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The cyclotomic trace for symmetric ring spectra

CHRISTIAN SCHLICHTKRULL

The purpose of this paper is to present a simple and explicit construction of the
Bökstedt–Hsiang–Madsen cyclotomic trace relating algebraic K–theory and topo-
logical cyclic homology. Our construction also incorporates Goodwillie’s idea of a
global cyclotomic trace.

19D55, 55P43

1 Introduction

As defined by Bökstedt–Hsiang–Madsen [2], the cyclotomic trace

trcW K.A/! TC.A/

is a natural map relating the algebraic K–theory spectrum K.A/ and the topological
cyclic homology spectrum TC.A/ for any connective symmetric ring spectrum A. The
purpose of this paper is to present a simplified construction of this map which at the
same time incorporates Goodwillie’s idea of a global cyclotomic trace. We begin by
recalling the basic ingredients.

1.1 Topological cyclic homology

The definition of TC.A/ is based on the model of the topological Hochschild homology
spectrum TH.A/ introduced by Bökstedt [1]. Being the realization of a cyclic spectrum
this has a canonical action of the circle group T and by restriction an action of each of
the finite cyclic groups Cr . The fixed point spectra are related by two types of structure
maps

Fr ;Rr W TH.A/Cnr ! TH.A/Cn ;

called respectively the Frobenius and the restrictions maps. Here the Frobenius maps
are the natural inclusions whereas the definition of the restriction maps depends on the
cyclotomic structure of TH.A/. The terminology is motivated by the relationship to
the theory of Witt vectors: Hesselholt and Madsen [15] prove that if A is commutative,
then �0 TH.A/Cn is isomorphic to the ring of truncated Witt vectors Whni.�0.A// and
the maps Fr and Rr respectively induce the Frobenius and restriction homomorphisms
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of Witt vectors under this isomorphism. Let I be the category with objects the natural
numbers n� 1 and two types of morphisms, Fr ;Rr W nr ! n, subject to the relations

.1:1/ F1 DR1 D id; Fr Fs D Frs; Rr Rs DRrs; Fr Rs DRsFr :

Thus, any morphism in I can be written uniquely in the form Fr Rs . Given a prime
number p , let Ip be the full subcategory whose objects are the p–powers pn . The
correspondence n 7! TH.A/Cn defines an I–diagram and following [2] we define

TC.A/D holim
I

TH.A/Cn and TC.AIp/D holim
Ip

TH.A/Cpn :

Identifying T with T=Cn in the canonical way, z 7! n
p

z , each of the fixed point spectra
TH.A/Cn inherits a T –action and it is natural to build this into the construction. The I–
diagram defining TC.A/ is not a diagram of spectra with T –action, but Goodwillie [13]
observes that I and T can be combined into a certain twisted product category I Ë T
such that the correspondence n 7! TH.A/Cn extends to an I Ë T –diagram which for
each n codifies the T –action on TH.A/Cn . Let us write TC.A/ and TC.AIp/ for the
homotopy limits over I ËT and Ip ËT . There is a diagram of inclusions of categories

.1:2/

I Ë T  ���� Ip Ë T  ���� Tx?? x?? x??
I  ���� Ip  ���� f1g

and a corresponding diagram of homotopy limits

TC.A/ ����! TC.AIp/ ����! TH.A/hT??y ??y ??y
TC.A/ ����! TC.AIp/ ����! TH.A/:

Here TH.A/hT denotes the homotopy fixed points of the T –action on TH.A/. Good-
willie [13] proves that the map TC.A/!TC.A/ becomes an equivalence after profinite
completion and that the map TC.A/! TC.AIp/ becomes an equivalence after p–
completion. A published proof of the second statement can be found in Hesselholt–
Madsen [15] and for completeness we have included a detailed proof of the first
statement in Appendix A. Moreover, Goodwillie proves [13] that the functor TC.A/ is
determined by TC.A/ and TH.A/hT in the sense that there is a homotopy cartesian
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diagram

.1:3/

TC.A/ ����! TH.A/hT??y ??y
TC.A/^ ����! .TH.A/hT /^

where .�/^ denotes profinite completion. The cyclotomic trace lifts to a map

trcW K.A/! TC.A/

which Goodwillie calls the global cyclotomic trace. Thus, composing with the map to
TC.A/ we recover the cyclotomic trace of Bökstedt–Hsiang–Madsen while composing
with the map to TH.A/hT we get the topological analogue of the Chern character with
values in negative cyclic homology (also known as the Goodwillie–Jones trace map).
The main interest in the global cyclotomic trace comes from the fact that it leads to
the following integral version of the Dundas–McCarthy Theorem: if A!B is a map
of connective symmetric ring spectra such that the induced map �0.A/! �0.B/ is a
surjection with nilpotent kernel, then the diagram

K.A/
trc
����! TC.A/??y ??y

K.B/
trc
����! TC.B/

is homotopy cartesian. This is proved by Dundas, Goodwillie and McCarthy [10]
and is a sharpening of earlier theorems by McCarthy [23] (for simplicial rings) and
Dundas [6] which state that the analogous diagram for TC.A/ becomes homotopy
cartesian after profinite completion. The approach in [10] is to define global topological
cyclic homology as a certain homotopy pullback built from TC.A/^ and TH.A/hT . We
recall this construction in Appendix A where we show how it follows from Goodwillie’s
homotopy pullback square (1.3) that it is equivalent to TC.A/. In constructing the
cyclotomic trace we have found it convenient to work with Goodwillie’s original
definition TC.A/, both from a conceptual and a practical point of view.

Using the Dundas–Goodwillie–McCarthy theorems, calculations in algebraic K–theory
can often be reduced to calculations of the more accessible functor TC.A/. We refer
the reader to the excellent survey papers by Madsen [20] and Hesselholt [14] for an
introduction to the calculational results that can be obtained by these methods. Here
we shall mainly be concerned with the technical details involved in the definition of
the cyclotomic trace itself. We now give an outline of the construction, followed by a
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discussion of how our definitions relate to those in the literature. Precise definitions
will be given in later sections.

1.2 The cyclotomic trace

For simplicity we shall only consider the algebraic K–theory of free modules as
opposed to the topological version of “finitely generated projective” modules; as in
the case of ordinary rings it follows from a cofinality argument that the resulting
algebraic K-theories only differ in degree zero. Thus, given a connective symmetric
ring spectrum A, let FA be the category of finitely generated free left A–modules of
the standard form A_n . This is a spectral category (a category enriched in symmetric
spectra) in the sense that there is a symmetric spectrum of “morphisms” relating any two
objects. We shall define an associated topological category !FA of “weak equivalences”
that has the same objects and whose morphism spaces may be identified with the spaces
of stable equivalences between the objects in FA . The symmetric monoidal structure
of FA makes the classifying space B.!FA/ the underlying space of a �–space in
the sense of Segal [27] and the algebraic K–theory spectrum K.A/ is the associated
spectrum. Applying Waldhausen’s cyclic classifying space construction we similarly
get a � –space Bcy.!FA/ whose associated spectrum is the cyclic algebraic K–theory
spectrum Kcy.A/.

One can also evaluate the cyclic bar construction on the spectral category FA itself
and we write TH.FA/ for the Dundas–McCarthy model of the topological Hochschild
homology spectrum. Bökstedt’s model TH.A/ is obtained by restricting to the subcate-
gory of FA containing only the object A and it is proved in Dundas and McCarthy [11]
that the inclusion induces an equivalence TH.A/!TH.FA/ of spectra with cyclotomic
structure. It follows that there are induced equivalences of the fixed point spectra and
the homotopy limits defining the various forms of topological cyclic homology. The
advantage of TH.FA/ is that the symmetric monoidal structure of FA gives rise to
an extra spectrum coordinate (making TH.FA/ a symmetric bispectrum) which is
compatible with the spectrum structure of K.A/. Thus, there is a canonical map

Kcy.A/! TH.FA/

which is essentially obtained by including the spaces of stable equivalences in the full
morphism spaces of maps between the objects in FA . This is in fact a map of spectra
with cyclotomic structure and exploiting this we get a map

Kcy.A/! TR.FA/D holim
Rr

TH.FA/
Cr ;

where by definition TR.FA/ is the homotopy limit over the restriction maps. For
commutative A it follows from [15] that �0 TR.FA/ is isomorphic to the ring of big
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Witt vectors 1C t xAŒŒt �� on the ring xAD �0.A/ and it is natural to view TR.FA/ as a
topological refinement of the Witt vector construction. From this point of view, the
following remark makes it natural to view the above map as a kind of “characteristic
polynomial” (although for this interpretation one may argue that our definition of
Kcy.A/ is not optimal).

Remark 1.4 It is illuminating to consider the case where A is the Eilenberg–Mac Lane
spectrum of an ordinary commutative ring xA. The cyclic algebraic K–theory Kcy.A/

may then be identified with the algebraic K–theory of the automorphism category
Aut. xA/, thought of as a category with coproducts. An object of this category is a pair
.P; ˛/ given by a finitely generated free A–module P and an automorphism ˛ of P .
We recall the details of this identification in Remark 4.13. With this interpretation of
Kcy.A/ the above map induces the characteristic polynomial on �0 in the sense that
an object .P; ˛/ is mapped to

det.1� t˛/ 2 �0 TR.FA/D f1C t xAŒŒt ��g:

Redefining Kcy.A/ by applying Waldhausen’s S�–construction instead of Segal’s � –
space approach gives a spectrum that may be identified with the algebraic K–theory of
Aut. xA/, thought of as an exact category in the usual way (an exact sequence in Aut. xA/
is one whose underlying sequence of A–modules is exact).

Let N be the multiplicative monoid of natural numbers and write N Ë T for the
semidirect product with N acting from the right on T through the power maps (we
review this construction in Example 2.6). It follows formally from the definition of the
category I Ë T that the topological monoid N Ë T acts on TR.FA/ and that TC.FA/

can be identified with the homotopy fixed point spectrum TR.FA/
h.N ËT/ . The above

“characteristic polynomial” is N ËT –equivariant and induces a map of homotopy fixed
points

Kcy.A/h.N ËT/
! TR.FA/

h.N ËT/
D TC.FA/:

Thus, in order to define the cyclotomic trace it remains to map the spectrum K.A/
into the homotopy fixed points of Kcy.A/. With this in mind we prove the following
general result. By definition, a topological category C is groupoid-like if the component
category �0C is a groupoid. (The category �0C has the same objects as C and its
morphisms are the path components of the morphism spaces in C .)

Theorem 1 Let C be a small topological category. Then N Ë T acts on Bcy.C/ and
there is a natural map

Bcy.C/h.N ËT/
!Map.BN;B.C//

which is a weak homotopy equivalence if C is groupoid-like.
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Applying this to wFA we define a � –space B0.wFA/ by forming the homotopy
pullback of the diagram

Bcy.wFA/
h.N ËT/ �

�!Map.BN;B.wFA// � B.wFA/

where the right hand map is defined by including B.wFA/ as the constant functions.
The associated spectrum K0.A/ is canonically equivalent to K.A/ and maps naturally
to the homotopy fixed points of Kcy.A/. Summarizing, our definition of the cyclotomic
trace is represented by the chain of natural maps

trcW K.A/
�
 � K0.A/! Kcy.A/h.N ËT/

! TR.FA/
h.N ËT/

D TC.FA/' TC.A/:

In situations where it is important to have a direct natural transformation relating
algebraic K–theory and topological cyclic homology we may of course choose to work
with the models K0.A/ and TC.FA/. It is worth noting that Map.BN;B.wFA// is
the inverse limit of a diagram of fibrations

P 7!Map.
Q

p2P Bhpi;B.wFA//

where P runs through the finite sets of prime numbers and hpi denotes the mul-
tiplicative monoid generated by p (thus, the domain is homotopy equivalent to a
jP j–dimensional torus). The projection onto Map.Bhpi;B.wFA// corresponds via
the cyclotomic trace to the projection of TC.A/ onto TC.AIp/.

There are two main innovations in the approach to the cyclotomic trace taken here.
The first is that the � –space structures we use to define the spectra K.A/ and TH.FA/

are considerably simpler than those considered in [2]. The second is that we avoid
“inverting the weak equivalences” in wFA before mapping into TH.FA/: the method
for comparing the bar construction to the cyclic bar construction used in [2; 13]
involves replacing a grouplike monoid by an equivalent group and this procedure was
refined by Dundas [8; 9] to a localization functor on the categorical level. Whereas
this procedure works fine for many purposes it does not behave well with respect to
multiplicative structures. Thus, even though K.A/ and TC.A/ are E1 ring spectra
if A is commutative, it is not obvious how to make the cyclotomic trace an E1 map
from this point of view. In our formulation we avoid inverting the weak equivalences
by directly analyzing the homotopy fixed points of the cyclic bar construction and all
the steps in the construction presented here are compatible with products. Based on
this we show in [24] how to refine the cyclotomic trace to an E1 map.

1.3 Variations and generalizations

In writing this paper, the main priority has been to keep the constructions as simple and
explicit as possible. We here list a number of possible variations and generalizations.
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First of all, we have chosen to work with symmetric spectra of topological spaces, but
one could have worked with symmetric spectra of simplicial sets throughout. This
would in fact have simplified some of the arguments since then we would not have
to worry about the symmetric spectra being “well-based” in the sense of having a
nondegenerate base point in each degree. Secondly, while our construction of the
algebraic K–theory spectrum is based on Segal’s � –space approach, we could have
chosen to use Waldhausen’s S� construction [30] instead. This would give an equivalent
model of the algebraic K–theory spectrum, but for the cyclic algebraic K–theory
spectrum one would get a new and, arguably, better behaved theory, cf Remark 1.4. On
the other hand, we find the simplicity of the � –space construction very appealing and
this model is convenient when making the cyclotomic trace an E1 map [24]. As a
further refinement one could implement the spectrum level multitrace from [25] in this
setting. This would serve as an inverse of the equivalence TC.A/ �!TC.FA/ which
is convenient for certain applications. We also remark that the constructions in this
paper can be used to define the cyclotomic trace for more general symmetric monoidal
spectral categories along the lines of [7]. It remains an interesting question how to
define a good version of the cyclotomic trace for symmetric ring spectra that are not
connective.

We have aimed at making the paper reasonable self contained and we have tried to
give suitable references along the way and to explain how our definitions compare to
earlier ones. We have been particularly influenced by the papers by Bökstedt–Hsiang–
Madsen [2], Goodwillie [13], Hesselholt–Madsen [15], Dundas–McCarthy [11] and
Dundas [7; 9].

Organization of the paper

We begin in Section 2 by fixing notation for symmetric spectra and homotopy limits.
Here we also include a detailed discussion of the homotopy limit of a diagram indexed
by a Grothendieck construction. This material is used in later sections when analyzing
homotopy limits of diagrams indexed by the categories I and I Ë T . The study of
algebraic K–theory begins in Section 3 where we introduce the category wFA of stable
equivalences and the associated algebraic K–theory spectrum K.A/. In Section 4 we
consider the cyclic analogue Kcy.A/ and based on Theorem 1 we show how to relate
K.A/ to the homotopy fixed points of the latter. The definition of the topological cyclic
homology spectrum is then recalled in Section 5 where we define the cyclotomic trace.
Finally, we analyze the homotopy fixed points of the cyclic bar construction and prove
Theorem 1 in Section 6. In Appendix A we provide a proof of Goodwillie’s result
stating that the profinite completions of TC.A/ and TC.A/ are equivalent.
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2 Symmetric spectra and homotopy limits

In this section we first fix notation for symmetric spectra and homotopy limits. We
then give a detailed account of the dual Grothendieck construction and the dual version
of Thomason’s homotopy colimit theorem which describes the homotopy limit of a
diagram indexed by a Grothendieck category. The reason for including this material
is that the general theory specializes to a canonical approach for analyzing homotopy
limits of diagrams indexed by the categories I and I Ë T entering in the definition of
the cyclotomic trace.

2.1 Symmetric spectra

We work in the categories U and T of unbased and based compactly generated weak
Hausdorff spaces. By a spectrum we understand a sequence of based spaces E.n/ for
n� 0, together with a sequence of based structure maps � W S1^E.n/!E.1C n/.
A symmetric spectrum in the sense of [18] (in the simplicial setting) and [21] is a
spectrum in which the n–th space E.n/ comes equipped with a base point preserving
action of the symmetric group †n such that the iterated structure maps

�m
W Sm

^E.n/!E.mC n/

are †m�†n –equivariant. Here Sm denotes the m–fold smash product of the standard
circle S1 D �1=@�1 and †m �†n acts on E.mC n/ via the inclusion in †nCm .
We shall also need the notion of a symmetric bispectrum by which we understand a
family of based †n1

�†n2
–spaces E.n1; n2/ for n1 � 0 and n2 � 0, together with

two families of structure maps

�1W S
1
^E.n1; n2/!E.1C n1; n2/; �2W S

1
^E.n1; n2/!E.n1; 1C n2/

such that the diagrams

S1 ^S1 ^E.n1; n2/
�^id //

S1^�1

��

S1 ^S1 ^E.n1; n2/

S1^�2

��
S1 ^E.1C n1; n2/

�2 // E.1C n1; 1C n2/ S1 ^E.n1; 1C n2/
�1oo

are commutative (where � flips the two copies of S1 ) and the iterated structure maps

�
m1

1
ı .Sm1 ^ �

m2

2
/W Sm1 ^Sm2 ^E.n1; n2/!E.m1C n1;m2C n2/

are †m1
� †m2

� †n1
� †n2

–equivariant. Here the action on the right hand side
is defined via the homomorphism that first flips †m2

and †n1
and then includes
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†m1
�†n1

in †m1Cn1
and †m2

�†n2
in †m2Cn2

. Multisymmetric spectra in any
number of variables are defined analogously. A symmetric spectrum E gives rise to a
symmetric bispectrum xE with xE.n1; n2/DE.n1C n2/ and structure maps

�1W S
1
^E.n1C n2/

�
�!E.1C n1C n2/

�2W S
1
^E.n1C n2/

�
�!E.1C n1C n2/

�1;n1
t1n2

�������!E.n1C 1C n2/

where �1;n1
t 1n2

is the permutation that acts by the .1; n1/–shuffle �1;n1
on the first

1C n1 elements and is the identity on the last n2 elements.

We write Sp† for the topological category of symmetric spectra in which a morphism
E!E0 is a sequence of †n –equivariant based maps E.n/!E0.n/ that commute
with the structure maps. The morphisms space MapSp† .E;E0/ is topologized as a
subspace of the product of the based mapping spaces Map.E.n/;E0.n//. It is proved in
[18] (in the simplicial setting) and [21] that Sp† has a stable model category structure
that makes it Quillen equivalent to the usual category of spectra. In this model structure
a symmetric spectrum E is fibrant if and only if it is an �–spectrum in the sense that the
adjoint structure maps E.n/!�E.nC1/ are weak homotopy equivalences for n� 0.
A symmetric spectrum is said to be a positive �–spectrum if the adjoint structure maps
are weak homotopy equivalences for n� 1. We say that a map of symmetric spectra
E!E0 is a ��–isomorphism if it induces an isomorphism on spectrum homotopy
groups. Following [18], a symmetric spectrum E is semistable if there exists an
�–spectrum E0 and a ��–isomorphism E!E0 . Choosing a fibrant replacement in
the stable model structure one can always find an �–spectrum E0 and a map E!E0

which is a stable equivalence (a weak equivalence in the stable model structure) but
the point is that a stable equivalence need not be a ��–isomorphism. In fact, there is
an obvious candidate for such a fibrant replacement as we now recall. For each m� 0,
we define the shifted spectrum EŒm� to be the symmetric spectrum xE.m;�/ where
xE is the symmetric bispectrum introduced above (thus, EŒm�.n/DE.mC n/). As in

[18] we write RE D�EŒ1� and consider the map of symmetric spectra z� W E!RE

which in spectrum degree n is the adjoint structure map E.n/! �E.1C n/. Let
R1E be the homotopy colimit (or telescope) of the sequence of symmetric spectra
RmE under the maps Rm.z�/W RmE!RmC1E . Thus, identifying RmE with the
symmetric spectrum �mEŒm�, the map Rm.z�/ is given in spectrum degree n by

Map.Sm;E.mC n//!Map.S1
^Sm;S1

^E.mC n//

!Map.S1Cm;E.1CmC n//;

where the first arrow takes a based map f to idS1 ^f , and the second arrow is
induced by the structure map of E . The inclusion of E as the first term of the system
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defines a map E ! R1E and it follows from [18, Proposition 5.6.2] that E is
semistable if and only if R1E is an �–spectrum and this map is a ��–isomorphism.
Since a stable equivalence between �–spectra is a level-equivalence it follows that
a map between semistable symmetric spectra is a stable equivalence if and only if
it is a ��–isomorphism. The class of semistable symmetric spectra includes the
(positive) symmetric �–spectra and more generally any symmetric spectrum whose
homotopy groups stabilize in the sense that the homomorphisms in the systems defining
the spectrum homotopy groups eventually become isomorphisms. For instance, this
includes the suspension spectra.

2.2 Homotopy limits

We shall follow Bousfield–Kan [4] in the definition of homotopy limits except that we
work topologically instead of simplicially. Thus, let K be a small topological category
(a small category enriched in U ) by which we mean that the morphism sets K.K;K0/
are topologized and that composition is continuous. Furthermore, we shall tacitly
assume that a small topological category is well-based in the sense that the identity
morphisms provide each of the morphism spaces with a nondegenerate base point. By a
K–diagram in a (not necessarily small) topological category V we understand a functor
X W K! V which is continuous in the sense that the maps of morphism spaces are
continuous. Given an object K in K we follow Mac Lane [19] and write .K #K/ for
the category of objects in K over K . Thus, the set of objects is topologized as the
disjoint union of the morphism spaces K.K0;K/ where K0 ranges over the objects
in K . Taking this into account, the classifying space B.K #K/ can be identified with
the realization of the simplicial space

Œn� 7!
a

K0;:::;Kn

K.K0;K/�K.K1;K0/� � � � �K.Kn;Kn�1/

(see also Hollender–Vogt [17]). Letting K vary, the correspondence K 7!B.K #K/

defines a diagram of spaces which we shall denote by B.K # �/. The homotopy limit
of a diagram X W K! U is defined to be the space of natural maps of K–diagrams

holim
K

X DMapK.B.K # �/;X /;

topologized as a subspace of the product of the spaces Map.B.K#K/;X.K//. Notice,
that if X is a diagram of based spaces, then holimKX is naturally a based space.

Example 2.1 LetK be the one-object category associated with a topological monoid G .
Then a K–diagram X is the same thing as a G –space and holimKX is the homotopy
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fixed point space X hG defined by

X hG
DMapG.EG;X /

where EG denotes the one-sided bar construction B.G;G;�/.

We refer the reader to Bousfield–Kan [4], Hirschhorn [16] and Hollender–Vogt [17]
for more details on homotopy limits. The main feature of the construction is that if
X ! X 0 is a map of K–diagrams such that X.K/! X 0.K/ is a weak homotopy
equivalence for each object K in K , then the induced map of homotopy limits is again
a weak homotopy equivalence; for this see eg Theorem 18.5.3 of [16].

Consider now a diagram of symmetric spectra X W K ! Sp† where K is again a
small topological category. Then we apply the above homotopy limit construction
in each spectrum degree to get the symmetric spectrum holimKX with n–th space
holimKX.n/. In this paper we shall only use this construction in the case where X

is a diagram of positive �–spectra. Since a stable equivalence of positive �–spectra
is a weak homotopy equivalence in each positive spectrum degree, it follows that this
homotopy limit functor takes level-wise stable equivalences of K–diagrams of positive
�–spectra to stable equivalences. (In order to have a homotopically well-behaved
homotopy limit functor on general diagrams one should first apply a fibrant replacement
functor in Sp† ).

2.3 The categorical Grothendieck construction

For our purposes the relevant Grothendieck construction is the dual of that considered
in [29]. Thus, let F W Kop ! Cat be a (continuous) contravariant functor from a
small topological category K to the category of small topological categories. The
Grothendieck construction KË F is the category with objects .K;A/ where K is an
object in K and A is an object of F.K/. A morphism .k; a/ in KËF from .K;A/ to
.K0;A0/ is a morphism kW K!K0 in K together with a morphism aW A!F.k/.A0/

in F.K/. The morphism spaces are topologized in the obvious way and composition
is defined by

.k 0; a0/ ı .k; a/D .k 0 ı k;F.k/.a0/ ı a/:

The notation is motivated by the special case where K is the one-object category
associated to a topological monoid G and F is the contravariant functor determined
by a right action of G on a topological monoid H . In this case the Grothendieck
construction is the usual semidirect product G Ë H as we recall in Example 2.6 below.

For each object K in K there is a canonical functor iK W F.K/!KË F defined by
mapping an object A in F.K/ to .K;A/. Given a diagram of spaces X W KË F ! U ,
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we write i�
K

X for the composition X ı iK and consider the associated K–diagram

.2:2/ K 7! holim
F.K /

i�K X:

The structure maps are induced by the functorial properties of the homotopy limit.
The following result is essentially the dual version of Thomason’s homotopy colimit
theorem [29]. We include a detailed discussion here for easy reference.

Theorem 2.3 Given a diagram X W K Ë F ! U there is a natural weak homotopy
equivalence

�W holim
KËF

X
�
�! holim

K2K
holim
F.K /

i�K X:

We first define the map � and consider the examples relevant for the cyclotomic trace.
The proof will be given at the end of the section. By definition, the target is the space
of natural maps

MapK2K.B.K #K/;MapF.K /.B.F.K/ # �/; i
�
K X //:

Thus, an element can be identified with a natural family of maps

˛.K ;A/W B.K #K/�B.F.K/ #A/!X.K;A/

indexed by the objects .K;A/ in KË F . The naturality condition amounts to (i) that
˛.K ;A/ is natural in A for each fixed K , and (ii) that given a morphism f W K! L

in K and an object A in F.L/, the diagram

B.K #K/�B.F.K/ # F.f /.A//
˛.K;F.f /.A// // X.K;F.f /.A//

X .f;id/

��

B.K #K/�B.F.L/ #A/

id�F.f /

OO

f��id
��

B.K #L/�B.F.L/ #A/
˛.L;A/ // X.L;A/

is commutative. Similarly, we represent an element in the domain of � by a natural
family of maps

ˇ.K ;A/W B.KË F # .K;A//!X.K;A/

indexed by the objects .K;A/ in K Ë F . Let now the object .K;A/ be fixed and
consider the functor

‚.K ;A/W .K #K/� .F.K/ #A/! .KË F # .K;A//
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that maps a pair of objects kW K0!K and aW A0!A in the domain category to the
object

.k;F.k/.a//W .K0;F.k/.A0//! .K;A/:

A morphism in the domain is represented by a pair of commutative diagrams

K0

k0 //

k   AAAAAAAA
K0

0

k0~~}}}}}}}

K

A0

a0 //

a
��@@@@@@@@

A0
0

a0��~~~~~~~

A

and this is mapped to the morphism represented by the diagram

.K0;F.k/.A0//
.k0;F.k/.a0// //

.k;F.k/.a// ''OOOOOOOOOOOO
.K0

0
;F.k 0/.A0

0
//

.k0;F.k0/.a0//wwooooooooooo

.K;A/:

Since the classifying space functor preserves products there is an induced map

‚.K ;A/W B.K #K/�B.F.K/ #A/! B.KË F # .K;A//:

Definition 2.4 The map � in Theorem 2.3 is defined by associating to an element
ˇ D fˇ.K ;A/g in the domain the element �.ˇ/D ˛ given by

˛.K ;A/W B.K #K/�B.F.K/ #A/
‚.K;A/

�����! B.KË F # .K;A//
ˇ.K;A/

����!X.K;A/:

One easily verifies the required naturality conditions. The following lemma gives a
convenient criterion for checking when the map � is in fact a homeomorphism.

Lemma 2.5 Suppose that for each morphism f W K!L in K and each object A in
F.L/ the functor

F.f /W .F.L/ #A/! .F.K/ # F.f /.A//

is an isomorphism of categories. Then � is a homeomorphism.

Proof The assumption in the lemma implies that the functors ‚.K ;A/ are isomor-
phisms of categories and consequently the induced maps of classifying spaces are
homeomorphisms. Using this one easily defines an inverse of �.
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Example 2.6 Let K be the one-object category associated with a topological monoid G

and let F be the contravariant functor specified by a right G –action on a topological
monoid H ; written b � a D ba for a 2 G and b 2 H . Then the category K Ë F

is the one-object category associated to the semidirect product monoid G Ë H with
underlying space G �H and multiplication

.a1; b1/ � .a2; b2/D .a1a2; b
a2

1
b2/; a1; a2 2G; b1; b2 2H:

A G Ë H –action on a space X amounts to a space equipped with an action of each
of the monoids H and G such that the relation b.ax/D a.bax/ holds for all a 2G ,
b 2H , and x 2 X . The monoid G acts from the right on EH and from the left on
the homotopy fixed points X hH by .aˇ/.e/ D aˇ.ea/, for a 2 G , ˇ 2 X hH , and
e 2EH . An element of the homotopy fixed point space .X hH /hG can be identified
with a map ˛W EG �EH !X such that

˛.ae1; e2/D a˛.e1; e2a/; ˛.e1; be2/D b˛.e1; e2/

for all e1 2 EG , e2 2 EH , a 2 G , and b 2 H . In this case the weak homotopy
equivalence �W X h.GËH /! .X hH /hG is induced by the simplicial map

‚W B�.G;G;�/�B�.H;H;�/! B�.G Ë H;G Ë H;�/

defined by

‚..a0; : : : ; an/; .b0; : : : ; bn//D ..a0; b
a0

0
/; .a1; b

a0a1

1
/; : : : ; .an; b

a0:::an
n //:

Notice, that if G is group, then � is a homeomorphism by Lemma 2.5.

Example 2.7 The category I from Section 1.1 can also be realized as a Grothendieck
construction as we now explain. Let N be the multiplicative monoid of (positive)
natural numbers and let us view N as a category with a single object � in the usual way.
We write N for the category .N # �/ such that an object in N is a natural number n

and a morphism sW m ! n is an element s in N with m D ns . The monoid N

naturally acts on N from the left and since N is commutative this is also a right action.
The Grothendieck construction N ËN again has objects the natural numbers and a
morphism .r; s/W m! n is a pair of elements r; s in N such that m D rns . This
category is isomorphic to I as one sees by identifying Fr with .r; 1/ and Rs with
.1; s/. It follows from Lemma 2.5 that we have a canonical homeomorphism

�W holim
I

X
�
�! .holim

N
X /hN

for any I–diagram X . This observation is originally due to Goodwillie [13].
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Example 2.8 Let again N be the multiplicative monoid of natural numbers and let
N act from the right on the circle group T via the power maps, z � r D zr . This
induces a functor Iop!N op! Cat and the category I Ë T from Section 1.1 is the
associated Grothendieck construction. Thus, I Ë T has objects the natural numbers
and a morphism .r; s; z/W m! n is a pair of elements r; s in N such that mD rns ,
together with an element z in T . We topologize the morphism sets as disjoint unions
of copies of T and composition is defined by

.r1; s1; z1/ � .r2; s2; z2/D .r1r2; s1s2; z
r2

1
z2/:

It follows from the discussion in Example 2.7 that there are isomorphisms of categories

I Ë T Š .N ËN /Ë T ŠN Ë .N �T /Š .N Ë T /ËN :

Applying Theorem 2.3 to these categories we therefore get the following corollary.

Corollary 2.9 Given an I Ë T –diagram X there are canonical weak homotopy equiv-
alences

holim
IËT

X
�
�! .holim

N
X /h.N ËT/ �

�! .holim
N

X hT /hN

where in fact the first map is a homeomorphism by Lemma 2.5.

2.4 The proof of Theorem 2.3

The proof follows the same outline as the proof of the dual result in [29]. Consider the
functor pW KË F !K that maps an object .K;A/ to K . In order to verify that � is a
weak homotopy equivalence we shall compare the K–diagram (2.2) to the homotopy
right Kan extension of X along the functor p , that is, to the K–diagram

K 7! holim
.K#p/

��K X

where .K # p/ is the category with objects .f;A/ given by a morphism f W K!L

in K and an object A in F.L/, and where �K W .K # p/! K Ë F is the forgetful
functor that forgets the morphism f . This is the homotopical analogue of the categorical
Kan extension; see eg Mac Lane [19]. The functors �K assemble to give a map of
K–diagrams

holim
KËF

X ! holim
.K#p/

��K X

where we view the domain as a constant diagram. We write �2 for the induced map

�2W holim
KËF

X ! lim
K2K

holim
.K#p/

��K X ! holim
K2K

holim
.K#p/

��K X:

The following lemma is standard; see eg Hollender–Vogt [17], for the dual version for
homotopy colimits.

Geometry & Topology Monographs, Volume 16 (2009)



560 Christian Schlichtkrull

Lemma 2.10 The map �2 is a weak homotopy equivalence.

Let again K be an object in K and let rK W .K # p/ ! F.K/ be the functor that
maps an object .f;A/ to F.f /.A/. A morphism .f;A/! .f 0;A0/ in .K # p/ is
a morphism .l; a/W p.f;A/! p.f 0;A0/ in KË F such that lf D f 0 and rK takes
this to

F.f /.a/W F.f /.A/! F.f /F.l/.A0/D F.f 0/.A0/:

The composite functor iK ı rK W .K # p/! K Ë F is related to �K by the natural
transformation iK ı rK ! �K which for an object .f W K ! L;A/ in .K # p/ is
defined by

.f; id/W .K;F.f /.A//! .L;A/:

This gives a map of homotopy limits for each K ,

holim
F.K /

i�K X
rK
��! holim

.K#p/
r�K i�K X ! holim

.K#p/
��K X;

and one checks that this is a natural map of K–diagrams.

Lemma 2.11 The induced map of homotopy limits

�1W holim
K2K

holim
F.K /

i�K X ! holim
K2K

holim
.K#p/

��K X

is a weak homotopy equivalence.

Proof We show that the map of K–diagrams defined above is in fact a weak homotopy
equivalence for each K . The result then follows from the homotopy invariance of
homotopy limits. Notice that the functor rK has a left adjoint jK W F.K/! .K # p/

that takes an object A in F.K/ to .idW K!K;A/. This functor is a lift of iK in the
sense that �K ı jK D iK . It follows that there is an induced map of homotopy limits

holim
.K#p/

��K X ! holim
F.K /

j �K�
�
K X D holim

F.K /
i�K X

which is a left inverse of the map in question. Furthermore, since jK has a right
adjoint it is left homotopy cofinal in the sense that the categories .jK # .f;A// have
contractible classifying space for each object .f;A/ in .K # p/. It therefore follows
from the homotopy cofinality theorem [4, Theorem XI.9.2] that the map of homotopy
limits induced by jK is a weak homotopy equivalence.

Combining the above lemmas we get a chain of weak homotopy equivalences

holim
K2K

holim
F.K /

i�K X
�1
�! holim

K2K
holim
.K#p/

��K X
�2
 � holim

KËF
X:

It remains to see that the equivalence is realized by the map �.
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Proof of Theorem 2.3 We show that the composition �1� is homotopic to �2 . From
this it follows by the above lemmas that �1� and therefore also � is a weak homotopy
equivalence. Notice, that an element in the target can be identified with a natural family
of maps

˛
.K

f

�!L;A/
W B.K #K/�B..K # p/ # .f;A//!X.L;A/

indexed by the objects .K
f
�!L;A/ in .K # p/. Let ˇ be an element in holimKËF X

with
ˇ.L;A/W B.KË F # .L;A//!X.L;A/

for each object .L;A/ in KË F . Then the associated element ˛ D �1�.ˇ/ is defined
by

˛
.K

f

�!L;A/
W B.K #K/�B..K # p/ # .f;A//!B.KËF # .L;A//

ˇ.L;A/

����!X.L;A/

where the first map is induced by the functor

ˆ
.K

f

�!L;A/
W .K #K/� ..K # p/ # .f;A//! .KË F # .L;A//

defined as follows: an object of the domain category is given by the data

K0
k
�!K; .K

f0
�!L0;A0/

.l;a/
���! .K

f
�!L;A/

where k , f0 , and f are morphisms in K and .l; a/W .L0;A0/! .L;A/ is a morphism
in KË F such that lf0 D f . Such an object is mapped by ˆ.f;A/ to the object

.f k;F.f0k/.a//W .K0;F.f0k/.A0//! .L;A/:

A morphism in the domain category is represented by a pair of commutative diagrams
of the form

K0

k0 //

k ��>>>>>>>>
K0

0

k0���������

K

.K
f0
�!L0;A0/

.l0;a0/ //

.l;a/ ''NNNNNNNNNNN
.K

f 0
0
�!L0

0
;A0

0
/

.l 0;a0/wwppppppppppp

.K
f
�!L;A/

and this is mapped by ˆ.f;A/ to the morphism represented by the diagram

.K0;F.f0k/.A0//
.k0;F.f0k/.a0// //

.f k;F.f0k/.a// ''PPPPPPPPPPPP
.K0

0
;F.f 0

0
k 0/.A0

0
//

.f k0;F.f 0
0
k0/.a0//vvnnnnnnnnnnnn

.L;A/:
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The element �2.ˇ/ is defined analogously using the composite functor

‰
.K

f

�!L;A/
W .K #K/�..K #p/# .f;A//! ..K #p/# .f;A//! .KËF # .L;A//

where the first arrow is the projection away from .K # K/ and the second arrow is
induced by �K . These functors are related by a natural transformation ˆ!‰ defined
by

.K0;F.f0k/.A0//
.f0k;id/ //

.f k;F.f0k/.a// ((PPPPPPPPPPPP
.L0;A0/

.l;a/yyssssssssss

.L;A/:

This gives rise to a natural homotopy between the induced maps of classifying spaces
and thereby to the required homotopy relating �1� and �2 .

3 Algebraic K –theory of symmetric ring spectra

We recall from [18] and [21] that the smash product of symmetric spectra makes Sp†

a symmetric monoidal category with unit the sphere spectrum S .

3.1 The spectral category of A–modules

By definition, a symmetric ring spectrum is a monoid in the symmetric monoidal
category Sp† . It follows from the universal property of the smash product that a
monoid structure on a symmetric spectrum A amounts to a unit S0!A.0/ and a map
of symmetric bispectra

A.m/^A.n/!A.mC n/

such that the usual diagrams expressing unitality and associativity are commutative; see
eg Schlichtkrull [25] and Schwede [26] for details. Similarly, a left module structure
of a symmetric ring spectrum A on a symmetric spectrum E amounts to a map of
symmetric bispectra

A.m/^E.n/!E.mC n/

such that the usual module axioms are satisfies. We write A–mod for the topological
category of left A–modules in which the morphism spaces MapA.E;E

0/ are topol-
ogized as subspaces of the corresponding morphism spaces MapSp† .E;E0/ in Sp† .
(Thus, with this definition, S –mod is the same thing as Sp† ).

The symmetric monoidal structure of Sp† makes it possible to talk about spectral
categories, that is, categories enriched in symmetric spectra. Such a category C is a

Geometry & Topology Monographs, Volume 16 (2009)



The cyclotomic trace for symmetric ring spectra 563

class of objects OC together with a symmetric spectrum C.a; b/ of “morphisms” for
each pair of objects a; b in OC . Furthermore, there is a map of symmetric spectra
S ! C.a; a/ for each object a (the unit) and a map of symmetric spectra

C.b; c/^ C.a; b/! C.a; c/

for each triple of objects a; b; c (the composition). These structure maps are supposed
to satisfy the usual associativity and unitality axioms for a category. A spectral category
C has an underlying based topological category with morphism spaces C.a; b/.0/.
Given a symmetric ring spectrum A, the category A–mod is the underlying category
of a spectral category with morphism spectra denoted HomA.E;E

0/. In order to give
an explicit description of the latter, recall the notation E0Œn� for the shifted symmetric
spectrum from Section 2.1. If E0 is an A–module then E0Œn� inherits an A–module
structure defined by

A.h/^E0.nC k/!E0.hC nC k/
�h;nt1k

�����!E0.nC hC k/

and by definition
HomA.E;E

0/.n/DMapA.E;E
0Œn�/:

The structure maps are defined using the A–module maps S1 ^E0Œn�! E0Œ1C n�

induced by the structure maps of E0 . We define FA as the full subcategory of A–mod
containing only the finitely generated free A–modules of the standard form A_r DWr

iD1 A. For nD 0 this is the base object �. The morphism spectra HomA.A
_r ;A_s/

in FA may be identified with the matrix spectra Ms;r .A/ from [2, Example 3.2], where

Ms;r .A/.n/D

rY
jD1

s_
iD1

A.n/:

If we think of this as s � r matrices with coefficients in A such that each column
has at most one non–base point entry, then composition is given by the usual matrix
multiplication.

3.2 The category wFA of stable equivalences

Let A be a symmetric ring spectrum which we assume to be semistable and well-based
in the sense that each of the spaces A.n/ has a nondegenerate base point. These are
mild conditions on A which allow us to make a simple and explicit construction of the
associated algebraic K–theory spectrum K.A/. Most of the symmetric ring spectra
that occur in the applications satisfy these conditions and in general any symmetric
ring spectrum is stably equivalent to one that is both semistable and well-based.
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Recall from [21] that the category A–mod of left A–modules has a model category
structure in which a map of A–modules is a weak equivalence if and only if the
underlying map of symmetric spectra is a stable equivalence. A fibrant object in
this model structure is an A–module whose underlying symmetric spectra is an �–
spectrum. It follows from the discussion in Section 3.1 that an A–module structure
on a symmetric spectrum E induces an A–module structure on the spectrum R1E

from Section 2.1 such that the canonical map E! R1E is a map of A–modules.
Notice that A being semistable implies that the wedge product A_s is semistable as
well and that consequently the A–module R1.A_s/ is an �–spectrum. Since A_r

is a cofibrant A–module it follows that the mapping spaces

MapA.A
_r ;R1.A_s//Š

rY
jD1

R1.A_s/

represent the “correct” homotopy type of the mapping spaces between the objects
in FA . Notice also that an element in this mapping space is a stable equivalence if and
only if it induces an isomorphism on �0 (the 0th spectrum homotopy group) and that
consequently the subspace of stable equivalences is the union of the components that
correspond to invertible matrices under the isomorphism

�0 MapA.A
_r ;R1.A_s//ŠMs;r .�0.A//:

If the ring �0.A/ has invariant basis number, then the space of stable equivalences is of
course empty unless r D s . We shall now define a functor QI from spectral categories
to based topological categories such that when applied to FA we get a topological
category QIFA whose morphism spaces have the “correct” homotopy types described
above. Let I be the category whose objects are the finite sets nDf1; : : : ; ng (including
the empty set 0) and whose morphisms are the injective maps. Given a symmetric
spectrum E , the sequence of based spaces �nE.n/ defines an I–diagram in which
the morphisms in I act by conjugation. In detail, if ˛W m! n is a morphism in I , let
x̨W nD ltm! n be the permutation that is order preserving on the first l D n�m

elements and acts as ˛ on the last m elements. The induced map �mE.m/!�nE.n/

takes an element f 2�mE.m/ to the composition

Sn x̨
�1

��! S l
^Sm S l^f

����! S l
^E.m/

� l

�!E.l Cm/
x̨
�!E.n/;

where the †n –action on Sn is the usual left action. We write QI.E/ for the associated
based homotopy colimit

QI.E/D hocolim
I

�nE.n/;
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defined using the topological version of the homotopy colimit functor from [4]. This
functor is closely related to the functor that maps E to the 0–th space of R1E . Indeed,
restricting the I–diagram n 7!�nE.n/ to the subcategory generated by the morphisms
n! 1tn, (that is, i 7! 1C i ), we exactly get the diagram defining R1E.0/.

Lemma 3.1 If E is semistable, then the canonical map R1E.0/!QI.E/ is a weak
homotopy equivalence.

Proof It follows from [18; 28] that both functors in the lemma take �� - isomorphisms
to weak homotopy equivalences. Since E is semistable there exists an �–spectrum E0

and a ��–isomorphism E!E0 . By naturality it therefore suffices to prove the lemma
when E is an �–spectrum and in this case the result follows from the fact that the
structure maps in the I–diagram defining QI.E/ are weak homotopy equivalences.

The advantage of the functor QI W Sp†! T is that the symmetric monoidal structure
of I (given by the usual concatenation mtn of ordered sets) makes it a (lax) monoidal
functor in the sense of [19, Section X1.2]. Thus, there is a unit S0!QI.S/ and a
natural multiplication

QI.E/^QI.E
0/!QI.E ^E0/

which is compatible with the coherence isomorphisms in Sp† and T . The unit is
defined by identifying S0 with �0.S0/ and including the latter as the 0–th term in the
homotopy colimit. The multiplication is induced by the natural map of I�I–diagrams

�m.E.m//^�n.E0.n//!�mCn.E.m/^E0.n//!�mCn.E ^E0.mC n//;

followed by the map of homotopy colimits induced by the monoidal structure map
I � I ! I . The first map in the above diagram takes a pair .f;g/ to their smash
product. Let now C be a spectral category as in Section 3.1 and let QIC be the based
topological category with the same objects and morphism spaces QI.C.a; b//. The
composition is induced by the monoidal structure of QI ,

QI.C.b; c//^QI.C.a; b//!QI.C.b; c/^ C.a; b//!QI.C.a; c/

and the units are defined by S0!QI.S/!QI.C.a; a//. Applying this to the spectral
category FA we get the topological category QIFA with morphism spaces

QIFA.A
_r ;A_s/DQI.HomA.A

_r ;A_s//:

Using Lemma 3.1 and the fact that R1 preserves products of semistable symmetric
spectra up to level equivalence we get a chain of weak homotopy equivalences

QIFA.A
_r ;A_s/

�
 �R1HomA.A

_r ;A_s/.0/
�
�!MapA.A

_r ;R1.A_s//

Geometry & Topology Monographs, Volume 16 (2009)



566 Christian Schlichtkrull

which shows that the morphism spaces in QIFA have the desired homotopy types.

Definition 3.2 The category wFA of stable equivalences in FA is the topological
subcategory of QIFA that has the same objects as the latter and in which the morphism
spaces

wFA.A
_r ;A_s/�QIFA.A

_r ;A_s/

are the unions of those components that correspond to invertible matrices in

�0QIFA.A
_r ;A_s/ŠMs;r .�0.A//:

Remark 3.3 If we assume (as is usually the case) that �0A has invariant basis number,
then we can represent the category wFA in the familiar form

wFA D

a
r�0

GLr .A/

where we write GLr .A/ for the topological monoid wFA.A
_r ;A_r /.

3.3 Algebraic K –theory of FA

Let again A be a symmetric ring spectrum that is well-based and semistable. We
now make the extra assumption that A be connective in the sense that the spectrum
homotopy groups vanish in negative degrees. The connectivity assumption is in fact
not needed for any of the constructions in this section, but we do not claim that our
definition of algebraic K–theory is the “correct” definition if A is not connective.

Our construction is based on Segal’s �–space approach [27] to infinite loop spaces
which we briefly recall first. Let �op be the category of finite based sets. Following [3],
a � –space is a functor M W �op! T such that M.�/D�. Given based sets X and Y ,
the last condition ensures that there is a natural transformation X^M.Y /!M.X^Y /,
defined by applying M to the based map y 7! .x;y/ for each x in X . Let Sn

� be the
n–fold smash product of the standard simplicial circle ��Œ1�=@��Œ1�, and let M.Sn/

be the realization of the simplicial space M.Sn
� / obtained by applying M to Sn

� in each
simplicial degree. In the following we shall tacitly assume that the simplicial spaces
M.Sn

� / are good in the sense that the degeneracy maps are (Hurewicz) cofibrations; see
Segal [27, Appendix A]. This ensures that the realization is homotopically well-behaved.
The symmetric spectrum M.S/ associated to M has n–th space M.Sn/ and structure
maps induced by the simplicial maps

S1
� ^M.Sn

� /!M.S1
� ^Sn

� /DM.SnC1
� /:

We say that M is special if, for each pair of finite based sets X and Y , the natural
map M.X _Y /!M.X /�M.Y / is a weak homotopy equivalence. In this case it
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follows from [27, Proposition 1.4] that M.S/ is a positive �–spectrum. We say that
M is very special if M.S/ is a genuine �–spectrum. This is equivalent to M.S0/

being a grouplike monoid.

Since FA is a category with finite coproducts, Segal’s construction in [27] applies to
give a �–category with FA as its underlying category. We shall consider a variant
of this where, roughly speaking, instead of using all sum diagrams of objects in FA ,
we only consider those that arise from permutation matrices. Let F be the skeleton
category of finite sets with objects nD f1; : : : ; ng, including the empty set 0. This is a
category with coproducts, hence it gives rise to a � –category X 7!FhX i. It is useful to
formulate this construction in terms of sum diagrams in F . Given a finite based set X ,
let xX be the unbased set obtained by excluding the base point, and let P. xX / denote
the category of subsets and inclusions in xX . An object in FhX i may then be identified
with a functor � W P. xX /! F that takes disjoint unions to coproducts: if U and V

are disjoint subsets of xX , then the diagram �U ! �U[V  �V represents the middle
term as a coproduct in F . A morphism in FhX i is a natural transformation of such
functors. We now enrich this construction to a topological � –category X 7! FAhX i

such that the objects of FAhX i are the functors AŒ� �W P. xX /!FA of the special form
AŒ� �DA^�C for an object � in FhX i. The morphism spaces MapA.AŒ� �;AŒ�

0�/ are
the spaces of natural transformations between such functors, equipped with the subspace
topology induced from the product of the mapping spaces MapA.AŒ�U �;AŒ�

0
U
�/. We

extend the definition of FAhX i to a spectral category with morphism spectra defined
by

HomA.AŒ� �;AŒ�
0�/.n/DMapA.AŒ� �;AŒn�Œ�

0�/

where the shifted symmetric spectrum AŒn� is defined as in Section 2.1. This is
equivalent to defining HomA.AŒ� �;AŒ�

0�/ as the end of the P. xX /op �P. xX /–diagram
HomA.AŒ�U �;AŒ�

0
V
�/; see [19, Section IX.5]. In this way we get a special � –spectral

category in the sense that there are natural equivalences of spectral categories

FAhX _Y i
�
�! FAhX i �FAhY i:

The morphism spectra of the spectral category FAhX i �FAhY i are the products of
the morphism spectra of FAhX i and FAhY i. It follows that there are isomorphisms
of morphism spectra

HomA.AŒ� �;AŒ�
0�/Š

Y
x2 xX

HomA.AŒ�fxg�;AŒ�
0
fxg�/:

We now proceed as in Section 3.2 and use the monoidal functor QI to define the
topological � –category X 7! QIFAhX i and the �–subcategory of stable equiv-
alences X 7! wFAhX i. Applying the usual classifying space functor we get the
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� –space B.wFA/. Thus, B.wFA/hX i is the realization of the simplicial space with
k –simplicesa

�0;:::;�k

wFAhX i.AŒ�1�;AŒ�0/�/� � � � �wFAhX i.AŒ�k �;AŒ�k�1�/;

where �0; : : : ; �k runs through all .kC 1/–tuples of objects in FhX i.

Lemma 3.4 The � –space B.wFA/ is special.

Proof Given finite based sets X and Y , we must prove that the functor

wFAhX _Y i ! wFAhX i �wFAhY i

induces an equivalence of classifying spaces. Since QI commutes with products only
up to equivalence and not isomorphism, this is not quite an equivalence of categories.
Let

w.FAhX i �FAhY i/�QI.FAhX i �FAhY i/

be the category of stable equivalences associated to the spectral product category
FAhX i �FAhY i. The above functor may then be factorized as

wFAhX _Y i ! w.FAhX i �FAhY i/! wFAhX i �wFAhY i:

Here the first functor is an equivalence of categories since the spectral category FA is
special. The second functor is the identity on objects and induces an equivalence on
morphism spaces, hence it induces a degree-wise equivalence of the simplicial spaces
defining the bar constructions. It follows from the assumption that A be well-based
that these are good simplicial spaces and the topological realization is therefore also a
weak homotopy equivalence.

Definition 3.5 The algebraic K–theory spectrum associated to wFA is the symmetric
spectrum K.A/D B.wFA/hSi:

It follows from Lemma 3.4 that this is a positive �–spectrum.

Remark 3.6 Suppose that A is the Eilenberg–Mac Lane spectrum associated to an
ordinary discrete ring xA and let F xA be the category of finitely generated free xA–
modules (in the ordinary algebraic sense). Projecting the morphism spaces in wFA

onto their path components we get a map of � –categories

wFA! �0wFA Š iF xA
which is a weak homotopy equivalence on morphism spaces. Here iF xA denotes the
subcategory of isomorphisms in F xA with a � –category structure defined in analogy
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with that on wFA . Writing K. xA/ for the associated algebraic K–theory spectrum
B.iF xA/hSi, it follows that there is a level-wise equivalence K.A/ �!K. xA/.

4 Cyclic algebraic K –theory

In this section we consider the cyclic algebraic K–theory spectrum Kcy.A/. This is a
spectrum with cyclotomic structure and we begin by a general discussion of epicyclic
and cyclotomic structures.

4.1 Epicyclic and cyclotomic structures

We first recall the edgewise subdivision functors from [2, Section 1]. Let � be the
simplicial category viewed as a monoidal category under the usual ordered concatenation
of ordered sets. For each positive integer r , the r –fold concatenation functor

F
r W �!

� is defined by F
r Œk�D Œk�t � � � t Œk�„ ƒ‚ …

r

D Œr.kC 1/� 1�:

Given a simplicial space X� , viewed as a contravariant functor on �, the r –fold
edgewise subdivision is the composition sdr X D X ı

F
r . Let �Œk� denote the

standard k –simplex,

�Œk�D f.t0; : : : ; tk/ 2 Œ0; 1�
kC1
W t0C � � �C tk D 1g:

The correspondence Œk� 7!�Œk� defines a cosimplicial space in the usual way and there
is a cosimplicial map

Dr W �Œk�!�Œ
F

r Œk��; v 7! .1
r
v; : : : ; 1

r
v/

for each r . It follows from [2, Lemma 1.1] that the induced map

.4:1/ Dr W jsdr X�j ! jX�j; Œx; v� 7! Œx;Drv�;

is a homeomorphism for any simplicial space X� . Suppose now that X� is a cyclic
space with cyclic operators tk acting on Xk . By [2, Lemmas 1.8 and 1.11], jsdr X�j and
jX�j then come equipped with actions of the circle group T and Dr is T –equivariant.
Furthermore, sdr X� inherits a simplicial action of the cyclic group Cr by letting the
preferred generator act on sdr Xk by

tkC1
r.kC1/�1

W Xr.kC1/�1!Xr.kC1/�1

and the induced Cr –action on the realization agrees with that obtained by restricting
the T –action. Notice that the cyclic structure of X� restricts to a cyclic structure on
the fixed points sdr X

Cr
� .
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Definition 4.2 (Goodwillie [13]) An epicyclic space is a cyclic space X� equipped
with a family of cyclic maps Rr W sdr X

Cr
� !X� for r � 1, such that (i) R1 D id and

(ii) the diagrams
sdr .sds X

Cs
� /

Cr sdrs X
Cr s
�??ysdr R

Cr
s

??yRr s

sdr X
Cr
�

Rr
����! X�

are commutative. An epicyclic spectrum is a cyclic spectrum equipped with a family
of cyclic spectrum maps Rr as above satisfying (i) and (ii) in each spectrum degree.

We shall also need the following T –equivariant analogue. Let �r W T ! T=Cr be
the homeomorphism �r .z/ D

r
p

z . Given a T –space X , we denote by ��r X Cr the
T –space obtained by pulling back the T=Cr –action on X Cr via �r .

Definition 4.3 A cyclotomic space is a T –space X equipped with a family of T –
equivariant maps Rr W �

�
r X Cr ! X for r � 1, such that (i) R1 D id and (ii) the

diagrams
��r .�

�
s X Cs /Cr ��rsX Cr s??y��r R

Cr
s

??yRr s

��r X Cr
Rr
����! X

are commutative. A spectrum with cyclotomic structure is a spectrum with T –action
and a family of T –equivariant maps Rr as above satisfying (i) and (ii) in each spectrum
degree.

Remark 4.4 A spectrum with cyclotomic structure is not the same as a cyclotomic
spectrum in the sense of Hesselholt–Madsen [15]. The difference is analogous to the
distinction between a spectrum with T –action and a genuine T –spectrum; see eg
Carlsson [5]. Thus, forgetting part of the structure, a cyclotomic spectrum as in [15]
gives a spectrum with cyclotomic structure in our sense.

An epicyclic structure on a cyclic space or spectrum X� induces a cyclotomic structure
on the topological realization jX�j. This uses that the homeomorphisms Dr restrict to
T –equivariant homeomorphisms

jsdr X Cr
� j ! ��r jsdr X�j

Cr
D

Cr
r
���! ��r jX�j

Cr

when the domain is given the T –action induced by the cyclic structure of sdr X
Cr
� .

The cyclotomic structure maps are then defined by

Rr W �
�
r jX�j

Cr Š jsdr X Cr
� j ! jX�j
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where the last map is the realization of the epicyclic structure map.

Recall the category N from Example 2.7 with objects the natural numbers and mor-
phisms r W m! n a natural number r such that mD nr . A cyclotomic space X gives
rise to an N –diagram of T –spaces n 7! ��nX Cn in which the structure maps of the
diagram are defined by

.4:5/ ��mX Cm D ��n.�
�
r X Cr /Cn

��nR
Cn
r

�����!��nX Cn :

We write RX for the associated homotopy limit:

.4:6/ RX D holim
Rr

��nX Cn

(there should be no risk of confusion with the functor R on symmetric spectra consid-
ered in Section 2.1). The cyclotomic structure of X induces a cyclotomic structure on
each of the spaces ��nX Cn such that the structure maps in the diagram are cyclotomic.
It follows that the correspondence X 7!RX defines an endofunctor on the category
of cyclotomic spaces.

Remark 4.7 It is worth noting that R has the structure of a comonad [19, Section
VI.1] on the category of cyclotomic spaces. The counit RX ! X is defined by
restricting to the terminal object 1 in N and the comultiplication RX ! RRX is
induced by the functor N �N !N that takes .r; s/ to rs .

Let I Ë T be the category introduced as a Grothendieck construction in Example 2.8.
In general, an I Ë T –diagram X amounts to a sequence of T –spaces X.n/ for n� 1,
equipped with two families of structure maps

Fr ;Rr W X.nr/!X.n/;

such that the relations (1.1) in the category I hold, the maps Rr are T –equivariant,
and Fr .z

r x/D zFr .x/ for all z 2 T and x 2X.nr/. A cyclotomic space X defines
an I Ë T –diagram n 7! ��nX Cn by letting

Fr W �
�
rnX Cr n �! ��nX Cn

be the natural subspace inclusion and Rr the map defined in (4.5). It follows from
Corollary 2.9 that there are natural weak homotopy equivalences

holim
IËT

��nX Cn
�
�!

�
holim

Rr

��nX Cn
�h.N ËT/ �

�!
�

holim
Rr

.��nX Cn/hT �hN
;

where in fact the first map is a homeomorphism.
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4.2 The cyclic bar construction

Waldhausen’s cyclic bar construction B
cy
� .C/ of a small topological category C provides

a basic example of an epicyclic space. The underlying cyclic space has the form

B
cy
� .C/W Œk� 7!

a
c0;:::;ck

C.c0; ck/� C.c1; c0/� � � � � C.ck ; ck�1/;

where the coproduct is over all .kC 1/–tuples of objects in C and the structure maps
are of the usual Hochschild type; see [2, Section 2]. A k –simplex in sdr B

cy
� .C/ may

be represented as a tuple of morphisms of the form

.4:8/ ffi.j / W 0� i � k; 1� j � rg;

such that if �r denotes the generator of Cr , then the Cr –action induced by the cyclic
structure is given by

�r � ffi.j /g D ff
0

i .j /g; where f 0i .j /D

(
fi.r/; for j D 1;

fi.j � 1/; for 1< j � r :

It follows that a Cr –fixed point ffi.j /g is constant in the j –coordinate such that the
diagonal inclusion defines an isomorphism

�r W B
cy
� .C/! sdr B

cy
� .C/Cr

of cyclic spaces. The epicyclic structure maps are the inverse isomorphisms

Rr W sdr B
cy
� .C/Cr ! B

cy
� .C/:

Let us write Bcy.C/ for the realization of B
cy
� .C/. Since the cyclotomic structure maps

of Bcy.C/ are homeomorphisms, it follows that the canonical map from the categorical
limit to the homotopy limit induces a weak homotopy equivalence

.4:9/ Bcy.C/Š lim
Rr

��nBcy.C/Cn ! holim
Rr

��nBcy.C/Cn :

This is compatible with the actions of the Frobenius operators if we define the action
on Bcy.C/ by

Fr W jB
cy
� .C/j

j�r j
���! jsdr B

cy
� .C/Cr j �! jsdr B

cy
� .C/j

Dr
��! jB

cy
� .C/j

where the second map is the inclusion. It is clear from the definition that this fits
together with the T –action to give an N Ë T –action on Bcy.C/. This is the action
consider in Theorem 1.
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4.3 Cyclic algebraic K –theory

Let now A be a connective symmetric ring spectrum which is semistable and well-
based. Applying the cyclic bar construction to the �–category wFA introduced in
Section 3.2, we get the � –space Bcy.wFA/. This is a � –cyclotomic space, that is, a
� –object in the category of cyclotomic spaces.

Definition 4.10 The cyclic algebraic K–theory spectrum of wFA is the symmetric
spectrum with cyclotomic structure Kcy.A/D Bcy.wFA/hSi:

In general it is not true that a natural transformation of functors induces a homotopy
after applying the cyclic bar construction. However, as follows from the discussion in
[11, Section 1.5], this is the case for natural isomorphisms and in particular equivalent
categories have equivalent cyclic classifying spaces. Using this, the proof of the
following lemma is analogous to that of Lemma 3.4.

Lemma 4.11 The � –space Bcy.wFA/ is special and the spectrum Kcy.A/ is a posi-
tive �–spectrum.

We now apply Theorem 1 to the groupoid-like �–category wFA and consider the
diagram of � –spaces

Bcy.wFA/
h.N ËT/ �

�!Map.BN;B.wFA// � B.wFA/

where the right hand map is induced by the projection BN !�. We define the � –space
B0.wFA/ to be the homotopy pullback of this diagram and we write K0.A/ for the
associated spectrum. It follows from the definition that K0.A/ is canonically equivalent
to K.A/ and that there is a natural diagram

.4:12/ K.A/
�
 � K0.A/ �!Kcy.A/h.N ËT/:

The right hand map is in spectrum degree n given by the composition

jB0.wFAhS
n
� i/j ! jB

cy.wFAhS
n
� i/

h.N ËT/
j ! jBcy.wFAhS

n
� i/j

h.N ËT/:

Remark 4.13 Suppose that A is the Eilenberg–Mac Lane spectrum associated to an
ordinary discrete ring xA. As in the case of the algebraic K–theory spectra discussed in
Remark 3.6, we then have a level-wise equivalence Kcy.A/

�
!Kcy. xA/, where Kcy. xA/

denotes the symmetric spectrum associated to the �–space Bcy.iF xA/. Consider in
general a small groupoid C and let Aut.C/ be the category whose objects are pairs
.c; 
 / given by an automorphism 
 of an object c in C . A morphism f W .c; 
 /! .d; ı/
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is a morphism f W c! d in C such that f 
 D ıf . It is easy to see that there is an
isomorphism of simplicial spaces B

cy
� .C/! B�.Aut.C// defined by

fck

f0
 � c0

f1
 � c1 � : : :

fk
 � ckg 7! f.c0; 
0/

f1
 � : : :

fk
 � .ck ; 
k/g;

where 
i denotes the automorphism fiC1 : : : fkf0 : : : fi . In the case of the groupoid
iF xA we write Aut. xA/ for the associated automorphism category and applying the above
isomorphism we get an identification of Kcy. xA/ with the algebraic K–theory spectrum
K˚.Aut. xA//. Here the subscript ˚ indicates that this is the direct sum algebraic
K–theory as opposed to the algebraic K–theory spectrum obtained by viewing Aut. xA/
as an exact category in the usual way. One can show that under this identification the
homotopy class K.A/! Kcy.A/, obtained from (4.12) by projecting onto Kcy.A/, is
induced by the functor iF xA! Aut. xA/ which takes an object to its identity morphism.

5 The cyclotomic trace

In this section A denotes a connective symmetric ring spectrum which we as usual
assume to be semistable and well-based. Applying a construction analogous to that of
Dundas–McCarthy [7; 11], we define the topological cyclic homology of the spectral
category FA and we construct the cyclotomic trace using this model. We compare our
definitions to the models of topological cyclic homology considered by Goodwillie [13]
and Hesselholt–Madsen [15] at the end of the section.

5.1 Topological cyclic homology

We first introduce some convenient notation. Generalizing the definition of the func-
tor QI from Section 3.2, let QIkC1 be the functor that to a .kC1/–fold multisymmetric
spectrum E associates the based homotopy colimit

QIkC1.E/D hocolim
IkC1

Map.Sn0 ^ � � � ^Snk ;E.n0; : : : ; nk//:

The structure maps of the IkC1 –diagram on the right hand side are similar to those
for QI . We define the spectrum homotopy groups of a .kC 1/–fold multisymmetric
spectrum E by

�i.E/D colim
n0;:::;nk

�iCn0C���Cnk
.E.n0; : : : ; nk//

and we say that a map of multisymmetric spectra is a ��–isomorphism if it induces
an isomorphism on spectrum homotopy groups. Using that homotopy colimits over
IkC1 can be calculated iteratively, the following lemma follows from an easy inductive
argument based on Lemma 3.1.
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Lemma 5.1 Let E ! E0 be a ��–isomorphism of .k C 1/–fold multisymmetric
spectra that are semistable in each spectrum variable (keeping the remaining spectrum
variables fixed). Then the induced map

QIkC1.E/!QIkC1.E0/

is a weak homotopy equivalence.

Given a family of symmetric spectra E0; : : : ;Ek , we write E0 x̂ : : : x̂Ek for the
.kC 1/–fold multisymmetric spectrum defined by

E0 x̂ : : : x̂Ek.n0; : : : ; nk/DE0.n0/^ � � � ^Ek.nk/:

Let C be a spectral category as in Section 3.1 and suppose that C is small in the
sense that the set of objects form a set. For each k � 0 we define a .k C 1/–fold
multisymmetric spectrum Vk ŒC� by

Vk ŒC�D
_

c0;:::;ck

C.c0; ck/ x̂C.c1; c0/ x̂ : : : x̂C.ck ; ck�1/

where the wedge product is over all .kC 1/–tuples of objects in C . It is clear from
the definition that letting C vary we get a functor Vk Œ�� from small spectral categories
to .k C 1/–multisymmetric spectra. Applying this to the � –category X 7! FAhX i

from Section 3.3 we therefore get a �–object X 7! Vk ŒFAhX i� in the category of
.kC 1/–multisymmetric spectra. Explicitly, with notation as in Section 3.3,

Vk ŒFAhX i�D
_

�0;:::;�k

HomA.AŒ�0�;AŒ�k �// x̂ : : : x̂ HomA.AŒ�k �;AŒ�k�1�/;

where �0; : : : ; �k runs through all .k C 1/–tuples of objects in FhX i. We define
X 7! TH.FAhX i/ to be the realization of the � –epicyclic space that to a based set X

associates the epicyclic space

TH�.FAhX i/W Œk� 7!QIkC1.Vk ŒFAhX i�/:

The cyclic structure is defined as in [11, Section 1.3], and the epicyclic structure maps

Rr W sdr TH�.FAhX i/
Cr ! TH�.FAhX i/

are defined as in [11, Section 1.5].

Definition 5.2 The topological Hochschild homology spectrum TH.FA/ is the real-
ization of the associated epicyclic spectrum TH�.FAhSi/.
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It follows from the discussion in Section 4.1 that TH.FA/ is a spectrum with cyclotomic
structure. With notation as in that section, let TR.FA/ be the homotopy limit of the
N –diagram n 7! ��n TH.FA/

Cn defined by the restriction maps Rr .

Definition 5.3 The topological cyclic homology spectrum TC.FA/ is defined by

TC.FA/D holim
IËT

��n TH.FA/
Cn D TR.FA/

h.N ËT/:

The other variants of topological cyclic homology are defined analogously using the
subcategories in (1.2). We show that TH.FA/ as well as the fixed point spectra
TH.FA/

Cn are �–spectra in Proposition 5.5 below. It follows that also TR.FA/,
TC.FA/, and the other variants of topological cyclic homology are �–spectra.

5.2 The cyclotomic trace

The construction of the cyclotomic trace is based on a map of � –epicyclic spaces

B
cy
� .wFAhX i/! TH�.FAhX i/:

Recall that the space of k –simplices in B
cy
� .wFA/hX i is defined bya

�0;:::;�k

wFA.AŒ�0�;AŒ�k �//� � � � �wFA.AŒ�k �;AŒ�k�1�/;

where �0; : : : ; �k runs through all .kC 1/–tuples of objects in FhX i. The restriction
of the above map to the component indexed by a fixed .k C 1/–tuple �0; : : : ; �k is
defined by the composition

wFA.AŒ�0�;AŒ�k �/� � � � �wFA.AŒ�k �;AŒ�k�1�/

!QI.HomA.AŒ�0�;AŒ�k �//^ � � � ^QI.HomA.AŒ�k �;AŒ�k�1�//

!QIkC1.HomA.AŒ�0�;AŒ�k �/ x̂ : : : x̂ HomA.AŒ�k �;AŒ�k�1�//

!QIkC1.Vk ŒFAhX i�/:

Here the first map is the inclusion of the stable equivalences in the full morphism spaces,
the second map is the map of homotopy colimits induced by the natural transformation
that takes a .kC 1/–tuple of maps to their smash product, and the last map is induced
by the inclusion of the wedge summand in Vk ŒFAhX i� indexed by �0; : : : ; �k . There
results a map of epicyclic spectra and, after topological realization, a map of spectra
with cyclotomic structure Kcy.A/! TH.FA/: Passing to the homotopy limits over the
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restriction maps and composing with the equivalence induced by (4.9), we get a map
of spectra with cyclotomic structure

Kcy.A/
�
! holim

Rr

��n Kcy.A/Cn ! holim
Rr

��n TH.FA/
Cn D TR.FA/:

The cyclotomic trace is obtained from this by evaluating the N Ë T –homotopy fixed
points and composing with the chain of maps in (4.12).

Definition 5.4 The cyclotomic trace is the chain of natural maps represented by the
following diagram of symmetric spectra

trcW K.A/
�
 � K0.A/ �! Kcy.A/h.N ËT/

! TR.FA/
h.N ËT/

D TC.FA/:

5.3 The topological cyclic homology spectrum TC.A/

Following Dundas–McCarthy, we now relate the above constructions to the models
TC.A/ and TC.A/ of topological cyclic homology considered by Goodwillie [13] and
Hesselholt–Madsen [15]. These versions are based on Bökstedt’s definition [1; 28] of
the topological Hochschild homology spectrum TH.A/. The latter is the realization of
the epicyclic symmetric spectrum whose n–th space is given by

TH�.A; n/W Œk� 7!QIkC1.Sn
^A

x̂.kC1//:

Here we view A x̂.kC1/ as a .kC 1/–fold multisymmetric spectrum in the usual way
and the epicyclic structure maps are defined as for TH�.FA/. Writing TR.A/ for the
homotopy limit of the fixed point spectra ��n TH.A/Cn over the restriction maps, the
spectrum TC.A/ is defined by

TC.A/D holim
IËT

��n TH.A/Cn D TR.A/h.N ËT/:

In order to relate this definition to that based on the cyclotomic spectrum TH.FA/, we
extend the definition of the latter to give a symmetric bispectrum. Consider for each n

the � –epicyclic space

TH�.FAh�i; n/W .X; Œk�/ 7!QIkC1.Sn
^Vk ŒFAhX i�/

with structure maps similar to those for TH.FA/. Evaluating this � –space on the
sphere spectrum S in the usual way we get a symmetric bispectrum, also denoted
TH.FA/, that in bidegree .m; n/ takes the value TH.FAhS

mi; n/.

Proposition 5.5 The symmetric bispectrum TH.FA/ and the fixed point spectra
TH.FA/

Cr are �–bispectra.
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Proof The condition that A be semistable implies that it is ��–isomorphic to a
symmetric ring spectrum which is an �–spectrum. Thus, using Lemma 5.1, we
may assume without loss of generality that A is an �–spectrum. The connectivity
assumption on A then implies that the n–th space A.n/ is .n� 1/–connected and
that the structure maps S1 ^A.n/!A.nC 1/ are 2n–connected. It follows that the
IkC1 –diagram giving rise to THk.FAhX i; n/ satisfies the connectivity assumptions
required for Bökstedt’s approximation lemma for homotopy colimits; see Madsen [20,
Lemma 2.3.7]. Using the notation above, we first keep m fixed and claim that the
adjoint structure maps in the n–variable are equivalences. By definition, the .m; n/–th
space is the realization of the bisimplicial space TH�.FAhS

m
� i; n/ and the adjoint

structure maps are defined by the compositions

jTH�.FAhS
m
� i; n/j ! j�TH�.FAhS

m
� i; nC 1/j !�jTH�.FAhS

m
� i; nC 1/j:

It follows from Bökstedt’s approximation lemma and the connectivity assumptions
on A that the adjoint structure maps

TH�.FAhS
m
� i; n/!�TH�.FAhS

m
� i; nC 1/

are equivalences in each bidegree and the realization is therefore also a weak homotopy
equivalence. Since � commutes with realization up to equivalence for good simplicial
connected spaces by [22, Theorem 12.3], the second map is a weak homotopy equiva-
lence as well. In order to get the same conclusions for the fixed point spectra we use
the edgewise subdivision functor as in the proof of [11, Lemma 1.6.11] and apply a
similar argument. Next we keep n fixed and claim that the � –spaces TH.FAh�i; n/

Cr

are special in the sense that the composite map

TH.FAhX _Y i; n/Cr //

++WWWWWWWWWWWWWWWWWWW
TH.FAhX i �FAhY i; n/

Cr

��
TH.FAhX i; n/

Cr �TH.FAhY i; n/
Cr

is a weak homotopy equivalence for each pair of finite based sets X and Y . Here the
middle term denotes the effect of applying the construction from Section 5.1 to the spec-
tral category FAhX i�FAhY i. Since the horizontal map is induced by an equivalence of
spectral categories it is a weak homotopy equivalence by [11, Proposition 1.6.6], and the
vertical map is a weak homotopy equivalence since topological Hochschild homology
preserves products of spectral categories up to equivalence by [11, Proposition 1.6.15].
It follows from the first part of the proof that TH.FAh�i; n/

Cr is in fact a very special
� –space and the associated spectrum is therefore an �–spectrum.
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We write TH.FA/ and TH0.FA/ for the two symmetric spectra obtained respectively
by restricting to bidegrees .n; 0/ and .0; n/. Thus, TH.FA/ retains its meaning from
Section 5.1. Letting C denote the family of finite cyclic subgroups of T , we say
that a map of (�–)spectra with T –action is a C–equivalence if the induced maps of
fixed point spectra are equivalences for all finite cyclic subgroups. It follows from
Proposition 5.5 that TH.FA/ and TH0.FA/ are related by the following explicit chain
of C–equivalences

TH.FAhS
n
i; 0/

�
! hocolim

l;m
�lCm TH.FAhS

lCn
i;m/

�
 hocolim

l;m
�lCm.Sn

^TH.FAhS
l
i;m//

�
! hocolim

l;m
�lCm TH.FAhS

l
i; nCm/

�
 TH.FAhS

0
i; n/:

Passing to homotopy limits over the associated fixed point spectra we therefore get a
chain of level equivalences

TC.FA/' TC0.FA/:

Let now FA.1/ be the full spectral subcategory of FA containing only the rank–1 mod-
ule A itself. Identifying TH.A/ with TH.FA.1// we get a map TH.A/! TH0.FA/

of spectra with cyclotomic structure.

Proposition 5.6 [11] The map TH.A/! TH0.FA/ is a level-wise C–equivalence,
hence gives rise to a level-wise equivalence TC.A/ �!TC0.FA/ and similarly for the
other variants of topological cyclic homology.

Proof Let FA.n/ be the full spectral subcategory of FA containing the free A–
modules A_r with r � n, and let TH0.FA.n// be the realization of the associated
epicyclic spectrum

TH0�.FA.n/;m/W Œk� 7!QIkC1.Sm
^Vk ŒFA.n/�/:

The inclusions FA.n/! FA give rise to a C–equivalence

hocolim
n

TH0.FA.n//
�
! TH0.FA/;

hence it suffices to show that the inclusion of FA.1/ in FA.n/ induces a C–equivalence
for all n. Writing Mn.A/ for the symmetric ring spectrum HomA.A

_n;A_n/, it
follows from the proof of TH–cofinality in [11, Lemma 2.1.1] that the natural map

TH.Mn.A//! TH0.FA.n//
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is a C–equivalence. In order to specify a homotopy inverse, consider the map

TH0�.FA.n//! TH�.Mn.A//

obtained by extending a map defined on some summands of A_n to the whole module
by collapsing the remaining summands. This is a precyclic map in the sense that it
commutes with the face and cyclic operators but not with the degeneracy operators;
see Dundas–McCarthy [11, Section 1.5] for details. Consider then the commutative
diagram of precyclic maps

TH�.A/ TH�.A/??y ??y
TH0�.FA.n// ����! TH�.Mn.A//:

The vertical map on the right hand side is a C–equivalence by [11, Proposition 1.6.18],
hence the left hand map is also a C–equivalence as claimed.

Combining the above results we get the following corollary.

Corollary 5.7 There is a chain of level equivalences

TC.FA/' TC0.FA/
�
 � TC.A/

and similarly for the other variants of topological cyclic homology.

6 Homotopy fixed points of the cyclic bar construction

In this section we analyze the homotopy fixed points of the cyclic bar construction
Bcy.C/ of a small topological category C under the N ËT –action introduced in Section
4.2. As usual we tacitly assume that C be well-based; see Section 2.2. The main point
is to prove Theorem 1 which characterizes these homotopy fixed points in terms of the
mapping space Map.BN;B.C// when C is groupoid-like. In general, a left N Ë T –
action on a space X amounts to a T –action together with a family of maps Fr W X!X

for r � 1, such that F1 is the identity, Fr ıFs D Frs , and Fr .z
r x/ D zFr .x/ for

all z in T and x in X . It follows from the discussion in Example 2.6 that N acts on
the homotopy fixed points X hT and that there is a natural weak homotopy equivalence

X h.N ËT/ �
�! .X hT /hN :

We now specialize to the N Ë T –action on Bcy.C/. By definition, the homotopy fixed
points is the space of T –equivariant maps MapT .ET ;Bcy.C// where ET denotes
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the one-sided bar construction B.T ;T ;�/. Consider the composite map

.6:1/ MapT .ET ;Bcy.C//! Bcy.C/! B.C/

where the first map is defined by evaluating a function ˛W ET ! Bcy.C/ at the base
point of ET (determined by the unit of T ) and, in the notation from Section 4.2, the
second map is the projection that in simplicial degree k forgets the morphism from c0

to ck .

Lemma 6.2 Let C be a groupoid-like small topological category. Then the map
Bcy.C/hT ! B.C/ defined in (6.1) is a weak homotopy equivalence.

Proof We first consider the composition

T �Bcy.C/! Bcy.C/! B.C/

where the first map is the T –action on Bcy.C/ and the second is the projection
considered above. The adjoint is a T –equivariant map to the free loop space of B.C/,

Bcy.C/!Map.T ;B.C//;

and it is well-known that this is a weak homotopy equivalence when C is groupoid-like.
The argument is similar to that used to prove that the cyclic bar construction of a
(well-based) grouplike topological monoid G is equivalent to the free loop space on
BG ; see eg Goodwillie [12]. As a technical point, our assumption that C be well-based
implies that the simplicial spaces B�.C/ and B

cy
� .C/ are good in the sense of Segal [27,

Appendix A]. It follows that the map of T –homotopy fixed points induced by the
above map is also a weak homotopy equivalence. The homotopy fixed points of the
free loop space are determined by

Map.T ;B.C//hT �
�!MapT .T �ET ;B.C// ��!Map.ET ;B.C// ��! B.C/

where the last map is defined by evaluating a function at the base point of ET . It follows
easily from the definition that the composition of the weak homotopy equivalences

Bcy.C/hT �
�!Map.T ;B.C//hT �

�! B.C/

is the map claimed to be a weak homotopy equivalence in the lemma.

In the following we shall view B.C/ as an N –space with trivial action. The map in
Lemma 6.2 is then not strictly compatible with the N –actions, but we shall prove that
it is so up to canonical coherent homotopies which is enough to get a natural map of
homotopy fixed points. We first introduce some machinery which is convenient for
analyzing homotopy fixed points of N –actions.
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6.1 Homotopy fixed points for N –actions

Consider in general an N –space X . Writing P for the set of prime numbers, we
identify N with the free commutative monoid generated by P and we shall view X

as a space equipped with a family of commuting operators

.6:3/ FpW X !X; p 2 P :

By definition, the homotopy fixed points of X are defined by

X hN
DMapN .B.N;N;�/;X /;

where B.N;N;�/ denotes the one-sided bar construction and the right hand side is
the space of N –equivariant maps. It is easy to see that if EN is any contractible
free N –CW complex, then X hN is homotopy equivalent to MapN .EN;X /. In the
following we shall consider a model EN that is convenient for writing down explicit
homotopies. Given a finite subset U � P , let hU i be the submonoid of N generated
by U . We let

EhU i D
Y

p2U

Œ0;1/;

and give this the product action of hU i in which an element p 2 U acts on the p–th
component by translation, tp 7! tp C 1. Notice that there is a canonical inclusion
of EhU i in the 1-skeleton of B.N;N;�/ and that this induces an N –equivariant
homotopy equivalence. Given a hU i–space X , we now redefine the homotopy fixed
points by

X hhU i
DMaphU i.EhU i;X /:

We shall need some notation for such homotopy fixed points. Let IU be the jU j–
dimensional unit cube with coordinates indexed by the elements of U . Given a subset
V � U , we define the V –th lower face of IU to be the jU �V j–dimensional cube

@V IU
D f.tp/ 2 IU

W tp D 0 for p 2 V g:

Similarly, we define the V –th upper face of IU by

@VIU
D f.tp/ 2 IU

W tp D 1 for p 2 V g:

We shall often identify @V IU and @VIU with IU�V in the canonical way. For a map
˛W IU !X we define

@V ˛; @
V˛W IU�V

!X

by respectively restricting to @V IU and @VIU . Suppose now that X is a space with
a hU i–action specified by a family of commuting operators Fp as in (6.3). Given
V � U , we write FV for the composition of the Fp ’s indexed by p 2 V . With this
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notation we may identify X hhU i with the subspace of the mapping space Map.IU ;X /

defined by the condition that

@V˛ D FV ı @V ˛; for all V � U :

We let EN be the colimit of the spaces EhU i under the natural inclusions (using the
point 0 in Œ0;1/ as vertex) and redefine the homotopy fixed points of an N –space by

X hN
DMapN .EN;X /:

6.2 Coherent homotopies

Given N –spaces X and Y we shall now make explicit what it means for a map
f W X ! Y to be compatible with the actions up to coherent homotopy. Let us first
consider the situation in which a pair of spaces X and Y each comes equipped with a
self-map, denoted respectively by FX and FY . In this case the condition for a map f
to be homotopy compatible with the actions is simply that there exists a homotopy
hW X � I ! Y from f ıFX to FY ı f . A choice of such a homotopy determines a
map of homotopy fixed points by concatenating f ˛ and h.˛.0/;�/, that is,

f h
W X hF X

! Y hF Y

; f h.˛/.t/D

(
f ˛.2t/; 0� t � 1=2;

h.˛.0/; 2t � 1/; 1=2� t � 1:

Lemma 6.4 If f is a weak homotopy equivalence, then so is f h .

Proof We identify the homotopy fixed points of FX with the pullback of the diagram

X
.idX ;F

X /
������!X �X

.ev0;ev1/
 ������X I

and, letting
xY D f.y; !/ 2 Y �Y I

W !.1/D FY .y/g

and rescaling, we identify the homotopy fixed points of FY with the pullback of the
diagram

xY
.pY ;ev0/
������! Y �Y

.ev0;ev1/
 ������ Y I :

Here ev0 and ev1 evaluate a path at its endpoints and .pY ; ev0/ is the map defined
by .y; !/ 7! .y; !.0//. From this point of view, f h is induced by a map of pullback
diagrams which is a term-wise weak homotopy equivalence. The result now follows
from the fact that these diagrams are homotopy cartesian.

Let us now return to the case of two N –spaces X and Y and let us write FX
p and

FY
p for the corresponding operators (6.3).
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Definition 6.5 A map of N –spaces f W X ! Y is compatible with the N –actions
up to coherent homotopy if there is a family of higher homotopies hU W X � IU ! Y;

indexed on the finite subsets U � P , such that h∅ D f and

.6:6/ @V hU
D hU�V

ı .FX
V � IU�V /; @VhU

D FY
V ı hU�V ;

whenever V � U . Here @V hU and @V hU are the maps X � IU�V ! Y obtained by
restricting to @V IU and @V IU .

Proposition 6.7 Let X and Y be N –spaces and let f W X ! Y be a map that is
compatible with the actions up to coherent homotopy in the sense of Definition 6.5.
Then a choice of coherent homotopies determines a map f hW X hN ! Y hN and if f
is a weak homotopy equivalence, then so is f h .

Proof By definition, X hN is the limit of the tower of fibrations defined by the
homotopy fixed points X hhU i and similarly for Y hN . Thus, it suffices to construct a
compatible family of maps

f hhU i
W X hhU i

!X hhU i

such that if f is an equivalence, then so is f hhU i for each U . By compatible we mean
that the diagrams

X hhU i
f hhU i

����! Y hhU i??y@U�V

??y@U�V

X hhV i
f hhV i

����! Y hhV i

commute whenever V � U . In order to define these maps we subdivide IU in jU j2

subcubes by introducing a new vertex at the midpoint of each edge. For each subset
V � U , let IU

V
be the subcube

IU
V D

�
.tp/ 2 IU

W

(
0� tp � 1=2; p … V

1=2� tp � 1; p 2 V

�
:

Given an element ˛ in X hhU i , we shall define f hhU i˛ by specifying its restriction to
each of these subcubes. For each V �U , consider the composite map hV @V ˛ defined
by

IU
' IU�V

� IV
' @V IU

� IV @V ˛�I V

������!X � IV hV

��! Y;

where the first map permutes the coordinates. Identifying IU with IU
V

via the canonical
coordinate-wise affine homeomorphism, this defines the restriction of f hhU i˛ to IU

V
.

It follows from the definition of a coherent homotopy that this is a well-defined element
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in Y hhU i . Furthermore, given disjoint sets U and U 0 , this construction is compatible
with the canonical isomorphism

hU [U 0i ' hU i � hU 0i

in the sense that there is a commutative diagram

X hhU[U 0i
f hhU[U 0i

������! Y hhU[U 0i??y' ??y'
�
X hhU i

�hhU 0i �
f hhU i

�hhU 0i

���������!
�
Y hhU i

�hhU 0i
:

Using this together with Lemma 6.4, it follows by induction that if f is an equivalence,
then so is f hhU i .

6.3 The proof of Theorem 1

In order to finish the proof of Theorem 1 we must show that the map Bcy.C/!B.C/ is
compatible with the N –actions up to coherent homotopy when we give B.C/ the trivial
action. For this purpose we introduce a new family of operators xFr on Bcy.C/. Let
xDr W id�!

F
r be the natural transformation that includes Œk� as the last component

in
F

r Œk� and use the same notation for the associated map of cosimplicial spaces,

xDr W �Œk�!�Œ
F

r Œk��:

Notice that there is a cosimplicial homotopy

�Œk�� I !�Œ
F

r Œk��; .v; t/ 7! .1� t/DrvC t xDrv

relating this to the map Dr from Section 4.1. If X� is a simplicial space we get an
induced map

xDr W jsdr X�j ! jX�j; Œx; v� 7! Œx; xDrv�

that is homotopic to the homeomorphism (4.1) by the above homotopy. Notice that xDr

is the topological realization of the simplicial map xD�r W sdr X�!X� defined by

xD�r;k D d
.r�1/.kC1/
0

W sdr Xk DXr.kC1/�1!Xk :

The definition of the operator xFr is now analogous to the definition of Fr in Section
4.2 except that we use xDr instead of Dr ,

xFr W jB
cy
� .C/j

j�r j
���! jsdr B

cy
� .C/Cr j �! jsdr B

cy
� .C/j

xDr
��! jB

cy
� .C/j:
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One checks that xFr
xFs D

xFrs such that these operators define an N –action on Bcy.C/.
The following lemma states that the identity on Bcy.C/ is compatible with these two
N –actions up to coherent homotopy.

Lemma 6.8 The N –actions on Bcy.C/ induced by the Fr and the xFr operators are
compatible up to coherent homotopies.

Proof We must produce a higher homotopy

hU
W Bcy.C/� IU

! Bcy.C/

for each finite subset U � P , such that h∅ is the identity and the relations in (6.6) are
satisfied, that is,

@V hU
D hU�V

ı .FV � IU�V /; @V hU
D xFV ı hU�V ;

whenever V � U . Let
F

U W �!� be the composition of the concatenation functorsF
p for p 2 U and consider the homotopies

hU
W �Œk�� IU

!�Œ
F

U Œk��

hU .v; .tp//D
Y

p2U

..1� tp/DpvC tp xDpv/:defined by

Here we use the notation

Dpv �Dqv DDpqv; xDpv � xDqv D xDpqv

and make the convention that when both Dp and xDq occur in a product, then we apply
Dp first, that is,

Dpv � xDqv D . xDq ıDp/v; xDpv �Dqv D . xDp ıDq/v:

Thus, for example,

hfp;qg.v; .tp; tq//D .1� tp/.1� tq/DpqvC .1� tp/tq. xDq ıDp/v

C tp.1� tq/. xDp ıDq/vC tptq xDpqv:

Then, with notation as in (6.6), we have the relations

.6:9/ @V hU
D hU�V

ı .DV � IU�V /; @V hU
D xDV ı hU�V :

If we view IU as a constant cosimplicial space, then hU defines a map of cosimplicial
spaces, hence induces a natural map

hU
W jsdU X�j � IU

! jX�j
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for any simplicial space X� . Here sdU denotes the composition of the functors sdp

for p 2 U . Applying this to B
cy
� .C/ and writing CU for the cyclic group of order the

product of the elements in U , the requested homotopies are defined by

hU
W jB

cy
� .C/j � IU �U

��! jsdU B
cy
� .C/CU j � IU

! jsdU B
cy
� .C/j � IU hU

��! jB
cy
� .C/j:

For U D∅, we define C∅ to be the trivial group and h∅ to be the identity on Bcy.C/.
It follows from (6.9) that these homotopies satisfy the required coherence relations.

Corollary 6.10 The projection Bcy.C/!B.C/ is compatible with the N –actions up
to coherent homotopy.

Proof It follows immediately from the definition that if Bcy.C/ is equipped with the
N –action induced by the xFr operators, then the projection is N –equivariant when we
give B.C/ the trivial action. The result therefore follows from Lemma 6.8.

Proof of Theorem 1 Using Lemma 6.2 and Proposition 6.7 it suffices to show that
the map in (6.1) is compatible with the N –actions up to coherent homotopy when we
give B.C/ the trivial action. It is clear from the definition that the first map in (6.1)
is N –equivariant since the base point in ET is fixed by the N –action. The result
therefore follows from Corollary 6.10.

Appendix A The profinite completion of TC.A/

We here provide a proof of Goodwillie’s result stating that the profinite completions of
TC.A/ and TC.A/ are equivalent. The main innovation here is the systematic use of
Theorem 2.3 to evaluate homotopy limits of I Ë T –diagrams. In fact, the analogous
statement holds for any I Ë T –diagram and the result for TC.A/ is a special case of
the following general proposition.

Proposition A.1 Let n 7! T .n/ be an I Ë T –diagram of �–spectra. The projection

holim
IËT

T ! holim
I

T

becomes a level-wise equivalence after profinite completion.

The proof is based on the following elementary observation concerning the homotopy
limit of a sequence of spaces (or �–spectra):

X.0/
f1
 �X.1/

f2
 �X.2/

f3
 �X.3/

f4
 � : : :
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Lemma A.2 The structure maps fi of the diagram induce an equivalence

holim
i�0

X.i C 1/
ffiC1g

����! holim
i�0

X.i/:

Proof of Proposition A.1 It follows from Theorem 2.3 that the homotopy limit of the
I Ë T –diagram T is equivalent to the homotopy limit of the I–diagram n 7! T .n/hT .
Furthermore, the homotopy limit over I can be calculated as the homotopy fixed
points of the N –action defined by the restriction maps on the homotopy limit of
the N –diagram defined by the Frobenius maps. Thus, it suffices to show that the
natural transformation T .n/hT ! T .n/ induces an equivalence after evaluating the
homotopy limit over the Frobenius maps and completing. By definition, the Frobenius
map Fr W T .rn/hT ! T .n/hT takes an element !W ET ! T .rn/ in T .rn/hT to the
element in T .n/hT defined by the composition

ET
r
�!ET

!
�! T .rn/

Fr
��! T .n/:

Here the first map is defined by lifting an element in T to its r –th power. There is
a similar N –diagram n 7! T .n/hCa for any natural number a and the above natural
transformation admits a factorization

T .n/hT
! holim

a2N
T .n/hCa ! T .n/:

It is well-known that the profinite completion of the first map is an equivalence (see eg
Dundas, Goodwillie and McCarthy [10]) and thus it suffices to show that the projection
T .n/hCa ! T .n/ induces an equivalence of homotopy limits over N for each a. Let
us define a cofinal subsequence in N to be a sequence of natural numbers ni for i � 0

such that (i) ni divides niC1 for each i , and (ii) for each natural number n there
exists an index i such that n divides ni . It follow from the cofinality theorem for
homotopy limits [4, Theorem XI.9.2] that a homotopy limit over N is equivalent to
the homotopy limit obtained by restricting to a cofinal subsequence. We now keep the
natural number a fixed and choose a cofinal subsequence fnig such that a divides the
quotient ri D ni=ni�1 for all i � 1. We write fi W T .ni/! T .ni�1/ for the associated
Frobenius maps. With ri as above we then have the relation fi.z

ri x/ D zfi.x/ for
z 2T , and in particular we see that fi maps into the Ca –fixed points of T .ni�1/. Let
gi be the induced map

gi W T .ni/! T .ni�1/
Ca ! T .ni�1/

hCa

and observe that the compositions

T .ni/
gi
�! T .ni�1/

hCa ! T .ni�1/; T .ni/
hCa ! T .ni/

gi
�! T .ni�1/

hCa
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agree with the structure maps for the restricted diagrams defined by i 7! T .ni/ and
i 7! T .ni/

hCa . (This again uses that a divides ri .) It therefore follows from Lemma
A.2 that in the diagram

holim
i�1

T .niC1/
fgiC1g

����! holim
i�1

T .ni/
hCa �! holim

i�1
T .ni/

fgi g
���! holim

i�1
T .ni�1/

hCa

the composition of the first two maps is an equivalence and similarly for the composition
of the last two maps. Consequently, the map in the middle is also an equivalence and
the conclusion in the proposition follows.

We finally compare Goodwillie’s global topological cyclic homology TC.A/ to the
construction used in [10]. There the authors define global topological cyclic homology
to be the homotopy pullback of the diagram

TC.A/^
�
�!
�

holim
n2N

TH.A/hCn
�^  
 � TH.A/hT

where  is induced by the projections TH.A/hT ! TH.A/hCn and � is the profinite
completion of the composition

TC.A/D
�

holim
n2N

TH.A/Cn
�hfRsg

! holim
n2N

TH.A/Cn ! holim
n2N

TH.A/hCn :

Here .�/hfRsg denotes the homotopy fixed points for the N –action defined by the
restriction maps and the homotopy limits are over the fixed point inclusion (ie the
Frobenius maps). The first map is the obvious projection and the second map is induced
by the inclusions TH.A/Cn ! TH.A/hCn . It follows from Goodwillie’s homotopy
pullback diagram (1.3) and the next proposition that this construction gives a model
which is equivalent to TC.A/. Recall that, as already used in the proof of Proposition
A.1, the completion of  is an equivalence.

Proposition A.3 The diagram

TC.A/^ ����!
�

TH.A/hT /^??y� ??y�
TC.A/^

�
����!

�
holim
n2N

TH.A/hCn
�^

is homotopy commutative.

Proof Let us write T D TH.A/. Both compositions factor through the profinite
completion of the homotopy limit of the N �N –diagram .a; n/ 7! .T Cn/hCa and it
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therefore suffices to show that the diagram

holim
a2N

holim
n2N

.T Cn/hCa ����! holim
a2N

T hCa??y 



holim
n2N

T Cn ����! holim
n2N

T hCn

is homotopy commutative. Here we recall that Ca acts on T Cn via the homomorphism
Ca �! T �

!T=Cn where the last isomorphism is defined by z 7! n
p

z . We now refine
the argument used in the proof of Proposition A.1 and begin by choosing a cofinal
subsequence fai W i � 0g of N where we specify a0D 1. Let then n0j D aj for j � 0

and inductively choose a cofinal subsequence fnij W j � 0g for each i � 1 such that
(i) ai divides the quotients nij=ni.j�1/ and (ii) nij divides n.iC1/j for all i and j .
We further specify ni0 D 1 for all i . By the cofinality theorem for homotopy limits [4,
Theorem XI.9.2], it suffices to show that the diagram

.A:4/

holim
.i;j/

.T
Cnij /hCai ����! holim

i
T hCai??y 




holim
j

T
Cn0j ����! holim

j
T

hCn0j

is homotopy commutative. The upper horizontal map is induced by the inclusion
i 7! .i; 0/ and the vertical map on the left is induced by j 7! .0; j /. Consider the
composite map

holim
n2N

T Cn
�
�! holim

.i;j/
T

Cni.jC1/
�
�! holim

.i;j/
.T

Cnij /hCai

where the first map is induced by the functor .i; j / 7! ni.jC1/ and the second map
is defined as in the proof of Proposition A.1. The first map is an equivalence by the
cofinality theorem for homotopy limits and the second map is an equivalence by the
argument used in the proof of Proposition A.1. The conclusion in the proposition now
follows from the observation that the compositions of this equivalence with the two
compositions in the diagram (A.4) are both homotopic to the composition

holim
n2N

T Cn ! holim
i

T Cai ! holim
i

T hCai

where the first map is the obvious projection and the second map is induced by the
inclusions T Cai ! T hCai .
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