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What are E1 ring spaces good for?

J P MAY

Infinite loop space theory, both additive and multiplicative, arose largely from two
basic motivations. One was to solve calculational questions in geometric topology.
The other was to better understand algebraic K–theory. The Adams conjecture is
intrinsic to the first motivation, and Quillen’s proof of that led directly to his original,
calculationally accessible, definition of algebraic K–theory. In turn, the infinite loop
understanding of algebraic K–theory feeds back into the calculational questions in
geometric topology. For example, use of infinite loop space theory leads to a method
for determining the characteristic classes for topological bundles (at odd primes) in
terms of the cohomology of finite groups. We explain just a little about how all that
works, focusing on the central role played by E1 ring spaces.

55P42, 55P43; 18D50

Introduction

We review and modernize a few of the 1970’s applications of E1 ring spaces. We
focus on results that involve orientation theory on the infinite loop space level and on
results that involve applications of the E1 ring spaces of algebraic K–theory to the
analysis of spaces that appear in geometric topology. These E1 ring spaces arise from
bipermutative categories. A list of sections may serve as a guide.

1. The classification of oriented bundles and fibrations.
2. E1 structures on classifying spaces and orientation theory.
3. Universally defined orientations of G–bundles.
4. E1 ring structures on Thom spectra M.GIY /.
5. Thom spectra and orientation theory.
6. Examples of bipermutative categories.
7. Brauer lifting on the infinite loop space level.
8. The K–theory of finite fields and orientation theory.

Before turning to our main theme, we recall in Section 1 some results of May [22;
23] about the classification of bundles and fibrations with additional global structure.
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We are especially interested in the classification of bundles and fibrations with an
R–orientation for some ring spectrum R, and use of the (LMS) spectra of [18] is the
key to the construction of such classifying spaces.

We explain how the unit E1 spaces GL1R and SL1R of an E1 ring spectrum R

relate to the theory of R–orientations of bundles and fibrations in Section 2. This use of
the infinite loop spaces GL1R was a central theme in the applications of [23], where
it was crucial to the study of the structure of many spaces of geometric interest and to
the calculation of their homology and cohomology (see Cohen, Lada and May [12]). It
also provides the foundational starting point for much recent work.

From the current perspective, [23] focused on chromatic level-one phenomena and
their relationship to space level structure, in particular topological bundle theory, while
recent work focuses on chromatic level-two phenomena in stable homotopy theory.
We illustrate these contrasting points of view in Section 3 and Section 5. There are
both space level and spectrum level notions of an (infinite loop) R–orientation of a
bundle theory, as opposed to an orientation of an individual bundle. In Section 3, we
describe universal orientations in terms of the classifying E1 space for R–oriented
stable bundles and its relationship to other relevant E1 spaces. In Section 5, we
reinterpret the theory of universal orientations in terms of certain E1 ring Thom
spectra M.GIY / that we construct in Section 4. Geometric applications focus on the
space level theory. Applications in stable homotopy theory focus on the spectrum level
theory.

We illustrate another pair of contrasting points of view implicit in Sections 1 and 2 by
considering the notational tautologies

F DGL1S and SF D SL1S:

Here F is the topological monoid of stable self-homotopy equivalences of spheres
and SF is its submonoid of degree 1 self-equivalences, while GL1S and SL1S are
the unit subspace Q1S0 [Q�1S0 and degree 1 unit subspace Q1S0 of the zeroth
space QS0 D colim�nSn of the sphere spectrum S . The displayed equalities really
are tautological, even as L–spaces and thus as infinite loop spaces, where L is the
linear isometries operad. Nevertheless, we think of the two sides of this tautology very
differently. We claim that F should be thought of as additive while GL1S should be
thought of as multiplicative.

The infinite orthogonal group O is a submonoid of F ; we denote the inclusion by
j W O �! F . On passage to classifying spaces we obtain a map of L–spaces

Bj W BO �! BF:

Geometry & Topology Monographs, Volume 16 (2009)



What are E1 ring spaces good for? 333

The underlying H–space structures on BO and BF represent the Whitney sum of
vector bundles and the fiberwise smash product of spherical fibrations; fiberwise one-
point compactification of bundles sends the first to the second. The map Bj represents
the J–homomorphism, and it should be thought of as an infinite loop map BO˚�!BF

since it is the Whitney sum of bundles that gives rise to the relevant H–space structure
on BO . Therefore F and BF should be thought of as additive.

On the other hand, the unit eW S �! R of an E1 ring spectrum R gives a map of
L–spaces and thus an infinite loop map GL1S �!GL1R. Here we are thinking of
units of rings under multiplication, and GL1S should be thought of as multiplicative.
For example, if we take RDKO , then SL1R is BO˝ ; the relevant H–space structure
on BO represents the tensor product of vector bundles. The additive and multiplicative
L–space structures on BO˚ and BO˝ are quite different and definitely inequivalent;
BO˝ splits as BO.1/ � BSO˝ , but BO˚ does not split. It is a deep theorem of
Adams and Priddy [6] that BSO˚ and BSO˝ are actually equivalent as infinite loop
spaces, but not by any obvious map and not for any obvious reason. The analogous
statements hold with O and SO replaced by U and SU .

Note that we now have infinite loop maps SO �! SF D SL1S �! BO˝ . It turns
out that, after localizing at an odd prime p , there are infinite loop spaces J˚ and J˝
whose homotopy groups are the image of J and there is a diagram of infinite loop
maps

SO

��

!!DD
DD

DD
DD

J˝

��

SF

;;xxxxxxxx

##FFFFFFFF

J˚

==zzzzzzzz
BO˝

such that the composite J˚ �! J˝ is an exponential equivalence of infinite loop
spaces. It follows that SF splits as an infinite loop space as the product J˝�Coker J ,
where Coker J is the fiber of the map SF �! J˝ . This and related splittings play a
fundamental role in calculations in geometric topology, for example in determining the
characteristic classes for stable topological bundles.

We shall give an outline sketch of how this goes, but without saying anything about the
actual calculations. Those center around the additive and multiplicative Dyer–Lashof
operations in mod p homology that are induced from the additive and multiplicative
E1 structures of E1 ring spaces. The distributivity law relating these E1 structures
leads to mixed Cartan formulas and mixed Adem relations relating these two kinds of
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operations, and there are Nishida relations relating Steenrod operations and Dyer–Lashof
operations. Use of such algebraic structure is the only known route for understanding
the characteristic classes of spherical fibrations and, at odd primes, topological bundles.
It is worth remarking that the analogous structures on generalized homology theories
have hardly been studied.

The previous paragraphs concern problems arising from geometric topology. To explain
the exponential splitting and other key facets of the analysis, we must switch gears
and consider the E1 ring spaces of algebraic K–theory that arise from bipermutative
categories. Reversing Quillen’s original direction of application, we will thus be
considering some applications of algebraic K–theory to geometric topology. We
describe the relevant examples of bipermutative categories and maps between them
in Section 6. The fundamental tool used by Quillen to relate topological K–theory
to algebraic K–theory is Brauer lifting, and we explain the analysis of Brauer lifting
on the infinite loop space level in Section 7. We relate the K–theory of finite fields
to orientation theory and infinite loop splittings of geometrically important spaces in
Section 8.

We hope that this review of just a bit of how E1 ring theory plays out at chromatic
level one might help people work out analogous and deeper results at higher chromatic
levels. We raise a concrete question related to this. There is a mysterious rogue object
(Adams’ term [5, page 193]) that pervades the chromatic level-one work, namely the
infinite loop space Coker J mentioned above. Its first delooping B Coker J has a
natural bundle theoretic interpretation as the classifying space for j–oriented spherical
fibrations, as we shall see in Section 8, and it is the fundamental error term that encodes
all chromatic levels greater than one in one indigestible lump.

As Adams wrote, “to this space or spectrum we consign all of the unsolved problems
of homotopy theory”. This object seems to be of fundamental interest, but it seems to
have been largely forgotten. I’ll take the opportunity to explain what it is and how it
fits into the picture as we understood it in the 1970’s. As far as I know, we know little
more about it now than we did then. It is natural to ask the following question.

Question 0.1 How precisely does B Coker J relate to the chromatic filtration of
stable homotopy theory?1

1Actually, while almost nothing was known about this question when I asked it in the first draft of this
paper, Nick Kuhn and Justin Noel have obtained a very interesting answer in just the last few weeks, that
is, in February, 2009.
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1 The classification of oriented bundles and fibrations

For a topological monoid G , a right G–space Y , and a left G–space X , we have the
two-sided bar construction B.Y;G;X /. It is the geometric realization of the evident
simplicial space with q–simplices Y � Gq � X . We fix notations for some maps
between bar constructions that we will use consistently. The product on G and its
actions on Y and X induce a natural map

(1-1) "W B.Y;G;X / �! Y �G X:

The maps X �! � and Y �! � induce natural maps

(1-2) pW B.Y;G;X / �! B.Y;G;�/ and qW B.Y;G;X / �! B.�;G;X /:

The identifications Y D Y � f�g and X D f�g�X induce natural maps

(1-3) t W Y �! B.Y;G;�/ and uW X �! B.�;G;X /:

We let EG D B.�;G;G/, which is a free right G–space, and BG D B.�;G;�/. We
assume that the identity element e 2G is a nondegenerate basepoint. We can always
arrange this by growing a whisker from e , but this will only give a monoid even when
G is a group. We also assume that G is grouplike, meaning that �0.G/ is a group
under the induced product. When G is a group, it is convenient to assume further that
G acts effectively on X . Recall that for any such X the associated principal bundle
functor and the functor that sends a principal G–bundle P to P �G X give a natural
bijection between the set of equivalence classes of principal G–bundles and the set of
equivalence classes of G–bundles with fiber X .

We recall from [22] how the bar construction is used to classify bundles and fibrations.
To begin with, the following diagram is a pullback even when G is just a monoid.

B.Y;G;X /
q //

p

��

B.�;G;X /

p

��
B.Y;G;�/

q
// BG

When G is a topological group, pW EG �! BG is a (numerable) universal principal
G–bundle. In fact, EG is also a topological group, with G as a closed subgroup, and
BG is the homogeneous space EG=G of right cosets. The map pW B.�;G;X /�!BG

is the associated universal G–bundle with fiber X . The map pW B.Y;G;X / �!

B.Y;G;�/ is a G–bundle with fiber X , and it is classified by qW B.Y;G;�/ �!BG .
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If G acts principally on Y and effectively on X , then the following diagram is a
pullback in which the maps " are (weak) equivalences:

B.Y;G;X /
" //

p

��

Y �G X

p

��
B.Y;G;�/

"
// Y=G

The classification theorem for bundles states that for any space A of the homotopy type
of a CW complex, the set ŒA;BG� of (unbased) homotopy classes of maps A�!BG

is naturally isomorphic to the set of equivalence classes of G -bundles with fiber X

over A. Pullback of the universal bundle gives the map in one direction. In the other
direction, for a principal G–bundle Y �!A, the two pullback squares above combine
to give the classifying map

AŠ Y=G
"�1

//B.Y;G;�/
q //BG;

where "�1 is any chosen (right) homotopy inverse to ". See [22, Sections 8–9] for
details and proofs. However, we point out for later reference one fact that drops out of
the proof. Consider the diagram

(1-4) BG B.EG;G;�/
"oo q //BG:

For any chosen homotopy inverse "�1 , q ı "�1 is homotopic to the identity.

When G is only a monoid, one has to develop a theory of principal and associated
fibrations. Also, the maps in our first pullback diagram are then only quasifibrations,
and we have to replace quasifibrations by fibrations since pullbacks of quasifibrations
need not be quasifibrations. Once these details are taken care of, the classification
of fibrations works in the same way as the classification of bundles. Taking G to be
the monoid F.X /D hAut.X / of based self homotopy equivalences of a based CW
complex X , BF.X / classifies well-sectioned (the section is a fiberwise cofibration)
fibrations with fiber X . Letting SF.X / be the submonoid of self-maps homotopic
to the identity and defining orientations appropriately, BSF.X / classifies oriented
well-sectioned fibrations with fiber X . See [22, Section 9] and [25, Section 1] for
details and proofs.

We are interested in the role of Y in the constructions above. We have already exploited
the variable Y in our sketch proof of the classification theorem, but it has other uses
that are of more direct interest to us here. A general theory of Y –structures on bundles
and fibrations is given in [22, Section 10]. For simple examples, consider a map
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f W H �! G of topological monoids. In the generality of monoids, it is sensible,
although nonstandard, to define

(1-5) G=H D B.G;H;�/ and HnG D B.�;H;G/I

these are consistent up to homotopy with the usual notions when H and G are groups.
With our assumption that H and G are grouplike, both of these are equivalent to the
fiber of Bf W BH �! BG . As explained in [22, 10.3 and 10.4], with the notations of
(1-5), the theory of Y –structures specializes to show that G=H classifies H–fibrations
with a trivialization as a G–fibration and B.HnG;G;�/ classifies G–fibrations with a
reduction of the structural monoid from G to H .

However, our main interest is in the specialization of the theory of Y –structures to the
classification of oriented fibrations and bundles that is explained in [23, Chapter III],
where more details may be found.

Recall the language of functors with cartesian product (FCP’s) from the first prequel
[27, Sections 2 and 12]. As there, we understand FCP’s and FSP’s to be commutative
in this paper. We are concerned specifically with the monoid-valued I –FCP’s and
Ic –FCP’s of [27, Section 2]. Of course, group-valued I –FCP’s and Ic –FCP’s are
defined similarly. Remember that the categories of monoid or group-valued I –FCP’s
and Ic –FCP’s are equivalent.

For finite dimensional inner product spaces V , let F.V / D F.SV / and SF.V / D

SF.SV /. For countably infinite dimensional U , F.U / and SF.U / are defined by
passage to colimits over the inclusions V �W of finite dimensional subspaces of U .
These are Ic –FCP’s via smash products of maps of spheres, and they are monoid-
valued under composition. To avoid ambiguity, it would be sensible to write F and SF

only for these monoid-valued FCP’s and to write GL1.S/ and SL1.S/ for their values
on R1 , but we shall allow the alternative notations F DF.R1/ and SF DSF.R1/,
as in the introduction. We agree to use the notations F and SF when we are thinking
about the roles of these spaces in space level applications and the notations GL1.S/

and SL1.S/ when we are thinking about their role in stable homotopy theory. One
point is that it is quite irrelevant to the space level applications that the spaces F and
SF happen to be components of the zeroth space of the sphere spectrum.

Throughout the rest of this section and the following three sections, we let G be a
monoid-valued Ic –FCP together with a map j W G �! F of monoid-valued Ic –
FCP’s. We assume that G is grouplike, meaning that each �0.G.V // is a group. The
letter j is a reminder of the J–homomorphism, which it induces when G DO . With
a little interpretation (such as using complex rather than real inner product spaces)
examples include O , SO, Spin, String, U , SU , Sp , Top, and STop. We also write
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G for G.R1/, despite the ambiguity, and we agree to write SG for the component of
the identity of G even when G is connected and thus SGDG . The classifying spaces
BG.V / give an Ic –FCP, but of course it is not monoid-valued. More generally, there
is an evident notion of a (left or right) action of a monoid-valued functor Ic –FCP on
an Ic –FCP. The product-preserving nature of the two-sided bar construction implies
the following observation [23, II.2.2].

Proposition 1.6 If G is a monoid-valued Ic –FCP that acts from the right and left on
Ic –FCP’s Y and X , then the functor B.Y;G;X / specified by

B.Y;G;X /.V /D B.Y .V /;G.V /;X.V //

inherits a structure of an Ic –FCP from G , Y , and X .

We can think of G–bundles or G–fibrations, which by abuse we call G–bundles in
what follows, as F–fibrations with a reduction of their structural monoids to G . Here
we are thinking of finite dimensional inner product spaces, and we understand the
fibers of these bundles to be spheres SV . The maps on classifying spaces induced
by the product maps G.V /�G.W / �!G.V ˚W / of the FCP are covered by maps
Sph.V /^Sph.W /�!Sph.V˚W / of universal spherical bundles. The whole structure
in sight forms a PFSP (parametrized functor with smash product), as specified in [29,
Chapter 23]. That point of view best captures the relationships among FCP’s, FSP’s,
and Thom spectra, but we shall not go into that here.

Now recall that GL1R is the space of unit components of the zeroth space R0 of a
commutative ring spectrum R and that SL1R is the component of the identity. The
space GL1R has a right action by the monoid F .2 This is a trivial observation, but a
very convenient one that is not available with other definitions of spectra. Indeed, R0

is homeomorphic to �V R.V / and, since F.V /D F.SV /, composition of maps gives
a right action of F.V / on �V R.V /. When R is an up-to-homotopy commutative
ring spectrum, this action restricts to an action of F.V / on GL1R and of SF.V / on
SL1R. These actions are compatible with colimits and therefore induce a right action
of the monoid F on the space GL1R and of SF on SL1R. These actions pull back
to actions by the monoids G and SG .

An R–orientation of a well-sectioned bundle E �!B with fiber SV is a cohomology
class of its Thom space E=B that restricts to a unit on fibers. Such a class is represented
by a map E=B�!R.V /. Taking B to be connected, a single fiber will do, and then the
restriction is a based map SV �!R.V / and thus a based map S0�!�V R.V /ŠR0 .

2The notation FR for GL1R originally used in [23] emphasizes this relationship to F .
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The image of 1 must be a point of GL1.R/. These observations should give a hint as
to why the following result from [23, Section I.2] is plausible.

Theorem 1.7 The space B.GL1R;G.V /;�/ classifies equivalence classes of R–
oriented G.V /–bundles with fiber SV .

Corollary 1.8 The space B.SL1R;SG.V /;�/ classifies R–oriented SG.V /–bun-
dles with fiber SV .

The interpretation requires a bit of care. Orientations depend only on the connective
cover of R, so we may assume that R is connective. An R–oriented bundle inherits a
k–orientation, where k D �0.R/. We specify R–orientations by requiring them to be
consistent with preassigned k–orientations. Precisely, the k–orientation prescribes a
Thom class in H n.T �I k/ŠRn.T �/ for an n–dimensional G.V /–bundle � , and we
require an R–orientation to restrict on fibers to the resulting fundamental classes. An
SG.V /–bundle is an integrally oriented G.V /–bundle, and we define an R–oriented
SG.V /–bundle to be an R–oriented G.V /–bundle and an SG.V /–bundle whose
prescribed k–orientation is that induced from its integral orientation.

Along with these classifying spaces, we have Thom spectra associated to bundles
and fibrations with Y –structures, such as orientations [23, IV.2.5]. We discuss E1–
structures on classifying spaces and on Thom spectra in the following two sections.

2 E1 structures on classifying spaces and orientation theory

Still considering a monoid-valued grouplike Ic –FCP G over F , we now assume
further that R is a (connective) E1 ring spectrum and focus on the stable case,
writing G and SG for G.R1/ and SG.R1/. The analogues for stable bundles of
the classification results above remain valid, but we now concentrate on E1 structures
on the stable classifying spaces.

Recall from [27, Section 2] that we have a functor from I–FCP’s, or equivalently Ic –
FCP’s, to L–spaces. For any operad O , such as L , the category O ŒT � of O–spaces
has finite products, so it also makes sense to define monoids and groups in the category
O ŒT �. For a monoid G in O ŒT �, the monoid product and the product induced by
the operad action are homotopic [21, 3.4]. It also makes sense to define left and right
actions of G on O–spaces. The functors from I–FCP’s to Ic –FCP’s to L–spaces
are product preserving and so preserve monoids, groups, and their actions. Moreover,
we have the following analogue of Proposition 1.6.
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Proposition 2.1 If G is a monoid in O ŒT � that acts from the right and left on O–
spaces Y and X , then B.Y;G;X / inherits an O–space structure from G , Y , and X .
In particular, BG is an O–space. Moreover, the natural map �W G �!�BG is a map
of O–spaces and a group completion.

Proof B.Y;G;X / is the geometric realization of a simplicial O–space and is therefore
an O–space. The statements about � hold by [21, 3.4] and [22, 15.1].

As we reproved in [27, Corollary B.4], when O is an E1 operad this implies that
the first delooping E1G is equivalent to BG as an O–space. Said another way, the
spectra obtained by applying the additive infinite loop space machine E to G '�BG

are equivalent to those obtained by applying �E to BG ' E0BG .

When Y and X are Ic –FCP’s with right and left actions by G , the L–space structure
of Proposition 2.1 is the same as the L–space structure obtained by passage to colimits
from the Ic –FCP structure on B.Y;G;X / of Proposition 1.6. This does not apply
to the right F–space Y D GL1R for an L–spectrum R, but in that case we can
check from the definition of an L–prespectrum [27, Section 5] that the action map
GL1R�F �!GL1R is a map of L–spaces (see [23, page 80]).

We conclude that, in the stable case, the spaces B.Y;G;X / that we focused on in
the previous section are grouplike L–spaces and therefore, by the additive infinite
loop space machine, are naturally equivalent to the zeroth spaces of associated spectra.
Thus we may think of them as infinite loop spaces. This result and its implications
were the main focus of [23] and much of [12], where the homologies of many of
these infinite loop spaces are calculated in detail by use of the implied Dyer–Lashof
homology operations.

Taking X D � and thus focusing on classifying spaces, it is convenient to abbreviate
notation by writing

B.Y;G;�/D B.GIY /

for the classifying space of stable G–bundles equipped with Y –structures. It comes
with natural maps

t W Y �! B.GIY / and qW B.GIY / �! BG:

When we specialize to Y D SL1R or Y DGL1R, we abbreviate further by writing

B.SGISL1R/D B.SGIR/ and B.GIGL1R/D B.GIR/:

These are the classifying spaces for stable R–oriented SG–bundles and for stable
R–oriented G–bundles. It is important to remember that these spaces depend only on
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GL1R, regarded as an F–space and an L–space, and not on the spectrum R; that is,
they are space level constructions. With these notations, the discussion above leads to
the following result, which is [23, IV.3.1].

Theorem 2.2 let R be an L–spectrum and let �0.R/ D k . Then all spaces are
grouplike L–spaces and all maps are L–maps in the following stable orientation
diagram. It displays two maps of fibration sequences.

SG
e //

��

SL1R
t //

��

B.SGIR/
q //

��

BSG

��
G

e // GL1R
t //

d
��

B.GIR/
q //

Bd
��

BG

G
de

// GL1.k/
t // B.SGI k/

q // BG

The diagram is functorial in R; that is, a map R�!Q of L–spectra induces a map
from the diagram of L–spaces for R to the diagram of L–spaces for Q.

The unstable precursor (for finite dimensional V ) and its bundle theoretic interpretation
are discussed in [23, pages 55–59]. The top vertical arrows are inclusions and the map
d is just discretization. The maps e are induced by the unit S �!R. On passage to
zeroth–spaces, the unit gives a map F DGL1S �!GL1R, and we are assuming that
we have a map j W G �! F . We continue to write e for the composite e ı j . Writing
BGL1R for the delooping of GL1R given by the additive infinite loop space machine,
define a generalized first Stiefel–Whitney class by

w1.R/D BeW BG �! BGL1R:

Then w1.R/ is the universal obstruction to giving a stable G–bundle an R–orientation;
see [23, pages 81–83] for discussion. The map t represents the functor that sends
a unit of R0.X / to the trivial G–bundle over X oriented by that unit. The map
q represents the functor that sends an R–oriented stable G–bundle over X to its
underlying G–bundle, forgetting the orientation.

There is a close relationship between orientations and trivializations that plays a major
role in the applications of [12; 23]. We recall some of it here, although it is tangential
to our main theme. The following result is the starting point. Its unstable precursor and
bundle theoretic interpretation are discussed in [23, pages 59–60]. It and other results
to follow have analogues in the oriented case, with G and F replaced by SG and SF .
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Theorem 2.3 Let R be an L–spectrum. Then all spaces in the left three squares are
grouplike L–spaces and all maps are L–maps in the following diagram. It displays a
map of fibration sequences, and it is natural in R.

G
j // F

t //

e

��

F=G
q //

Be
��

BG
Bj // BF

Be
��

// � � �

G e
// GL1R

t
// B.GIR/

q
// BG

w1.R/

// BGL1R // : : :

The left map labeled Be is B.e; id; id/W B.F;G;�/ �! B.GL1R;G;�/. Since the
first three squares of the diagram are commutative diagrams of L–spaces, we get
the fourth square from the induced fibration of spectra. It relates the J–map Bj ,
which is the universal obstruction to the F–trivialization of G–bundles, to the universal
obstruction w1.R/DBe to the R–orientability of G–bundles. In particular, it gives
a structured interpretation of the fact that if a G–bundle is F–trivializable, then it is
R–orientable for any R.

The previous result works more generally with F replaced by any G0 between G and
F , but we focus on G0 D F since that is the case of greatest interest. We state the
following analogue for Thom spectra in the general case. Its proof falls directly out of
the definitions [23, IV.2.6]. However, for readability, we agree to start with H �!G

rather than G �! G0 , in analogy with the standard convention of writing H for a
generic subgroup of a group G . We are thinking of the case RDMH in Theorem 2.3.
The case GDF plays a key role in Ray’s study [34] of the bordism J–homomorphism.

Proposition 2.4 Let i W H �! G be a map of grouplike monoid-valued Ic –functors
over F . Then there is a map of L–spaces j W HnG�!GL1.MH / that coincides with
j W G �! F when H D e and makes the following diagrams of L–spaces commute.

G
u //

e $$JJJJJJJJJJ HnG

j

��
GL1.MH /

and B.H IHnG/

Bj

��

q // BH

B.H IMH /

q

99rrrrrrrrrr

3 Universally defined orientations of G–bundles

Universally defined canonical orientations of G–bundles are of central importance to
both the early work of the 1970’s and to current work, and we shall discuss them in
this section and the next. The early geometric examples are the Atiyah–Bott–Shapiro
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kO–orientations of Spin–bundles and kU–orientations of U–bundles and the Sullivan
(odd primary) spherical kO–orientations of SPL–bundles. We are interested in stable
bundles and in the relationship of their orientations to infinite loop space theory and to
stable homotopy theory. We fix an E1 ring spectrum R.

There are two homotopical ways of defining and thinking about such universally defined
orientations of G–bundles, one on the classifying space level and the other on the
Thom spectrum level. The main focus of [23] was on the classifying space level and
calculational applications to geometric topology. The main modern focus is on the
Thom spectrum level and calculational applications to stable homotopy theory, as in [7;
8; 9; 11]. We work on the classifying space level here and turn to the Thom spectrum
level and the comparison of the two in the next section.

Definition 3.1 An R–orientation of G is a map of H–spaces gW BG �! B.GIR/

such that q ıg D id in the homotopy category of spaces. A spherical R–orientation is
a map of H–spaces gW BG �!B.F IR/ such that the following diagram commutes
in the homotopy category.

BG

Bj $$JJJ
JJJ

JJJ
J

g // B.F IR/

q

��
BF

We call these E1 R–orientations if g is a map of L–spaces such that q ıg D id or
q ıg D Bj in the homotopy category of L–spaces.

There is a minor technical nuisance that perhaps should be pointed out but should not
be allowed to interrupt the flow. In practice, instead of actual maps g of L–spaces as
in the definition, we often encounter diagrams of explicit L–maps of the form

X X 0
"oo � //Y

in which, ignoring the L–structure, " is a weak equivalence. The category of L–spaces
has a model structure with such maps " as the weak equivalences, hence such a diagram
gives a well-defined map in the homotopy category of L–spaces. We agree to think of
such a diagram with X D BG and Y D B.GIR/ as an E1 R–orientation.

With the notation of (1-5), GnGDEG . This is a contractible space, and "W EG �!�

is both a G–map and a map of L–spaces. The case H DG of Proposition 2.4, together
with (1-4), gives a structured reformulation of the standard observation that G–bundles
have tautological MG–orientations.
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Corollary 3.2 The following diagram of L–spaces commutes, its map " and top map
q are equivalences, and q ı "�1 D id in the homotopy category of spaces.

BG B.EG;G;�/D B.GIGnG/
"oo

Bj

��

q // BG

B.GL1.M G/;G;�/D B.GIMG/

q

55jjjjjjjjjjjjjjjjjj

The following two direct consequences of Definition 3.1 are [23, V.2.1 and V.2.3]. Let
�W G�G �!G be the product and �W G �!G be the inverse map of G . In the cases
we use, both are given by maps of L–spaces.

Proposition 3.3 If gW BG �! B.GIR/ is an R–orientation, then the composite

GL1R�BG
t�g //B.GIR/�B.GIR/

� //B.GIR/

is an equivalence of H–spaces. If g is an E1 R–orientation, then � ı .t � g/ is an
equivalence of infinite loop spaces.

Theorem 3.4 An E1 spherical R–orientation gW BG �! B.F IR/ induces a map
f such that the following is a commutative diagram of infinite loop spaces. It displays
a map of fibration sequences.

F
t //

�

��

F=G
q //

f

��

BG

g

��

Bj // BF
Bt // B.F=G/

Bf

��

// � � �

F e
// GL1R

t
// B.F IR/

q
// BF

Be
// BGL1R // � � �

The third square is a factorization of the J–homomorphism map Bj . It is used in
conjunction with the following observation, which is [23, V.2.2]. For a grouplike
H–space X and H–maps ˛; ˇW X �!X , we define ˛=ˇ D �.˛��ˇ/�W X �!X ;
when we think of X as an additive H–space, we write this as ˛�ˇ . These are infinite
loop maps when ˛ and ˇ are infinite loop maps.

Proposition 3.5 An (up to homotopy) map of ring spectra  W R�!R induces a map
c. / such that the following diagram is homotopy commutative.

GL1R

 =1

��

t // B.GIR/
c. /

yyssssssssss
.B /=1

��
GL1R

t
// B.GIR/
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If R is an L–spectrum and  is a map of L–spectra, then the diagram is a homotopy
commutative diagram of maps of infinite loop spaces.

The intuition is that c. / is given by taking the quotient . ı�/=� of an orientation
� and the twisted orientation  ı� to obtain a unit of R.

In the applications of this result, it is crucial to apply the last sentence to the Adams
operations  r W kO �! kO but, even at this late date, I would not know how to justify
that without knowing about bipermutative categories, algebraic K–theory, and the
relationships among bipermutative categories, E1 ring spaces, and E1 ring spectra.
Perhaps the deepest work in [23], joint with Tornehave, provides such a justification by
using Brauer lifting to relate the algebraic K–theory of the algebraic closures xFq of
finite fields to topological K–theory on the multiplicative infinite loop space level. The
proof makes essential use of the results described in [27, Section 10] on the localization
of unit spectra sl1R. I’ll describe how the argument goes in Section 7.

As noted, the main geometric examples are the Atiyah–Bott–Shapiro orientations and
the Sullivan (odd primary) orientation. For the latter, work of Kirby–Siebenmann [17])
shows that BSPL is equivalent to BSTop away from 2. This is a major convenience
since STop fits into our framework of monoid-valued Ic –FCP’s and SPL does not.
Using deep results of Adams and Priddy [6] and Madsen, Snaith, and Tornehave [19],
I proved the following result in [23, V.7.11 and V.7.16] by first constructing an infinite
loop map f such that the left square commutes in the diagram of Theorem 3.4 and
then constructing g .

Theorem 3.6 Localizing at a prime (odd in the case of STop), the Atiyah–Bott–Shapiro
kO–orientation of Spin and kU–orientation of U and the Sullivan kO–orientation of
STop are E1 spherical orientations.

This result, together with Friedlander’s proof of the complex Adams conjecture on the
infinite loop space level [15], leads to an analysis on that level of the work of Adams on
the J–homomorphism [1; 2; 3; 4] and the work of Sullivan on the structure of BSTop
(alias BSPL) [36]. I’ll resist the temptation to give a full summary of that work here.
The relevant part of [23], its Chapter V, is more readable and less dated notationally
than most of the rest of that volume. It chases diagrams built up from those recorded
above, with G D Spin or G D STop and RD kO , to show how to split all spaces in
sight p–locally into pieces that are entirely understood in terms of K–theory and the
space B Coker J , whose homotopy groups are the cokernel of the J–homomorphism

.Bj /�W ��.BO/ �! ��.BF /:
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At p > 2, the space B Coker J can be defined to be the fiber of the map

c. r /W B.SF I kO/ �! SL1.kO/D BO˝;

where r is a unit mod p2 . At p D 2, one should take r D 3 and replace BO˝ by
its 2–connected cover BSpin˝ in this definition, and the description of the homotopy
groups of B Coker J requires a well understood small modification.

However, the fact that B Coker J is an infinite loop space comes from the work using
Brauer lifting that I cited above. In fact, it turns out that, for p odd, B Coker J is
equivalent to B.SF IK.Fr //, where r is a prime power qa that is a unit mod p2 and
Fr is the field with r elements. This is an infinite loop space because K.Fr / is an
E1 ring spectrum. There is an analogue for p D 2.

At odd primes, this description of B Coker J is consistent with the description of
Coker J that was alluded to in the introduction and leads to the splitting of BSF as
BJ �B Coker J as an infinite loop space; here BJ is equivalent to the infinite loop
space SL1K.Fr /. The proof again makes essential use of the results on spectra of
units described in [27, Section 10]. I’ll sketch how this argument goes in Section 8.

The definitive description of the infinite loop structure on BSTop is given in [24], where
a consistency statement about infinite loop space machines that is not implied by May
and Thomason [30] plays a crucial role in putting things together; it is described at the
end of [28, Section 11]. Part of the conclusion is that, at an odd prime p , the infinite
loop space BSTop is equivalent to B.SF I kO/ and splits as BO �B Coker J . We
will say a little bit about this in Section 8.

Joachim [16] (see also [7]) has recently proved a Thom spectrum level result which
implies the following result on the classifying space level. It substantially strengthens
the Atiyah–Bott–Shapiro part of Theorem 3.6.

Theorem 3.7 The Atiyah–Bott–Shapiro orientations

gW BSpin �! B.SpinI kO/ and gW BU �! B.U I kO/

are E1 orientations.

4 E1 ring structures on Thom spectra M.G I Y /

Let R be an L–spectrum throughout this section and the next. Two different construc-
tions of Thom L–spectra M.GIR/ are given in [23, IV.2.5 and IV.3.3], and they are
compared in [23, IV.3.5]. They are specializations of more general constructions of
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L–spectra M.GIY /. We first describe the second construction. We then describe the
first construction in the modern language of [29, Chapter 23] and interpolate some
commentary on the modern perspective on these constructions.

In the previous section, we focused on spaces B.GIY /�B.Y;G;�/ arising from a
grouplike monoid-valued I–FCP G over F and an L–space Y . Here G DG.R1/
is the union over finite dimensional V � R1 of the G.V /. We now Thomify from
that perspective, using the passage from L–prespectra to L–spectra recalled in [27,
Section 5]. Recall from Section 2 that the SV give the sphere I–FSP S . We have
Thom spaces

T .GIY /.V /D B.Y;G.V /;SV /=B.Y;G.V /;1/

where 12 SV is the point at 1. Smashing with SW for W orthogonal to V and
moving it inside the bar construction, as we can do, we see that the identifications
SV ^SW Š SV˚W and the inclusions G.V /�G.V ˚W / induce structure maps

� W T .GIY /.V /^SW
�! T .GIY /.V ˚W /:

For f 2L .j /, we have maps of prespectra

�j W T .GIY /
Œj �
�! f �T .GIY /

Explicitly, abbreviating T .GIY /D T , the required maps

�j W T .V1/^ � � � ^T .Vj / �! T .f .V1˚ � � �˚Vj //

are obtained by identifying T .V1/^ � � � ^T .Vj / with a quotient of

B.Y j ;G.V1/� � � � �G.Vj /;S
V1˚���˚Vj /

and then applying B.�j .f /;G.f /ı!;S
f /, where the map �j .f /W Y j �! Y is given

by the operad action on Y , the map

G.f / ı!W G.V1/� � � � �G.Vj / �!G.f .V1˚ � � �˚Vj //

is given by the I–FCP structure on G , and the map Sf is the one-point compact-
ification of f . Here G.V / acts on Y through F.V /, and we need a compatibility
condition relating this action and the operad action for these maps to be well-defined,
essentially compatibility with d0 in the simplicial bar construction. This then gives
T .GIY / a structure of L–prespectrum. We spectrify to obtain a Thom L–spectrum
M.GIY /, which is thus an E1 ring spectrum.

The compatibility condition holds for Y DGL1R for an E1 ring spectrum R since
the action comes via composition from the inclusion GL1R�R0 Š�

V R.V /. This
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is the Y that was considered in [23, IV.3.3]. As on the classifying space level, we
abbreviate notations by writing

M.SGISL1R/DM.SGIR/ and M.GIGL1R/DM.GIR/:

The groups ��.M.GIR// are the cobordism groups of G–manifolds with R–oriented
stable normal bundles when G maps to O . There is a similar interpretation using
normal spaces in the sense of Quinn [33] when G D F .

There is another perspective, which is suggested by Proposition 1.6. The L–spaces Y

of interest are often themselves Y .R1/ for a based Ic –FCP Y with a right action
by the Ic –FCP F and therefore by the Ic –FCP G . Using an alternative notation to
make the distinction clear, we can then use the spaces Y .V /, V finite dimensional, to
form the Thom spaces

T .Y;G;S/.V /D B.Y .V /;G.V /;SV /=B.Y .V /;G.V /;1/:

The I–FCP structures on Y and G and the I–FSP structure on S give rise to maps

T .Y;G;S/.V /^T .Y;G;S/.W / �! T .Y;G;S/.V ˚W /;

and there are evident maps SV �!T .Y;G;S/.V /. These give T .Y;G;S/ a structure
of I–FSP. As recalled from [23, IV.2.5] in [27, Section 5], in analogy with the passage
from I–FCP’s to L–spaces, there is an easily defined functor from I–FSP’s to
L–prespectra that allows us to regard T .Y;G;S/ as an L–prespectrum. We let
M.Y;G;S/ denote its spectrification, which is again an L–spectrum. Up to language,
this is the construction given in [23, IV.2.5], and when both constructions apply they
agree by [23, IV.3.5].3 With this discussion in mind, it is now safe and convenient to
consolidate notation by also writing M.GIY /DM.Y;G;S/ when working from our
second perspective.

Remark 4.1 The observant reader may wonder if we could replace S by another
I–FSP Q in the construction of M.Y;G;�/ and so get a generalized kind of Thom
spectrum. We refer the reader to [29, Chapter 23] for a discussion. Recent work gives
explicit calculations of interesting examples [26].4

3There is a technical caveat here that we shall ignore. The early argument just summarized required I–
FSP’s to satisfy an inclusion condition to ensure that the relevant colimits are well-behaved homotopically.
Arguments in [20, Section I.7] circumvent that.

4Parenthetically, a quite different kind of generalized Thom spectrum is studied in [7]. Its starting
point is to think of a delooping BGL1R of GL1R as a classifying space with its own associated Thom
spectrum MGL1R , analogous to and with a mapping from MF DMGL1S .
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The reader may also wonder if our second perspective applies to the construction of
M.GIR/, that is, if the L–space GL1R comes from an I–FCP Y . To answer that,
we interject a more modern view of these two perspectives, jumping forward more
than two decades to the introduction of orthogonal spectra. When [23] was written, it
seemed unimaginable to me that all E1 ring spectra arose from I–FSP’s or that all
L–spaces arose from I–FCP’s. I thought the second perspective given above only
applied in rather special situations. We now understand things better.

As observed in [27, Sections 2 and 12], I–FSP’s are the external equivalent of com-
mutative orthogonal ring spectra. There are two different functors, equivalent up to
homotopy, that pass from orthogonal spectra to S–modules in the sense of [13]. The
comparison is made in [20, Chapter 1]. The first functor is called N and is the left
adjoint of a Quillen equivalence. It is symmetric monoidal and so takes commutative
orthogonal ring spectra to commutative S–algebras, which, as we explained in [27,
Section 11] are essentially the same as E1 ring spectra. The second is called M, and
its specialization to commutative orthogonal ring spectra is essentially the same functor
from I–FSP’s to L–prespectra to L–spectra of [23] and [27, Section 5] that we have
been using so far in this section.5 The conclusion is that, from the point of view of
stable homotopy theory, we may use I–FSP’s and E1 ring spectra interchangeably,
although I–FSP’s do not directly encode E1 ring spaces.

There is an analogous comparison of I–FCP’s and L–spaces, although this has not
yet appeared in print.6 In essence, it mimics the spectrum level constructions of [13;
20] on the space level. Via that theory, we can also use I–FCP’s and L–spaces
interchangeably.

This suggests that, when RDMP for an I–FSP P , we can reconstruct M.GIR/

from the second perspective by taking Y to be an explicitly defined I–FCP GL1P .
Using unit spaces GL1.P /.V /��

V P .V /, the required definition of GL1P is given
in [29, 23.3.6]. There is a subtle caveat in that P must be fibrant in the positive stable
model structure, so that P .0/D S0 and P behaves otherwise as an �–prespectrum.
Then the maps P .V /^P .W /�!P .V ˚W / of the given FSP structure on P induce
maps

�V P .V /��W P .W / �!�V˚W P .V ˚W /

that specify a natural transformation of functors on I �I and restrict to maps

GL1P .V /�GL1P .W / �!GL1P .V ˚W /:

These maps give GL1P the required structure of an I–FCP.7

5This holds when the inclusion condition we are ignoring holds on the given I–FSP’s.
6It starts from material in Blumberg’s thesis [10] and has been worked out in detail by Lind.
7We are again ignoring inclusion conditions; Lind’s work shows how to get around this.
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Remark 4.2 Assuming or arranging the inclusion condition in the definition of an
I–FCP, we can extend the functor GL1P to Ic by passage to colimits. This gives an
Ic –FCP GL1P with a right action by any monoid-valued Ic –FCP G over F and
thus places us in the context to which Proposition 1.6 can be applied to construct an
Ic –FCP B.GL1P;G;�/. With RDMP , the associated L–space is homeomorphic
to the L–space B.GIR/D B.R0;G;�/ obtained by application of Proposition 2.1
in ~2.

5 Thom spectra and orientation theory

We interject some useful general results about the Thom spectra M.GIY /, following
[23, Sections IV.2.7, IV.2.8, IV.3.4 and IV.3.5].8 We then return to orientation theory
and put them to use to compare universal orientations on the space level and on the
spectrum level.

We observe first that the generic maps qW B.Y;G;X / �! B.�;G;X / induce corre-
sponding maps of Thom spectra.

Lemma 5.1 For an L–space Y with a compatible right action by F or for an I–FCP
Y with a right action of the monoid-valued I–FCP F , there is a canonical map of
L–spectra qW M.GIY / �!M G .

The generic maps "W B.Y;G;X /�! Y �G X also induce certain corresponding maps
of Thom spectra. For H �!G , we can take Y DHnG D B.�;H;G/ to obtain

"W B.HnG;G;X / �! B.�;H;G/�G X Š B.�;H;X /:

Applied to a map H �!G of monoid-valued I–FCP’s and the I–FSP X D S , this
induces a map of Thom spectra.

Lemma 5.2 There is a canonical map of L–spectra "W M.GIHnG/ �!MH .

The homotopy groups of M.GIHnG/ are the cobordism classes of G–manifolds with
a reduction of their structural group to H . We have a related map given by functoriality
in the variable Y , applied to e D e ı j W G �!GL1R.

Lemma 5.3 There is a canonical map of L–spectra MeW M.H IG/ �!M.GIR/.

8These are all labeled Remarks. Frank Quinn once complained to me that some of our most interesting
results in [23] were hidden in the remarks. He had a point.
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A less obvious map is the key to our understanding of orientation theory. We use
our first construction of M.GIR/ for definiteness and later arguments. Since R0 Š

�V R.V /, we may view GL1R as a subspace of �V R.V /. The evaluation map
"W GL1R�SV �!R.V / factors through the orbits under the action of G.V /, and
we may compose it with "W B.GL1R;G.V /;SV /�!GL1R.V /�G.V /S

V to obtain
a map �W B.GL1R;G.V /;SV / �!R.V /. This works equally well if we start with
RDMP . We again get an induced map of L–spectra.

Lemma 5.4 There is a canonical map of L–spectra �W M.GIR/ �!R.

Taking RDMG and recalling the map j W HnG �!GL1.MH / of Proposition 2.4,
we obtain the following analogue of that result.

Proposition 5.5 The following diagram of L–spectra commutes.

MH M.GIHnG/
"oo q //

Mj

��

MG

M.GIMH /

�

ffMMMMMMMMMMM q

88rrrrrrrrrrr

Specializing to H DG and again recalling that GnG DEG , this gives the following
analogue of Corollary 3.2.

Corollary 5.6 The following diagram of L–spectra commutes, its map " and top
map q are equivalences, and q ı "�1 D id in the homotopy category of spectra.

MG M.GIEG/
"oo q //

Mj

��

MG

MG M.GIM G/
�

oo
q

// MG

Therefore MG is a retract and thus a wedge summand of M.GIMG/ such that the
map � and the lower map q both restrict to the identity on the summand MG .

We now reconsider R–orientations of G from the Thom spectrum perspective. There
is an obvious quick definition, but on first sight it is not obvious how it relates to the
definition that we gave on the classifying space level.

Definition 5.7 An R–orientation of G is a map of ring spectra �W MG �!R; it is
an E1 R–orientation if � is a map of E1 ring spectra.
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An E1 R–orientation � induces a map of L–spaces �W GL1.MG/�!GL1R and
therefore a map of L–spectra M�W M.GIM G/ �! M.GIR/. We can glue the
diagram of the following result to the bottom of the diagram of Corollary 5.6.

Proposition 5.8 Let �W MG �! R be a map of L–spectra. Then the following
diagram of L–spectra commutes.

MG

�

��

M.GIM G/
�oo q //

M�

��

MG

R M.GIR/
�

oo
q

// MG

Therefore MG is a retract and thus a wedge summand of M.GIR/, and the lower
map � restricts to the given map � on this wedge summand.

Given a map of ring spectra �W M G �!R, the composite

MG
"�1

//M.GIEG/
Mj ////M.GIM G/

M� //M.GIR/

in the homotopy category of spectra is the Thom spectrum analogue of the map
gW BG �! B.GIR/ in our original definition of an R–orientation of G . If � is an
E1 ring map, then it induces a map of L–spaces B�W B.GIMG/�!B.GIR/, and
we can use Corollary 3.2 to obtain the following diagram of E1 maps.

BG B.EG;G;�/
"

'
oo Bj //B.GIM G/

B� //B.GIR/

Since " is an equivalence, this gives us an E1 orientation g .

Conversely, given an E1 orientation gW BG �!B.GIR/, we can “Thomify” it to an
E1 ring map MgWMG�!M.GIR/ and then compose Mg with �W M.GIR/�!R

to get an E1 R–orientation �W M G �! R. The required Thomification can be
obtained by applying the methods of Lewis [18, Chapter IX] to pull back the Thom
spectrum M.GIR/ along the map g to obtain a Thom spectrum g�M.GIR/. The E1
ring spectrum M.GIR/ is equivalent to q�M G , qW B.GIR/ �! BG , and the E1
homotopy q ıg ' id implies that the composite g�M.GIR/ �!M.GIR/ �!MG

is an equivalence of E1 ring spectra.9 The Thomification Mg is the composite of
the inverse of this equivalence and the canonical map g�M.GIR/ �!M.GIR/.

9This is cryptic since the best way to carry out the details uses parametrized spectra [26; 29] and full
details of how this and other such arguments should go have not yet been written up.
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Technical details are needed to check that these constructions are mutually inverse,
but the idea should be clear. In any case, with our present state of knowledge, we
understand how to prove things on the spectrum level much better than on the space
level, and it is usually easiest to construct spectrum level E1 orientations and then
deduce space level E1 orientations, as in Theorem 3.7.

6 Examples of bipermutative categories

Before turning to bipermutative categories, consider a topological rig (semiring) A. It is
an .N ;N /–space, and so can be viewed as an E1 ring space. By the multiplicative
black box of the first prequel [27], it has an associated E1 ring spectrum EA and an
associated ring completion �W A�!E0A. On �0 , this constructs the ring associated to
�0.A/ by adjoining negatives, hence it is an isomorphism if A is already a ring. When
A is discrete, Hi.E0A/D 0 for i > 0 and � is a homotopy equivalence. Therefore EA

is an Eilenberg–Mac Lane spectrum HA, and this gives HA an E1 ring structure.

Now let A be a bipermutative category. We agree to write BA for the E1 ring space
equivalent to the usual classifying space that we obtain by the constructions developed
in the prequel [28]. The multiplicative black box of the first prequel [27] gives an E1
ring spectrum EBA and a ring completion �W BA �! E0A . Up to inverting a map
that is an E1 ring map and an equivalence, � is a map of E1 ring spaces, where
we understand E1 ring spaces to mean .C ;L /–spaces. Of course, we require 0¤ 1

in A . As in [27, Section 10], we agree to write �BA D E0BA and then to use
notations like �nBA to denote components of this space. Changing back from [28],
we use the standard notation for monads that we used in [27], so that CX denotes
the usual C–space with a group completion ˛W CX �!QX , and similarly for other
operads. More details of the following discussion are in [23, Sections VI.5 and VII.1].

An important first example of a bipermutative category is the free bipermutative cate-
gory E generated by its unit elements f0; 1g. It is the sub bipermutative category of
isomorphisms in F . Its rig of objects is the rig ZC of nonnegative integers. There are
no morphisms m �! n for m¤ n, and E .n; n/ is the symmetric group †n . The sum
†m �†n �!†mCn is obtained by ordering the set of mC n objects as the set of m

objects followed by the set of n objects. The product †m �†n �!†mn is obtained
by lexicographically ordering the set of mn objects. The commutativity isomorphisms
are the evident ones [23, VI.5.1]. There is a unique map eW E �!A of bipermutative
categories from E to any other bipermutative category A .

Since CS0 is the free .C ;L /–space generated by S0 , we have a unique .C ;L /–map
�W CS0 �! BE . Up to homotopy, both source and target are the disjoint union of
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classifying spaces B†n , n� 0, and � is an equivalence. As we recalled in [23, 10.1],
one version of the Barratt–Quillen theorem says that �CS0 ' �BE is equivalent to
QS0 as an E1 ring space. For a bipermutative category A , the unit eW E �! A
induces the unit map eW CS0 Š BE �! BA of the .C ;L /–space BA , which in
turn induces the unit map eW S �! EBA of the associated L–spectrum.

As in the case of E , all of the following examples of bipermutative categories A have
ZC as their rig of objects and have no morphisms m �! n for m¤ n and a group of
morphisms A .n; n/. Let R be a commutative topological ring, such as R, C , or a
discrete commutative ring. We then have a bipermutative category G L R whose nth
group is GL.n;R/. The sum and product are given by block sum and tensor product
of matrices, where the latter is interpreted via lexicographic ordering of the standard
basis elements of Rmn .

Example 6.1 When R is R or C , we can restrict to orthogonal or unitary matrices
without changing the homotopy type, and we write O and U for the resulting biper-
mutative categories. Then EBO and EBU are models of the connective K–theory
spectra kO and kU as E1 ring spectra, by [23, VII.2.1].

Example 6.2 When R is discrete, we write KR D EBG L R. It is a model for
(connective) algebraic K–theory, as defined by Quillen; that is, �i.KR/ is Quillen’s i th
algebraic K–group Ki.R/ for i > 0. See [23, Section VII.1]. Here �0.KR/DZ. We
can obtain the correct K0R without changing the higher homotopy groups by replacing
G L R by a skeleton of the symmetric bimonoidal category of finitely generated
projective R–modules and their isomorphisms.

Recall from [27, Section 7] that C.XC/ is a .C ;L /–space if X is an L–space and
EC.XC/ is equivalent to the L–spectrum †1C .X / � †

1.XC/ with zeroth space
Q.XC/.

Example 6.3 Define OR�G L R to be the sub-bipermutative category of orthogonal
matrices, MM t D Id, and write KORD EBOR. This example is sometimes inter-
esting and sometimes not. For instance, O.n;Z/ is isomorphic to the wreath product
†n

R
� , where � is cyclic of order 2, and there is an equivalence C.B�C/�!BO.Z/.

This implies that EBOZ is equivalent as an E1 ring spectrum to †1CB� . See [23,
VI.5.9]. Variants of the OR are often of interest.

The remaining examples here will be applied to topology in the next two sections. The
importance of the following construction will become clear in Section 8.
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Example 6.4 Let X be a D–space for any E1 operad D . For r 2 �0.X /, define
er W S

0 �! X by sending 0 to the operadic basepoint of X and sending 1 to any
chosen basepoint in the r th component. The composite of Der W DS0 �!DX and the
action DX �!X specifies a map of D–spaces DS0�!X . It is called an exponential
unit map of X and, up to homotopy of D–maps, it is independent of the choice of
basepoint.

Example 6.5 Let r D qa , q prime. Let Fr be the field with r elements and let xFq

be its algebraic closure. Let �q denote the Frobenius automorphism of G L xFq , which
raises matrix entries to the q th power, and let �r denote its a–fold iterate. Then �r

is an automorphism of bipermutative categories that restricts to an automorphism of
O xFq . Moreover, the fixed point bipermutative category of �r is G L Fr .

Example 6.6 Again, let r D qa . Define the forgetful functor f W G L Fr �! E as
follows. On objects, let f .n/D rn . Fix an ordering of the underlying set of Fr and
order Fn

r lexicographically. Then regard a matrix M 2GL.n;Fr / as a permutation of
the ordered set Fn

r . The functor f is an exponential map of permutative categories
.G L Fr ;˚/ �! .E ;˝/. As we recalled in [27, 9.6] and [28, Section 11], the Barratt–
Eccles operad D acts on the classifying space of any permutative category. The
composite map of D–spaces

DS0 Š B.E ;˚/
Be //B.G L Fr ;˚/

Bf //B.E ;˝/

coincides with the exponential unit er of Example 6.4. This works equally well with
G L replaced by O .

Example 6.7 Let r D 3. Then the subcategory N F3 � OF3 of matrices M such
that �.M / det.M /D 1 is a sub-bipermutative category, where � is the spinor norm.
See [23, VI.5.7].

7 Brauer lifting on the infinite loop space level

For simplicity and definiteness, we fix a prime p and complete all spaces and spectra
at p throughout this section.10 We let r D qa for some other prime q .

The group completion property of the additive infinite loop space machine implies that
the map �W BA �! E0BA � �BA induces a homology isomorphism

x�W BA1 �! �0BA

10Advertisement: Kate Ponto and I are nearing completion of a sequel to A concise course in algebraic
topology which will give an elementary treatment of localizations and completions.
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for any of the categories A displayed in the previous section, where A1 is the colimit
of the groups A .n; n/. For example, H�.BGL.1;R// Š H�.�0BG L R/ for a
(discrete) commutative ring R.

Quillen’s proof of the Adams conjecture [31], which is what led him to the definition and
first computations in algebraic K–theory, was based on Brauer lifting of representations
in GL.n; xFq/ to (virtual) complex representations. He did not yet have completion
available, and so the calculations were mysterious, producing a mod p homology
isomorphism from a space with homotopy groups in odd degrees, the algebraic K–
groups Ki. xFq/, to a space with homotopy groups in even degrees, the topological
K–groups Ki.S

0/.

Completion explained the mystery. While completion was available when [23] was
written, it was not yet known that completions of E1 ring spectra are E1 ring spectra.
In fact, that was not proven until [13]. While this fact allows a slightly smoother
exposition of what follows than was given in [23, Chapter VII], the improvement is
small. Since that chapter is less affected by later developments than most others in [23]
and should still be readable, we shall just summarize the main lines of argument.

The idea of [23, Chapter VIII] is to apply constructions in algebraic K–theory to gain
information in geometric topology by using algebraic K–theory to construct discrete
models for spaces and spectra of geometric interest, thus showing that they have
more structure than we would know how to derive working solely from a topological
perspective. When given some space or spectrum X of geometric interest, we write
X ı for such a discrete approximation.

The essential point is to analyze Brauer lifting on the E1 level. As proven by Quillen
[31] and summarized in [23, Section VIII.2], after completing at any prime p ¤ q ,
Brauer lifting of representations leads to equivalences

(7-1) �W BU ı
� �0BG L xFq �! BU and �W BOı

� �0BO xFq �! BO:

Here we are thinking a priori just about homotopy types, despite the �0 notation.
We use the same notation when thinking of the H–space structure induced by ˚,
but we add a subscript ˝ when thinking about the H–space structure induced by ˝.
By representation theoretic arguments, it is shown that the maps � are equivalences
of H–spaces under either H–space structure [23, VIII.2.4] and that they convert the
Frobenius automorphism �r to the Adams operation  r , meaning that  r ı�' �ı�r

[23, VIII.2.5].

The fact that � is an H–map under ˝ implies a compatibility statement with respect
to multiplication by the Bott class. Using an elementary and amusing equivalence
between periodic connective spectra and periodic spectra [23, pages 43–48], this leads
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to a proof that the maps � of (7-1) are the maps on the zeroth component of the zeroth
space of equivalences

(7-2) �W kU ı
� EBG L xFq �! kU and �W kOı

� EBO xFq �! kO:

of ring spectra up to homotopy [23, VIII.2.8]. Moreover, these spectrum level equiv-
alences are uniquely determined by the space level equivalences �, and we have
 r ı�' � ı�r on the spectrum level [23, VIII.2.9].

All four spectra displayed in (7-2) are E1 ring spectra. One would like to say that
the maps � are maps of E1 ring spectra, the Adams maps  r are maps of E1 ring
spectra, and  r ı�'�ı�r as maps of E1 ring spectra. Conceivably these statements
could be proven using modern techniques, although I have no idea how to do so, but
proofs were unimaginable when [23] was written. Tornehave and I proved enough that
we could calculate just as if these statements were true. I’ll sketch how we did this.

Recall that BU˝DSL1kU and BO˝DSL1kO . Similarly, write BU ı
˝DSL1kU ı

and BOı
˝ D SL1kOı . By passage to 1–components of zeroth spaces from the

equivalences of (7-2), we obtain equivalences of H–spaces:

�˝W BU ı
˝ D �1BG L xFq �! �1BU D BU˝;(7-3)

�˝W BOı
˝ D �1BO xFq �! �1BO D BO˝:(7-4)

The understanding of localizations of sl1.R/ for an E1 ring spectrum R that we
described in [27, Section 10] comes into play in the proof of the following result, which
is [23, VII.2.11]. We give an outline sketch of its somewhat lengthy proof.

Theorem 7.5 The H–equivalences

�˝W BU ı
˝ �! BU˝ and �˝W BOı

˝ �! BO˝

are equivalences of infinite loop spaces.

Sketch proof It is easy to prove that we have splittings of infinite loop spaces

BU˝ ' BU.1/�BSU˝ and BO˝ ' BO.1/�BSO˝

BU ı
˝ ' BU.1/�BSU ı

˝ and BOı
˝ ' BO.1/�BSOı

˝

(see [23, V.3.1 and VII.2.10]). Here BSU ı
˝

is the 3–connected cover of BU ı
˝

and
BSOı

˝
is the 1–connected cover of BOı

˝
. Thinking topologically, the idea is to think of

BU.1/'K.Z; 2/ and BO.1/'K.Z=2; 1/ as representing the functors giving Picard
groups of complex or real line bundles, but the proof is homotopical. The equivalences
�˝ respect the splittings, and the resulting H–equivalences of Eilenberg–Mac Lane
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spaces are clearly equivalences of infinite loop spaces. Thus it suffices to prove the
result with U and O replaced by SU and SO in the statement.

By a result of Adams and Priddy [6], BSU and BSO have unique infinite loop
structures. By a result of Madsen, Snaith, and Tornehave [19], if X and Y are
infinite loop spaces both homotopy equivalent to BSU or to BSO , then an H–map
f W X �! Y is an infinite loop map if and only if it commutes with transfers or, in the
language of [23, VIII.1.3 and 1.5], is an H

p
1–map. Letting W ' C .p/, the infinite

loop structure gives the maps � in the following diagram, and f is an H
p
1–map if the

diagram is homotopy commutative. Here � is the cyclic group of order p .

W �� X p
id�f p

//

�
��

W �� Y p

�
��

X
f

// Y

From here on, the argument is the same in the two cases and we focus on the com-
plex case. The spaces of (7-3) are constructed from the infinite loop space machine,
viewed as a multiplicative enrichment of the additive infinite loop space machine.
Let M � ZC be the monoid of integers prime to p . We have permutative categories
.qm2M GL.m; xFq/;˝/ and .qm2M U.m/;˝/. Let X and Y denote their classifying
spaces. We can apply the infinite loop space machine to X and Y to obtain �X and
�Y , and we have the group completions �W X �! �X and �W Y �! �Y . By [27,
10.1], we have equivalences of infinite loop spaces

�W �1X �! �1BG L xFq and �W �1Y �! �1BU :

It suffices to prove that �˝ ı � is an infinite loop map. For that, it suffices to show that
�˝ ı � is an H

p
1–map since its restriction to 3–connected covers will then also be an

H
p
1–map. The equivalences � extend over components to equivalences

�W �X �! �BG L xFq and �W �Y �! �BU :

By interpreting the restriction of the relevant maps � along the group completion
maps � and chasing a fairly elaborate but elementary diagram involving change of
components [23, VIII.1.2 and 1.4], we find that it suffices to prove that the following
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diagram is homotopy commutative for each m 2M :

W �� BGL.m; xFq/
p ' //

id�ˇp

��

B.�
R

GL.m; xFq//
Bzc˝ // BGL.mp; xFq/

ˇ

��
W �� .BU � fmg/p

'
// B.�

R
U p/� fmpg

Bzc˝

// BU � fmpg

Here the homomorphisms zc˝ are induced by the tensor product and commutativity
isomorphisms of our two permutative categories. The maps ˇ are given by Brauer
lifting of representations, and the argument so far reduces the question to an algebraic
problem in representation theory. Its solution requires careful use of various standard
results from Serre [35] that allow us to lift relevant representations in finite fields to
honest rather than virtual complex representations. The map ˇ involves a choice of
embedding �W xF�q �! C� of roots of unity in the complex numbers, and the proof
depends on making a particularly good choice, consistent with a certain decomposition
isomorphism; details are in [23, pages 220–222].

8 The K–theory of finite fields and orientation theory

We return to the discussion of infinite loop space theory and orientation theory that
we started in Section 2. We describe some of the results that provided the original
motivation for the theory of E1 ring spaces and E1 ring spectra. Much of the work
of [23] focused on three large diagrams [23, pages 107, 125 and 229].11 We will extract
some of the conclusions about them, highlighting the role of E1 ring theory.

Again completing all spaces and spectra at a fixed prime p , we now take r D 3 if
p D 2 and we assume that r D qa reduces mod p2 to a generator of the group of
units of Z=p2 if p is odd. We abbreviate notation by writing BC D B Coker J and
C D�BC . Since BSpin'BSO 'BO at p > 2, the definition of BC in Section 2
can be restated by letting BC be the fiber of c. r /W B.SF I kO/ �! BSpin˝ at any
prime p . Similarly, define J to be the fiber of  r � 1W BO �! BSpin at p . When
pD 2, this is the most convenient (for the present purposes) of the several choices that
can be made.

The J–theory diagram of [23, page 107] implies a slew of splittings of spaces of
geometric interest, such as SF ' J �C and B.SF I kO/' BSpin�BC . The initial

11It would be nice to have these diagrams readably TEX’ed; I haven’t tried. Another advertisement:
[23] and related early books are available at http://www.math.uchicago.edu/ may/BOOKSMaster.html as
scanned copies.
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applications of E1 ring theory were aimed at proving (or disproving) that these are
splittings of infinite loop spaces. Since our calculational understanding of the spaces in
question depends on their Dyer–Lashof operations, which are invariants of the infinite
loop structure, this analysis is essential to calculations.

To start things off, observe that the theory of Section 2 and the equivalence � of (7-2)
directly give the following two equivalences of fibration sequences, in which BC ı is
defined to be the fiber of c.�r /.

SF
e // BOı

˝

�˝'

��

t // B.SF I kOı/

B�'

��

q // BSF

SF e
// BO˝

t
// B.SF I kO/

q
// BSF

All spaces in this diagram are infinite loop spaces. The left square turns out to be a
commutative diagram of infinite loop spaces [23, VIII.3.4]. Therefore, by standard
arguments with fibration sequences of spectra, we can take B� to be an infinite loop
map such that the diagram is a commutative diagram of infinite loop spaces. Of course,
this would have been automatic if we knew that � were a map of E1 ring spectra.

Spinı˝ //

��˝ '

��

BC ı //

�'

��

B.SF I kOı/
c.�r / //

B�'

��

BSpinı˝

�˝'

��
Spin˝ // BC // B.SF I kO/

c. r / // BSpin˝

In this diagram, we do not know that  r is an E1 ring map, so we do not know that
BC is an infinite loop space. Since �r is an E1 ring map, c.�r / is an infinite loop
map and BC ı inherits an infinite loop structure such that the top fibration is one of
infinite loop spaces. The equivalence � is any map such that the diagram commutes,
and we may regard it as specifying a structure of infinite loop space on BC . This
allows us to regard the bottom fibration as one of infinite loop spaces.

There is a more illuminating description of BC ı that comes from further discrete
models. On the spectrum level, define bo, bso, and bspin to be the covers of kO
with zeroth spaces BO , BSO , and BSpin. These are all the same if p > 2. Define
�W j �! ko to be the fiber of  3� 1W ko �! bpsin. Then the zero component of the
zeroth space of j is J . These spaces and spectra all have discrete models, as proven
in [23, Section VIII.3]. The essential starting point is Quillen’s work on the K–theory
of finite fields [32], which shows in particular that, at p > 2, J is equivalent to the
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fiber J ı of the map �r � 1W BU ı �! BU ı . Work of Fiedorowicz and Priddy [14]
also plays a role in the following result. Recall Example 6.7.

Definition 8.1 Define the following spaces and spectra.

(i) At p D 2, j ı D EBN F3 ; at p > 2, j ı DKFr . These are E1 ring spectra.

(ii) J ı˚ and J ı˝ are the 0 and 1 components of the zeroth space of j ı . These are
additive and multiplicative infinite loop spaces.

The Brauer lift � of (7-2) and comparison of  r � 1 and �r � 1 leads to the follow-
ing result [23, VIII.3.2], although some intermediate comparisons and some minor
calculations are needed for the proof.

Theorem 8.2 There is an equivalence of spectra � and a commutative diagram

j ı
�ı //

�

��

koı

�

��
j

�
// kO

in which �ı is induced by a map of bipermutative categories and �r ı �ı D �ı .

The last statement implies that the restriction of c.�r /W B.SF I kOı/ �! Spinı˝ to
the space B.SF I j ı/ is the trivial infinite loop map. There results an infinite loop
map �ıW B.SF I j ı/ �! BC ı . Since the analogous map �W B.SF I j / �! BC is an
equivalence [23, V.5.17], we can deduce that �ı is so too.

Corollary 8.3 The infinite loop map �ıW B.SF I j ı/ �! BC ı is an equivalence.

At this point, one can put together a braid of topologically defined fibrations of interest,
together with an equivalence from a corresponding braid of discrete models that makes
the whole diagram one of infinite loop spaces [23, VIII.3.4]. The braid focuses attention
on the fibration sequence

SF
e //J ı˝

t //B.SF I j ı/
q //BSF:

Ignoring infinite loop structures, one sees from the homotopical splitting of SF that
t is null homotopic. At p D 2, it is not even true that SF ' J � C as H–spaces
[12, II.12.2], but, at p > 2, SF ' J �C as infinite loop spaces, as we now explain.
Let M � ZC be the submonoid of integers rn and let EM D qm2M†m . We use
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the exponential unit map er D f ı eW .E ;˚/ �! .EM ;˝/ of permutative categories
described in Examples 6.4 and 6.5. The forgetful functor f induces an infinite loop map
J ı D�0BG L Fr �!�1.BEM ;˝/. By another application of [27, 10.1], the target is
equivalent (away from r and therefore at p ) to �1.BE ;˚/'SF . Let ˛ıW J ı �!SF

be the resulting infinite loop map. We have the commutative diagram

Q0S0 ˛ııe //

e

��

SF

e
��

J ı
eı˛ı

//

˛ı
<<zzzzzzzzzz
J ı˝

where the left and right vertical arrows e are the restrictions to the components of 0

and 1 of the map on zeroth spaces of the unit map eW S �! j ı . This works equally
well at p D 2, but at odd primes p a direct homological calculation using Quillen’s
calculation of H�.J

ıIFp/ and analysis of Dyer–Lashof operations gives the following
exponential equivalence [23, VIII.4.1], as promised in the introduction.

Theorem 8.4 At p > 2, the composite J ı
˛ı

�! SF
e
�! J ı˝ is an equivalence.

As observed in [23, pages 240–241] this implies the following result.

Corollary 8.5 At p > 2, there are equivalences of infinite loop spaces

J �C ' SF; BJ �BC ' BSF; and B.SF I kO/' BO˝ �BC:

The notation ˛ı suggests that there should be a precursor ˛W J �! SF , and indeed
there is. Such a map comes directly from the Adams conjecture, and, at p > 2, it is an
infinite loop map [15]. Moreover, away from 2, work of Sullivan [36] gives a spherical
orientation of STop that leads to an equivalence of fibrations of infinite loop spaces

SF
t //

�

��

F=Top
q //

f

��

BSTop

g

��

Bj // BSF

SF e
// BO˝

t
// B.SF I kO/

q
// BSF

This reduces the calculation of mod p characteristic classes for topological bundles,
p ¤ 2, to calculation of H�.BC IFp/. This is accessible via Dyer–Lashof operations
in homology, as worked out in [12, Part II]. The essential point is that, at an odd prime
p , we can replace kO and BO˝ by discrete models, and that reduces the calculation
to calculations in the cohomology of finite groups.
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