .0/ to be empty. Then, quite trivially, any operad
G acts on our operad Q such that yQ D ‡ . Clearly, we can identify .Q;G /–spaces
with G–algebras in U , and these can then be identified with yG

R
yQ–spaces of the

form RX DR00R0X , as in Proposition 5.10. As in Definition 6.3, we define . yQ; yG /–
spaces Y to be .yG

R
yQ/–spaces of the form R00Y , and it is then obvious that R0X

is a . yQ; yG /–space. Finally, as in Corollary 9.10, we see that . yQ; yG /–spaces can be
identified with zG algebras in V .

Since . yC ; yG /–spaces are the same as yC–algebras in the category of zG–algebras, by
Corollary 9.10, Theorem 3.10 admits the following multiplicative elaboration. In effect,
we just change ground categories from U and V to GŒU � and zGŒV �. Otherwise the
proof is exactly the same.

Theorem 10.6 If C is †–free, then the functor R0W U �! V induces an equivalence
from the homotopy category of .C ;G /–spaces to the homotopy category of special
. yC ; yG /–spaces.

This gives the bottom right pair of parallel arrows in Figure 1.

11 Permutative categories in infinite loop space theory

We assume familiarity with the notion of a symmetric monoidal category. That is
just a (topological) category A with a product and a unit object which satisfy the
associativity, commutativity, and unit laws up to coherent natural isomorphism. If the
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associativity and unit laws hold strictly, then A is said to be permutative.8 There is no
loss of generality in restricting to permutative categories since any (small) symmetric
monoidal category is equivalent to a permutative category [5; 9]. One cannot also
make the commutativity law hold strictly, and it is the lack of strict commutativity that
leads to the higher homotopies implicit in infinite loop space theory. Thus permutative
categories are the strictest kind of symmetric monoidal category that one can define
without loss of generality.

Precisely, a permutative category A has an associative product � with strict two-sided
unit object u and a natural commutativity involution cW A�B �! B�A such that
c D idW AD u�A �!A�uDA and the following diagram commutes.

A�B�C
c //

id�c ''OOOOOOOOOOO C �A�B

A�C �B

c�id

77ooooooooooo

More generally, rather than having a set of objects, A might be an internal category
in U , so that it has a space of objects and continuous source, target, identity, and
composition maps.

A functor F W A �! B between symmetric monoidal categories is lax symmetric
monoidal if there is a map ˛W uB �! F.uA / and a natural transformation

ˆW �B ıF �F �! F ı�A

of functors A �A �!B satisfying appropriate coherence conditions. An op-lax
functor is defined similarly, but with maps going in the other direction. We say that F

is strong (instead of lax or op-lax) if ˛ and ˆ are isomorphisms and that F is strict
if ˛ and ˆ are identities. The strict notion is only interesting when A and B are
permutative.

The relationship between permutative categories and spectra was axiomatized in [14;
15]. An infinite loop space machine defined on the category PC of permutative
categories is a functor E from PC to any good category of spectra (say �–prespectra
for simplicity) together with a natural group completion �W BA �! E0A , where
BA is the classifying space of A . Up to natural equivalence, there is a unique such
machine .E; �/ [14, Theorem 3]. We have omitted the specification of the morphisms
of PC . Strict morphisms were used in [14]. However, there is a functor from the
category of permutative categories and lax morphisms to the category of permutative

8I believe that this pleasant and appropriate name is due to Don Anderson [1].
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categories and strict morphisms that can be used to show that the uniqueness theorem
remains valid when the morphisms in PC are taken to be lax; see [15, 4.3].

There are several constructions of such a machine .E; �/. There is an E1 operad z†
in Cat whose j th category z†j is the translation category of the symmetric group †j .
It was defined in [9, Section 4] and, in more detail (and with a minor correction) in
[11, Section 4]. As observed in these sources, there are functors z†j �A j �!A that
specify an action of z† on A . Passing to classifying spaces, we have an action of the
E1 operad D D B z† of spaces on the space BA . As recalled in [17, 9.6], D is the
topological version of the Barratt–Eccles operad [2]. The additive infinite loop space
machine of [8], as described in [17, Section 9], gives the required machine .E; �/.

Alternatively, there are at least two ways, one combinatorial and the other conceptual,
to construct a special F–category from a permutative category. Application of the
classifying space functor then gives a special F–space, to which Segal’s infinite loop
space machine [21] can be applied. The combinatorial construction is due to Segal
[21]. Full details are supplied in May [14, Construction 10]. It is essential to the
uniqueness theorem there that the construction actually gives a functor from PC to
the category FPC of special functors F �!PC . A defect of the construction is
that it is functorial only on strict rather than lax morphisms of permutative categories.
The conceptual construction is an application of Street’s first construction from [22]
and is spelled out in May [15, Sections 3–4]. It does not give a functor to FPC , but
it is functorial on lax morphisms. We say a bit more about it, or rather its bipermutative
analogue, in the next section.

While there is an essentially unique way to construct spectra from permutative categories,
there is another consistency statement that is of considerable importance in some of
the topological applications. In [17, Section 2], we recalled the notion of a monoid-
valued I –FCP (functor with cartesian product) from [11, Section I.1] and the more
modern source [19, Chapter 23]. As explained in those sources, such a functor G

can be extended from the category I of finite dimensional inner product spaces to
the category Ic of countably infinite dimensional inner product spaces by passage to
colimits. Then G.R1/ is an L–space, where L is the linear isometries E1 operad,
and so is BG � BG.R1/. These can be fed into the additive infinite loop space
machine of [17, Section 9]. On the other hand, the G.Rn/ are the morphism spaces
of a permutative category with object set fnjn � 0g and no morphisms m �! n for
m¤ n. It is proven in [13] that the spectrum obtained from the L–space BG is the
connected cover of the spectrum obtained from the permutative category qn�0G.Rn/,
whose 0th space is equivalent to BG �Z.

Geometry & Topology Monographs, Volume 16 (2009)



The construction of E1 ring spaces from bipermutative categories 319

12 What precisely are bipermutative categories?

We would like to assume familiarity with the notion of a symmetric bimonoidal category,
but the categorical literature on this important topic is strangely meager. Intuitively,
we have a category A with two symmetric monoidal products, ˚ and ˝, with unit
objects denoted 0 and 1. The distributivity laws must hold, at least up to coherent
natural transformation. As usual, the notion of coherence has to be made precise
in order to have a sensible definition, and a coherence theorem is necessary for the
notion to be made rigorous. The only systematic study of coherence and the only
coherence theorems that I know of in this context are those of Laplaza [6; 7]. The
essential starting point is to formulate distributivity precisely. Laplaza requires a left9

distributivity monomorphism

(12-1) ıW A˝ .B˚C / �! .A˝B/˚ .A˝C /:

If we define FA.�/DA˝.�/ and think of .A ;˚/ as a symmetric monoidal category,
then coherence says in part that FA is an op-lax symmetric monoidal functor under
ı and the evident unit isomorphism. Therefore, we might say that LaPlaza requires
a semi op-lax distributivity law. A fully op-lax distributivity law would delete the
monomorphism requirement. A lax distributivity law would have the arrow point the
other way. In the interesting examples, ı is a natural isomorphism, and I prefer to
require that in the definition, as I did in [11, page 153]. Perhaps we should then call these
strong symmetric bimonoidal categories. In any case, the left and right distributivity
laws, ı and ı0 say, must determine each other by the following commutative diagram,
in which c˝ is the commutativity isomorphism for ˝.

(12-2) A˝ .B˚C /
ı //

c˝ Š

��

.A˝B/˚ .A˝C /

c˝˚c˝Š

��
.B˚C /˝A

ı0
// .B˝A/˚ .C ˝A/

As originally specified in [11, Section VI.3], bipermutative categories give the strictest
kind of strong symmetric bimonoidal category that one can define without loss of
generality. They are permutative under both ˚ and ˝, 0 is a strict two-sided zero
object for the functor ˝, and the right distributivity law holds strictly, so that

.A˚B/˝C D .A˝C /˚ .B˝C /:

This equality must be a permutative functor with respect to ˚, so that c˚˝ idD c˚ .
The left distributivity law ı is specified by (12-2), with ı0D id, and cannot be expected

9In algebra, the left distributivity law states that a.bC c/D abCac , so that left multiplication by a is
linear. Curiously, [4] has left and right reversed, viewing (12-1) as right distributivity.
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to hold strictly. Only one additional coherence diagram is required to commute, namely

.A˚B/˝ .C ˚D/
ı // ..A˚B/˝C /˚ ..A˚B/˝D/

.A˝C /˚ .B˝C /˚ .A˝D/˚ .B˝D/

Id˚c˚˚Id

��
.A˝ .C ˚D//˚ .B˝ .C ˚D//

ı˚ı

// .A˝C /˚ .A˝D/˚ .B˝C /˚ .B˝D/:

Since bipermutative categories are a specialization of Laplaza’s symmetric bimon-
oidal categories, his work resolves their coherence problem. The assymmetry in
the distributive laws is intrinsic, and the strictness of the right rather than the left
distributivity law meshes with our use of lexicographic orderings in specifying the
notion of an action of an operad pair. It is proven in [11, Section VI.3] that any (small)
strong symmetric bimonoidal category is equivalent to a bipermutative category, so
that there is no loss of generality in restricting attention to bipermutative categories.

Scholium 12.3 Regrettably, the term bipermutative category was redefined in [4] to
mean a weaker and definitely inequivalent notion, which we call a lax bipermutative
category. It has two permutative structures, but it only has lax distributivity maps.
That is, it has a map like that of (12-1) and therefore its companion map of (12-2),
but with the arrows pointing in the opposite direction. It is stated on [4, page 178]
that “Laplaza’s symmetric bimonoidal categories are more general even than our
bipermutative categories, and since they can be rectified to equivalent bipermutative
categories in May’s sense, so can ours.” This statement is wrong on two counts. Lax
bipermutative categories are not special cases of Laplaza’s semi op-lax symmetric
bimonoidal categories, and neither the latter nor the former can be rectified unless the
distributivity maps are isomorphisms. We note that no precise definition or coherence
theorem has been formulated for lax symmetric bimonoidal categories, and it is unclear
that such objects can be rectified to the lax bipermutative categories of [4].

From the point of view of our applications, these differences do not much matter.
The interesting examples are strong symmetric bimonoidal and can be rectified to
bipermutative categories as originally defined. The latter give rise to .F

R
F /–spaces,

as I recall in the next section. In fact, as I will explain, any sensible notion of lax or
op-lax bipermutative category works for that. By the earlier sections of this paper,
.F

R
F /–spaces give rise to E1 ring spaces. By the theory recalled in the prequel

[17], E1 ring spaces give rise to E1 ring spectra.
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From the point of view of mathematical philosophy and comparisons of constructions,
these differences do matter. The theory of [4] constructs symmetric ring spectra from
lax bipermutative categories and, as it stands, cannot recover the applications of [11]
(and other more recent applications), that depend on the use of E1 ring spaces. We
need a comparison theorem to the effect that if we start with a bipermutative category
and process it to an E1 ring spectrum and thus to a commutative S–algebra by going
through the theory here and in [17], then the result is equivalent to what we get by
using [4] to construct a symmetric ring spectrum and converting that to a commutative
S–algebra. This should be true, but it is not at all obvious.10

Before continuing, we highlight the mistake in [11] which led to the need for the theory
that we are describing here.

Scholium 12.4 In [11, VI.2.3, VI.2.6, and VI.4.4], it is claimed that .M ;M / and
.D ;D/ are operad pairs and that .D ;D/ acts on the classifying spaces of bipermutative
categories. These assertions are incorrect, as is explained in detail in [16, Appendix
A], and for this reason there seems to be no elementary shortcut showing that the
classifying spaces of bipermutative categories are E1 ring spaces. The use of D alone
in the theory of permutative categories is unaffected by the mistake.

13 The construction of .F
R

F /–categories from bipermuta-
tive categories

There are notions of lax, strong, and strict morphisms between symmetric bimonoidal
categories, in analogy with the corresponding notions for symmetric monoidal cate-
gories. Again, the strict notion is only interesting in the bipermutative case. We recall
a problem that was left open in [16, page 16].

Conjecture 13.1 There is a functor on the bipermutative category level that replaces
lax morphisms by strict morphisms, in a sense analogous to the corresponding result
[15, 4.3] for permutative categories.

In analogy with the permutative category situation, there are two functors, one combi-
natorial and one conceptual, that construct .F

R
F /–categories from bipermutative

categories. The combinatorial construction is due to Woolfson [23] and entails use of
a more complicated category that contains F

R
F . It is spelled out in detail in [16,

Appendix D]. It is only functorial on strict morphisms. In the absence of a proof of
Conjecture 13.1, this makes it less useful than its permutative category analogue.

10I now have a sketch proof that looks convincing.
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The conceptual construction is given in [16, Section 4] and is again an application of
Street’s first construction from [22]. A detailed restatement of the properties of the
construction is given in [15, 3.4]. In brief, for any (small) category G , it gives a functor
from the category of either lax or op-lax functors G �! Cat and lax or op-lax natural
transformations to the category of genuine functors and genuine natural transformations
G �!Cat , together with a comparison of the input and output up to natural homotopy.
11

To apply this general categorical construction to our situation, we need only construct
an op-lax (or lax) functor AW F

R
F �! Cat from a bipermutative category A . That

is very easy to do. We recall the details from [16, Section 3] to emphasize the role
of the distributivity law and explain why a lax or op-lax law would work just as well
as a strict or strong law.12 We start by specifying A.nIS/ D A s1 � � � � �A sn on
objects, where A.0I �/ is the trival category � and A 0 is the trivial category 0. For a
morphism .�I�/W .mIR/ �! .nIS/ in F

R
F , we specify the functor

A.�I�/W A.mIR/ �!A.nIS/

by the formula

A.�I�/.�m
iD1 �

ri

uD1
ai;u/D�

n
jD1 �

sj
vD1

M
�j .U /Dv

O
�.i/Dj

ai;ui

on both objects and morphisms. Here U runs over the lexicographically ordered set
(l.o.s) of sequences with i th term ui satisfying 1 � ui � ri for i 2 ��1.j /; this set
can be identified with ^�.i/Dj ri �f0g. That is the same formula that we would have
used if we had given a complete proof of Proposition 5.9, describing rig spaces as
F
R

F–spaces explicitly. In that context, we would have strict commutativity and
distributivity and the formula would give a functor F

R
F �! U . In the present

context, we have coherence isomorphisms that give lax functoriality. Note first that
A takes identity morphisms to identity functors. However, for a second morphism
. I!/W .nIS/ �! .pIT / in F

R
F , we have

A. ı�I �/.�m
iD1 �

ri

uD1
ai;u/D�

p

kD1
�

tk

wD1

M
�k.Y /Dw

O
. �/.i/Dk

ai;yi
;

11It is generally understood in bicategory theory that lax functors F should have comparison natural
transformations F. / ı F.�/ �! F. ı �/ ; op-lax functors should have the arrows reversed. Street
[22] uses lax functors and calls them that; in view of the freedom to replace G by G op , his construction
applies equally well to op-lax functors. Unfortunately, in [15; 16], I used op-lax functors but called them
lax functors. I’ll call them op-lax functors here. The natural homotopies of [15; 16] are special cases of
what are called modifications in the bicategorical literature.

12I learned this from Michael Shulman.
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where �k D !k ı .^ .j/Dk�j / ı �k. ; �/ and Y runs through the l.o.s of sequences
with 1� yi � ri for i 2 . �/�1.k/, regarded as elements of ^ �.i/Dkri , whereas

A. I!/A.�I�/.�m
iD1 �

ri

uD1
ai;u/

D�
p

kD1
�

tk

wD1

M
!k.V /Dw

O
 .j/Dk

� M
�j .U /Dvj

O
�.i/Dj

ai;ui

�
;

where U run through the l.o.s. of sequences with 1� ui � ri for i 2 ��1.j / and V

runs through the l.o.s. of sequences with 1 � vj � sj for j 2  �1.k/, regarded as
elements of ^�.i/Dj ri and ^ .j/Dksj respectively. The commutativity isomorphisms
c˚ and c˝ , together with the strict right distributivity law, induce a natural isomorphism

�.. I!/; .�I�//W A. ı�I �/ �!A. I!/A.�I�/:

The coherence in the definition of a bicategory gives the coherence with respect to
the associativity and unity of composition that are implicit in the assertion that this
definition does give an op-lax functor.

Clearly, we can reverse the arrow, and then we have a lax rather than op-lax functor.
With the proper specification of coherence data, dictated by the requirement that the
definition give a lax or op-lax functor, we see that there is no need for a strict or even a
strong distributivity law. We conclude that, with proper definitions, we can obtain a lax
or op-lax functor from a lax or op-lax bipermutative category. Street’s construction
applies to rectify either to a (special) functor F

R
F �! Cat . Thus we first construct

a lax or op-lax functor that uses actual cartesian products on objects, and we then use
Street’s construction to convert it to a genuine functor, but one that no longer uses actual
cartesian products of objects. Street’s construction is ideally suited to convert the kind
of structured categories that we encounter in nature to the kind of structured categories
that we know how to convert to E1 ring spaces after passage to their classifying
spaces.

14 Appendix A. Generalities on monads

To make this paper reasonably self-contained, we repeat some results from [20, p. 219]
and [16, Section 5]; the elementary categorical proofs may be found there.

Let LW W �! V and RW V �!W be an adjoint pair of functors with counit LRD

Id and unit ıW Id �! RL. We have a pair of propositions and corollaries relating
monad structures on functors C W V �! V and DW W �!W . They differ due to the
assymmetry of our assumptions on L and R. The next result is [16, 5.1].
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Proposition 14.1 Let .C; �; �/ be a monad on V , let .F; �/ be a (right) C–functor
in some category V 0 , and let .X; �/ be a C–algebra in V . Define D DRCL.

(i) D is a monad on W with unit and product the composites

Id ı //RL
R�L //RCLDD

DD DRCLRCLDRC CL
R�L //RCL:

(ii) FL is a D–functor in V 0 with right action

�LW FLD D FLRCLD FCL �! FL:

(iii) RX is a D–algebra in W with action

R�W DRX DRCLRX DRCX �!RX:

In the present generality, we state results about bar constructions simplicially. After
geometric realization in our space level situations, they give corresponding results
about the actual bar constructions of interest.

Corollary 14.2 The simplicial two-sided bar construction satisfies

B�.F;C;X /D B�.FL;D;RX /

for a C–algebra X and C–functor F , where D DRCL.

The following result combines the two results [16, 5.2 and 5.3].

Proposition 14.3 Let .D; �; �/ be a monad on W . Define C DLDR and let xıW D�!
RCL denote the common composite in the following diagram:

D
Dı //

ıD
��

xı

%%LLLLLL DRL

ıDRL
��

RLD
RLDı

// RLDRL

Assume that one of the following two natural maps is an isomorphism:

ıDRD xıRW DR �!RC or LDı DLxıW LD �! CL:
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(i) C is a monad on V with unit and product the composites

IdDLR
L�R //LDR

and

C C DLDRLDR
.LDıDR/�1

//LDDR
L�R //LDRD C;

and xıW D �!RCL is a map of monads on W .

(ii) If .F; �/ is a C–functor, then .FL; �L ı FLxı/ is a D–functor. In particular,
RCL is a D–functor and xıW D �!RCL is a map of D–functors.

(iii) If .X; �/ is a C–algebra, then .RX;R� ı xıR/ is a D–algebra. In particular, for
Y 2W , RCLY is a D–algebra and xıW DY �!RCLY is a map of D–algebras.

(iv) If .RX;  / is a D–algebra, then .X;L / is a C–algebra, and R embeds C ŒV �
into DŒW � as the full subcategory of D–algebras of the form RX .

(v) When LDıW LD �! CL is an isomorphism, if .Y;  / is a D–algebra in W ,
then .LY;L ı .LDı/�1/ is a C–algebra in V and ıW Y �!RLY is a map
of D–algebras.

Corollary 14.4 Let D be a monad on W and let C DLDR.

(i) If xıRW DR �!RC is an isomorphism, then

B�.GR;C;X /Š B�.G;D;RX /

for a C–algebra X and D–functor G and therefore

B�.F;C;X /Š B�.FL;D;RX /

for a C–functor F .

(ii) If LDıW LD �! CL is an isomorphism, then

B�.F;C;LY /Š B�.FL;D;Y /

for a D–algebra Y and a C–functor F .

Recall from [8, 9.8] that we always have a map

"�W B�.C;C;X / �!X�

of simplicial C–algebras that is a simplicial homotopy equivalence, where X� is the
constant simplicial object at X .
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Corollary 14.5 Under the hypotheses of Proposition 14.3,

xı� D B�.xı; id; id/W B�.D;D;Y / �! B�.RCL;D;Y /DRB�.CL;D;Y /

is a map of simplicial D–algebras. If xıRW DR�!RC is an isomorphism and Y DRX

for a C–algebra X , then the diagram

Y� B�.D;D;Y /
xı� //"�oo RB�.CL;D;Y /

of simplicial D–algebras is obtained by applying R to the evident diagram

X� B�.C;C;X /
Š //"�oo B�.CL;D;RX /

of simplicial C–algebras.

15 Appendix B. Monads and distributivity

Consider two monads, .C; �˚; �˚/ and .G; �˝; �˝/, on the same category V . As
the notation indicates, we think of C as additive and G as multiplicative. We want to
understand a monadic distributivity law for an action of G on C . This was obtained in
an elegant paper of Beck [3], as I only learned after reproducing many of its results
in the course of working out multiplicative infinite loop space theory [16, Section 5].
Since this theory is central to understanding, we repeat it here in abbreviated form,
referring the reader to [3] for detailed verifications.

Let C ŒV � and GŒV � denote the categories of C–algebras and G–algebras in V .

Definition 15.1 An action of G on C is a structure of monad on GŒV � induced by
the monad C on V . In detail, for an action of G on X , there is a prescribed functorial
induced action of G on CX (and thus on C CX by iteration) such that �˚W X �!CX

and �˚W C CX �! CX are maps of G–algebras.

Recall that the following diagram commutes for composable pairs of functors .B;A/
and .D;C / and for natural transformations ˛W A �! C and ˇW B �!D .

BC
ˇC

""FFFFFFFF

BA

B˛
<<yyyyyyyy

ˇA ""EE
EE

EE
EE

DC

DA

D˛

<<xxxxxxxx
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In the categorical literature the common composite is generally written ˛ˇ or ˇ˛ . It
is just the horizontal composition of the 2–category Cat , but we shall be explicit.

Theorem 15.2 The following data relating the monads C and G are equivalent.

(i) An action of G on C .

(ii) A natural transformation �W C GC G �! C G with the following properties.

(a) .C G; �; �/ is a monad on V , where �D �˚G ı �˝W Id �! C G .
(b) C�˝W C �! C G and �˚GW G �! C G are maps of monads.
(c) The following composite is the identity natural transformation.

C G
C�˚G

//C C G
C�˝C G

//C GC G
� //C G

(iii) A natural transformation �W GC �! C G such that the following two diagrams
commute.

G
G�˚

}}{{
{{

{{
{{ �˚G

!!CC
CC

CC
CC

GC
� // C G

C

�˝C

aaCCCCCCCC C�˝

=={{{{{{{{

and

GC C

G�˚
��

�C // C GC
C� // C C G

�˚G

��
GC

� // C G

GGC
G�

//

�˝C

OO

GC G
�G

// C GG

C�˝

OO

When given such data, the category C ŒGŒV �� of C–algebras in GŒV � is isomorphic to
the category C GŒV � of C G–algebras in V .

Sketch proof Details are in [3]. We relate (i) to (iii) and (ii) to (iii). Given the data of
(i), we obtain the data of (iii) by defining � to be the composite

GC
GC�˝//GC G

� //C G;
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where, for X 2 V , � is the action of G on C GX induced from the canonical action
of G on GX . Given the map � as in (iii) and given a G–algebra .X; �/, the following
composite specifies a natural action of G on CX that satisfies (i).

GCX
� //C GX

C � //CX

Given � satisfying (ii), the following composite is a map � satisfying (iii).

GC
GC�˝//GC G

�˚GC G
//C GC G

� //C G

Given � satisfying (iii), the following composite is a map � satisfying (ii).

C GC G
C�G //C C GG

C C�˝//C C G
�˚G

//C G

Given these equivalent data, a C–algebra .X; �; �/ in GŒV � determines a C G–algebra
.X;  / in V by letting  be the composite

C GX
C � //CX

� //X;

and a C G–algebra .X;  / determines a C–algebra .X; �; �/ in GŒV � by letting � and
� be the pullbacks of  along the maps of monads �˚G and C�˝ of (iib).
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