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Hopf Galois theory: A survey

SUSAN MONTGOMERY

We consider a Hopf Galois extension B � A , for A a comodule algebra over the
Hopf algebra H with coinvariant algebra B . After giving a number of examples,
we discuss Galois extensions with additional properties, such as having a normal
basis. We then consider when there is a category equivalence between the category of
modules over B and the category of “relative Hopf modules” for A and H . Finally
we discuss more recent work of van Oystaeyen and Zhang and of Schauenburg on
obtaining correspondence theorems between suitable subalgebras of A and Hopf
ideals of H .

16W30; 16S40, 16S34

The definition of Hopf Galois extension has its roots in the approach of Chase, Harrison
and Rosenberg who wanted to generalize the classical Galois theory of automorphism
groups of fields to groups acting on commutative rings [4]. In 1969 Chase and Sweedler
extended these ideas to coactions of Hopf algebras acting on a commutative k–algebra,
for k a commutative ring [5]; the general definition is due to Kreimer and Takeuchi in
1980 [13].

The outline of the paper is as follows: In Section 1, we review our terminology for
Hopf algebras, their actions and coactions and give a basic “zoo” of examples of
Hopf algebras which we will look at again later. In Section 2 we define Hopf Galois
extensions and then give a number of examples of Galois extensions, using our Hopf
algebras from Section 1. Next in Section 3 we characterize Galois extensions which
have normal bases and see that they are crossed products. We also give examples of
how crossed products arise “in nature”. In Section 4 we study Galois extensions for
actions of a finite-dimensional Hopf algebra H and study when the invariant algebra
is Morita equivalent to the smash product algebra. In Section 5 we return to coactions.
We consider faithfully flat Galois extensions and show that in this situation there are
natural category equivalences between the module category of the coinvariant algebra
and the category of relative Hopf modules. In Section 6 we consider some recent work
on finding a Galois correspondence theory; this necessitates looking at algebras which
are Hopf bi-Galois in the sense that they are both left and right Galois, with possibly
different Hopf algebras. Finally in Section 7 we consider a different approach to the
Galois correspondence via actions.
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Some basic references on Hopf algebras are Sweedler [34] or Abe [1]. Chapter 8 of
Montgomery [20] is all on Hopf Galois extensions. Recent surveys are Schauenburg [29]
and Schauenburg and Schneider [30].
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1 Hopf algebras: Definitions and examples

Let H be a Hopf algebra over the field k. As an algebra, H has multiplication
mW H ˝k H ! H , a˝ b 7! ab , and unit uW k ! H , ˛ 7! ˛1H . The coalgebra
structure is given by comultiplication 4W H !H˝k H , written 4.h/D

P
h h1˝h2 ,

and counit "W H ! k. In addition H has an antipode S W H ! H . The ideal
HC WD Ker."/ is sometimes called the augmentation ideal of H .

If HD .H;m;u;4; ";S/ is finite-dimensional, then its linear dual H� is also a Hopf al-
gebra, with structure maps dual to those in H , that is, H�D .H�;4�; "�;m�;u�;S�/.
When H is infinite-dimensional, its dual H� is an algebra but not a coalgebra; to
construct a dual, one may consider a suitable subset of functions in H� , usually
involving some topology.

Let A be an algebra with 1 over k.

Definition 1.1 (1) A is a left H –module algebra if A is a unital left H –module,
via h˝ a 7! h � a 2A, such that

h � .ab/D
X

h

h1 � a˝ h2 � b and h � 1D ".h/1

for all a; b 2A and h 2H .

(2) A is a right H –comodule algebra if A is a counital right H –comodule, via
ıA.a/ 7!

P
a a0˝ a1 2A˝k H , such that ı is an algebra map.

If A is an H –module algebra, we usually just say that H acts on A, and if A is an
H - comodule algebra, we say H coacts on A. The invariants of an H –action are

AH
D fa 2A j h � aD ".h/a; for all h 2H g:

The coinvariants of a coaction are

Aco H
D fa 2A j ı.a/D a˝ 1H g:
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In the case of an H –action on A, we say a subspace V �A is H –stable if H �V �V .
Dually, if H coacts on A, a subspace V �A is H –costable if V is an H –subcomodule
of A.

Assume that H is finite-dimensional. If A is a right comodule algebra, then it is also
a left H�–module algebra, via

f � a WD
X

a

f .a1/a0

for all f 2H� and a 2 A. Dually, any left H –module algebra is also a right H�–
comodule algebra, and the two notions are equivalent: that is, H� acts on A if and
only if H coacts on A, and under this equivalence, AH �

DAco H .

In particular, consider ADH itself. H is a right H –comodule algebra using ıAD4.
This action dualizes to a left action * of H� on H , that is,

f * hD
X

h

f .h2/h1;

for f 2H� and h 2H . The (co)invariants are given by H H �

DH co H D k � 1.

We review some standard examples of Hopf algebras, to fix our notation.

Example 1.2 Let G be any group. The group algebra H D kG is a k–space with
basis the set of group elements fg 2 Gg. The algebra structure on kG is given by
multiplying the basis elements using the group operation. kG becomes a coalgebra by
defining, for each g 2G ,

4.g/D g˝g and ".g/D 1;

and then extending linearly. The antipode is given by S.g/D g�1 for all g 2G . In
any Hopf algebra H , an element g 2 H satisfying 4.g/ D g˝ g , ".g/ D 1; and
S.g/D g�1 is called a group-like element.

A is a kG–module algebra if and only if G acts as automorphisms of A. The
subalgebra of kG –invariants is simply AG , the usual subalgebra of fixed points for G .

Dually A is a kG–comodule algebra if and only if A is a G–graded algebra, that
is, AD

L
g2G Ag , where the Ag are k–subspaces of A and AgAh � Agh , for all

g; h 2G . To see this, note that the kG –comodule algebra structure is given by

�W A!A˝k kG via a 7! a˝g;

for each homogeneous element a 2 Ag . Moreover the subalgebra of coinvariants is
Aco H DA1 , the identity component.
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Example 1.3 Let G be a finite group and let H D kG D .kG/� , the algebra of
functions from G to k. The Hopf structure of kG is the formal dual of that of kG .
Thus for f; h2kG , x;y 2G , .f �h/.x/ WDm.f ˝h/.4.x//2k and 4.f /.x˝y/ WD

f .xy/ 2 k. The antipode S of H is given by S.f /.x/ WD f .Sx/.

Since G is finite, kG has as a basis the coordinate functions fpx j x 2Gg dual to the
group elements, that is, px.y/D ıx;y . For these elements, we have

px �py D ıx;ypx and 4.px/D
X
y2G

py ˝py�1x :

H D kG is commutative, but not cocommutative unless G is abelian. When G is
abelian and k contains a primitive n–th root of 1 for nD jGj, then in fact kG Š kG

as Hopf algebras.

Actions of kG correspond to coactions of kG , that is gradings by G , and coactions of
kG give actions of G .

If G is not finite, we may consider a restricted set of functions on G , given some
suitable topological conditions. Thus for example if G is an algebraic group over k,
then we may let H be the regular functions f W G! k. More generally:

Example 1.4 Let G be an affine algebraic group scheme, that is, G D Spec H for
H a commutative affine k–Hopf algebra. What is meant by an “action” of G? To
define this, let X be an affine scheme, so that X D Spec A for A a commutative affine
k–algebra. Then an action �W X �G!X is determined by a coaction

�D ��W A!A˝k H:

Example 1.5 Let g be a Lie algebra over k and let H D U.g/ be the universal
enveloping algebra of g. Recall that by the PBW-theorem, the ordered monomials
in a fixed basis of g form a basis of H . H becomes a Hopf algebra by defining
4.x/ D x ˝ 1C 1˝ x , ".x/ D 0, and S.x/ D �x for all x 2 g and extending
multiplicatively to all of H . In any Hopf algebra H , such an element x is called a
primitive element.

If A is an H –module algebra, then every element x 2 g acts as a derivation, that is,
x � .ab/D x � .a/bC a.x � b/ and x � 1D 0. It follows that

AH
DAg

D fa 2A j x � aD 0; for all x 2 gg:

As a related example, let k be a field of characteristic p > 0 and let g be a restricted
Lie algebra over k; restricted means that g has a “p–map” g! g, x 7! xŒp� , such
that in the restricted enveloping algebra H D u.g/, xŒp� D xp , the usual p–th power.
If g has dimension n, u.g/ will have dimension pn .
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Example 1.6 Assume that k contains a primitive n–th root of unity ! , where n> 1.
The n2 –dimensional Taft Hopf algebra H D Tn2.!/ is given as an algebra by

Tn2.!/D khg;x j gn
D 1;xn

D 0;xg D !gxi:

As a coalgebra, 4.g/D g˝g , ".g/D 1, S.g/D g�1 , and �.x/D x˝ 1Cg˝x ,
".x/D 0, S.x/D�g�1x . That is, g is a group-like element and x is a .1;g/–skew-
primitive element.

If H acts on A, we must have g acting as an automorphism of A and x as a skew-
derivation, that is, x � .ab/D .x � a/bC .g � a/.x � b/, for all a; b;2A.

The construction depends on the choice of ! , and thus there are in fact ˆ.n/ noniso-
morphic Taft Hopf algebras for each dimension n2 .

These Hopf algebras were constructed by Taft in 1971 [35], to show that the antipode
could have arbitrarily high order: in H D Tn2.!/, S has order 2n. They are among
the first examples of Hopf algebras which are neither commutative nor cocommutative.
It has recently been shown by Ng [23] that for p a prime, the only Hopf algebras over
C of dimension p2 are the two group algebras and the Taft algebras.

Example 1.7 Let k D C and let g be the Lie algebra sl2 . Recall that g may be
identified with the 2� 2 matrices of trace 0, with basis

e D

�
0 1

0 0

�
; f D

�
0 0

1 0

�
; hD

�
1 0

0 �1

�
and Lie operation the usual additive commutator of matrices. The “quantum group”
Uq.sl2/ defined by Drinfel 0d and Jimbo may be considered as a deformation of the
ordinary universal enveloping algebra U.sl2/. For the parameter q , it is given by

Uq.sl2/ WDChE;F;Ki

where E;F;K satisfy the relations

KE D q2EK; KF D q�2FK; EF �FE D
K�K�1

q� q�1
:

The coalgebra structure is given by �E DE˝KC1˝E , �F DF˝1CK�1˝F ,
and �K DK˝K . Notice that e and f are deformed to skew-primitive elements E

and F , whereas h is replaced by the group-like element K (a kind of exponentiation).

Here we consider the Frobenius–Lusztig kernel (or small quantum group) associated to
Uq.sl2/, when q is a primitive 2n–th root of 1, for n > 2; it is a finite-dimensional
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quotient of Uq.sl2/. See Kassel [12, IV.5.6]. This Hopf algebra is also called the
restricted quantum enveloping algebra of sl2 . Specifically,

uq.sl2/ WD
Uq.sl2/

.En;Fn;Kn� 1/
:

That is, we assume that E;F;K also satisfy the relations En D 0; Fn D 0; Kn D 1.
Note that uq is generated by two different copies of the Taft algebra Example 1.6,
although with two different choices for ! . Namely, use H1 WDChK�1;FiŠTn2.q�2/

and use H2 WD ChK�1;EK�1i Š Tn2.q2/. One can think of H1 as n� , a Borel
subalgebra of uq , and similarly of H2 as nC .

2 Hopf Galois extensions: Definition and examples

Hopf Galois extensions are defined in terms of coactions, since this is more useful for
arbitrary H .

Definition 2.1 Let B �A be a k–algebra, and let H be a Hopf algebra. Then B �A

is a (right) H –extension if A is a right H –comodule algebra with Aco H D B .

Definition 2.2 Let A be a right H –comodule algebra with structure map �W A!
A˝k H . Then the extension Aco H �A is right H –Galois if the map

ˇW A˝Aco H A!A˝k H; given by r ˝ s 7! .r ˝ 1/�.s/;

is bijective.

Some remarks are in order about the definition:
(1) In the case considered by Chase and Sweedler, k was assumed to be a commu-

tative ring, A a (commutative) faithfully flat k–algebra, H a finitely generated
projective k–algebra, and ˇ was an isomorphism between A˝k A and A˝k H .
Among other things, this had the effect of forcing Aco H D k.

(2) Kreimer and Takeuchi [13] only required ˇ to be surjective. However, they
were also assuming H was finite over k, in which case it follows that ˇ is also
injective. For infinite-dimensional Hopf algebras, problems can arise if ˇ is not
injective, and so we require that ˇ be bijective as part of the definition.

(3) There seems to be an asymmetry in the definition of ˇ ; why not use ˇ0.r˝s/D

�.r/.s˝ 1/? In fact if the antipode S is bijective, then ˇ is surjective, injective
or bijective, respectively, if and only if ˇ0 is surjective, injective, or bijective
[13, 1.2]. Thus either ˇ or ˇ0 may be used when S is bijective.
We give some elementary examples to illustrate the definition. First, surely any
definition of Galois should include the classical case of automorphisms of fields.
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Example 2.3 Field extensions Let G be a finite group acting as k–automorphisms
on a field E�k, and let F DEG . As in Example 1.2, the group algebra kG acts on E ,
and so its dual H D kG coacts, which is what we shall need for our new definition.

We know that E=F is classically Galois with Galois group G if and only if G acts
faithfully on E if and only if ŒE W F �D jGj. To see that this is equivalent to Definition
2.2, first assume E=F is classically Galois. Set nD jGj, write G D fx1; : : : ;xng and
let fb1; : : : ; bng be a basis of E=F . Let fp1; : : : ;png � kG be the dual basis to the
fxig � kG . The action of G on E determines the corresponding coaction �W E!
E˝kkG via �.a/D

Pn
iD1.xi �a/˝pi , and thus the Galois map ˇW E˝F E!E˝kkG

is given by ˇ.a˝ b/ D
P

i a.xi � b/˝ pi . Thus if w D
P

j aj ˝ bj 2 Kerˇ , thenP
j aj .xj � bj /D 0 for all i , by the independence of the fpig. Since G acts faithfully,

Dedekind’s lemma on independence of automorphisms gives that the n � n matrix
C D Œxi � bj � is invertible. Thus aj D 0 for all j , and so w D 0. Thus ˇ is injective,
and so bijective since both tensor products are finite-dimensional F –algebras.

The converse is easier: assume that Definition 2.2 holds, that is, F � E is a right
kG –comodule algebra via �.a/D

P
h2G ah˝ph such that F DEco kG

, and the Galois
map ˇW E˝F E!E˝k kG in Definition 2.2 is bijective. The dual action of G is then
given by g �aD

P
hhg;phiahD ag . Thus g �aD a for all g 2G if and only if agD a,

for all g if and only if �.a/D a˝ .
P

h2G ph/D a˝ 1. That is, Eco kG

D F DEG .
The bijectivity of ˇ implies that the F –ranks of E˝F E and E˝k kG are equal, and
thus ŒE W F �D jGj. Thus E=F is G –Galois in the usual sense.

Recall that any finite Galois field extension F �E has a normal basis, that is, there
exists some u 2E such that the set fg � u j g 2 Gg is a basis of E over F (this is a
classical result of Kummer). Equivalently, E is a cyclic FG –module. We will consider
a Hopf version of this property in Definition 3.4.

Surprisingly, it is possible for a finite separable field extension F �E to be H –Galois
for some H although it is not Galois in the classical sense. The following example is
due to Greither and Pareigis [10]; an exposition also appears in Pareigis [24].

Example 2.4 Separable Galois field extensions without groups For any k, let Hk
denote the Hopf algebra with algebra structure given by HkD kŒc; s�=.c2C s2�1; cs/

and with coalgebra structure given by 4cD c˝c�s˝s , 4sD c˝sCs˝c , ".c/D 1,
".s/D 0, S.c/D c , and S.s/D�s ; Hk is called the circle Hopf algebra.

Now let F DQD k and EDF.!/, where ! is the real 4–th root of 2; F �E is not
Galois for any group G . However, it is .HQ/

�–Galois. In this case HQ acts on E in

Geometry & Topology Monographs, Volume 16 (2009)



374 Susan Montgomery

the following way:

� 1 ! !2 !3

c 1 0 �!2 0

s 0 �! 0 !3

It is shown in [10] that Q�E is H�Q –Galois. Note that this extension has a normal
basis in the more general sense, that is, it is a cyclic HQ –module with generator
uD 1C!C!2C!3 .

Note also that when kDQ.i/;Hk Š kZ4 , the group algebra, that is, QZ4 and HQ

are Q.i/–forms of each other.

In fact Q � E is also H�–Galois for a second Hopf algebra H ; this second Hopf
algebra is a Q.

p
�2/–form of QŒZ2�Z2�. Thus an extension can be Hopf Galois with

two different Hopf algebras. On the other hand, there exist separable field extensions
which are not Hopf Galois at all. Conditions for exactly when an extension is Hopf
Galois are given in [24].

Example 2.5 Graded rings Let G be any group and let A be a G –graded algebra as
in Example 1.2, with H D kG and Aco H DA1 . A result of Ulbrich describes when
the extension A1 �A is H –Galois:

Theorem 2.6 [37; 20, 8.1.7] A1 � A is kG–Galois if and only if A is strongly
graded, that is, AxAy DAxy , for all x;y 2G .

Strongly graded algebras are known to have many nice properties; in particular their
module theory is very well behaved. We give several examples.

Example 2.7 Crossed products over groups Let G be a group acting as (twisted)
automorphisms of the k–algebra R, that is, there exists a 2–cocycle � W G �G!R

such that � and the action � of G on A satisfy the following:

(1) (Cocycle condition) For all g; h; k 2G ,

Œg � �.h; k/��.g; hk/D �.g; h/�.gh; k/ and �.g; 1/D �.1;g/D 1:

(2) (Twisted module condition) For all g; h 2G and r 2R,

g � .h � r/D �.g; h/.gh � r/�.g; h/�1:
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The crossed product A D R �G is then defined to be A D R˝k kG as a k–space,
with multiplication given by

.r �g/.s � h/D r.g � s/�.g; h/�gh;

for r; s 2R, g; h 2G .

Notice that � has values in the ring R, which may be noncommutative.

Any crossed product A D R � G is a G–graded algebra, with Ag D R˝ g and
A1 DR˝ 1g ŠR. Clearly A is strongly G –graded, and so R�A is kG –Galois.

Example 2.8 Group crossed products arise naturally from any group extension. That
is, let G be any group with normal subgroup N and quotient LD G=N . We claim
that AD kG D kN �kL.

Fix a set of coset representatives T D fgig for N in G , so that if li 2 L, then
li D giN . If lilj D lk , then lilj D giNgj N D gigj N D gkN D Ngk ; however
gigj D �.li ; lj /gk for some �.li ; lj / 2 N . It is then easy to see that the function
� W L�L!N satisfies the conditions in Example 2.7. If the extension does not split,
then the cocycle will be nontrivial.

Crossed products are “transitive” in the sense that if R � G is a crossed product
over G and LDG=N , then we may find a new cocycle � W L�L!R�N such that
R�G Š .R�N /�L.

Note that if ADR�G , then A is free over RDA1 of rank jGj. Using this fact it is
easy to see that not all strongly graded algebras are crossed products.

Example 2.9 Let ADM3.k/ and let G D f1;gg Š Z2 . A is G –graded by setting

A1 D

24 k k 0

k k 0

0 0 k

35 and Ag D

24 0 0 k
0 0 k
k k 0

35 :
A is strongly graded, and so A1 � A is Galois by Theorem 2.6. However A is not
free over A1 since 5 − 9, and so A is not a crossed product over A1 .

Example 2.10 A similar example works for any finite group G . Let jGj D n and let
ADMn.B/, the n�n matrices over another algebra B . Fix an ordering fx1; : : : ;xng

of G , and index the rows and columns of A by G . Let fexy j x;y 2 Gg denote the
usual matrix units. For each x 2G , define Ax WD

P
yz�1Dx Beyz . Then AD

L
x Ax

is a G –graded algebra. Note that A1 D
L

x Bexx .
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In fact A is strongly graded. This follows since for any y 2G , eyyD ey;x�1yex�1y;y 2

AxAx�1 . Thus 1D
P

y eyy 2 AxAx�1 and so A1 D AxAx�1 . It follows that A is
strongly graded, and so A1 �A is Galois.

When G D Zn , it is easy to see what the graded components of A look like. Symboli-
cally:

AD

266664
Ax0 Ax1 � � � An�1

An�1 Ax0 � � � An�2

� � � � � � � � � � � �

Ax1 Ax2 � � � Ax0

377775
Thus A1 DAx0 consists of all diagonal matrices.

We investigate in Section 3 just when a Galois extension is a crossed product.

Example 2.11 Groups acting on sets The Galois map ˇ can be viewed as the dual
of a natural map arising whenever a group G acts on a set X . For, write the action
�W X �G!X by .x;g/ 7! x �g , and consider the natural map

˛W X �G!X �X

given by .x;g/ 7! .x;x �g/. The image of ˛ is X �Y X , the fiber product of X with
itself over Y , where Y D X=G is the set of G –orbits on X . Moreover ˛ is injective
if and only if the action is free, that is, no g¤ 1 in G has any fixed point. For example,
if G �X are groups, G acts freely on X by translation.

We now dualize this set-up; for simplicity assume that X and G are finite. Let
H D kG and let A D kX , the algebra of functions from X to k under pointwise
addition and multiplication. The G –action on X induces a left G –action on A, given
by .g � a/.x/ D a.x � g/, and thus a right H –coaction ��W A! A˝k H . If we let
B D kY , the functions from X to k which are constant on G –orbits, then it follows
that B DAG DAco H . Since for any sets T and U; kT�U Š kT ˝k kU , we see that
the map ˛ dualizes to

˛�W A˝B A!A˝k H:

It is now straightforward, using the definition of the transpose of a map, to verify that
˛�.a˝ b/D .a˝ 1/��.b/. Thus ˛� D ˇ , our Galois map, and by the remarks in the
previous paragraph, ˇ is bijective if and only if ˛W X �G!X �Y X is bijective if
and only if the G –action is free.
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Example 2.12 Algebraic group schemes Now consider Example 1.4. Let X be
an affine scheme and G an affine algebraic group scheme, that is, X D Spec A and
G D Spec H for A a commutative affine k–algebra and H a commutative affine
k–Hopf algebra. An action �W X �G!X is determined by a coaction

�D ��W A!A˝k H:

The coaction � is free if

˛�W A˝k A!A˝k H; a˝ b 7! .a˝ 1/�.b/

is surjective, since dually this means that

˛W X �G!X �X; .x;g/ 7! .x;x �g/

is a closed embedding, and so free as in the previous example.

However, we cannot use ˇ D ˛� as we did in Example 2.11 since the domain of
˛ is not A˝B A, for B D Aco H . The affine quotient of X by G is defined to be
Y WD Spec B , that is, the sequence

B ,!A
� //

˝1
// A˝B A

is exact. This corresponds to an exact sequence of affine schemes

X �G
� //
�

// X ! Y

where �.x;g/D x . How is this affine quotient Y related to the true quotient X=G ?
In general, Y may be much smaller than X=G (for example if X D GL2.k/ and G

consists of the upper triangular matrices in X , then Y is just a point but X=G � P1 ).
Given a free action as above, it will happen that Y DX=G provided the map X �G!

X �Y X is an isomorphism and X ! Y is faithfully flat; in this case one says that
X is a principal fibre bundle over Y with group G . The algebraic version of these
conditions says that

(a) ˇW A˝B A!A˝k H is bijective (and so B �A is Galois), and

(b) A is a faithfully flat B –module.

Faithfully-flat Galois extensions are very important and are considered in more detail
in Section 5.
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Example 2.13 Differential Galois theory Let E � k be a field of characteristic
p > 0, and let g �DerkE be a restricted Lie algebra of k–derivations of E which
is finite-dimensional over k. The restricted enveloping algebra u.g/ acts on E via g

acting as derivations, and so we consider its dual H D u.g/� . The H –coinvariants are

Eg
D fa 2E j x � aD 0; all x 2 gg:

Note that we are already assuming that g acts faithfully on E ; however unlike the
situation for groups, this does not suffice for Eg �E to be an H –Galois extension, as
the following example shows:

Let EDZ2.z/, rational functions over kDZ2 , and let g be the k–span of d1D
d
dz

and
d2 D z d

dz
. Over Z2; g is the 2–dim solvable Lie algebra with relation Œd1; d2�D d1 ;

it is restricted since d2
1
D 0 and d2

2
D d2 . Now Eg D Z2.z

2/, and Eg � E is not
H –Galois. For, E˝k u.g/�ŠE˝Eg .Eg˝k u.g/�/ is 8–dim over Eg but E˝Eg E

is 4–dim over Eg , so ˇ is not a bijection.

The difficulty with this example is that d1 and d2 are dependent over E ; when k–
independent derivations remain independent over E , the extension will be Galois. The
next result follows from [20, 8.3.5 and 8.3.7]:

Theorem 2.14 Eg �E is u.g/�–Galois if and only if E˝k g! Der E is injective.

This result differs from Jacobson’s classical result on Galois theory for inseparable field
extensions (see Abe [1, Chapter 5]); for he assumes that g is an E–space, and then
obtains a Galois correspondence theorem between intermediate fields and restricted
Lie subalgebras.

Example 2.15 Galois extensions for the Taft Hopf algebras (Example 1.6) were
studied by Masuoka [16] and for the quantum enveloping algebra uq.sl2/ (Example
1.7) by Günther [11]. Schauenburg [27] extended their results to the Drinfel 0d double
of the Taft algebra.

3 Normal bases, integrals and Hopf crossed products

A classical theorem in Galois theory says that if F �E is a finite Galois extension of
fields with Galois group G , then E=F has a normal basis: that is, there exists a 2E

such that the set fx � a j x 2Gg is a basis for E over F . In this section we consider
this property for H –extensions.

We first review some basic facts about finite-dimensional Hopf algebras, going back to
Larson and Sweedler [14].
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Definition 3.1 The space of left integrals in H isZ l

H

D f� 2H j h�D ".h/�; for all h 2H gI

similarly the space of right integrals in H isZ r

H

D f� 2H j �hD ".h/�; for all h 2H g:

When H is finite-dimensional, both
R l

H and
R r

H are always 1–dimensional, and if
0 ¤ � 2

R l
H , then H is a cyclic left H�–module with generator � for the standard

action * of H� on H , that is, H DH�*�. Another result of [14] is that H is a
semisimple algebra if and only if ".

R l
H /¤ 0; this fact generalizes the classical theorem

of Maschke for finite groups. In this case also
R l

H D
R r

H , and we may choose � with
".�/D 1.

(If H is infinite-dimensional, then it cannot contain a nonzero integral. However
one may still define a (left) integral on H ; this is a functional f 2 H� such that
f � g D f .1/g , for all g 2 H� . If there exists an integral on H , H is called
co-Frobenius.)

Example 3.2 Let G be a finite group. If H D kG , we may use �D � D
P

g g ; if
also char.k/ − jGj, then we may use �D .1=jGj/

P
g g , so that ".�/D 1. If H D kG ,

then we may use �D p1 .

Example 3.3 Recall the Taft Hopf algebras from Example 1.6. The Taft algebras are
not semisimple (since x generates a nilpotent ideal) and in fact

R l
H ¤

R r
H ; one may

check that

�D

� n�1X
iD0

gi

�
xn�1

2

Z l

H

; �D xn�1

� n�1X
iD0

gi

�
2

Z r

H

; but � … k�:

One possible definition of normal basis for a right H –extension B �A is to simply
extend the classical definition for groups. That is, assume that H is finite-dimensional
and dualize to an action of H� on A with AH �

D B . Then A has a classical normal
basis over B if, for some u 2A and basis ffig of H� , ff1 �u; : : : ; fn �ug is a basis
for the free left B –module A.

However, it is more useful to replace this definition by a coaction version.

Definition 3.4 [13] Let B �A be a right H –extension. We say that the extension
has the (right) normal basis property if A Š B ˝k H as left B–modules and right
H –comodules.
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The two definitions of normal basis are equivalent when H is finite-dimensional.

Lemma 3.5 Let dim H D n<1 and let B �A be an H –extension. Consider H�

acting on A with AH �

DB . Then A has a normal basis over B in the classical sense
if and only if A has a normal basis over B in the sense of Definition 3.4.

We sketch the proof: assume that A has a normal basis over B in the classical sense,
and let u 2A and basis ffig of H� be such that ff1 �u; : : : ; fn �ug is a basis for the
free left B –module A. We may then define

�W B˝k H !A by b˝ .f * �/ 7! b.f �u/:

B˝k H is a left H�–module via f � .b˝ h/D b˝ .f * h/; this is the dual of the
right comodule structure given by id˝4. Thus since � is a left H�–module map,
it is a right H –comodule map. It is clearly a left B–module isomorphism, and thus
B �A has the normal basis property in Definition 3.4. The converse is similar.

We next consider crossed products for arbitrary Hopf algebras, generalizing the con-
struction for group actions in Example 2.7.

Example 3.6 Hopf crossed products Let H be a Hopf algebra and R an algebra
which is an H –module via � . Assume that there exists a map � W H ˝k H !R such
that � and the action � satisfy the following:

(1) (Hopf 2–cocycle condition) For all g; h; k 2H ,X
g;h;k

Œg1 � �.h1; k1/��.g2; h2k2/D
X

g;h;k

�.g1; h1/�.g2h2; k/

and �.g; 1/D �.1;g/D ".g/1.

(2) (Hopf twisted module condition) For all g; h 2H and a 2R,

g � .h � r/D
X
g;h

�.g1; h1/.g2h2 � r/�.g3; h3/
�1:

The crossed product ADR #� H is then defined to be ADR˝k H as a k–space,
with multiplication given by

.r # g/.s # h/D
X
g;h

r.g1 � s/�.g2; h2/ # g3h2;

for r; s 2R, g; h 2H .
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We note that Hopf cocycles were first introduced by Sweedler [33] for the case when
H was cocommutative and R was commutative.

Now R�A is a right H –extension, via ıW A!A˝k H given by

r # h 7!
X

.r # h1/˝ h2;

and clearly it has a normal basis as in Definition 3.4. For more details see Mont-
gomery [20, Chapter 7].

Example 3.7 Two important special cases of crossed products are smash products
R # H and twisted products R�H . In a smash product, the cocycle � is trivial, that is,
�.g; h/D".g/".h/. In this case, R is an H –module as usual, that is, g �.h�r/D .gh/�r .
In addition the multiplication is simply

.r # g/.s # h/D
X
g;h

r.g1 � s/ # g2h:

Smash products are considered in more detail in Section 4.

In a twisted product, the action is trivial but the cocycle is not. Thus multiplication is
given by

.r ˝g/.s˝ h/D
X
g;h

rs �.g1; h1/˝g2h2:

If RD k, the resulting algebra is sometimes called a twisted Hopf algebra H� ; it is not
in general a Hopf algebra. However in Definition 6.9 we will see that one may always
obtain a new Hopf algebra by “double-twisting” the multiplication with a 2–cocycle
� W H ˝k H ! k.

The next theorem, which characterizes Galois extensions with the normal basis property,
combines work of Doi and Takeuchi [7] and of Blattner and Montgomery [3].

Theorem 3.8 Let B �A be an H –extension. Then the following are equivalent:

(1) B �A is H –Galois and has the normal basis property.

(2) AŠ B #� H , a crossed product of A with H .

(3) The extension A � B is H –cleft, that is, there exists an H –comodule map

 W H ! B which is convolution invertible.
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Any crossed product is “cleft” using the convolution invertible map 
 W H!A given by

 .h/D 1 # h. The proof that crossed products are Galois uses the map 
 .h/D�.1˝h/,
where � is the map in the proof of Lemma 3.5. See Montgomery [20, Section 8.2] for
details.

The theorem gives a new view of classical Galois field extensions:

Example 3.9 Let F � E be a classical Galois field extension, with (finite) Galois
group G . By Example 2.3 we know E=F is H –Galois for H D kG , and by Lemma
3.5 we know E=F has the normal basis property in the sense of Definition 3.4. Thus
E is a crossed product of F with H . Since E is commutative, the action of H is
trivial. Thus in fact E Š F� ŒH �, a twisted product with H .

The crossed product multiplication and the cocycle for F � E may be constructed
explicitly as in [8; 20], using the “cleft” map 
 .h/D �.1˝ h/ 2E as above. Choose
u 2E such that the set fx �u j x 2Gg is a normal basis of E over F . Since p1 2

R
H

and px D x�1 * p1 , it follows that


 .px/D �.1˝ .x
�1 * p1//D x�1

�u:

The cocycle � may then be determined from the crossed-product multiplication above:

.x�1
�u/.y�1

�u/D 
 .px/
 .py/D
X
z2G

�.pxz�1 ;pyz�1/.z�1
�u/:

These equations are solvable. For, the structure constants az
x;y 2F of E=F with respect

to the normal basis fx �ug, that is, the solutions of .x �u/.y �u/D
P

z2G az
x;y.z �u/,

satisfy the condition az
x;y D a1

z�1x;z�1y
since the elements of G are automorphisms

of E over F . Thus we can set �.px;py/D a1
x�1;y�1 .

Example 3.10 Crossed products arise from any exact sequence of finite-dimensional
Hopf algebras. Let K �H be a Hopf subalgebra of H which is normal, that is, K is
stable under the Hopf adjoint action adh.k/D

P
h1kS.h2/, for all h 2H , k 2K .

Then I D HKC D KCH is a Hopf ideal of H , and we let xH WD H=I denote the
quotient. The exact sequence is then

K ,!H � xH :

By work of Schneider [32], there exists a cocycle � W xH ˝k xH !K such that H Š

K #� xH . Unlike the case of crossed products over groups, this is a highly nontrivial
fact and is false if H is not finite-dimensional. In fact there are old examples which
show that a Hopf algebra need not be free over a Hopf subalgebra.
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We remark at this point that not all quotient Hopf algebras H=I arise from normal
Hopf subalgebras K . To see this, consider H D kG for G a finite group. A Hopf
surjection � W H !H=I arises from an injection .H=I/� ,!H� Š kG , that is from
a subgroup M � G . Simply choose G with a nonnormal subgroup M . Then for
� W kG! kM given by restriction, I D ker.�/ does not come from a Hopf subalgebra
of H .

Remark 3.11 Hopf crossed products do not have the “transitivity” property of group
crossed products noted at the end of Example 2.8. That is, there exist crossed products
R #� H , with H in an exact sequence as in Example 3.10, such that there does not
exist a cocycle � from xH to R #� K such that R #� H Š .R #� K/ #� xH . See
Schneider [32]. This is a problem since, for example, one would like to use inductive
arguments on dimH . One way around this difficulty is to use Hopf Galois extensions
instead; see Section 5.

4 Actions of H and Morita equivalence

In this section we assume that H is finite-dimensional and that A is an H –module
algebra (and thus an H�–comodule; a purely coaction approach to some of the results
in this section is given in Section 5). In the situation of actions, there are two other
algebras which arise naturally: one is the algebra of invariants AH , and the other is the
smash product A # H as in Example 3.7. We will see that for a Hopf Galois extension,
there is a close connection between these two algebras, in terms of their categories of
modules.

We first discuss several other conditions which are equivalent to AH �A being H�–
Galois; most of these conditions are the Hopf versions of ones considered by Chase,
Harrison and Rosenberg [4] in their Galois theory of groups acting on commutative
rings.

We may view A2A # HM, the category of left A # H –modules, by defining the action
of A # H on A by

.4:1/ .a # h/ � b D a.h � b/

for all a; b 2A and h 2H .
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A is a right AH –module via right multiplication, and thus we may consider A 2

A # HMAH , the category of .A # H;AH /–bimodules. The action of A # H determines
an algebra map

� W A # H ! End.AAH /

Lemma 4.2 Let H be finite-dimensional and A an H –module algebra. Then AH Š

End.A # H A/op as algebras.

We also need a generalization of the trace function for a group action. Recall that if a
finite group G acts on an algebra A,

trW A!AG is given by a 7!
X
g2G

g � a:

We may rephrase this by writing tr.a/D � �a, where �D
P

g is an integral in kG , as
in Definition 3.1. This formulation generalizes:

Definition 4.3 Let � ¤ 0 be a left integral in H . A map y�W A ! AH given by
y�.a/D � � a is called a (left) trace function for H on A.

It is easy to see that the map y�W A!A is an AH –bimodule map with values in AH .

Our next lemma comes from [6]; it generalizes a well-known fact for group actions.
Note that in a smash product A # H , we frequently write a for a # 1 and h as 1 # h.
Thus ahb means .a # h/.b # 1/.

Lemma 4.4 [6] Let H be finite-dimensional acting on A and assume that y�W A!
AH is surjective. Then there exists a nonzero idempotent e in A # H such that
e.A # H /e DAH e ŠAH as algebras.

One case in which the trace is always surjective is if H is a semisimple algebra. In that
case we may assume that ".�/D 1, as noted in Section 1, and thus for any a 2AH ,
� � aD ".�/aD a. The idempotent in this situation is e D 1 #�.

We come to our first theorem giving other characterizations of Galois. We note that
.1/) .2/ and .1/, .4/ are in [13], .2/) .1/ is in [37], and (5) appears in [7] in
dual form.
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Theorem 4.5 Let H be a finite-dimensional Hopf algebra and A a left H –module
algebra. Then the following are equivalent:

(1) AH �A is right H�–Galois.

(2) (a) The map � W A # H ! End.AAH / is an algebra isomorphism.
(b) A is a finitely generated projective right AH –module.

(3) A is a generator for A # HM.

(4) If 0¤ � 2
R l

H , then the map

Œ ; �W A˝AH A!A # H; a˝ b 7! a�b

is surjective.

(5) For any M 2A # H M, consider A˝AH M H as a left A # H –module as above.
Then the map

ˆW A˝AH M H
!M; a˝m 7! a �m

is a left A # H –module isomorphism.

Example 2.13 already shows that the conditions in Theorem 4.5 do not always hold
when H D u.g/� . The next example shows that they do not always hold, even for
group actions.

Example 4.6 [6] Let D be a division algebra of characteristic 2, of dimension 4 over
its center Z , with an element x 62Z;x2 2Z . Let g and h be inner automorphisms
of D given by conjugation by x and xC 1, respectively. Let G D hg; hi Š Z2 �Z2 ;
then the Hopf algebra H D ZG acts on D . Now DH D CentD.x/ D ZŒx�, so
ŒD WDH �D 2 although dim H D 4. Thus by Theorem 4.5 we know that DH �D is
not Galois.

In order to study more carefully the relationship between the module categories of AH

and A # H , we will find conditions for when these two algebras are Morita equivalent.
We will then see that Theorem 4.5 shows that AH �A being H�–Galois gives “half”
of the Morita equivalence.

Recall that two rings R;S are Morita equivalent if their module categories are equiv-
alent via tensoring with a (suitable) fixed pair of bimodules. That is, there exists an
.R;S/–bimodule RVS and an .S;R/–bimodule SWR such that the functors

�˝R V WMR!MS ; �˝S W WMS !MR;

W ˝R �W RM! SM; V ˝S �W SM! RM
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are equivalences of categories. More generally, one may consider a Morita context; see
McConnell and Robson [18, Sections 1.1, 3.6]. The basic idea is to find a relationship
between two rings via their modules which is weaker than Morita equivalence, but is
still strong enough to enable the rings to share some properties.

To say that two rings R and S are connected by a Morita context means the following:
we need bimodules RVS and SWR as above, although now we only need two bimodule
maps

Œ ; �W W ˝R V ! S and . ; /W V ˝S W !R;

such that for all v; v0 2 V and w;w0 2W , “associativity” holds, that is

v0 � Œw; v�D .v0; w/ � v 2 V and Œw; v� �w0 D w � .v; w0/ 2W:

Alternatively, the existence of a Morita context is equivalent to saying that the array

T D

�
R V

W S

�
becomes an associative ring, by using the given module actions of R and S on V and
W in the usual matrix multiplication.

A Morita context will give a Morita equivalence if and only if the two maps Œ ; � and
. ; / are surjective.

We will see that such a set-up exists with R D AH and S D A # H , for any finite-
dimensional H , using V DW DA. Now A is a left (or right) AH –module simply
by left (or right) multiplication, and A is a left A # H module as before. To define a
right A # H action which will work is a trickier matter, if � is only a left integral and
not a right integral (as in Example 3.3). Let ˛ 2H� be such that �hD ˛.h/�. Using
the left action * as in Section 1, we may define

h˛ WD ˛ * h:

Since ˛ is a group-like element (check!), the map h 7! h˛ is an automorphism of H .
It is known that �˛ D S� for 0¤ � 2

R l
H . We define our new right action of A # H

on A by

.4:7/ a .b # h/D S�1h˛ � .ab/

for all a; b 2A and h 2H . This is the usual right action but with h “twisted” by ˛ .
In this notation, �ahD �.a h/. We now have:
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Theorem 4.8 [6] Consider A as a left (respectively right) AH –module via left (resp.
right) multiplication, as a left A # H –module via (4.1) and as a right A # H –module
via (4.7). Then V DAH AA # H and W DA # H AAH , together with the maps

Œ ; �W A˝AH A !A # H given by Œa; b� D a�b

. ; /W A˝A # H A !AH given by .a; b/ D y�.ab/

give a Morita context for AH and A # H .

Note that the trace function y� and the ideal A�A of A # H play an important role
here: for, y�.A/D .A;A/, and A�AD ŒA;A�. This observation gives us a criterion for
Morita equivalence (and thus for an equivalence of module categories):

Corollary 4.9 Let A be an H –module algebra, where H is finite-dimensional, and
choose 0¤ � 2

R l
H . If both y�W A!AH is surjective and A�ADA # H , then A # H

is Morita-equivalent to AH .

Corollary 4.10 Assume that H is semisimple and that A # H is a simple algebra.
Then AH �A is H�–Galois and AH is Morita equivalent to A # H .

This follows since simplicity of A # H implies that A�ADA # H , and semisimplicity
of H implies that the trace is surjective.

We close this section by noting that Takeuchi [36] has given a version of Morita theory
for comodules over coalgebras.

5 Faithfully flat Hopf Galois extensions

So far we have studied Galois extensions which have various additional properties, such
as normal bases or a surjective trace. In this section, we return to our basic situation of
an H –extension B �A, with comodule map ıW A!A˝k H and B DAco H . We
will study the very useful property of the extension being faithfully flat.

We first need the notion of “relative Hopf modules” .
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Definition 5.1 (Y Doi) Let A be a right H –comodule algebra, with structure map
�W A!A˝k H . Then M is a right .H;A/–Hopf module if:

(1) M is a right H –comodule, via � W M !M ˝k H .

(2) M is a right A–module.

(3) �.m � a/D �.m/ � �.a/, that is, � is a right A–module map via � .

Let MH
A

denote the category of right .H;A/–Hopf modules. Analogously we may
define AMH ;HMA , and H

A
M.

Example 5.2 Let N be a right B –module. Then M DN ˝B A becomes an .A;H /–
Hopf module as follows:

(1) M is a right H –comodule via � D id˝ ı .

(2) M is a right A–module via right multiplication on A.

Note that M co H DN . In general an .A;H /–Hopf module is called trivial if M Š

M co H ˝B A.

Example 5.3 When H is finite-dimensional, it is straightforward to see that AMH D

A # H �M, using the usual duality as in Section 1 between right H –comodules and left
H�–modules. We may also identify MH

A
with MA # H � , although in this case one of

the actions is twisted, as in the previous section.

Example 5.4 Let H D kG be a group algebra. Then we know that AD
L

g2GAg is
a G –graded algebra. The category MH

A
is precisely the category of G –graded right

A–modules.

Example 5.5 Let G be an affine algebraic group over an algebraically closed field k;
then G D Spec.H / for H a commutative affine k–Hopf algebra. The category MH

A

consists of those right A–modules M with a left G –action such that

g � .m � a/D .g �m/.g � a/;

for all g 2G;m 2M; a 2A. This category is usually written as GMA , the category
of .G;A/–modules.

There is great interest in when the categories MB and MH
A

are equivalent. We define
the two functors

ˆWMB!MH
A ; N 7!A˝B N

‰WMH
A !MB; M 7!M co H :
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We have already seen (the dual of) a partial result on equivalence. Example 5.3 and the
coaction version of Theorem 4.5, .1/, .5/ imply the following:

Theorem 5.6 [8] Let H be finite-dimensional. Then B � A is H –Galois if and
only if ˆ ı‰ D id.

To get a complete equivalence, we consider the coaction version of the trace function
in Definition 4.3; it is a less restrictive version of the cleft map in Theorem 3.8.

Definition 5.7 (Doi) Let A be a right H –comodule algebra. Then a (right) total
integral for A is a right H –comodule map �W H !A such that �.1/D 1.

Lemma 5.8 Let H be finite-dimensional with a left integral �¤ 0. Let A be a left
H –module algebra and consider A as a right H�–comodule algebra. Then the trace
y�W A!AH is surjective if and only if there exists a (right) total integral �W H�!A.

The next result, giving an equivalence of the categories MAco H and MH
A

, is due to
Doi and Takeuchi [8].

Theorem 5.9 Let B �A be a right H –extension. Then the following are equivalent:

(1) B �A is H –Galois and A has a total integral.

(2) The maps ˆ and ‰ are inverse category equivalences.

This result is similar to Corollary 4.9, although there are no longer two algebras involved,
and the map ‰ is described differently.

The next theorem in its final form is due to Schneider, although Doi and Takeuchi [8]
also considered when B �A is faithfully-flat.

Theorem 5.10 [31] Let H be a Hopf algebra with bijective antipode and A a right
H –comodule algebra with B DAco H . Then the following are equivalent:

(1) B �A is right H –Galois and A is a faithfully flat left (or right) B –module.

(2) The Galois map ˇ is surjective and A is an injective H –comodule.

(3) The functor ˆWMB!MH
A

given by N 7!N ˝B A is an equivalence.

(4) The functor ˆ0W BM! AMH given by N 7!A˝B N is an equivalence.

The most difficult part of Schneider’s theorem is the equivalence of (1) and (2). This
part has as a special case the following theorem on algebraic groups, due independently
to Cline, Parshall and Scott and to Oberst in 1977.
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Theorem 5.11 Let k be algebraically closed, and let G � X be affine algebraic
groups with G closed in X . Then the quotient X=G is affine if and only if induction
of G –modules to X –modules is exact.

We give some idea as to why Theorem 5.11 is in fact a special case of Theorem 5.10.
Oberst’s version of Theorem 5.11 says that for a free action, X is a principal fibre
bundle over Y with group G if and only if the functor

G.�/W G;AM!BM given by M 7!M G

is exact. Here G;AM is the category of left .G;A/–modules as in Example 5.5,
although here the compatibility condition is g � .a �m/D .g � a/.g �m/. But this is the
same as the category AMH , the right H , left A–Hopf modules, for G D Spec H .

We consider the map ˇ as in Example 2.12; we saw there that the condition of being
faithfully-flat Hopf Galois arises naturally in considering when the quotient X=G is
affine. Now in Theorem 5.10 (2), ˇ being surjective means that the action is free, and
A an injective H –comodule says that induction of modules is exact. Thus when A

and H are commutative, Theorem 5.11 follows from Theorem 5.10.

There are many things that can be said about the relationship between the ideal structure
of the algebra A and that of B DAco H in a faithfully-flat Hopf Galois extension. We
give a few such results from [22].

If M is an H –comodule, a subspace N �M which is also a right H –subcomodule
will be called H –costable. If I is an ideal of B , we say that I is H –stable if
IADAI .

In the special case that ADB #� H , a crossed product in which H actually acts on B ,
then I being H –stable in the usual way, that is H � I � I , is equivalent to IADAI .
Thus the new definition generalizes the usual one.

Lemma 5.12 [22] Let H be finite-dimensional and let B �A be any faithfully-flat
H –Galois extension. Then there is a bijection of sets

fH–stable ideals of Bg
ˆ //
fH–costable ideals of Ag

‰
oo

given by ˆW I 7! IADAI , for I an H –stable ideal of B , and ‰W J 7! J \B , for J

an H –costable ideal of A. These bijections preserve sums, intersections, and products.

Another result is that transitivity of Galois extensions is true in the faithfully-flat case,
unlike the situation for Hopf crossed products, as discussed in Remark 3.11. That is,
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let B �A be an H –extension, with comodule map ıAW A!A˝k H , and let K be a
normal Hopf subalgebra of H . Let

K ,!H � xH

be an exact sequence of Hopf algebras with quotient map � W H ! xH . Let

C DW ı�1
A .A˝k K/:

Then C is a right K–comodule by restricting ıA to C , and A becomes a right
xH –comodule algebra using ıA ı .id˝�/.

Proposition 5.13 (Transitivity [22]) Let B �A be a faithfully-flat H –Galois exten-
sion and consider B � C �A as above.

(1) B � C is faithfully-flat K–Galois.

(2) C �A is faithfully-flat xH –Galois.

The above results are only a small sample of the large literature on faithfully-flat Galois
extensions.

6 Hopf bi-Galois extensions and the Galois correspondence

This section discusses some recent attempts to extend the classical Galois correspon-
dence for field extensions. We review this correspondence, for a classical Galois field
extension A=k with Galois group G . Classically,

fsubgroups M of Gg
F //
fintermediate fields F with k� F �Ag

G
oo ;

given by F W M 7! AM and GW F 7!M D fg 2 G j ag D a; 8a 2 Fg. Under this
correspondence, normal subgroups N of G go to “normal” extensions E of k, that is,
the extension k�E is also Galois (with group G=N ).

There are a number of difficulties in extending this correspondence to the Hopf situation.
The first is that we are dealing with coactions of H D kG instead of actions of G , and
so our intuition is not always correct. Subgroups of G determine Hopf subalgebras of
H� D kG , and thus quotient Hopf algebras H=I of H .

Moreover, normal subgroups of G correspond to normal Hopf subalgebras of H� ,
which come from normal ideals of H . A Hopf ideal of H is called normal if it is also
a left and right coideal of H , that is, both 4.I/�H ˝k I and 4.I/� I ˝k H . In
this situation we also say that H=I is a conormal quotient.
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Using this dualization, the usual Galois correspondence determines the map

.6:1/ I 7!Aco.H=I /

which gives a bijective correspondence between quotient Hopf algebras H=I , where I

is a Hopf ideal of H , and the k–subalgebras of A (all of which are necessarily fields).
Under this correspondence, conormal quotients H=I correspond to normal extensions
of k.

A second difficulty is that when H is not cocommutative, there are not “enough” Hopf
subalgebras (or quotients). In the Galois correspondence this difficulty arises already
for a field extension A=k which is H –Galois for a Hopf algebra H . At least if H

is finite-dimensional, the map in Equation (6.1) is injective and inclusion-preserving.
However it is not clear which intermediate fields can be obtained in this way, since in
general there are not enough Hopf subalgebras to hit all the subfields. One positive
result is that of [10], which states that any normal (Galois) separable field extension
A=k is H –Galois with a Hopf algebra for which the subfields of A of the form
Aco.H=I / are precisely the normal intermediate fields between k and A.

This lack of Hopf subalgebras arises in many places. One solution is to consider the
right (or left) coideal subalgebras of H .

Definition 6.2 A right coideal subalgebra of H is a subalgebra K which is also a
right coideal, that is 4.K/�K˝k H . Left coideal subalgebras are defined similarly.

Example 6.3 Recall the Taft Hopf algebras from Section 1. As an algebra

H D Tn2.!/D khg;x j gn
D 1;xn

D 0;xg D !gxi:

Let K D khxi Š kŒx�=.xn/. Certainly K is a subalgebra, and since �.x/D x˝ 1C

g˝x 2H ˝k K , K is also a left coideal. Similarly, g�1x generates a right coideal
subalgebra. However neither is a Hopf subalgebra.

Example 6.4 A similar problem arises in quantized enveloping algebras. Consider
a Lie subalgebra t of the Lie algebra g; then the enveloping algebra U.t/ is a Hopf
subalgebra of U.g/. However in passing to the quantum case, Uq.t/, even when it
is defined, is often not isomorphic to a subalgebra of Uq.g/. In many cases there
are coideal subalgebras of Uq.g/ which are not Hopf subalgebras but are still good
quantum analogs of Uq.t/. In particular, let g be a semisimple Lie algebra with a
Borel subalgebra nC . Then there is a natural coideal subalgebra UC of Uq.g/ which
is an analog of the Hopf subalgebra U.nC/ of U.g/.
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In Example 1.7, note that nD ke is a Borel (Lie) subalgebra of sl2 , and so U.n/ is
a Hopf subalgebra of U.sl2/. However in Uq.sl2/, the subalgebra generated by E

(or F ) is a coideal subalgebra which is not a Hopf subalgebra.

For a survey of the use of coideal subalgebras in quantum groups, see Letzter [15].

What is the dual notion to a (right) coideal subalgebra? Using the standard bilinear
pairing between H and H� , a right coideal subalgebra of H� corresponds to a
subcoalgebra of H which is also a left H –module. A quotient H=I of H is a left
H –module subcoalgebra if and only if I is a coideal and a left ideal. Thus left ideal
coideals will be objects of interest.

The third major difficulty is a “left-right” problem. To see this, let H be any Hopf
algebra, let ADH , and consider H as a left H –Galois extension of k. Then there
are always maps

fCoideal left ideals I of H g
F //
fRight coideal subalgebras B of H g

G
oo ;

given by F W I 7! co.H=I /H and GW B 7! HBC . The map from left to right is the
analog of the Galois correspondence. In many cases, the two maps are known to be
inverse bijections, at least on certain classes of coideal left ideals and right coideal
subalgebras. However the map from right to left only makes sense if we know the
right H –comodule structure of H , although we began with considering H as a left
H –Galois extension. Thus the correspondence above does not generalize very well to
the case of a general Hopf Galois extension.

The first real progress on this left-right problem was made by van Oystaeyen and
Zhang [38] in the case when A was commutative and k a field, by constructing a
second Hopf algebra LDL.A;H / for which the extension is Galois on the other side.
This was extended by Schauenburg [25] to the case when A was noncommutative, still
assuming B D k, a field. We begin with this case.

Definition 6.5 Let L and H be Hopf algebras over k. An L–H bi-Galois extension
A=k is an L–H bicomodule algebra such that A=k is both a left L–Galois and a
right H –Galois extension of k.

Theorem 6.6 [25] For a right H –Galois extension A=k, there exists a unique Hopf
algebra LDL.A;H / such that A=k is L–H bi-Galois.
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To construct the Hopf algebra L, first note that A˝k A is an H –comodule, using
the codiagonal coaction (this is the formal dual of the usual diagonal action of H on
A˝k A). Then

L WD .A˝k A/co H :

The uniqueness of L follows from the Hopf module structure theorem: using the new
Galois map ˇLW A ˝k A ! L ˝k A and the isomorphism ˇL , we have
L Š .L˝k A/co H . Then one proves that L is in fact a Hopf algebra over k. See
Schauenburg [25, 3.7].

We first give the correspondence theorem of van Oystaeyen and Zhang.

Theorem 6.7 [38] If k�A are fields such that A=k is L–H bi-Galois, then there
is a one-to-one correspondence

fHopf ideals I of Lg
F //
fH–costable intermediate fields F �Ag

G
oo ;

via F.I/ WD co.L=I /A and G.F / D I such that L=I D .A˝F A/co H , under the
identification LŠ .A˝k A/co H .

Question 6.8 How close is the new Hopf algebra L to the original Hopf algebra H ?

It is not difficult to see that if H is cocommutative, then LŠH . Although this is not
true in general, we will see below that at least when H is finite-dimensional,

LŠH� ;

a twisted version of H . We define this twisting as follows:

Definition 6.9 Let H be a Hopf algebra and � a Hopf cocycle � W H ˝k H ! k, that
is, � satisfies X

h;k

�.h1; k1/�.g; h2k2/D
X
g;h

�.g1; h1/�.g2h2; k/

and �.g; 1/D �.1;g/D ".g/1, for all g; h; k 2H .

Then we may construct a new Hopf algebra H� from H by “double-twisting” the
multiplication by � . That is, H� has the same comultiplication 4 as H , but new
multiplication, given by

h? k WD
X
h;k

�.h1; k1/h2k2�.h3; k3/:

This construction should be contrasted with the twisted Hopf algebra H� in Example
3.7, in which H was only twisted on one side. In that case H� is not a Hopf algebra.
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Remark 6.10 The construction of H� is due to Doi. It is the formal dual of the “twist”
H� , for �2H˝kH , introduced by Drinfel 0d [9]; see Kassel [12, XV.3]. In Drinfel 0d’s
construction, H� has the same multiplication as H , but new comultiplication4�.h/D
�4.h/��1 . Viewing � dually as a map from H� ˝k H� to k, it is a 2–cocycle
on H� .

It is known that for the Taft Hopf algebras in Example 1.6, H� ŠH for any � , and
also that LŠH . However for H Duq.sl2/ as in Example 1.7, there exists a cocycle �
such that H� is not isomorphic to H . Hopf bi-Galois theory for these two examples
has been considered in [28].

Following [25, Section 5], we say that two k–Hopf algebras H and L are monoidally
co-Morita equivalent if their monoidal categories of comodules HM and LM are
equivalent as monoidal k–linear categories.

Theorem 6.11 [25] Let H and L be k–Hopf algebras. The following are equivalent:

(1) H and L are monoidally co-Morita k–equivalent.

(2) There exists an L–H bi-Galois extension of k.

In fact Schauenburg proves that there is a bijection between monoidal isomorphism
classes of k–linear monoidal equivalences HMŠ LM and isomorphism classes of
L–H –bi-Galois extensions of k.

Corollary 6.12 [25] Assume that H is a finite-dimensional k–Hopf algebra. Then
every Hopf algebra L such that there exists an L–H bi-Galois extension of k is
obtained from H by twisting with a 2–cocycle.

If H is not finite-dimensional, then it is possible to have an L–H bi-Galois extension
of k in which L is not a twist of H [2].

Schauenburg then extends the correspondence theorem of [38] to general L–H bi-
Galois algebras A=k. First, for the Hopf algebra L, we may identify Quot.L/ with
the set of coideals I of L. Then there are well-defined maps

fQuot.L/g
F //
fSub.A/g

G
oo ;

given by F.I/D co.L=I /A for a coideal I of C and L=G.B/ WD .A˝B A/co H for
B a subalgebra of A.
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However in order to obtain a one-to-one correspondence, we need to restrict to suitable
subsets of Quot.L/ and of Sub.A/. For a coalgebra C and a quotient coalgebra
C ! xC , we say xC is left (right) admissible if C is right (left) faithfully coflat over xC ,
where recall that a comodule being coflat is defined in terms of the cotensor product.
Then a coideal I � C is right (left) admissible if C=I is admissible.

Theorem 6.13 [26, 3.6] Let H and L be Hopf algebras with bijective antipodes and
let A be an L–H bi-Galois extension of k. Then the maps F and G give a one-to-one
correspondence between the (left, right) admissible coideal left ideals I �L, and those
H –subcomodule algebras B �A such that A is (left, right) faithfully flat over B .

In fact Schauenburg only assumes in [26] that k is a commutative ring, although of
course some additional assumptions are then needed.

For further reading, there are several longer survey papers with many proofs, such as
Schauenburg [29] and Schauenburg and Schneider [30].

7 Another approach to the Galois correspondence

We note that there is an alternate approach to Galois theory for Hopf algebras. Inspired
by work of Noether in the 1930’s, Cartan and Jacobson looked at the Galois correspon-
dence for automorphism groups of division algebras in the 1940’s. This was extended
to simple Artinian rings in the 1950’s. A major difficulty was how to handle inner
automorphisms of an algebra A (that is, for some unit u 2A, �.a/D uau�1 for all
a2A); such automorphisms do not arise in the commutative case. If the automorphism
group is outer (that is, no nontrivial inner automorphisms), they obtained a one-to-one
correspondence between subgroups and intermediate rings.

The Jacobson–Cartan Galois theory was extended in the 1960’s to automorphisms
of more general rings, and in fact this was the motivation of the work in [4]. Now
additional trouble can arise from automorphisms which, although not inner on the
algebra A itself, can become inner on some natural ring of fractions Q.A/ of A. We
give a classical example of Rosenberg and Zelinsky:

Example 7.1 Let O D ZŒ
p
�5�; note that O is the ring of integers in the field

F DQŒ
p
�5�. Let A WDM2.O/, and consider the matrix

uD

�
2 �1C

p
�5

1C
p
�5 �2

�
2A:
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Then �.a/ D uau�1 is an automorphism of A (of order 2) but it is not inner on A

itself since u�1 …A. However � becomes inner when considered as an automorphism
of the quotient ring Q.A/DM2.F /.

In the above example, I D .2;�1C
p
�5/ is a nonprincipal ideal of O . More generally,

such examples can be constructed for ADMn.O/ whenever the ring of integers O in
a number field F contains a nonprincipal ideal with n generators. One can still obtain
a nice Galois correspondence by assuming that G � Aut.A/ contains no “generalized
inner” automorphisms of this type. Note that in these example the quotient ring Q.A/

is obtained by simply inverting the nonzero scalar matrices in A.

In the 1970’s and 1980’s, Kharchenko extended this Galois theory to prime rings,
that is, noncommutative rings in which the product of two nonzero ideals is always
nonzero. Any prime ring R has a Martindale quotient ring Q.R/, generalizing the
matrix example above, by inverting certain maps. An automorphism of R is then called
X–inner if it becomes inner when extended to Q.R/, and an automorphism group of R

is called X–outer if its subgroup of X–inner automorphisms is trivial. Kharchenko
proved a Galois correspondence using finite groups of X–outer automorphisms; a
simpler proof of his result may be found in [21]. Kharchenko also looked at derivations,
although the situation there is more complicated; we already see this in Example 2.13.

Recently there have been several papers trying to extend Kharchenko’s work to the
Hopf case, in particular to the case when H is pointed. This means that all the minimal
(nonzero) subcoalgebras are 1–dimensional (equivalently, any simple subcoalgebra is
the k–span of a group-like element). Examples of pointed Hopf algebras are group
algebras, enveloping algebras of Lie algebras, the Taft algebras (Example 1.6) and the
quantum enveloping algebras (Example 1.7). In all known examples of pointed Hopf
algebras, they are generated by their group-like and skew-primitive elements, and thus
the Galois theory for pointed Hopf algebras should be a natural extension of what we
know for automorphisms and (skew) derivations.

In this case yet more difficulties arise, and it is no longer sufficient to consider X–outer
actions. Milinski [19] proposed a more restrictive definition, now called M–outer. With
this more restrictive notion, in fact the Galois correspondence works when H is a
finite-dimensional pointed Hopf algebra. See work of Masuoka, Westreich and Yanai
[17; 39; 40; 41].
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