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Normal forms of Poisson structures

JEAN-PAUL DUFOUR

NGUYEN TIEN ZUNG

These notes arise from a minicourse given by the two authors at the Summer School
on Poisson Geometry, ICTP, 2005. The main reference is our recent monograph
“Poisson structures and their normal forms”, Progress in Mathematics, Volume 242,
Birkhauser, 2005. The aim of these notes is to give an introduction to Poisson
structures and a study of their local normal forms, via Poisson cohomology and
analytical techniques.
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1 Preliminaries about Poisson structures

1.1 Poisson brackets and Poisson tensors

A Poisson bracket on a manifold M is a bilinear operation, denoted by f�; �g, on the
space of functions on M , which satisfies the following conditions:

(i) Antisymmetry:

(1-1) ff;gg D �fg; f g;

(ii) Leibniz identity:

(1-2) ff;ghg D ff;gghCgff; hg;

(iii) Jacobi identity:

(1-3) fff;gg; hgC ffg; hg; f gC ffh; f g;gg D 0;

for any functions f;g; h on M .

In other words, a Poisson bracket on M is a Lie bracket on the space of functions of
M , which satisfies the Leibniz identity. A manifold equipped with such a bracket is
called a Poisson manifold.

In the above definition we didn’t specify the space of functions on M , but for example
if M is a smooth manifold, then a smooth Poisson bracket on M is a bilinear map
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f�; �gW C1.M /�C1.M /! C1.M /, which satisfies the above three conditions, where
C1.M / denotes the space of smooth functions on M . Similarly, one can define real
analytic, holomorphic, and formal Poisson structures, if one replaces C1.M / by the
corresponding sheaf of local analytic (respectively, holomorphic, formal) functions,
etc.

The first two conditions (1-1) and (1-2) mean that the bracket f�; �g is a bi-derivation,
and is given by a 2–vector field … on M by the formula

(1-4) ff;gg D h…; df ^ dgi:

Conversely, if … is a 2–vector field (that is, an antisymmetric contravariant tensor
of order 2) on M , then Formula (1-4) defines a bracket on M which satisfies the
properties i) and ii), and we say that … is a Poisson tensor if this bracket also satisfies
the Jacobi identity.

In these notes we will consider only finite-dimensional Poisson manifolds, though
infinite-dimensional Poisson structures also appear naturally (especially in problems
of mathematical physics), see, for example, the texts by Darryl Holm [36] and Anatol
Odzijewicz [55] in this Volume.

In a local system of coordinates .x1; : : : ;xm/, one may write

(1-5) …D
X
i<j

…ij
@

@xi
^

@

@xj
D

1

2

X
i;j

…ij
@

@xi
^

@

@xj
;

for any 2–vector field …. The functions …ij D h…; dxi ^ dxj i D �…ji are called
the coefficients of … in this coordinate system. The corresponding bracket has the
following local expression:

(1-6) ff;gg D
�X

i<j

fxi ;xj g
@

@xi
^

@

@xj
;
X
i;j

@f

@xi

@g

@xj
dxi ^ dxj

�
D

X
i;j

…ij
@f

@xi

@g

@xj
:

Direct calculations show that
(1-7)

fff;gg; hgC ffg; hg; f gC ffh; f g;gg D
X
ijk

�I
ijk

X
s

@…ij

@xs
…sk

�
@f

@xi

@g

@xj

@h

@xk

for any three functions f;g; h, where
H

ijk aijk means the cyclic sum aijkCajkiCakij :

In particular, we have the following characterization of Poisson tensors:

Proposition 1.1 A 2–vector field …D
P

i<j …ij
@
@xi
^

@
@xj

expressed in terms of a
given system of coordinates .x1; : : : ;xn/ is a Poisson tensor if and only if it satisfies
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the following system of equations:

(1-8)
I

ijk

X
s

@…ij

@xs
…sk D 0 .8 i; j ; k/ :

Any 2–vector field on a two-dimensional manifold is a Poisson tensor. But starting
from dimension 3, then the Jacobi identity is a non-trivial condition, and not every
2–vector field is a Poisson tensor. For example, the 2–vector field @

@x
^ . @

@y
Cx @

@z
/ in

R3 is not a Poisson tensor.

1.2 Lie algebras and linear Poisson structures

To each finite-dimensional Lie algebra g there is an associated Poisson structure on
the dual space g� , which may be defined as follows:

(1-9) ff;gg.˛/ WD hŒdf .˛/; dg.˛/�; ˛i:

Here f and g are two functions on g� , ˛ is a point on g� , and df .˛/ and dg.˛/

are considered as elements of g via the identification of T �˛ g
� with g. In other

words, if .x1; : : : ;xm/ is a basis of g, considered also as a coordinate system of g� ,
Œxi ;xj �D

P
k ck

ij xk , then the corresponding Poisson tensor on g� is

(1-10) …D
1

2

X
ijk

ck
ij xk

@

@xi
^

@

@xj
:

The Jacobi identity for … comes from the Jacobi identity for g. The above Poisson
structure, called the Lie–Poisson structure associated to g, is also called a linear Poisson
structure, because the coefficients …ij D

P
k ck

ij xk of … are linear functions in the
coordinate system .x1; : : : ;xm/.

This natural correspondence between finite-dimensional Lie algebras and finite-dimen-
sional linear Poisson structures is a 1–1 correspondence. In a sense, general Poisson
structures are non-linear generalizations of Lie algebras.

1.3 Symplectic manifolds

Recall that a symplectic manifold is a manifold M equipped with a nondegenerate
closed differential 2–form ! , called the symplectic form. The nondegeneracy of a
differential 2–form ! means that the corresponding homomorphism

(1-11) ![W TM ! T �M
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from the tangent space of M to its cotangent space, which associates to each vector
X the covector �iX! , is an isomorphism. Here iX! DXy! is the contraction of !
by X and is defined by iX!.Y / WD !.X;Y /D h!;X ^Y i.

For example, if N is an arbitrary manifold, then the cotangent space T �N admits a
natural symplectic structure !0 D d� , where � is the so called Liouville 1–form on
T �N , defined as follows: if p 2 T �N , X 2 Tp.T

�N /, and � W T �N !N denotes
the projection, then �.X /D hp; ��X i. In mechanics, .T �N; !0/ often plays the role
of the phase space of a Hamiltonian system, while N is the configuration space.

If f is a function on a symplectic manifold .M; !/, then one can define the Hamiltonian
vector field Xf of f on .M; !/ by the formula

(1-12) �iXf
! D df :

In other words, Xf is the preimage of df under the map ![ .

Each symplectic manifold .M; !/ is also a Poisson manifold, where the associated
Poisson bracket is defined by the formula

(1-13) ff;gg WD !.Xf ;Xg/D�hdf;Xgi D �Xg.f /DXf .g/:

The fact that the above bracket satisfies the Jacobi identity is equivalent to the fact that
! is closed. In order to verify it, one can use Cartan’s formula for the differential of a
k –form � (see, for example, Bott–Tu [8]):

(1-14) d�.X1; : : : ;XkC1/D

kC1X
iD1

.�1/i�1Xi

�
�.X1; : : : ; yXi ; : : : ;XkC1/

�
C

X
1�i<j�kC1

.�1/iCj�
�
ŒXi ;Xj �;X1; : : : ; yXi ; : : : ; yXj ; : : : ;XkC1

�
;

where X1; : : : ;XkC1 are vector fields, and the hat means that the corresponding entry
is omitted. Indeed, applying Cartan’s formula to ! and Xf ;Xg;Xh , we get

0D d!.Xf ;Xg;Xh/

DXf .!.Xg;Xh//CXg.!.Xh;Xf //CXh.!.Xf ;Xg//

�!.ŒXf ;Xg�;Xh/�!.ŒXg;Xh�;Xf /�!.ŒXh;Xf �;Xg/

DXf fg; hgCXgfh; f gCXhff;gg� ŒXf ;Xg�.h/� ŒXg;Xh�.f /� ŒXh;Xf �.g/

D ff; fg; hggC fg; fh; f ggC fh; ff;ggg�Xf .Xg.h//CXg.Xf .h//

�Xg.Xh.f //CXh.Xg.f //�Xh.Xf .g//CXf .Xh.g//

D�ff; fg; hgg� fg; fh; f gg� fh; ff;ggg

D fff;gg; hgC ffg; hg; f gC ffh; f g;gg:
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Each 2–vector field … on a manifold M is uniquely determined by the associated
vector bundle homomorphism

(1-15) …]W T �M ! TM

defined by hˇ;…].˛/i WD h˛^ˇ;…i for any 1–forms ˛ and ˇ . This map …] is called
the anchor map associated to ….

If ! is a symplectic form, then its corresponding Poisson tensor … is characterized by
the formula

(1-16) …] D .![/�1;

that is, the map …] is the inverse map of ![ . By abuse of language, we may also
write … D !�1 and ! D …�1 . If … is nondegenerate, that is, the map …] is an
isomorphism, then … is a Poisson tensor if and only if the corresponding differential
2–form ! D…�1 is symplectic. In other words, a nondegenerate Poisson structure is
the same as a symplectic structure.

In a local Darboux coordinate system .x1;y1; : : : ;xn;yn/, where the symplectic form
! has the standard form ! D

Pn
iD1 dxi ^ dyi , then the corresponding Poisson tensor

…D !�1 also has the following standard form:

(1-17) …D

nX
iD1

@

@xi
^

@

@yi
:

1.4 Hamiltonian and Poisson vector fields

In order to define a Hamiltonian vector field, what one really needs is not a symplectic
structure ! , but rather a Poisson structure …, and a Hamiltonian function f . The
formula is:

(1-18) Xf D…
].df /:

In other words,

(1-19) Xf .h/D ff; hg

for any function h. Of course, when …D !�1 , then the above formula coincides with
the formula �Xf y! D df . Similarly to the symplectic case, Hamiltonian vector fields
on general Poisson manifolds satisfy the following properties:

(i) Hamiltonian systems are energy preserving (imagine that f is the total energy
of the system):

(1-20) Xf .f /D ff; f g D 0:
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(ii) Hamiltonian systems preserve the Poisson structure:

(1-21) LXf
…D 0:

(iii) The map f 7!Xf is a Lie homomorphism:

(1-22) Xff;hg D ŒXf ;Xh�:

Equalities (1-21) an (1-22) are direct consequences of the Jacobi identity.

A vector field X on a Poisson manifold .M;…/, is called a Poisson vector field if it is
an infinitesimal automorphism of the Poisson structure, that is, the Lie derivative of …
with respect to X vanishes:

(1-23) LX…D 0 :

Equivalently, the local flow .'t
X
/ of X , that is, the 1–dimensional pseudo-group of

local diffeomorphisms of M generated by X , preserves the Poisson structure: 8t 2R,
.'t

X
/ is a local Poisson isomorphism wherever it is well-defined.

Any Hamiltonian vector field is also a Poisson vector field, though the inverse is not
true in general, not even locally. For example, if the Poisson structure is trivial, then
any vector field is Poisson, but the only Hamiltonian vector field is the trivial one.

1.5 Poisson morphisms

A map �W .M1; f�; �g1/ ! .M2; f�; �g2/ between two Poisson manifolds is called a
Poisson morphism or Poisson map if it preserves the Poisson bracket. In other words,

(1-24) f��f; ��gg1 D �
�
ff;gg2

for any functions f;g on M2 .

Poisson manifolds together with Poisson morphisms form a category: it is clear that
the composition of two Poisson morphisms is again a Poisson morphism, and so
on. A Poisson morphism which is a diffeomorphism will automatically be a Poisson
isomorphism: the inverse map is also a Poisson map.

In terms of Poisson tensors, a map �W .M1;…1/! .M2;…2/ is a Poisson morphism
if any only if for each point x 2 M we have ��.…1.x// D …2.�.x//. In other
words, …2 is equal to the push-forward of …1 by � . In particular, if � is a surjective
submersion, then …2 is completely determined by …1 . In this case, one may say that
M2 is a quotient manifold of M1 (with respect to � ), and …2 is the reduced Poisson
structure of …1 with respect to � . (In order for the reduced Poisson structure …2 to
exist, …1 must be invariant with respect to � ).
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The possibility to define reduced Poisson structures is one of the reasons why it is
useful to study general (not necessarily symplectic) Poisson structures. For example,
assume that we have a vector field X on a manifold M which is invariant under a
free proper action of a Lie group G on M . Then X can be projected to a vector
field yX on the quotient manifold M=G . One says that .M=G; yX / is the reduced
dynamical system of the system .M;X / with respect to the action of G : it has lower
dimension than .M;X / and so may be easier to study. Assume now that M is a
symplectic manifold, and X D Xh is a Hamiltonian vector field, and the action of
G preserves the symplectic form ! and the Hamiltonian function h too. One wants
to says that the reduced system .M=G; yX / is also a Hamiltonian system. However,
M=G is not equipped with a symplectic form: the symplectic form ! on M cannot
be pushed forward to a 2–form on M=G via the projection � W M !M=G . (One
cannot push-forward covariant tensors unless when the map is a local diffeomorphism).
What can be pushed forward is the Poisson tensor …D !�1 , which is invariant with
respect to the action of G . The resulting 2–vector field y… on M=G is a Poisson tensor,
which is degenerate in general. Since h is invariant with respect to G , it can be pushed
forward to a function yh on M=G , and yX is nothing but the Hamiltonian vector field
of yh with respect to y….

Example 1.2 If �W h! g is a Lie algebra homomorphism, then the linear dual map
��W g�! h� is a Poisson map, where g� and h� are equipped with their respective
linear Poisson structures. (Exercise: prove it.) In particular, if h is a Lie subalgebra of
g, then the canonical projection g�! h� is Poisson.

Example 1.3 Direct product of Poisson manifolds. Let .M1;…1/ and .M2;…2/

be two Poisson manifolds. Then the direct product .M1;…1/� .M2;…2/ WD .M1 �

M2;…1C…2/ is also a Poisson manifold (exercise: prove it), and the projection maps
M1 �M2!M1 and M1 �M2!M2 are Poisson maps.

Example 1.4 Let G be a connected Lie group, and denote by g its Lie algebra. By
definition, g is isomorphic to the Lie algebra of left-invariant tangent vector fields of
G . Denote by e the neutral element of G . For each Xe 2 TeG , there is a unique
left-invariant vector field X on G whose value at e is Xe , and we may identify TeG

with g via this association Xe 7! X . We will write TeG D g, and T �e G D g� by
duality. Then the left translation map

(1-25) LW T �G! g� D T �e G; L.p/D .Lg/
�p D .Lg�1/�p 8 p 2 T �g G;

(Lg.h/ WD gh), which may be viewed as the projection map from T �G to the quotient
T �G=G Š g� of T �G by the left action of G , is a Poisson map, where the Poisson
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structure on T �G comes from the standard symplectic structure on the cotangent
bundle T �G , and the Poisson structure on g� is the linear Poisson structure associated
to g. (Exercise: prove it.) The right translation map RW T �G! g� D T �e G , defined
by R.p/ D .Rg/

�p 8 p 2 T �g G , (Rg.h/ WD hg ), is an anti-Poisson map. (A map
�W .M;…/! .N; ƒ/ is called an anti-Poisson map if �W .M;…/! .N;�ƒ/ is a
Poisson map.)

A subspace V � TxM of a Poisson manifold .M;…/ is called coisotropic if for any
˛; ˇ 2 T �x M such that h˛;X i D hˇ;X i D 0 8 X 2 V we have h…;˛ ^ ˇi D 0. In
other words, V ı � .V ı/? , where V ı D f˛ 2 T �x M j h˛;X i D 0 8 X 2 V g is the
annulator of V and .V ı/? D fˇ 2 T �x M j h…;˛^ˇi D 0 8 ˛ 2 V ıg is the “Poisson
orthogonal” of V ı . A submanifold N of a Poisson manifold is called coisotropic if its
tangent spaces are coisotropic. We have the following proposition, whose the proof
will be left as an exercise:

Proposition 1.5 A map �W .M1;…1/! .M2;…2/ between two Poisson manifolds
is a Poisson map if and only if its graph �.�/ WD f.x;y/ 2M1 �M2I y D �.x/g is a
coisotropic submanifold of .M1;…1/� .M2;�…2/.

1.6 Characteristic distribution and foliation

In this section, we will show that a smooth Poisson manifold may be viewed as a
(singular) foliation by symplectic manifolds.

A smooth singular foliation in the sense of Stefan [60] and Sussmann [61] on a smooth
manifold M is by definition a partition FDfF˛g of M into a disjoint union of smooth
immersed connected submanifolds F˛ , called leaves, which satisfies the following
local foliation property at each point x 2 M : Denote the leaf that contains x by
Fx , the dimension of Fx by d and the dimension of M by m. Then there is a
smooth local chart of M with coordinates y1; : : : ;ym in a neighborhood U of x ,
U Df��<y1<�; : : : ;��<ym<�g, such that the d –dimensional disk fydC1D� � �D

ym D 0g coincides with the path-connected component of the intersection of Fx with
U which contains x , and each d –dimensional disk fydC1 D cdC1; : : : ;ym D cmg,
where cdC1; : : : ; cm are constants, is wholly contained in some leaf F˛ of F . If all
the leaves F˛ of a singular foliation F have the same dimension, then one says that
F is a regular foliation.

A singular distribution D on a manifold M is the assignment to each point x of
M a vector subspace Dx of the tangent space TxM: The dimension of Dx may
depend on x: For example, if F is a singular foliation, then it has a natural associated
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tangent distribution DF : at each point x 2 V , DF
x is the tangent space to the leaf

of F which contains x . A singular distribution D on a smooth manifold is called
smooth if for any point x of M and any vector X0 2 Dx , there is a smooth vector
field X defined in a neighborhood Ux of x which is tangent to the distribution, that
is, X.y/ 2Dy 8 y 2 Ux , and such that X.x/DX0 . If, moreover, dim Dx does not
depend on x , then we say that D is a smooth regular distribution.

A smooth singular distribution D is called involutive if for any two smooth vector
fields X;Y tangent to D , their Lie bracket ŒX;Y � is also tangent to D . D is called
integrable if it can be “integrated” into a singular foliation, that is, there is a (unique)
singular foliation F such that D is the tangent distribution of F .

It follows directly from the local foliation property that the tangent distribution DF of
a smooth singular foliation is a smooth involutive singular distribution. The inverse is
also true in the regular case, and is known as the classical Frobenius theorem:

Theorem 1.6 (Frobenius) If a smooth regular distribution is involutive then it is
integrable, that is, it is the tangent distribution of a regular foliation.

The singular case is a bit more delicate, due to possible pathologies. For example,
consider the following singular distribution D on R2 with coordinates .x;y/: D.x;y/D

T.x;y/R
2 if x>0, and D.x;y/ is spanned by @

@x
if x�0. Then D is smooth involutive

but not integrable. In order to avoid such pathologies, one needs another condition
which is a bit stronger than the involutivity.

Let C be a family of smooth vector fields on a manifold M . Then it gives rise to
a smooth singular distribution DC : for each point x 2M , DC

x is the vector space
spanned by the values at x of the vector fields of C . We say that DC is generated by
C . A distribution D is called invariant with respect to a family of smooth vector fields
C if it is invariant with respect to every element of C : if X 2 C and ('t

X
) denotes the

local flow of X , then we have .'t
X
/�Dx DD't

X
.x/ wherever 't

X
.x/ is well-defined.

Theorem 1.7 (Stefan [60], Sussmann [61]) Let D be a smooth singular distribution
on a smooth manifold M . Then D is integrable if any only if there is a family C of
smooth vector fields such that D is generated by C and is invariant with respect to C .

Consider now the anchor map

(1-26) …]W T �M ! TM

of a Poisson manifold .M;…/. The image of this anchor map is a distribution on M ,
which is called the characteristic distribution of the Poisson structure …. We will
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denote this characteristic distribution by C . At each point x 2M , the corresponding
characteristic space Cc � TxM is

(1-27) Cx D im…]x;

where …]x W T �x M ! TxM is the restriction of …] to the cotangent space T �x M . The
dimension dim Cx of Cx is called the rank of … at x , and maxx2M dim Cx is called
the rank of …. If rank…x is a constant on M , that is, does not depend on x , then …
is called a regular Poisson structure.

In terms of local coordinates, …D 1
2

P
…ij

@
@xi
^

@
@xj

, the anchor map is given by the
matrix .…ij / with respect to the bases .dx1; : : : ; dxm/ and

�
@
@x1
; : : : ; @

@xm

�
, and the

rank of … at x is equal to the rank of the matrix .…ij .x//.

Each characteristic space Cx admits a unique natural antisymmetric nondegenerate
bilinear scalar product, which will be denoted by …�1 and called the induced symplectic
form: if X and Y are two vectors belonging to Cx then

(1-28) …�1.X;Y / WDhˇ;X iDh…;˛^ˇiD�h…;ˇ^˛iD�h˛;Y iD�…�1.Y;X /

where ˛; ˇ 2 T �x M are two covectors such that X D …].˛/ and Y D …].ˇ/. In
particular, rank….x/D dim Cx is an even number for any x 2M .

Recall that, if f a function on .M;…/ then Xf D…
].df /. In particular, the charac-

teristic distribution is generated by the family of Hamiltonian vector fields on .M;…/.
Moreover, since the Hamiltonian vector fields preserve the Poisson structure, they
also preserve the characteristic distribution. Thus, according to the Stefan–Sussmann
theorem, the characteristic distribution of a Poisson manifold .M;…/ is integrable.
The corresponding singular foliation is called the characteristic foliation of .M;…/.
This characteristic foliation is a regular foliation if and only if … is a regular Poisson
structure.

The characteristic foliation of .M;…/ is also called the symplectic foliation of .M;…/,
because each leaf has a natural symplectic structure induced from … and is called a
symplectic leaf of .M;…/. Indeed, let S be a leaf of the characteristic foliation. Let
f and g be two functions on M . Then the value of the Poisson bracket ff;gg on
S depends only on the restriction f jS ;gjS of f;g to S , because ff;gg DXf .g/D

�Xg.f / and Xf and Xg are tangent to S . In other words, the Poisson bracket on M

induces a Poisson bracket on S by the formula

(1-29) f yf ; yggS WD ff;ggjS ;

where yf ; yg are any two local functions on S , and f;g are any two local extensions of
yf ; yg from S to M . The Poisson tensor on S (which is nothing but the restriction of
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… to S : note that for each x 2 S we have ….x/ 2^2TxS and so … can be restricted
to S ) is nondegenerate, and the corresponding symplectic form is given by Formula
(1-28) at each point x 2 S .

Example 1.8 The characteristic foliation of the Lie–Poisson structure on the dual g�

of a Lie algebra g is nothing but the foliation by the orbits of the coadjoint action of
the corresponding (connected simply-connected) Lie group G on g� . In particular,
each coadjoint orbit is a symplectic manifold. The symplectic form on coadjoint orbits
is called the Kirillov–Kostant–Souriau form, and it plays an important role in the theory
of representations of Lie groups, see, for example, Kirillov [40].

1.7 Canonical coordinates

The classical Darboux theorem says that in the neighborhood of every point of a
symplectic manifold .M; !/ there is a local system of coordinates .p1; q1; : : : ;pn; qn/,
where 2nD dim M , such that ! D

Pn
iD1 dpi ^ dqi . For general Poisson manifolds,

we have the following similar theorem, due to Alan Weinstein [68]:

Theorem 1.9 (Splitting theorem, Weinstein [68]) Let x be an arbitrary point in a
Poisson manifold .M;…/ of dimension m. Denote by 2k D rank….x/ the rank of
… at x . Let N be an arbitrary .m�2k/–dimensional submanifold which contains
x and which is transversal to the characteristic space Cx D im…

]
x . Then there is a

local coordinate system .p1; q1; : : : ;pk ; qk ; z1; : : : ; zm�2k/ centered at x , such that
the functions p1; q1; : : : ;pk ; qk vanish on N , and in which the Poisson tensor … has
the form

(1-30) …D

kX
iD1

@

@pi
^
@

@qi
C

X
i<j

fij
@

@zi
^

@

@zj
;

where the functions fij vanish at the origin (that is, at x ) and depend only on the
variables z1; : : : ; zm�2k .

A local coordinate system which satisfies the conditions of the above theorem is
called a system of local canonical coordinates. In such canonical coordinates we have
…D…S C…N ; where

(1-31) …S D

kX
iD1

@

@pi
^
@

@qi
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may be viewed as a standard nondegenerate Poisson structure on the local submanifold
S D fz1 D � � � D zm�2s D 0g (which is the local symplectic leaf through x of the
characteristic foliation), and

(1-32) …N D

X
i<j

fij
@

@zi
^

@

@zj

may be viewed as a Poisson structure on a neighborhood of x in N , which vanishes at
x . (The Jacobi identity for …N follows directly from the Jacobi identity for ….) In
other words, locally a Poisson manifold can be decomposed as a direct product of a
symplectic manifold with a Poisson manifold whose Poisson structure vanishes at the
origin.

Proof of Theorem 1.9 If ….x/D 0 then kD 0 and there is nothing to prove. Suppose
that ….x/¤ 0. Let p1 be a local function (defined in a small neighborhood of x in M )
such that p1.N /D 0 and dp1.x/¤ 0. Since Cx is transversal to N , there is a vector
Xg.x/ 2 Cx such that hXg.x/; dp1.x/i ¤ 0, or equivalently, Xp1

.g/.x/¤ 0, where
Xp1

denotes the Hamiltonian vector field of p1 as usual. Therefore Xp1
.x/¤ 0. Since

Cx 3 ].dp1/.x/DXp1
.x/¤ 0 and is not tangent to N , there is a local function q1 such

that q1.N /D 0 and Xp1
.q1/D 1 in a neighborhood of x , or fp1; q1g DXp1

q1 D 1.
Moreover, Xp1

and Xq1
are linearly independent (Xq1

D �Xp1
would imply that

fp1; q1gD��Xp1
.p1/D0), and commute with each other:

�
Xp1

;Xq1

�
DXfp1;q1g

D0.
Thus Xp1

and Xq1
generate a locally free infinitesimal R2 –action in a neighborhood

of x , which gives rise to a local regular 2–dimensional foliation. As a consequence,
there is a local coordinate system .y1; : : : ;ym/ in which Xq1

D
@
@y1

and Xp1
D

@
@y2
:

We can take .p1; q1;y3; : : : ;ym/ as a new local system of coordinates. In fact, the
Jacobian matrix of the map 'W .y1;y2;y3; : : : ;ym/ 7! .p1; q1;y3; : : : ;ym/ is of the
form

(1-33)

0@ 0 1

�1 0
�

0 Id

1A
(because @q1

@y1
DXq1

q1D 0, @q1

@y2
DXp1

q1Dfq1;p1gD 1, etc.), which has determinant
equal to 1.

We have fp1; q1g D 1 and fq1;yig DXq1
.yi/D 0 and fp1;yig DXp1

.yi/D 0, for
i D 3; : : : ;m. Thus … has the expression

(1-34) …D
@

@p1

^
@

@q1

C
1

2

X
i;j�3

�ij
@

@yi
^

@

@yj
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in the coordinate system .p1; q1;y3; : : : ;ym/, where �ij D fyi ;yj g. In particular, in
this new coordinate system we have Xp1

D
@
@q1

and Xq1
D�

@
@p1

. The Jacobi identity
implies that the functions �ij are independent of the variables p1 and q1 : for example,
@�ij

@q1
DXp1

.�ij /D fp1; fyi ;yj gg D fyi ; fp1;yj ggC ffp1;yig;yj g D 0C 0D 0.

The above formula implies that our Poisson structure is locally the product of a standard
symplectic structure on a plane f.p1; q1/g with a Poisson structure on a .m�2/–
dimensional manifold f.y3; : : : ;ym/g. In this product, N is also the direct product of
a point (= the origin) of the plane f.p1; q1/g with a local submanifold in the Poisson
manifold f.y3; : : : ;ym/g. The splitting theorem now follows by induction on the rank
of … at x .

Remark 1.10 In the above theorem, when the Poisson structure is nondegenerate,
that is, 2k Dm, we recover Darboux theorem which gives local canonical coordinates
for symplectic manifolds. If .M;…/ is a regular Poisson structure, then the singular
Poisson structure of …N in the above theorem must be trivial, and we get the following
generalization of Darboux theorem: any regular Poisson structure is locally isomorphic
to a standard constant Poisson structure (of the type

Pk
iD1

@
@pi
^

@
@qi

, where 2k is the
rank).

Remark 1.11 The classical Darboux theorem can also be proved by Moser’s path
method [52] (see Dufour–Zung [23, Appendix A1]). One of the advantage of the
path method is that it also works in the equivariant case, leading to the equivariant
Darboux theorem, see Weinstein [67]: if a compact Lie group G acts on a symplectic
manifold .M; !/ in such a way that the action preserves ! and fixes a point x , then in
a neighborhood of x there is a Darboux coordinate system in which the action of G is
linear. Similarly, in Miranda–Zung [47] there is an equivariant version of Theorem 1.9,
whose proof also uses the path method.

1.8 Transverse Poisson structures

The local Poisson structure …N on N which appears in the previous section does not
depend on the choice of canonical coordinates. Indeed, Theorem 1.9 implies that the
local symplectic leaves near point x are direct products of the symplectic leaves of a
neighborhood of x in N with the local symplectic manifold f.p1; : : : ;pk ; q1; : : : ; qk/g.
In particular, the symplectic leaves of N are connected components of intersections of
the symplectic leaves of M with N , and the symplectic form on the symplectic leaves
of N is the restriction of the symplectic form of the leaves of M to that intersections.
This geometric characterization of the symplectic leaves of N and their corresponding
symplectic forms shows that they do not depend on the choice of local canonical
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coordinates. On the other hand, the Poisson structure on N is completely determined
by its symplectic leaves and the corresponding symplectic forms.

The local Poisson structure …N on N is called the transverse Poisson structure of …
at x , or of the symplectic leaf S (which contains x ) in the Poisson manifold .M;…/.
This name is justified by the fact that, up to local Poisson isomorphisms, …N does not
depend on the choice of N itself, nor even on the choice of x , but only on the choice
of the symplectic leaf in .M;…/:

Theorem 1.12 If x0 and x1 are two points on a symplectic leaf S of dimension 2k

of a Poisson manifold of dimension m, and N0 and N1 are two smooth local disks
of dimension m� 2k which intersect S transversally at x0 and x1 respectively, then
there is a local Poisson diffeomorphism from .N0;x0/ to .N1;x1/.

We will postpone the proof of this theorem to Section 2.5, where we will make use of
the Schouten bracket and coupling tensors.

The transverse Poisson structure may be calculated by the following so-called Dirac’s
formula. (According to Weinstein [69], Dirac’s formula was actually found by T.
Courant and R. Montgomery, who generalized a constraint procedure of Dirac.)

Theorem 1.13 (Dirac’s formula) Let N be a local submanifold of a Poisson manifold
.M;…/ which intersects a symplectic leaf transversely at a point z . Let  1; : : : ;  2s ,
where 2s D rank….z/, be functions in a neighborhood U of z such that

(1-35) N D fx 2 U j  i.x/D constantg:

Denote by Pij D f i ;  j g and by .P ij / the inverse matrix of .Pij /
2s
i;jD1

. Then the
bracket for the transverse Poisson structure on N can be given by the formula

(1-36) ff;ggN .x/D
˚
zf ; zg

	
.x/�

2sX
i;jD1

˚
zf ; i

	
.x/P ij .x/

˚
 j ; zg

	
.x/ 8 x 2N;

where f;g are functions on N and zf ; zg are extensions of f and g to U . The above
formula is independent of the choice of extensions zf and zg .

Sketch proof If one replaces zf by  k (8 k D 1; : : : ; 2s ) in the above formula,
then the right-hand side vanishes. If zf and yf are two extensions of f , then we
can write yf D zf C

P2s
iD1. i � i.z//hi . Using the Leibniz rule, one verifies that

the right hand side in Formula (1-36) does not depend on the choice of zf . By anti-
symmetricity, the right hand side does not depend on the choice of zg either. Finally,
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we can choose zf and zg to be independent of pi ; qi in a canonical coordinate system
.p1; : : : ;ps; q1; : : : ; qs; z1; : : : ; zm�2s/ provided by the splitting Theorem 1.9. For
that particular choice we have f zf ; ig.x/D 0 and f zf ; zgg.x/D ff;ggN .x/.

1.9 Symplectic realizations

A symplectic realization of a Poisson manifold .P;…/ is a symplectic manifold
.M; !/ together with a surjective Poisson submersion ˆW .M; !/ ! .P;…/ (that
is, a submersion which is a Poisson map).

For example, G is a Lie group then T �G together with the left translation map
LW T �G! g� is a symplectic realization for g� .

Theorem 1.14 (Karasev [39], Weinstein [71]) Any smooth Poisson manifold of
dimension n admits a symplectic realization of dimension 2n.

See, for example, [71] for the proof of the above theorem. The above theorem provides
another interesting way to look at general Poisson manifolds, namely as quotients of
symplectic manifolds.

1.10 Lie algebroids

A Lie algebroid .A!M; Œ�; ��; ]/ is a (finite dimensional) vector bundle A!M over
a manifold M , equipped with a linear bundle map ]W A! TM called the anchor
map, and a Lie bracket Œ�; �� on the space �.A/ of sections of A (or the sheaf of local
sections of A in the analytic case), such that the Leibniz rule

(1-37) Œ˛; fˇ�D .]˛.f //ˇCf Œ˛; ˇ�

is satisfied for any sections ˛; ˇ of A and function f on M .

The anchor map in a Lie algebroid is a Lie homomorphism from the Lie algebra �.A/
of sections on A to the Lie algebra V1.M / of vector fields on M . In other words, we
have

(1-38) ]Œ˛; fˇ�D Œ]˛; ]ˇ�

for any ˛; ˇ 2�.A/. This property follows from the other properties in the definition of
a Lie algebroid, though sometimes it is also included in the definition for convenience.

For example, the tangent bundle of a regular foliation on a manifold is a Lie algebroid:
the Lie bracket of sections is the usual Lie bracket of vector fields, and the anchor
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map is the inclusion map. Every Lie groupoid gives rise to a Lie algebroid, though the
inverse is not true (see, for example, Crainic–Fernandes [17].)

Lie algebroids are like cousins Poisson structures. If .M;…/ is a Poisson manifold,
then there is a unique corresponding Lie algebroid structure on T �M , such that
Œdf; dg�D dff;gg for any two functions f;g on M , and the anchor map is the anchor
map ]D…]W T �M ! TM of …. The Lie bracket of two general sections of T �M

(that is, 1–forms on M ) is given by the formula

(1-39) Œ˛; ˇ�D dh…;˛^ˇiC i]˛dˇ� i]ˇd˛ D L]˛ˇ�L]ˇ˛� dh…;˛^ˇi:

On the other hand, if .A!M; Œ; �; ]/ is a Lie algebroid, then there is a unique Poisson
structure on the total space A� of the dual bundle A�!M such that

ff;gg D 0;(1-40)

f˛; f g D .]˛/.f /;(1-41)

f˛; ˇg D Œ˛; ˇ�:(1-42)

for any functions f;g on M (considered as functions on A� which are constant
on the fibers) and any sections ˛; ˇ of A (considered as fiber-wise linear functions
on A� .) This correspondence between Lie algebroid structures on A and so-called
fiber-wise linear Poisson structures on A� is an 1–1 correspondence similar to the
1–1 correspondence between Lie algebras and linear Poisson structures. (See, for
example, Dufour–Zung [23, Chapter 8], and the text by Crainic and Fernandes [17] in
this volume.)

2 The Schouten bracket

2.1 Schouten bracket of multi-vector fields

Recall that, if A D
P

i ai
@
@xi

and B D
P

i bi
@
@xi

are two vector fields written in a
local system of coordinates .x1; : : : ;xn/, then the Lie bracket of A and B is

(2-1) ŒA;B�D
X

i

ai

�X
j

@bj

@xi

@

@xj

�
�

X
i

bi

�X
j

@aj

@xi

@

@xj

�
:

We will redenote @
@xi

by �i and consider them as formal, or odd variables: formal in
the sense that they don’t take values in a field, but still form an algebra, and odd in the
sense that �i�j D��j�i , that is, @

@xj
^

@
@xj
D�

@
@xj
^

@
@xi

. We can write AD
P

i ai�i
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and B D
P

i bi�i and consider them formally as functions of variables .xi ; �i/ which
are linear in the odd variables .�i/. We can write ŒA;B� formally as

(2-2) ŒA;B�D
X

i

@A

@�i

@B

@xi
�

X
i

@B

@�i

@A

@xi
:

The above formula makes the Lie bracket of two vector fields look pretty much like
the Poisson bracket of two functions in a Darboux coordinate system. In fact, one
may view vector fields on M as fiber-wise linear functions on T �M . Then the above
bracket coincides with the standard Poisson bracket on T �M of two fiber-wise linear
functions.

Now if …D
P

i1<���<ip
…i1:::ip

@
@xi1

^ : : :^ @
@xip

is a p–vector field, then we can regard
it as a homogeneous polynomial of degree p in the formal variables �i :

(2-3) …D
X

i1<���<ip

…i1:::ip�i1
: : : �ip :

It is important to remember that the variables �i do not commute. In fact, they anti-
commute among themselves, and commute with the variables xi :

(2-4) �i�j D��j�i I xi�j D �j xi I xixj D xj xi :

Due to the anti-commutativity of �i , one must be careful about the signs when dealing
with multiplications and differentiations involving these odd variables. The differentia-
tion rule that we will adopt is as follows:

(2-5)
@.�i1

: : : �ip /

@�ip
WD �i1

: : : �ip�1
:

Equivalently,
@.�i1

:::�ip /

@�ik

D .�1/p�k�i1
: : : y�ik

: : : �ip , where the hat means that �ik
is

missing in the product .1� k � p/.

If A is an a–vector field and B is a b–vector field (viewed as homogeneous polynomials
in the formal variables �i ), then generalizing Formula (2-2), we can define a bracket
ŒA;B�, called the Schouten bracket, of A and B , as follows:

(2-6) ŒA;B�D
X

i

@A

@�i

@B

@xi
� .�1/.a�1/.b�1/

X
i

@B

@�i

@A

@xi
:

Clearly, the Schouten bracket ŒA;B� of A and B as defined above is a homogeneous
polynomial of degree aC b� 1 in the formal variables �i , so it is a .aCb�1/–vector
field.

Theorem 2.1 (Schouten [58; 59], Nijenhuis [53]) The bracket defined by Formula
(2-6) satisfies the following properties:
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(a) Graded anti-commutativity: if A is an a–vector field and B is a b–vector field
then

(2-7) ŒA;B�D�.�1/.a�1/.b�1/ŒB;A� :

(b) Graded Leibniz rule: if A is an a–vector field, B is a b–vector field and C is a
c–vector field then

ŒA;B ^C �D ŒA;B�^C C .�1/.a�1/bB ^ ŒA;C �;(2-8)

ŒA^B;C �DA^ ŒB;C �C .�1/.c�1/b ŒA;C �^B:(2-9)

(c) Graded Jacobi identity:

(2-10) .�1/.a�1/.c�1/ŒA; ŒB;C ��C .�1/.b�1/.a�1/ŒB; ŒC;A��C

C .�1/.c�1/.b�1/ŒC; ŒA;B��D 0:

(d) If ADX is a vector field then

(2-11) ŒX;B�D LX B;

where LX denotes the Lie derivative by X . In particular, if A and B are two
vector fields then the Schouten bracket of A and B coincides with their Lie
bracket. If ADX is a vector field and B D f is a function (that is, a 0–vector
field) then

(2-12) ŒX; f �DX.f /D hdf;X i:

The proof of the above theorem is not difficult: it follows directly from Formula (2-6)
by a straightforward verification, see, for example, Dufour–Zung [23, Chapter 1].

A priori, the Schouten bracket of two multi-vector fields A and B , as defined by
Formula (2-6), may depend on the choice of local coordinates .x1; : : : ;xn/. However,
the Leibniz rules (2-8) and (2-9) show that the computation of ŒA;B� can be reduced
to the computation of the Lie brackets of vector fields. Since the Lie bracket of vector
fields does not depend on the choice of local coordinates, it follows that the Schouten
the bracket ŒA;B� is in fact well-defined and does not depend on the choice of local
coordinates. The graded Jacobi identity (2-10) means that the Schouten bracket is a
graded Lie bracket: the space V?.M /D

L
p�0 Vp.M /, where Vp.M / is the space

of smooth p–vector fields on a manifold M , is a graded Lie algebra, also known as
Lie super-algebra, under the Schouten bracket, if we define the grade of Vp.M / to be
p� 1. In other words, we have to shift the natural grading by �1 for V.M / together
with the Schouten bracket to become a graded Lie algebra in the usual sense.
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2.2 Schouten bracket of Poisson tensors

The Schouten bracket offers a very convenient way to characterize Poisson structures
and Hamiltonian vector fields:

Theorem 2.2 A 2–vector field … is a Poisson tensor if and only if the Schouten
bracket of … with itself vanishes:

(2-13) Œ…;…�D 0 :

If … is a Poisson tensor and f is a function, then the corresponding Hamiltonian vector
field Xf satisfies the equation

(2-14) Xf D�Œ…; f � :

Proof It follows directly from Formula (2-6) that Equation (2-13), when expressed
in local coordinates, is the same as Equation (1-8). Thus the first part of the above
theorem is a consequence of Proposition 1.1. The second part also follows directly
from Formula (2-6) and the definition of Xf :

�Œ…; f �D�
hX

i<j

…ij
@
@xi
^

@
@xj
; f
i
D�

X
i;j

…ij
@
@xi

@f
@xj
D

X
i;j

@f
@xi
…ij

@
@xj
DXf :

By abuse of language, we will call Equation (2-13) the Jacobi identity, because it is
equivalent to the usual Jacobi identity (1-3).

Example 2.3 If X1; : : : ;Xm are pairwise commuting vector fields and aij are con-
stants then …D

P
ij aij Xi ^Xj is a Poisson tensor: the fact that Œ…;…�D 0 follows

easily from the graded Leibniz rule.

The sum of two symplectic forms is a closed 2–form, and so if it is nondegenerate then
it is again a symplectic form. The situation with Poisson tensors is different: the sum
of two Poisson tensors is not a Poisson tensor in general. If …1 and …2 are Poisson
tensors on a manifold M such that …1C…2 is again a Poisson tensor, then on says
that …1 and …2 are compatible. In terms of the Schouten bracket, we have:

Lemma 2.4 Two Poisson structures …1 and …2 are compatible if and only if

(2-15) Œ…1;…2�D 0:
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Indeed, we have

Œ…1C…2;…1C…2�D Œ…1;…1�C Œ…2;…2�C 2Œ…1;…2�D 2Œ…1;…2�;

so Œ…1C…2;…1C…2�D 0 if and only if Œ…1;…2�D 0.

As a consequence, if …1 and …2 are two compatible Poisson structures, then we
have a whole 2–dimensional family of compatible Poisson structures (or projective
1–dimensional family): for any scalars c1 and c2 , c1…1C c2…2 is a Poisson structure.
Such a family of Poisson structures is often called a pencil of Poisson structures.

Example 2.5 (Miščenko–Fomenko [48]) On the dual g� of a Lie algebra g, besides
the standard Lie–Poisson structure ff;ggLP .x/D hŒdf .x/; dg.x/�;xi, consider the
following constant Poisson structure:

(2-16) ff;gga.x/D hŒdf .x/; dg.x/�; ai;

where a is a fixed element of g� . This constant Poisson structure f�; �ga and the
Lie–Poisson structure f�; �gLP are compatible. In fact, their sum is the affine (that is,
nonhomogeneous linear) Poisson structure

(2-17) ff;gg.x/D hŒdf .x/; dg.x/�;xC ai;

which can be obtained from the linear Poisson structure f�; �gLP by the pull-back of
the translation map x 7! xC a on g� .

Remark 2.6 Compatible Poisson structures play a very important role in the theory
of integrable systems, because bi-Hamiltonian systems, that is, dynamical systems
which are Hamiltonian with respect to two different compatible Poisson structures,
often turn out to be integrable. See, for example, Adler–van Moerbeke–Vanhaecke [1],
Audin [4], Babelon–Bernard–Talon [5], Bolsinov–Fomenko [6] and Dickey [19] for an
introduction to the theory of integrable Hamiltonian systems. The problem of normal
forms of pencils of compatible Poisson structures is a very interesting one, though we
will not touch it here.

2.3 The curl operator and the modular vector field

Let � be a smooth volume form on a m–dimensional manifold M , that is, a nowhere
vanishing differential m–form. Then for every p D 0; 1; : : : ;m, the map

(2-18) �[W Vp.M / �!�m�p.M /
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defined by �[.A/D iA�, that is, h�[.A/;Bi D h�;A^Bi for any .m�p/–vector
field B , is a C1.M /–linear isomorphism from the space Vp.M / of smooth p–vector
fields to the space �m�p.M / of smooth .m�p/–forms. The operator

(2-19) D�W Vp.M / �! Vp�1.M /

defined by

(2-20) D� D .�
[/�1
ı d ı�[

is called the curl operator on M with respect to �.

If A is a p–vector field, then D�A is a .p�1/–vector field, called the curl of A

(with respect to �). For example, the curl D�X of a vector field X is nothing but the
divergence of X with respect to the volume form �

Note that �[ intertwines D� with d: �[ ıD�D dı�[ . In particular, since dıdD 0,
we also have D� ı D� D 0. In a local system of coordinates .x1; : : : ;xn/ with
�D dx1 ^ : : :^ dxn , and denoting @

@xi
by �i , we have the following simple formula

for the curl operator:

(2-21) D�AD
X

i

@2A

@xi@�i
:

One can write the Schouten bracket in terms of the curl operator as follows:

Theorem 2.7 (Koszul [42]) If A is an a–vector field, B is a b–vector field and � is
a volume form then

(2-22) ŒA;B�D .�1/bD�.A^B/� .D�A/^B � .�1/bA^ .D�B/:

The proof of the above formula follows from Formulas (2-21) and (2-6) by a straight-
forward verification.

The curl operator is a graded derivation of the Schouten bracket. More precisely, we
have the formula

(2-23) D�ŒA;B�D ŒA;D�B�C .�1/b�1ŒD�A;B�:

If … is a Poisson tensor, then the vector field D�… is called the curl vector field, or
also the modular vector field, of … with respect to the volume form �. This curl vector
field is a Poisson vector field, and it also preserves the volume form. In other words,

(2-24) ŒD�…;…�D 0
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and

(2-25) L.D�…/�D 0:

Equality (2-24) from from the Jacobi identity Œ…;…�D 0 and Formula (2-23), while
Equality (2-25) is true for any 2–vector field …. Indeed, we have L.D�…/� D

i.D�…/d�C di.D�…/�D d.d.i…�//D 0.

If we change the volume form, then the curl operator changes according to the following
formula: for any non-vanishing function f we have

(2-26) Df �ADD�AC ŒA; ln jf j� :

In particular, when … is a Poisson structure then

(2-27) Df �…DD�A�Xf

where Xf is the Hamiltonian vector field of f .

The modular vector field plays an important role in some normalization problems of
Poisson structures, to be discussed later. Sometimes, in order to normalize …, one may
try to normalize its modular vector field first.

2.4 Schouten bracket on Lie algebras

The Schouten bracket on V?.M / extends the Lie bracket on V1.M / by the graded
Leibniz rule. Similarly, by the graded Leibniz rule (2-8)–(2-9) we can extend the Lie
bracket on any Lie algebra g to a natural graded Lie bracket on ^?gD

L1
kD0 ^

kg,
where ^kg means g^ : : :^ g (k times), which is also called the Schouten bracket.
More precisely, we have the following analog of Theorem 2.1:

Lemma 2.8 Given a Lie algebra g over K, there is a unique bracket on ^?g D
˚1

kD0
^k g which extends the Lie bracket on g and which satisfies the following

properties, 8 A 2 ^ag;B 2 ^bg;C 2 ^cg:

(a) Graded anti-commutativity:

(2-28) ŒA;B�D�.�1/.a�1/.b�1/ŒB;A�

(b) Graded Leibniz rule:

ŒA;B ^C �D ŒA;B�^C C .�1/.a�1/bB ^ ŒA;C �(2-29)

ŒA^B;C �DA^ ŒB;C �C .�1/.c�1/b ŒA;C �^B(2-30)
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(c) Graded Jacobi identity:

(2-31) .�1/.a�1/.c�1/ŒA; ŒB;C ��C .�1/.b�1/.a�1/ŒB; ŒC;A��

C .�1/.c�1/.b�1/ŒC; ŒA;B��D 0

(d) The bracket of any element in ^?g with an element in ^0gDK is zero.

Another equivalent way to define the Schouten bracket on ^?g is to identify ^?g with
the space of left-invariant multi-vector fields on G , where G is the simply-connected
Lie group whose Lie algebra is g, then restrict the Schouten bracket on V?.G/ to these
left-invariant multi-vector fields.

If �W g! V1.M / is a Lie homomorphism from g to the Lie algebra of vector fields
on a manifold M action (in other words, it is an action of G on M ), then it can be
extended in a unique way by the wedge product to a map

^�W ^?g! V?.M /:

For example, if x;y 2 g then ^�.x ^y/D �.x/^ �.y/.

Lemma 2.9 If �W g! V1.M / is a Lie algebra homomorphism then its extension
^�W ^?g! V?.M / preserves the Schouten bracket, that is,

^�.Œ˛; ˇ�/D Œ^�.˛/;^�.ˇ/� 8 ˛; ˇ 2 ^g:

In particular, if � 2 ^2g is such that Œ�; ��D 0, then ^�.�/ is a Poisson structure on
M .

The proof of the above lemma is straightforward, by induction, based on the Leibniz rule.
The equation Œ�; ��D 0 (for � 2 g) is called the classical Yang–Baxter equation (see
Gel’fand–Dorfmann [24]), and its solutions give rise to interesting Poisson structures.

2.5 Coupling tensors

In this section, following Vorobjev [64], we will give a description of a Poisson structure
in the neighborhood of a local symplectic leaf in terms of coupling tensors. As an
application, we will give a proof of Theorem 1.12.

First let us recall the notion of an Ehresmann (nonlinear) connection. Let pW E �! S

be a submersion over a manifold S . Denote by TV E the vertical subbundle of the
tangent bundle TE of E , and by V1

V
.E/ the space of vertical tangent vector fields (that

is, vector fields tangent to the fibers of the fibration) of E . An Ehresmann connection
on E is a splitting of TE into the direct sum of TV E and another tangent subbundle
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TH E , called the horizontal subbundle of E . It can be defined by a V1
V
.E/–valued

1–form � 2�1.E/˝V1
V
.E/ on E such that �.Z/DZ for every Z 2 TV E . Then

the horizontal subbundle is the kernel of � : TH E WD fX 2 TE; �.X /D 0g: For every
vector field u 2 V1.S/ on S , there is a unique lifting of u to a horizontal vector field
Hor.u/ 2 V1

H
.E/ on E (whose projection to S is u). The curvature of an Ehresmann

connection is a V1
V
.E/–valued 2–form on S , Curv� 2�2.S/˝V1

V
.E/, defined by

(2-32) Curv�.u; v/ WD ŒHor.u/;Hor.v/��Hor.Œu; v�/; u; v 2 V1.S/;

and the associated covariant derivative @� W �i.S/˝ C1.E/ �!�iC1.S/˝ C1.E/
is defined by an analog of Cartan’s formula:

(2-33) @�K.u1; : : : ;ukC1/D
X

i

.�1/iC1LHor.ui /.K.u1; : : : ; yui ; : : : ;ukC1//

C

X
i<j

.�1/iCj K.Œui ;uj �;u1; : : : ; yui ; : : : ; yuj ; : : : ;ukC1/:

Remark that @� ı @� D 0 if and only if � is a flat connection, that is, Curv� D 0:

Suppose now that S is a local symplectic leaf (that is, an open subset of a symplectic
leaf) in a Poisson manifold .M;…/, and E is a small tubular neighborhood of S

with a projection pW E �! S . Then there is a natural Ehresmann connection � 2
�1.E/˝V1

V
.E/ on E , whose horizontal subbundle is spanned by the Hamiltonian

vector fields Xf ıp , f 2 C1.S/. The Poisson structure … splits into the sum of its
horizontal part and its vertical part,

(2-34) …D VCH;

where V D …V 2 V2
V
.E/ and H D …H 2 V2

H
.E/ (there is no mixed part). The

horizontal 2–vector field H is nondegenerate on TH E . Denote by F its dual 2–form;
it is a section of ^2T �

H
E which can be defined by the following formula:

(2-35) F.Xf ıp;Xgıp/D h…;p
�df ^p�dgi; f;g 2 C1.S/;

(recall that Xf ıp;Xgıp 2 V1
H
.E/). Via the horizontal lifting of vector fields, F may

be viewed as a nondegenerate C1.E/–valued 2–form on S , F 2�2.S/˝ C1.E/.

The above triple .V; �;F/ is called a set of geometric data for .M;…/ in a neigh-
borhood of S . Conversely, given a set of geometric data .V; �;F/, one can define a
2–vector field … on E by the formula …DVCH , where H is the horizontal 2–vector
field dual to F . … is called the coupling tensor of .V; �;F/ (it couples a horizontal
tensor with a vertical tensor via a connection.) This construction of … in terms of
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coupling tensors generalizes the method of coupling tensors in symplectic geometry
(see, for example, Guillemin–Lerman–Sternberg [32]).

Theorem 2.10 (Vorobjev [64]) A triple of geometric data .V; �;F/ on a fibration
pW E �! S , where � is an Ehresmann connection on E , V 2 V2

V
.E/ is a vertical

2–vector field, and F 2�2.S/˝ C1.E/ is a nondegenerate C1.E/–valued 2–form
on S , determines a Poisson structure on E (by the above formulas) if and only if it
satisfies the following four compatibility conditions:

ŒV;V �D 0;(2-36)

LHor.u/V D 0 8 u 2 V1.S/;(2-37)

@�F D 0;(2-38)

Curv�.u; v/D V].d.F.u; v/// 8 u; v 2 V1.S/;(2-39)

where V] means the map from T �E to TE defined by hV].˛/; ˇi D hV; ˛^ˇi:

Proof Consider a local system of coordinates .x1; : : : ;xm;y1; : : : ;yn�m/ on E ,
where y1; : : : ;yn�m are local functions on a fiber and x1; : : : ;xm are local functions
on S (mDdim S is even). Denote the horizontal lifting of the vector field @xi WD@=@xi

from S to E by @xi . Then we can write …D VCH , where

V D 1
2

X
ij

aij@yi ^ @yj .aij D�aji/;(2-40)

HD 1
2

X
ij

bij@xi ^ @xj .bij D�bji/;(2-41)

and H is the dual horizontal 2–vector field of F .

The condition Œ…;…�D 0 is equivalent to

(2-42) 0D ŒV;V �C 2ŒV;H�C ŒH;H�DACBCC CD;

where

AD ŒV;V �;(2-43)

B D 2
X

i

ŒV; @xi �^Xi ; where Xi D

X
j

bij@xj ;(2-44)

C D
X
ij

ŒV; bij �^ @xi ^ @xj C

X
ij

@xi ^ @xj ^

�X
kl

bikbjl Œ@xk ; @xl �

�
;(2-45)

D D
X
ijkl

bij@xj .bkl/ @xi ^ @xk ^ @xl :(2-46)
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Notice that A;B;C;D belong to complementary subspaces of V3.E/, so the condition
ACBCC CD D 0 means that AD B D C DD D 0.

The equation AD 0 is nothing but Condition (2-36): ŒV;V �D 0.

The equation B D 0 means that ŒV; @xi � D 0 8 i , that is, L
@xi

V D 0 8 i , which is
equivalent to Condition (2-37).

The equation D D 0 means that
H

ikl

P
j bij@xj .bkl/ D 0 8 i; k; l , where

H
ikl de-

notes the cyclic sum. Let us show that this condition is equivalent to Condition
(2-38). Notice that F.@xi ; @xj /D cij , where .cij / is the inverse matrix of .bij /, and
@�F.@xi ; @xj ; @xk/D

H
ijk @xi.cjk/. By direct computations, we have

(2-47) @�F

�X
˛

bi˛@x˛;
X
ˇ

bjˇ@xˇ;
X


bk@x

�
D 2

I
ijk

X
l

bil@xl.bjk/:

Thus the condition D D 0 is equivalent to the condition

(2-48) @�F

�X
˛

bi˛@x˛;
X
ˇ

bjˇ@xˇ;
X


bk@x

�
D 0 8 i; j ; k:

Since the matrix .bij / is invertible, the last condition is equivalent to @�F D 0.

Similarly, by direct computations, one can show that the condition C D 0 is equivalent
to Condition (2-39).

Proof of Theorem 1.12 We may assume that x0 ¤ x1 . There is a local projection
from a neighborhood E of S to S such that N0 and N1 are the local fibers (that is,
the preimages of x0 and x1 respectively). Equation (2-36) means that the vertical
part V of … is a Poisson tensor on each fiber, and in particular …N0

and …N1
are

Poisson (that we already know). Equation (2-37) means that the Ehresmann connection
preserves the vertical Poisson tensor. Thus consider an arbitrary path on S which
goes from x0 to x1 , then the parallel transport along this part will be a local Poisson
diffeomorphism from N0 to N1 .

3 Poisson cohomology

3.1 Definition of Poisson cohomology

Poisson cohomology was introduced by Lichnerowicz [44]. Its existence is based on
the following simple lemma.
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Lemma 3.1 If … is a Poisson tensor, then for any multi-vector field A we have

(3-1) Œ…; Œ…;A��D 0 :

Proof By the graded Jacobi identity (2-10) for the Schouten bracket, if … is a 2–vector
field and A is an a–vector field then

.�1/a�1Œ…; Œ…;A��� Œ…; ŒA;…��C .�1/a�1ŒA; Œ…;…��D 0:

Moreover, ŒA;…� D �.�1/a�1Œ…;A� due to the graded anti-commutativity, hence
Œ…; Œ…;A��D�1

2
ŒA; Œ…;…��. Now if … is a Poisson structure, then Œ…;…�D 0, and

therefore Œ…; Œ…;A��D 0.

Let .M;…/ be a smooth Poisson manifold. Denote by ı D ı…W V?.M / �! V?.M /

the R–linear operator on the space of smooth multi-vector fields on M , defined as
follows:

(3-2) ı….A/D Œ…;A�

Then Lemma 3.1 says that ı… is a differential operator in the sense that ı… ı ı… D 0.
The corresponding differential complex .V?.M /; ı/, that is,

(3-3) � � � �! Vp�1.M /
ı
�! Vp.M /

ı
�! VpC1.M / �! � � � ;

will be called the Lichnerowicz complex. The cohomology of this complex is called
Poisson cohomology.

By definition, Poisson cohomology groups of .M;…/ are the quotient groups

(3-4) H
p
…
.M /D

ker.ıW Vp.M / �! VpC1.M //

im.ıW Vp�1.M / �! Vp.M //
:

For example, the modular vector field of … (see Section 2.3) is an 1–cocycle in the
Lichnerowicz complex, whose cohomology class is well-defined (that is, it does not
depend on the choice of a volume form), and is called the modular class of …. If this
modular class vanishes, then … is called a unimodular Poisson structure. The Poisson
tensor … is itself a 2–cocycle in the Lichnerowicz complex. If the cohomology class
of … in H 2

…
.M / vanishes, that is, there is a vector field Y such that …D Œ…;Y �, then

… is called an exact Poisson structure.

Poisson cohomology groups can be infinite-dimensional even on compact manifolds.
For example, when … D 0 then H?

…
.M / WD

L
k H k

…
.M / D V?.M /. Even though

methods for studying Poisson cohomology exist (Mayer–Vietoris sequence, spectral
sequences, tools from homological algebra, singularity theory, etc., see, for exam-
ple, Crainic [16], Dufour–Zung [23], Ginzburg–Lu [29], Ginzburg–Golubev [28],
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Ginzburg [25; 26; 27], Huebschmann [37], Monnier [50], Pichereau [56], Vaisman [62],
Weinstein–Xu [72] and Xu [73]), it is very difficult to compute Poisson cohomology in
general, and for many interesting Poisson manifolds little is known about their Poisson
cohomology.

3.2 Poisson cohomology versus de Rham cohomology

Given a Poisson structure …, the anchor map ]D…]W T �M ! TM can be extended
naturally, by taking exterior products, to a map ]W ƒpT �M �!ƒpTM , and hence a
C1.M /–linear homomorphism

(3-5) ]W �p.M / �! Vp.M /;

from the space of p–differential forms to the space of p–vector fields, for each p .

Lemma 3.2 For any differential form � on a given Poisson manifold .M;…/ we have

(3-6) ].d�/D�Œ…; ].�/�D�ı….].�//:

Proof By induction on the degree of �, using the Leibniz rule. If � is a function then
].�/D � and ].d�/D�Œ…; ��DX� , the Hamiltonian vector field of �. If �D df is
an exact 1–form then ].d�/D 0 and Œ…; ].�/�D Œ…;Xf �D 0, hence Equation (3-6) is
satisfied. If Equation (3-6) is satisfied for a differential p–form � and a differential
q–form �, then its also satisfied for their exterior product �^�. Indeed, we have

].d.�^�//D ].d�^�C .�1/p�^ d�/D ].d�/^ ].�/C .�1/p].�/^ ].d�/

D�Œ…; ].�/�^ ].�/� .�1/p].�/^ Œ…; ].�/�D�Œ…; ].�/^ ].�/�D�Œ…; ].�^�/�;

which completes the proof.

The above lemma means that, up to a sign, the operator ] intertwines the usual
differential operator d of the de Rham complex

(3-7) � � � �!�p�1.M /
d
�!�p.M /

d
�!�pC1.M / �! � � �

with the differential operator ı… of the Lichnerowicz complex. In particular, it induces
a homomorphism of the corresponding cohomologies. In other words, we have:

Theorem 3.3 (Lichnerowicz [44]) For every smooth Poisson manifold .M;…/, there
is a natural homomorphism

(3-8) ]�W H?
dR.M /D

M
p

H
p

dR
.M / �!H?

….M /D
M

p

H
p
…
.M /
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from its de Rham cohomology to its Poisson cohomology, induced by the map ]D ]… .
If M is a symplectic manifold, then this homomorphism is an isomorphism.

Remark 3.4 When M is symplectic, ] is an isomorphism, and that’s why ]� also is.
If .M;…/ is not symplectic then the map ]�W H?

dR
.M /!H?

…
.M / is nether injective

nor surjective in general. de Rham cohomology has a graded Lie algebra structure,
given by the cap product (induced from the exterior product of differential forms).
So does Poisson cohomology. The Lichnerowicz homomorphism ]�W H?

dR
.M / �!

H?
…
.M / in the above theorem is not only a linear homomorphism, but also an algebra

homomorphism, because ] is compatible with the exterior product.

3.3 Interpretation of Poisson cohomology

The zeroth Poisson cohomology group H 0
…
.M / is the group of functions f 2 C1.M /

such that Xf D�Œ…; f �D 0. Such functions are called Casimir functions of …: they
are first integrals of the characteristic foliation of .M;…/, that is, they are invariant on
the symplectic leaves.

The first Poisson cohomology group H 1
…
.M / is the quotient of the space of Poisson

vector fields (that is, vector fields X such that Œ…;X �D 0) by the space of Hamiltonian
vector fields (that is, vector fields of the type Œ…; f �D X�f ). Poisson vector fields
are infinitesimal automorphisms of the Poisson structures, while Hamiltonian vector
fields may be interpreted as inner infinitesimal automorphisms. Thus H 1

…
.M / may be

interpreted as the space of outer infinitesimal automorphisms of ….

The second Poisson cohomology group H 2
…
.M / is the quotient of the space of 2–vector

fields ƒ which satisfy the equation Œ…;ƒ�D 0 by the space of 2–vector fields of the
type ƒ D Œ…;Y �. If Œ…;ƒ� D 0 and � is a formal (infinitesimal) parameter, then
…C �ƒ satisfies the Jacobi identity up to terms of order �2 :

(3-9) Œ…C �ƒ;…C �ƒ�D �2Œƒ;ƒ�D 0 mod �2:

So one may view … C �ƒ as an infinitesimal deformation of … in the space of
Poisson tensors. On the other hand, up to terms of order �2 , …C �Œ…;Y � is equal
to .'�

Y
/�…, where '�

Y
denotes the time-� flow of Y . Therefore …C �Œ…;Y � is a

trivial infinitesimal deformation of … up to a infinitesimal diffeomorphism. Thus,
H 2
…
.M / is the quotient of the space of all possible infinitesimal deformations of … by

the space of trivial deformations. In other words, H 2
…
.M / may be interpreted as the

moduli space of formal infinitesimal deformations of …. For this reason, the second
Poisson cohomology group plays a central role in the study of normal forms of Poisson
structures. In particular, if H 2

…
.M /D 0, then … is infinitesimally rigid, that is, it does

not admit a nontrivial infinitesimal deformation.
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The third Poisson cohomology group H 3
…
.M / may be interpreted as the space of

obstructions to formal deformation. Suppose that we have an infinitesimal deformation
…C �ƒ, that is, Œ…;ƒ�D 0. Then a-priori, …C �ƒ satisfies the Jacobi identity only
modulo �2 . To make it satisfy the Jacobi identity modulo �3 , we have to add a term
�2ƒ2 such that

(3-10) Œ…C �ƒC �2ƒ2;…C �ƒC �
2ƒ2�D 0 mod �3:

The equation to solve is 2Œ…;ƒ2�D�Œƒ;ƒ�. This equation can be solved if and only
if the cohomology class of Œƒ;ƒ� in H 3

…
.M / is trivial. Similarly, if (3-10) is already

satisfied, to find a term �3ƒ3 such that

(3-11) Œ…C �ƒC �2ƒ2C �
3ƒ3;…C �ƒC �

2ƒ2C �
3ƒ3�D 0 mod �4;

we have to make sure that the cohomology class of Œƒ;ƒ2� in H 3
…
.M / vanishes, and

so on.

3.4 Other versions of Poisson cohomology

If, in the Lichnerowicz complex, instead of smooth multi-vector fields, we consider other
classes of multi-vector fields, then we arrive at other versions of Poisson cohomology.
For example, if … is an analytic Poisson structure, and one considers analytic multi-
vector fields, then one gets analytic Poisson cohomology.

Recall that, a germ of an object (for example, a function, a differential form, a Rie-
mannian metric, etc.) at a point z is an object defined in a neighborhood of z . Two
germs at z are considered to be the same if there is a neighborhood of z in which they
coincide. When considering a germ of smooth (resp. analytic) Poisson structure … at a
point z , it is natural to talk about germified Poisson cohomology: the space V?.M / in
the Lichnerowicz complex is replaced by the space of germs of smooth (resp. analytic)
multi-vector fields. More generally, given any subset N of a Poisson manifold .M;…/,
one can define germified Poisson cohomology at N . Similarly, one can talk about
formal Poisson cohomology. By convention, the germ of a formal multi-vector field is
itself. Viewed this way, formal Poisson cohomology is the formal version of germified
Poisson cohomology.

If M is not compact, then one may be interested in Poisson cohomology with compact
support, by restricting one’s attention to multi-vector fields with compact support.
Remark that Theorem 3.3 also holds in the case with compact support: if .M;…/ is a
symplectic manifold then its de Rham cohomology with compact support is isomorphic
to its Poisson cohomology with compact support.
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If one considers only multi-vector fields which are tangent to the characteristic distri-
bution, then one gets tangential Poisson cohomology. (A multi-vector field � is said
to be tangent to a distribution D on a manifold M if at each point x 2M one can
write ƒ.x/D

P
aivi1 ^ : : :^ vis where vij are vectors lying in D ). It is easy to see

that the homomorphism ]� in Theorem 3.3 also makes sense for tangential Poisson
cohomology (and tangential de Rham cohomology).

The above versions of Poisson cohomology also have a natural interpretation, similar
to the one given for smooth Poisson cohomology.

4 Local normal forms of Poisson structures

4.1 (Quasi-)homogenization of Poisson structures

Consider a Poisson structure … on a manifold M . In a given system of coordinates
.x1; : : : ;xm/, … has the expression

(4-1) …D
X
i<j

…ij
@

@xi
^

@

@xj
D

1

2

X
i;j

…ij
@

@xi
^

@

@xj
:

A-priori, the coefficients …ij of … may be very complicated, non-polynomial functions.
The idea of normal forms is to simplify these coefficients in the expression of ….

A local normal form of … is a Poisson structure

(4-2) …0 D
X
i<j

…0ij
@

@x0i
^

@

@x0j
D

1

2

X
i;j

…0ij
@

@x0i
^

@

@x0j

which is locally (or formally) isomorphic to …, that is, there is a local (or formal)
diffeomorphism 'W .xi/ 7! .x0i/ called a normalization such that '�…D…0 , such that
the functions …0ij are “simplest possible”. The ideal would be that …0ij were constant
functions. According to Remark 1.10, such a local normal form exists when … is a
regular Poisson structure.

Near a singular point of …, we can use the splitting Theorem 1.9 to write … as the
direct sum of a constant symplectic structure with a Poisson structure which vanishes
at a point. The local normal form problem for … is then reduced to the problem of
local normal forms for a Poisson structure which vanishes at a point.

Having this in mind, we now assume that … vanishes at the origin 0 of a given local
coordinate system .x1; : : : ;xm/. Denote by

(4-3) …D….k/C….kC1/
C � � �C….kCn/

C � � � .k � 1/
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the Taylor expansion of … in the coordinate system .x1; : : : ;xm/, where for each
h 2N , ….h/ is a 2–vector field whose coefficients ….h/ij are homogeneous polynomial
functions of degree h. ….k/ , assumed to be non-trivial, is the term of lowest degree in
…, and is called the homogeneous part of …. If k D 1 then ….1/ is called the linear
part of …, and so on. This homogeneous part can be defined intrinsically, that is, it
does not depend on the choice of local coordinates.

At the formal level, the Jacobi identity for … can be written as

0D Œ…;…�D Œ….k/C….kC1/
C � � � ;….k/C….kC1/

C � � � �

D Œ….k/;….k/�C 2Œ….k/;….kC1/�C 2Œ….k/;….kC2/�C Œ….kC1/;….kC1/�C � � � ;

which leads to (by considering terms of the same degree):

(4-4)

Œ….k/;….k/�D 0;

2Œ….k/;….kC1/�D 0;

2Œ….k/;….kC2/�C Œ….kC1/;….kC1/�D 0;

:::

In particular, the homogeneous part ….k/ of … is a Poisson structure, and … may
be viewed as a deformation of ….k/ . A natural homogenization question arises: is
this deformation trivial ? In other words, is … locally (or formally) isomorphic to
its homogeneous part ….k/ ? That’s where Poisson cohomology comes in, because,
as explained in Section 3.3, Poisson cohomology governs (formal) deformations of
Poisson structures. When k D 1, one talks about the linearization problem, and when
k D 2 one talks about the quadratization problem, and so on.

In this section we will discuss, at the formal level, a more general problem of quasi-
homogenization.

Denote by

(4-5) Z D

mX
iD1

wixi
@

@xi
; wi 2N;

a given diagonal linear vector field with positive integral coefficients wi . Such a
vector field is called a quasi-radial vector field. (It is the usual radial vector field if
wi D 1 8i .)

A multi-vector field ƒ is called quasi-homogeneous of degree d (d 2 Z) with respect
to Z if

(4-6) LZƒD dƒ:

Geometry & Topology Monographs, Volume 17 (2011)



Normal forms of Poisson structures 141

For a function f , it means Z.f /D df . For example, a monomial k –vector field

(4-7)
� mY

iD1

x
ai

i

�
@

@xj1

^ : : :^
@

@xjk

; ai 2 Z�0;

is quasi-homogeneous of degree
Pm

iD1 aiwi �
Pk

sD1wjs
. As a consequence, quasi-

homogeneous multi-vector fields are automatically polynomial in the usual sense. Note
that the quasi-homogeneous degree of a monomial multi-vector field can be negative,
though it is always greater or equal to �

Pm
iD1wi .

Given a Poisson structure … with ….0/D 0, by abuse of notation, we will now denote
by

(4-8) …D….d1/C….d2/C � � � ; d1 < d2 < � � �

the quasi-homogeneous Taylor expansion of … with respect to Z , where each term
….di / is quasi-homogeneous of degree di . The term ….d1/ , assumed to be non-
trivial, is called the quasi-homogeneous part of …. Similarly to the case with usual
homogeneous Taylor expansion, the Jacobi identity for … implies the Jacobi identity
for ….d1/ , which means that ….d1/ is a quasi-homogeneous Poisson structure, and …
may be viewed as a deformation of ….d1/ . The quasi-homogenization problem is the
following: is there a transformation of coordinates which sends … to ….d1/ , that is,
which kills all the terms of quasi-homogeneous degree > d1 in the expression of …?

In order to treat this quasi-homogenization problem at the formal level, we will need
the quasi-homogeneous graded version of Poisson cohomology.

Let ….d/ be a Poisson structure on an m–dimensional space V DKm (where KDR
or C ), which is quasi-homogeneous of degree d with respect to a given quasi-radial
vector field Z D

Pm
iD1wixi

@
@xi

. For each r 2 Z, denote by Vk
.r/
D Vk

.r/
.Km/ the

space of quasi-homogeneous polynomial k –vector fields on Km of degree r with
respect to Z . Of course, we have

(4-9) Vk
D˚rVk

.r/;

where Vk D Vk.Km/ is the space of all polynomial vector fields on Km . Note that, if
ƒ 2 Vk

.r/
then

LZ Œ…
.d/; ƒ�D ŒLZ…

.d/; ƒ�C Œ….d/;LZƒ�D .d C r/Œ….d/; ƒ�;

that is, ı….d/ƒD Œ….d/; ƒ� 2 VkC1
.rCd/

. The group

(4-10) H k
.r/.…

.d//D
ker

�
ı….d/ W Vk

.r/
�! VkC1

.rCd/

�
im
�
ı….d/ W Vk�1

.r�d/
�! Vk

.r/

�
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is called the k th quasi-homogeneous of degree r Poisson cohomology group of ….d/ .
Of course, there is a natural injection from H k

.r/
.….d// to H k.….d//, the usual (formal,

analytic or smooth) Poisson cohomology group of ….d/ over Km . While H k.….d//

may be of infinite dimension, H k
.r/
.….d// is always of finite dimension for each r .

Return now to the quasi-homogeneous Taylor series …D….d1/C….d2/C � � � . The
Jacobi identity for … implies that Œ….d1/;….d2/� D 0, that is, ….d2/ is a quasi-
homogeneous cocycle in the Lichnerowicz complex of ….d1/ . If this term ….d2/

is a coboundary, that is, ….d2/ D Œ….d1/;X .d2�d1/� for some quasi-homogeneous
vector field X .d2�d1/ DX

.d2�d1/
i @=@xi , then the coordinate transformation x0i D

xi �X
.d2�d1/
i will kill the term ….d2/ in the expression of …. More generally, we

have:

Proposition 4.1 With the above notations, suppose that ….dk/ D ŒX;….d1/�Cƒ.dk/

for some k > 1, where X D Xi@=@xi is a quasi-homogeneous vector field of degree
dk � d1 . Then the diffeomorphism (coordinate transformation) �W .xi/ 7! .x0i/ D

.xi �Xi/ transforms … into

(4-11) ��…D…
.d1/C � � �C….dk�1/Cƒ.dk/C z….dkC1/ � � � :

In other words, this transformation suppresses the term ŒX;….d1/� without changing
the terms of degree strictly smaller than dk :

Proof Denote by � D ��…. For the Poisson structure … we have

fx0i ;x
0
j g D

X
uv

@x0i
@xu

@x0j

@xv
fxu;xvg D

X
uv

@x0i
@xu

@x0j

@xv
…uv

D

X
uv

�
ıu

i �
@Xi

@xu

��
ıvj �

@Xj

@xv

��
….d1/C….d2/C � � �

�
uv
;

where ıu
i is the Kronecker symbol, and the terms of degree smaller or equal to dk in

this expression give�
….d1/C � � �C….dk/

�
ij
�

X
u

@Xi

@xu
…
.d1/
uj �

X
v

@Xj

@xv
…
.d1/
iv :

On the other hand, by definition, fx0i ;x
0
j g is equal to �ij ı�: But the terms of degree

smaller or equal to dk in the expansion of �ij ı� are

�
�.d1/C � � �C�.dk/

�
ij
�

X
s

Xs

@�
.d1/
ij

@xs
:
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Comparing the terms of degree d1; : : : ; dk�1 , we get

�
.d1/
ij D…

.d1/
ij ; : : : ; �

.dk�1/
ij D…

.dk�1/
ij :

As for the terms of degree dk , they give

�
.dk/
ij �

X
s

Xs

@…
.d1/
ij

@xs
D…

.dk/
ij �

X
u

@Xi

@xu
…
.d1/
uj �

X
v

@Xj

@xv
…
.d1/
iv :

As we have

�
X;….d1/

�
ij
D

X
s

Xs

@…
.d1/
ij

@xs
�

X
u

@Xi

@xu
…
.d1/
uj �

X
v

@Xj

@xv
…
.d1/
iv ;

it follows that

�
.dk/
ij D…

.dk/
ij C

�
X;….d1/

�
ij
D…

.dk/
ij �

�
….d1/;X

�
ij
Dƒ

.dk/
ij :

The proposition is proved.

Theorem 4.2 If the quasi-homogeneous Poisson cohomology groups H 2
.r/
.….d// of

a quasi-homogeneous Poisson structure ….d/ of degree d are trivial for all r > d ,
then any Poisson structure admitting a formal quasi-homogeneous expansion … D
….d/C….d2/C � � � is formally isomorphic to its quasi-homogeneous part ….d/ .

Proof Use Proposition 4.1 to kill the terms of degree strictly greater than d in …
consecutively. Note that the resulting normalization is in general a composition of a
infinite number of consecutive transformations, which converges in the formal category,
but not necessarily in the analytic or smooth category. So the normalization is only
formal in general.

Example 4.3 One can use Theorem 4.2 to show that any Poisson structure on K2 of
the form

…D f
@

@x
^
@

@y
;

where f D x2Cy3C.higher order terms/, is formally isomorphic to .x2Cy3/ @
@x
^
@
@y

.
(This is a simple singularity studied by Arnol’d [2], and its Poisson cohomology was
studied by Monnier [50]). The quasi-radial vector field in this case is ZD3x @

@x
C2y @

@y
.
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4.2 Formal linearization of Poisson structures

A particular case of the above discussion is when Z D
Pm

iD1 xi
@
@xi

is the usual radial
vector field. Then we get back to the usual homogenization problem. Remark that there
is a shifting in the degrees: if A is a homogeneous polynomial 2–vector field of degree
d in the usual sense (that is, the coefficients of A are homogeneous polynomials of
degree d ), then A is of quasi-homogeneous of degree .d�2/ with respect to the radial
vector field

Pm
iD1 xi

@
@xi

. In this section, ….d/ will mean the homogeneous term of
degree d in the Taylor expansion of …, that is, of quasi-homogeneous degree .d � 2/

with respect to
Pm

iD1 xi
@
@xi

.

Assume that the linear part ….1/ of … is nontrivial. Then we have the following special
case of Theorem 4.2:

Proposition 4.4 Assume that the homogeneous second Poisson cohomology groups
H 2
.r/
.….1// of a linear Poisson structure ….1/ are trivial for all r > 1, then any Poisson

structure admitting a formal Taylor expansion … D ….1/ C….2/ C � � � is formally
linearizable, that is, formally isomorphic to its linear part ….1/ .

In order to apply the above proposition, one needs to compute the second cohomology
of the homogeneous subcomplexes

(4-12) � � � �! Vp�1

.r/

ı
�! Vp

.r/

ı
�! VpC1

.r/
�! � � � ;

of the Lichnerowicz complex, where Vp

.r/
here denotes the space of homogeneous

p–vector fields of degree r � 2 on Km , and ı D Œ….1/; :�. We will show that this
homogeneous Poisson cohomology is a special case of the Lie algebra cohomology.

Let us recall the definition of Lie algebra cohomology. Let g be a Lie algebra, and
W a g–module, that is, a vector space together with a Lie algebra homomorphism
�W g!End.W / from g to the Lie algebra of endomorphisms of W . The action of
an element x 2 g on a vector v 2W is defined by x:v D �.x/.v/: One associates to
W the following differential complex, called Chevalley–Eilenberg complex of g with
coefficients in W (see Chevalley–Eilenberg [12]):

(4-13) � � �
ı
�! C k�1.g; �/

ı
�! C k.g; �/

ı
�! C kC1.g; �/

ı
�! � � � ;

where

(4-14) C k.g; �/D .^kg�/˝W
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(k � 0) is the space of k –multilinear antisymmetric maps from g to W : an element
� 2 C k.g; �/ may be presented as a k –multilinear antisymmetric map from g to W ,
or a linear map from ^kg to W :

(4-15) �.x1; : : : ;xk/D �.x1 ^ : : :^xk/ 2W; xi 2 g:

The operator ıD ıCE W C
k.g; �/!C .kC1/.g; �/ in the Chevalley–Eilenberg complex

is defined by the following formula, analogous to Cartan’s formula (1-14):

(4-16) .ı�/.x1; : : : ;xkC1/D
X

i

.�1/iC1�.xi/.�.x1; : : : ; yxi ; : : : ;xkC1//C

C

X
i<j

.�1/iCj�.Œxi ;xj �;x1; : : : ; yxi ; : : : ; yxj ; : : : ;xkC1/;

where the symbol y above a variable means that this variable is missing in the list.
The fact that ıCE ı ıCE D 0 follows directly from the Jacobi identity for g. The
cohomology groups

(4-17) H k.g; �/DH k.g;W /D
ker

�
ıW C k.g; �/ �! C kC1.g; �/

�
im
�
ıW C k�1.g; �/ �! C k.g; �/

�
of the above complex are called cohomology groups of g with coefficients in W (or
more precisely, with respect to the representation �).

Consider now the case when g is the Lie algebra associated to ….1/ (that is, the Lie
algebra of linear functions on Km with respect to the linear Poisson bracket given by
….1/ ), and W D Srg, the r –symmetric power of g together with the adjoint action of
g:

(4-18) �.x/.xi1
: : :xiq

/D

qX
sD1

xi1
: : : Œx;xis

� : : :xiq
:

The space W D Srg can be naturally identified with the space of homogeneous
polynomials of degree r on Kn , and we can write

(4-19) �.x/:f D fx; f g;

where f 2 Sqg, and fx; f g denotes the Poisson bracket of x with f with respect to
….1/ .

The space Vp

.r/
D Vp

.r/
.Km/ of homogeneous p–vector fields of degree r on Km can

be identified with C p.g;Srg/ as follows: For

(4-20) AD
X

i1<���<ip

Ai1;:::;ip

@

@xi1

^ : : :^
@

@xip

2 Vp

.r/
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define �A 2 C p.g;Srg/ by

(4-21) �A.xi1
; : : : ;xip /DAi1;:::;ip :

Lemma 4.5 With the above identification A $ �A , the Lichnerowicz differential
operator ıLP D Œ…

.1/; :�W Vp

.r/
�! VpC1

.r/
is identified with the Chevalley–Eilenberg

differential operator ıCE W C
p.g;Srg/ �! C pC1.g;Srg/.

The proof of the above lemma is a straightforward verification.

Remark 4.6 In Lemma 4.5, the fact that A is homogeneous is not so important. What
is important is that the module W in question can be identified with a subspace of
the space of functions on Kn , where the action of g is given by the Poisson bracket,
that is, by Formula (4-19). The following smooth (as compared to homogeneous)
version of Lemma 4.5 is also true, with a similar proof (see, for example, Ginzburg [26],
Ginzburg–Weinstein [30] and Lu [45; 46]): if U is an Ad�–invariant open subset of
the dual g� of the Lie algebra g of a connected Lie group G (or more generally, an
open subset of a dual Poisson–Lie group G� which is invariant under the dressing
action of G – Poisson–Lie groups will be introduced later in the book), then

(4-22) H?
….U /ŠH?.g;C1.U // ;

where the action of g on C1.U / is induced by the coadjoint (or dressing) action, and
a natural isomorphism exists already at the level of cochain complexes. In particular,
if G is compact semisimple, then this formula together with the Fréchet-module
version of Whitehead’s lemmas (Remark 4.10) leads to the following formula (see
Ginzburg–Weinstein [30]):

(4-23) H?
….U /DH?.g/˝ .C1.U //G D

M
k¤1;2

H k.g/˝ .C1.U //G :

An immediate consequence of Lemma 4.5 and Proposition 4.4 is the following:

Theorem 4.7 (Weinstein [68]) If g is a finite-dimensional Lie algebra such that
H 2.g;Skg/ D 0 8 k � 2, then any formal Poisson structure … which vanishes at a
point and whose linear part ….1/ at that point corresponds to g is formally linearizable.
In particular, it is the case when g is semisimple.

The last part of the above theorem follows from Whitehead’s lemma, which says that the
second cohomology of a semisimple Lie algebra with respect to any finite-dimensional
module is trivial. Actually, there are two Whitehead’s lemmas:
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Lemma 4.8 (Whitehead) If g is semisimple, and W is a finite-dimensional g–
module, then H 1.g;W /D 0 and H 2.g;W /D 0.

Lemma 4.9 (Whitehead) If g is semisimple, and W is a finite-dimensional g–
module such that W gD 0, where W gDfw 2W j x:wD 0 8 x 2 gg denotes the set of
elements in W which are invariant under the action of g, then H k.g;W /D 0 8 k � 0.

See, for example, Jacobson [38] for the proof of the above Whitehead’s lemmas.
Let us also mention that if g is simple then dim H 3.g;K/ D 1. Combining the
two Whitehead’s lemmas with the fact that any finite-dimensional module W of a
semisimple Lie algebra g is completely reducible, one gets the following formula:

(4-24) H?.g;W /DH?.g;K/˝W g
D

M
k¤1;2

H k.g;K/˝W g:

Remark 4.10 If W is a smooth Frï¿ 1
2

chet module of a compact Lie group G and g

is the Lie algebra of G , then the formula H?.g;W /DH?.g;R/˝W g is still valid,
see Ginzburg [26]. In particular, if a compact Lie group G acts on a smooth manifold
M , then C1.M / is a smooth Fréchet G –module, and we have

(4-25) H?.g;C1.M //DH?.g;R/˝ .C1.M //g:

4.3 Nondegenerate and rigid Lie algebras

Following Weinstein [68], we will say that a finite-dimensional Lie algebra g is called
formally (resp. analytically, resp. smoothly) nondegenerate if any formal (resp. analytic,
resp. smooth) Poisson structure … which vanishes at a point and whose linear part at
that point corresponds to g is formally (resp. analytically, resp. smoothly) linearizable.

For example, according to Theorem 4.7, any semi-simple Lie algebra is formally
nondegenerate. There are many non-semisimple Lie algebras which are formally
nondegenerate as well. In the next section we will show that most 3–dimensional
solvable Lie algebras are formally nondegenerate. On the other hand, there are also
many (formally, analytically and smoothly) degenerate Lie algebras.

Example 4.11 The Lie algebra saff.2;K/ D sl.2;K/ Ë K2 of infinitesimal area-
preserving affine transformations on K2 is degenerate: The linear Poisson structure
corresponding to saff.2/ has the form

….1/ D 2e@h^ @e� 2f @h^ @f C h@e^ @f

Cy1@h^ @y1�y2@h^ @y2Cy1@e^ @y2Cy2@f ^ @y1
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in a natural system of coordinates. Now put …D….1/C z… with z…D .h2C4ef /@y1^

@y2: Then … is a Poisson structure, vanishing at the origin, with a linear part cor-
responding to saff.2/: For ….1/ the set where the rank is less or equal to 2 is a
codimension 2 linear subspace (given by the equations y1 D 0 and y2 D 0). For …
the set where the rank is less or equal to 2 is a 2–dimensional cone (the cone given by
the equations y1 D 0; y2 D 0 and h2C4ef D 0). So these two Poisson structures are
not isomorphic, even formally.

Example 4.12 The Lie algebra e.3/D so.3/Ë R3 of rigid motions of the Euclidean
space R3 is also degenerate: The linear Poisson structure corresponding to e.3/ has
the form

….1/ D x1@x2 ^ @x3Cx2@x3 ^ @x1Cx3@x1 ^ @x2

Cy1@x2 ^ @y3Cy2@x3 ^ @y1Cy3@x1 ^ @y2

in a natural system of coordinates. Now put …D….1/C z… with

z…D .x2
1 Cx2

2 Cx2
3/.x1@x2 ^ @x3Cx2@x3 ^ @x1Cx3@x1 ^ @x2/:

For ….1/ the set where the rank is less or equal to 2 is a dimension 3 subspace (given
by the equation y1D y2D y3D 0), while for … the set where the rank is less or equal
to 2 is the origin.

The question of analytic and smooth nondegeneracy of a Lie algebra is a much more
delicate question than formal nondegeneracy in general. Formal nondegeneracy is a
purely algebraic property, while smooth and analytic nondegeneracy may involve a lot
of analysis. For semisimple Lie algebras, we have the following remarkable results of
Jack Conn:

Theorem 4.13 (Conn [14]) Any semisimple Lie algebra is analytically nondegener-
ate.

Theorem 4.14 (Conn [15]) Any compact semisimple Lie algebra is smoothly nonde-
generate.

On the other hand, most non-compact real semisimple Lie algebras are smoothly
degenerate. In fact, according to a result of Weinstein [70], any Lie semisimple
Lie algebra of real rank at least 2 is smoothly degenerate. Among real semisimple
Lie algebras of real rank 1, those isomorphic to su.n; 1/ (n 2 N ) are known to be
smoothly degenerate, while the others are conjectured to be smoothly nondegenerate
(see Dufour–Zung [23, Section 4.3].)
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Related to the notion of nondegeneracy is the classical notion of rigidity of Lie algebras.
A Lie algebra is called rigid if it does not admit a nontrivial deformation in the
space of Lie algebras. In terms of Poisson geometry, a Lie algebra is rigid if the
corresponding linear Poisson structure does not admit a nontrivial linear deformation
(while nondegeneracy means the nonexistence of nonlinear deformations). Recall from
Theorem 4.7 that the second cohomology group H 2.g;S�2g/D

L
k�2 H 2.g;Skg/

governs infinitesimal nonlinear deformations of the linear Poisson structure of g� .
Meanwhile, the group H 2.g; g/ governs infinitesimal deformations of g itself (or
equivalently, infinitesimal linear deformations of the linear Poisson structure on g� ).
In particular, we have the following classical result:

Theorem 4.15 (Nijenhuis–Richardson [54]) If g is a finite dimensional Lie algebra
such that H 2.g; g/D 0 then g is rigid. In particular, semisimple Lie algebras are rigid.

Remark 4.16 The condition H 2.g; g/D 0 is a sufficient but not a necessary condition
for the rigidity of a Lie algebra. For example, Richardson [57] showed that, for any odd
integer n> 5, the semi-direct product ln D sl.2;K/Ë W 2nC1 , where W 2nC1 is the
.2nC1/–dimensional irreducible sl.2;K/–module, is rigid but has H 2.ln; ln/¤ 0. In
fact, H 2.g; g/¤ 0 means that there are non-trivial infinitesimal deformations, but not
every infinitesimal deformation can be made into a true deformation. See, for example,
Carles [10; 11], Goze–Ancochea Bermudez [31].

Another related notion is strong rigidity: a Lie algebra g is called strongly rigid if its
universal enveloping algebra U.g/ is rigid as an associative algebra (see Bordemann–
Makhlouf–Petit [7]). It is easy to see that if g is strongly rigid then it is rigid. A
sufficient condition for g to be strongly rigid is H 2.g;Skg/D 0 8 k � 0, and if this
condition is satisfied then g is called infinitesimally strongly rigid [7]. Obviously, if g
is infinitesimally strongly rigid, then it is formally nondegenerate. In fact, we have:

Theorem 4.17 (Bordemann–Makhlouf–Petit [7]) If g is a strongly rigid Lie algebra
then it is formally nondegenerate.

We refer to [7] for the proof of the above theorem, which is based on Kontsevich’s
theorem [41] on the existence of deformation quantization of Poisson structures.

4.4 Linearization of low-dimensional Poisson structures

In this section, we will discuss the (non)degeneracy of Lie algebras of dimension 2 and
3.
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Up to isomorphisms, there are only two Lie algebras of dimension 2: the Abelian one,
and the solvable Lie algebra KËK; which has a basis .e1; e2/ with Œe1; e2�D e1: This
Lie algebra is isomorphic to the Lie algebra of infinitesimal affine transformations of
the line, so we will denote it by aff.1/.

The Abelian Lie algebra of dimension 2 (or of any dimension � 2) is of course
degenerate. For example, the Poisson structure .x2

1
Cx2

2
/ @
@x1
^

@
@x2

is non-trivial and
is not locally isomorphic to its linear part, which is trivial. On the other hand, we have:

Theorem 4.18 (Arnol’d [3]) The Lie algebra aff.1/ is formally, analytically and
smoothly nondegenerate.

Proof We begin with fx;yg D x C � � � . Putting x0 D fx;yg;y0 D y , we obtain
fx0;y0gD @x0

@x
fx;ygDx0a.x0;y0/; where a is a function such that a.0/D 1. We finish

with a second change of coordinates x00 D x0;y00 D f .x0;y0/; where f is a function
such that @f

@y0
D 1=a.

Every Lie algebra of dimension 3 over R or C is of one of the following three types,
where .e1; e2; e3/ denote a basis:

� so.3/ with brackets Œe1; e2�D e3; Œe2; e3�D e1; Œe3; e1�D e2:

� sl.2/ with brackets Œe1; e2� D e3; Œe1; e3� D e1; Œe2; e3� D �e2 . (Recall that
so.3;R/© sl.2;R/, so.3;C/Š sl.2;C/).

� semi-direct products K ËA K2 where K acts linearly on K2 by a matrix A.
In other words, we have brackets Œe2; e3� D 0; Œe1; e2� D ae2C be3; Œe1; e3� D

ce2Cde3; and A is the 2�2–matrix with coefficients a; b; c and d: (Different
matrices A may correspond to isomorphic Lie algebras).

The Lie algebras sl.2/ and so.3/ are simple, so they are formally and analytically
nondegenerate, according to Weinstein’s and Conn’s theorems.

The fact that the compact simple Lie algebra so.3;R/ is smoothly nondegenerate (it is a
special case of Conn’s Theorem 4.14) is due to Dazord [18]. On the other hand, sl.2;R/
is known to be smoothly degenerate (see Weinstein [68]). A simple construction of a
smooth non-linearizable Poisson structure whose linear part corresponds to sl.2;R/ is
as follows: In a linear coordinate system .y1;y2;y3/, write

….1/ D y3

@

@y1

^
@

@y2

�y2

@

@y1

^
@

@y3

�y1

@

@y2

^
@

@y3

DX ^Y;
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where

X D y2

@

@y3

�y3

@

@y2

and Y D
@

@y1

Cy1y2
2 Cy2

3

�
y2

@

@y2

Cy3

@

@y3

�
:

This linear Poisson structure corresponds to sl.2;R/ and has C D y2
2
Cy2

3
�y2

1

as a Casimir function. Denote by Z a vector field on R3 such that Z D 0 when
y2

2
Cy2

3
�y2

1
� 0, and

Z D

p
G.C /q

y2
2
Cy2

3

�
y2

@

@y2

Cy3

@

@y3

�
when y2

2
Cy2

3
�y2

1
> 0, where G is a flat function such that G.0/D 0 and G.C / > 0

when C > 0. Then Z is a flat vector field such that ŒZ;X � D ŒZ;Y � D 0. Hence
…DX^.Y �Z/ is a Poisson structure whose linear part is ….1/DX^Y . While Y is a
periodic vector field, the integral curves of Y �Z in the region

˚
y2

2
Cy2

3
�y2

1
> 0

	
are

spiralling towards the cone
˚
y2

2
Cy2

3
�y2

1
D 0

	
. Thus, while almost all the symplectic

leaves of ….1/ are closed, the symplectic leaves of … in the region
˚
y2

2
Cy2

3
�y2

1
> 0

	
contain the cone

˚
y2

2
Cy2

3
�y2

1
D 0

	
in their closure (also locally in a neighborhood

of 0). This implies that the symplectic foliation of … is not locally homeomorphic
to the symplectic foliation of ….1/ . Hence … can’t be locally smoothly equivalent to
….1/ .

For solvable Lie algebras K ËA K2 , we have the following result:

Theorem 4.19 (Dufour [20]) The Lie algebra R2 �A R is smoothly (or formally)
nondegenerate if and only if A is nonresonant in the sense that there are no relations of
the type

(4-26) �i D n1�1C n2�2 .i D 1 or 2/;

where �1 and �2 are the eigenvalues of A; n1 and n2 are two nonnegative integers
with n1C n2 > 1:

Proof Let … be a Poisson structure on a 3–dimensional manifold which vanishes at a
point with a linear part corresponding to R2 ËA R with a nonresonant A: In a system
of local coordinates .x;y; z/; centered at the considered point, we have

(4-27) fz;xg D axC byCO.2/; fz;yg D cxC dyCO.2/; fx;yg DO.2/;

where a; b; c; d are the coefficients of A, and O.2/ means terms of degree at least
2. It follows that the modular vector field D�… with respect to any volume form �

(see Section 2.3) has the form .aC c/@=@zCY , where Y is a vector field vanishing
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at the origin. But the non-resonance hypothesis implies that t race.A/¤ 0, so D�…

does not vanish in a neighborhood of the origin. We can straighten it and suppose
that the coordinates .x;y; z/ are chosen such that D�… D @=@z: Koszul’s formula
Œ…;…�DD�.…^…/� 2D�.…/^… (see Theorem 2.7) together with the fact that
…^…D 0 (because the dimension of the space is 3) implies that D�.…/^…D 0;

which in turn implies that … is divisible by …D @=@z : D�.…/D @=@z^X for some
vector field X . Since L@=@z� D L.D�…/� D 0 according to Equation (2-25), we
can suppose that X depends only on the coordinates x and y: Because of the form
of the linear part of …; X is a vector field which vanishes at the origin but with a
nonresonant linear part. Hence, by a smooth (or formal) change of coordinates x and
y , we can linearize X . This gives the smooth (or formal) nondegeneracy of R2�A R:

To prove the “only if” part, we start with a linear Poisson structure ….1/D @=@z^X .1/;

where X .1/ is a linear resonant vector field in dimension 2. Every resonance relation
permits the construction of a polynomial perturbation X of X .1/ which is not smoothly
isomorphic to X .1/; even up to a product with a function. Then it is not difficult to
prove that @=@z ^X is a polynomial perturbation of ….1/ which is not equivalent to
….1/ .

Remark 4.20 The same proof shows that algebras of type K2 ËA K (where KDR or
C ) are analytic nondegenerate if we add to the non-resonance condition a Diophantine
condition on the eigenvalues of A. The above theorem can also be generalized to higher
dimensional Lie algebras of the type Kn ËA K. The (non)degeneracy of 4–dimensional
Lie algebras was studied by Molinier in his thesis [49].

4.5 Finite determinacy of Poisson structures

Given a Poisson structure … D ….1/C….2/C � � �, we will say that it is formally
(resp. analytically, resp. smoothly) finitely determined if there is a natural number
k such that any other formal (resp. analytically, resp. smoothly) Poisson structure
…1 D…

.1/
1
C…

.2/
1
C � � � such that ….l/

1
D….l/ 8 l � k is formally (resp. analytically,

resp. smoothly) locally isomorphic to ….

In particular, if a Lie algebra g is formally degenerate, one may still ask if it is finitely
determined, in the sense that the space of formal Poisson structures which have g as
their linear part, modulo formal isomorphisms, is of finite dimension. If g is finitely
determined, then there is a natural number k (depending on g) such that any formal
Poisson structure

…D….1/C….l/C….lC1/
C � � �
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with l > k , where ….1/ corresponds to g, is formally linearizable. More generally,
any two formal Poisson structures with the same linear part ….1/ and which coincide
up to degree k are formally isomorphic.

It is clear that a sufficient condition for a Lie algebra g to be finitely determined is the
following inequality:

(4-28) dim H 2
CE.g;Sg/ <1 :

Example 4.21 The linear 3–dimensional Poisson structure ƒD @
@x
^
�
y @
@y
C 2z @

@z

�
does not satisfy the conditions of Theorem 4.19 because of a resonance. In fact, it is a
degenerate, but finitely determined Poisson structure: any formal (resp. analytic, resp.
smooth) Poisson structure whose linear part is ƒ is formally (resp. analytically, resp.
smoothly) isomorphic to a Poisson structure of the type

…D
@

@x
^

�
y
@

@y
C 2z

@

@z
C cy2 @

@z

�
;

where c is a constant.

Example 4.22 Consider a Poisson structure … D….1/C….2/C � � � , whose linear
part is of the type

(4-29) ….1/ D
@

@x0

^

� nX
i;jD1

aij xi
@

@xj

�
;

where the matrix AD .aij / is nonresonant in the sense that its eigenvalues 1; : : : ; n do
not satisfy any non-trivial relation of the type �iC�j D

Pn
kD1 ˛k�k with 1� i �j �n,

˛k 2N[f0g (that is, except the relations �iC�j D�iC�j ). Such a Poisson structure …
is called nonresonant in Dufour–Zhitomirskii [21]. Simple homological computations
show that … admits a formal nonhomogeneous quadratic normal form. See [21] for a
more details, and also a smooth nonhomogeneous quadratization result.

Example 4.23 (Wade–Zung [66]) Consider the following 6–dimensional linear Pois-
son structure:

…1 D @x1 ^Y1C @x2 ^Y2Cƒ;

where Y1 D y1@y1C 2y2@y2C 3y3@y3C 4y4@y4;

Y2 D y2@y2Cy3@y3Cy4@y4;

and ƒD @y1 ^ .y3@y2Cy4@y3/:
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The corresponding solvable Lie algebra pDK2 Ë L4 , where L4 is the nilpotent Lie
algebra corresponding to ƒ, is a 6–dimensional Frobenius rigid solvable Lie algebra
(see Goze–Ancochea Bermudez [31]) which is not strongly rigid. Direct computations
show that H 2.p;Skp/DK for k D 3; 4; 5 and H 2.p;Skp/D 0 for all other values of
k � 1. Thus p is finitely determined. It is degenerate: the following nonlinear Poisson
tensor

…D…1Cy2
1y2

@

@y1

^
@

@y3

�y1y2
2

@

@y2

^
@

@y3

is not equivalent to its linear part, because the singular loci of … and …1 are not locally
isomorphic.

5 Levi decomposition of Poisson structures

This section is devoted to a type of local normal forms of Poisson structures, which
we call Levi normal form, or Levi decomposition. A Levi normal form is a kind of
partial linearization of a Poisson structure, and in “good” cases this leads to a true
linearization. The name Levi decomposition comes from the analogy with the classical
Levi decomposition for finite dimensional Lie algebras.

5.1 Formal Levi decomposition of Lie algebras

The classical Levi–Malcev theorem (see, for example, Bourbaki [9], Varadarajan [63])
says that, if l is a finite-dimensional Lie algebra, then it can be decomposed as a
semidirect product

(5-1) lD gË r;

where r is the radical (that is, maximal solvable ideal) of l, and gD l=r is semisimple
or trivial. In other words, the exact sequence 0! r! l! g! 0 splits, that is, there
is an injective Lie algebra homomorphism {W g! l such that its composition with the
projection map l! g is identity. The image {.g/ of g in l is called a Levi factor of l.
Up to conjugations in l, the Levi factor of l is unique. Formula (5-1) is called the Levi
decomposition of l.

Now L be a Lie algebra of infinite dimension. (Later on, we will be mainly interested
in the case when L is a space of of functions on a manifold together with a Poisson
bracket.) Suppose that L admits a filtration

(5-2) LD L0 � L1 � L2 � � � � ;
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such that 8i; j � 0, ŒLi ;Lj �� LiCj and dim.Li=LiC1/ <1: Then we say that L is
a pro-finite Lie algebra, and call the inverse limit

(5-3) yLD lim
1 i

L=Li

the formal completion of L (with respect to a given pro-finite filtration).

Given a pro-finite Lie algebra L as above, denote by r the radical of lD L=L1 and by
g the semisimple quotient l=r (we will assume that g is non-trivial). Denote by R the
preimage of r under the projection L! lD L=L1 . Then R is an ideal of L, called
the pro-solvable radical, and we have L=RŠ l=rD g. Denote by yRD lim R=Li

the formal completion of R. Then we have the following exact sequences:

0 �!R �!L �! g �! 0;(5-4)

0 �! yR �! yL �! g �! 0:(5-5)

The exact sequence (5-4) does not necessarily split, but its formal completion (5-5)
always does:

Theorem 5.1 With the above notations, there is a Lie algebra injection {W g! yL whose
composition with the projection map yL! g is the identity map. Up to conjugations in
yL; such an injection is unique.

Proof By induction, for each k 2N we will construct an injection {k W g! L=Lk ,
whose composition with the projection map L=Lk ! g is identity, and moreover the
following compatibility condition is satisfied: the diagram

(5-6)

g
{kC1

�����! L=LkC1

Id
???y ???y proj.

g
{k

�����! L=Lk

is commutative. Then { D lim {k will be the required injection. When k D 1, {1
is given by the Levi–Malcev theorem. If we forget about the compatibility condition,
then the other {k , k > 1, can also be provided by the Levi–Malcev theorem. But to
achieve the compatibility condition, we will construct {kC1 directly from {k .

Assume that {k has been constructed. Denote by �W g! L=LkC1 an arbitrary linear
map which lifts the injective Lie algebra homomorphism {k W g! L=Lk . We will
modify � into a Lie algebra injection.

Note that Lk=LkC1 is a g–module. The action of g on Lk=LkC1 is defined as
follows: for x 2 g; v 2 Lk=LkC1 , put x:v D Œ�.x/; v� 2 Lk=LkC1: If x;y 2 g
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then Œ�.x/; �.y/�� �.Œx;y�/ 2 Lk=LkC1 � L1=LkC1 , and therefore ŒŒ�.x/; �.y/��
�.Œx;y�/; v�D 0 because ŒL1=LkC1;Lk=LkC1�D 0. The Jacobi identity in L=LkC1

then implies that x:.y:v/�y:.x:v/D Œx;y�:v , so Lk=LkC1 is a g–module.

Define the following 2–cochain f W g^ g! Lk=LkC1 :

(5-7) x ^y 2 g^ g 7! f .x;y/D Œ�.x/; �.y/�� �.Œx;y�/ 2 Lk=LkC1:

One verifies directly that f is a 2–cocycle of the corresponding Chevalley–Eilenberg
complex: denoting by

H
xyz the cyclic sum in .x;y; z/, we have

ıf .x;y; z/D

I
xyz

�
x:f .y; z/�f .Œy; z�;x/

�
D

D

I
xyz

��
�.x/; Œ�.y/; �.z/�� �.Œy; z�/

�
� Œ�Œy; z�; �.x/�C �.ŒŒy; z�;x�/

�
D

I
xyz

�
�.x/; Œ�.y/; �.z/�

�
C

I
xyz

�.ŒŒy; z�;x�/D 0C 0D 0:

Since g is semisimple, by Whitehead’s lemma every 2–cocycle of g is a 2–coboundary.
In particular, there is an 1–cochain �W g! Lk=LkC1 such that ı� D f; that is,

(5-8) Œ�.x/; �.y/�� Œ�.y/; �.x/�� Œ�.x/; �.y/�D Œ�.x/; �.y/�� �.Œx;y�/:

It implies that the linear map {kC1 D ��� is a Lie algebra homomorphism from g to
L=LkC1 . Since the image of � lies in Lk=LkC1 , it is clear that {kC1 is a lifting of
{k . Thus {kC1 satisfies our requirements. By induction, the existence of { is proved.

The uniqueness of { up to conjugations in yL is proved similarly. Suppose that
{kC1; {

0
kC1
W g!L=LkC1 are two different injections which lift {k . Then {0

kC1
� {kC1

is an 1–cocycle, and therefore an 1–coboundary by Whitehead’s lemma. Denote by ˛ an
element of Lk=LkC1 such that ı˛ is this 1–coboundary. Then the inner automorphism
of L=LkC1 given by

(5-9) v 2 L=LkC1 7! Adexp˛ v D vC Œ˛; v�

(because the other terms vanish) is a conjugation in L=LkC1 which intertwines {kC1

and {0
kC1

, and which projects to the identity map on L=Lk .

The image {.g/ of g in yL, where { is given by Theorem 5.1, is called a formal Levi
factor of L.

Remark 5.2 Every semisimple subalgebra of a finite dimensional Lie algebra is
contained in a Levi factor. Similarly, each semisimple subalgebra of a pro-finite Lie
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algebra is formally contained in a formal Levi factor. These facts can also be proved
by a slight modification of the uniqueness part of the proof of Theorem 5.1.

5.2 Formal Levi decomposition of Poisson structures

Let … be a Poisson structure in a neighborhood of 0 in Kn , where K D R or C ,
which vanishes at 0: ….0/D 0. Denote by ….1/ the linear part of … at 0, and by l

the Lie algebra of linear functions on Kn under the linear Poisson bracket of ….1/ .
Let g� l be a semisimple subalgebra of l. If … is formal or analytic, we will assume
that g is a Levi factor of l. If … is smooth (but not analytic), we will assume that g is
a maximal compact semisimple subalgebra of l, and we will call such a subalgebra a
compact Levi factor. Denote by .x1; : : : ;xm;y1; : : : ;yn�m/ a linear basis of l, such
that x1; : : : ;xm span g (dim g D m), and y1; : : : ;yn�m span a complement r of g

with respect to the adjoint action of g on l, that is, Œg; r�� r. (In the formal and analytic
cases, r is the radical of l; in the smooth case it is not the radical in general). Denote
by ck

ij and ak
ij the structural constants of g and of the action of g on r respectively:

Œxi ;xj �D
P

k ck
ij xk and Œxi ;yj �D

P
k ak

ij yk .

Definition 5.3 With the above notations, we will say that … admits a formal (resp.
analytic, resp. smooth) Levi decomposition or Levi normal form at 0, with respect to the
(compact) Levi factor g, if there is a formal (resp. analytic, resp. smooth) coordinate
system

.x11 ; : : : ;x
1
m ;y

1
1 ; : : : ;y

1
n�m/;

with x1i D xiC higher order terms and y1i D yiC higher order terms, such that in
this system of coordinates we have

(5-10) …D
X
i<j

ck
ij x1k

@

@x1i
^

@

@x1j
C

X
ak

ij y1k
@

@x1i
^

@

@y1j
C

X
i<j

Pij
@

@y1i
^

@

@y1j
;

where Pij are formal (resp. analytic, resp. smooth) functions.

Remark 5.4 Another way to express Equation (5-10) is as follows:

(5-11) fx1i ;x
1
j g D

X
ck

ij x1k and fx1i ;y
1
j g D

X
ak

ij y1k :

In other words, the Poisson brackets of x–coordinates with x–coordinates, and of
x–coordinates with y–coordinates, are linear. Yet another way to say it is that the
Hamiltonian vector fields of x1i are linear:

(5-12) Xx1
i
D

X
ck

ij x1k
@

@x1j
C

X
ak

ij y1k
@

@y1j
:
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In particular, the vector fields Xx1
1
; : : : ;Xx1m form a Lie algebra isomorphic to g, and

we have an infinitesimal linear Hamiltonian action of g on .Kn;…/, whose momentum
map �W Kn! g� is defined by h�.z/;xii D xi.z/.

Theorem 5.5 (Wade [65]) Any formal Poisson structure … in Kn (K D R or C )
which vanishes at 0 admits a formal Levi decomposition.

Proof Denote by L the algebra of formal functions in Kn which vanish at 0, under
the Lie bracket of …. Then it is a pro-finite Lie algebra, whose completion is itself. The
Lie algebra L=L1 , where L1 is the ideal of L consisting of functions which vanish at 0

together with their first derivatives, is isomorphic to the Lie algebra l of linear functions
on Kn whose Lie bracket is given by the linear Poisson structure ….1/ . By Theorem 5.1,
L admits a Levi factor, which is isomorphic to the Levi factor g of l. Denote by
x1

1
; : : : ;x1m a linear basis of a Levi factor of L, fx1i ;x

1
j g D

P
k ck

ij x1
k

where ck
ij

are structural constants of g. Then the Hamiltonian vector fields Xx1
1
; : : : ;Xx1m gives

a formal action of g on Kn . According to Hermann’s formal linearization theorem for
formal actions of semisimple Lie algebras [34], this formal action can be linearized
formally, that is, there is a formal coordinate system .x0

1
; : : : ;y0

n�m/ in which we have

(5-13) Xx1
i
D

X
ck

ij x0
k

@

@x0
j

C

X
ak

ij y0
k

@

@y0
j

:

A priori, it may happen that x0
i ¤ x1i , but in any case we have x0

i D x1i C higher
order terms, and

Xx1
i
.x1j /D

X
k

ck
ij x1k ;Xx1

i
.y0

j /D
X

k

ak
ij y0

k :

Renaming y0
i by y1i , we get a formal coordinate system .x1

1
; : : : ;y1n�m/ which puts

… in formal Levi normal form.

Remark 5.6 A particular case of Theorem 5.5 is the following formal linearization
theorem of Weinstein [68] mentioned in the previous section: if the linear part of … at
0 is semisimple (that is, it corresponds to a semisimple Lie algebra lD g), then … is
formally linearizable at 0.

Remark 5.7 As observed by Chloup [13], Theorem 5.5 may also be viewed as
a consequence of Hochschild–Serre spectral sequence (see Hochschild–Serre [35]),
which, together with Whitehead’s lemma, implies that

(5-14) H 2.l;Spl/ŠH 0.g;K/˝H 2.r;Spl/g ŠH 2.r;Spl/g 8 p:
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The above cohomological equality means that any non-linear term in the Taylor expan-
sion of …, which is represented by a 2–cocycle of l with values in SlD p̊Spl, can be
“pushed to r”, that is, pushed to the “y –part” (consisting of terms Pij@=@yi ^ @=@yj )
of ….

5.3 Analytic decomposition of Poisson structures

In the analytic case, we have:

Theorem 5.8 (Zung [74]) Any analytic Poisson structure … in a neighborhood of 0

in Kn , where KDR or C , which vanishes at 0, admits an analytic Levi decomposition.

Remark 5.9 Conn’s analytic linearization theorem (Theorem 4.13) is a particular case
of the above theorem, namely the case when lD ..Kn/�; f�; �g….1//D g is semi-simple.
When lD g˚K, then a Levi decomposition of … is still automatically a linearization
(because fy1;y1g D 0), and Theorem 5.8 implies the following result of Molinier [49]
and Conn: If the linear part of an analytic Poisson structure … which vanishes at 0

corresponds to lD g˚K, where g is semisimple, then … is analytically linearizable
in a neighborhood of 0.

Remark 5.10 The existence of a local analytic Levi decomposition of … is essentially
equivalent to the existence of a Levi factor for the Lie algebra O of germs at 0 of
analytic functions under the Poisson bracket of …. Indeed, if … is in analytic Levi
normal form with respect to a coordinate system .x1; : : : ;yn�m/; then the functions
x1; : : : ;xm form a linear basis of a Levi factor of O . Conversely, suppose that O
admits a Levi factor with a linear basis x1; : : : ;xm . Then Xx1

; : : : ;Xxm
generate a

local analytic action of g on Kn . According to Kushnirenko–Guillemin–Sternberg
analytic linearization theorem for analytic actions of semisimple Lie algebras (see
Guillemin–Sternberg [33] and Kushnirenko [43]) we may assume that

(5-15) Xxi
D

X
ck

ij x0
k

@

@x0
j

C

X
ak

ij y0
k

@

@y0
j

in a local analytic system of coordinates .x0
1
; : : : ;y0

n�m/; where x0
i D xiC higher

order terms. Renaming y0
i by yi , we get a local analytic system of coordinates

.x1; : : : ;yn�m/ which puts … in Levi normal form.

Remark 5.11 Using Levi decomposition, it was shown in Dufour–Zung [22] that
the Lie algebra aff.n;K/ D gl.n;K/ Ë Kn of affine transformations of Kn , where
KDR or C , is formally and analytically nondegenerate for any n 2N . The fact that
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H 2
CE
.aff.n/;Sk.aff.n///D 0 8 k � 2 was implicit in [22]. A purely algebraic proof

of this fact was obtained by Bordemann, Makhlouf and Petit in [7], who showed that
aff.n/ is infinitesimally strongly rigid, that is, H 2.aff.n/;Sk.aff.n///D 0 8 k � 0:

The proof of Theorem 5.8, which is inspired by Conn’s proof of Theorem 4.13, is a bit
long and technical. Let us mention here only its main ingredients. (See Zung [74] and
Dufour-Zung [23] for the full proof.)

First, we need a fast convergence method, similar to the ones used in the analytic
normalization of holomorphic vector fields and in Kolmogorov–Arnol’d–Moser theory.
In other words, we will construct a recurrent normalizing process, in which at step l

we will kill all the “non-normal” terms up to order 2l (and not only up to order k ).
The final normalization (that is, the transformation which puts the Poisson structure in
its Levi normal form), which is the composition of these fast normalizing steps, will
then be shown to be locally convergent (analytically). Each of our fast normalizing
steps actually consists of 2 substeps:

Substep 1 Find an almost Levi factor up to terms of degree � 2k . What it means
is that, at this Substep, we will find a family .xl

1
; : : : ;xl

m/ of local analytic functions
such that

(5-16) fxl
i ;x

l
j g D

X
k

ck
ij xl

k modulo terms of degree � 2l
C 1;

where the bracket is the Poisson bracket of our Poisson structure, and ck
ij are structural

constants of the semisimple Lie algebra g.

Substep 2 Almost linearize the above almost Levi factor, up to terms of degree � 2k .
What it means is that, at this substep, we will find additional functions .yl

1
; : : : ;yl

n�m/

such that .xl
1
; : : : ;xl

m;y
l
1
; : : : ;yl

n�m/ is a coordinate system, and

(5-17) fxl
i ;y

l
j g D

X
k

ak
ij yl

k modulo terms of degree � 2l
C 1:

In other words, the Hamiltonian vector fields of xi are linear modulo terms of degree
� 2l C 1 in the coordinate system .xl

1
; : : : ;xl

m;y
l
1
; : : : ;yl

n�m/.

In each of the above substeps, we have to solve a cohomological equation with respect
to a finite-dimensional g–module (that is, we have to find a primitive of a 2–cocycle or
a 1–cocycle in the Chevalley–Eilenberg complex of g with respect to some g–module).
These equations can always be solved, because H 1.g;W /DH 2.g;W /D 0 for any
finite dimensional g–module W , according to Whitehead’s lemma.
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Each step is carried out by a transformation �l of the type identity plus terms of degree
� 2l�1C 1. More precisely,

(5-18) .xl
1; : : : ;x

l
m;y

l
1; : : : ;y

l
n�m/D .x

l�1
1 ; : : : ;xl�1

m ;yl�1
1 ; : : : ;yl�1

n�m/ ı�l ;

where �l is a local analytic diffeomorphism of .Kn; 0/ of the type

(5-19) �l.z/D zC terms of degree� 2l�1
C 1 :

So at least it’s clear that a formal limit of .xl
1
; : : : ;xl

m;y
l
1
; : : : ;yl

n�m/ exists when
l!1, and we get at least a formal Levi normal form.

In order to show local analytic convergence, we have to estimate the norms of the
transformations �l (actually we have to use not just one norm, but many different
norms, with relations among them), and then use the standard tricks similar to the ones
used in other analytic normalization problems. (Fortunately for us, there is no small
divisor involved, so in a sense our problem is not very difficult.) In particular, at each
substep, we have to estimate the norm of the primitive of a cocycle. In other words,
given a Chevalley–Eilenberg cocycle  , we have to find a cochain ˇ such that the
differential of ˇ is equal to  and the norm of ˇ is not too big compared to the norm
of  . This is made possible by the following result of Conn [14; 15], which may be
viewed as the normed version of Whitehead’s lemma:

Consider a compact semisimple Lie algebra g, and a Hermitian g–module W , that is,
W is a complex Hilbert space, and the action of g on W preserves the Hermitian metric.
The module W may be of finite or infinite dimension, but in the infinite-dimensional
case we assume that W can be decomposed into a direct orthogonal sum of finite-
dimensional modules. We will denote the norm on W by k:k. Fix an ad–invariant
norm on g, which we will also denote by k:k. Equip the spaces W ˝^kg� of cochains
of the Chevalley–Eilenberg complex with norms by the formula

(5-20) k�k D max
xi2g;kxikD1

k�.x1; : : : ;xk/k

for each � 2W ˝^kg� .

Lemma 5.12 (Conn) There exists a constant C > 0, which depends on g but not on
W , such that the following holds: The truncated Chevalley–Eilenberg complex

W
ı0
!W ˝^1g�

ı1
!W ˝^2g�

ı2
!W ˝^3g�

admits a chain of homotopy operators

W
h0
 W ˝^1g�

h1
 W ˝^2g�

h2
 W ˝^3g�
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such that

(5-21) ı0 ı h0C h1 ı ı1 D IdW˝^1g� ; ı1 ı h1C h2 ı ı2 D IdW˝^2g� ;

and such that

(5-22) khj .u/k � Ckuk

for any u 2W ˝^jC1g� , j D 0; 1; 2.

For the proof, see Conn [14, Proposition 2.1], and [15, Proposition 2.1], and also
Dufour–Zung [23, Chapter 3]. Actually, [14, Proposition 2.1] and [15, Proposition 2.1]
are a bit different than the above lemma, but the proof is essentially the same.

A technical detail: Since our semi-simple Lie algebra g is not compact in general,
in order to use the above lemma, we will have to replace g by g0 , where g0 is the
compact part of g if g is complex (that is, K D C ), and is the compact part of the
complexification of g if K D R. Then we turn finite-dimensional g–modules in to
Hermitian g0 –modules, by complexifying them if necessary.

5.4 Smooth Levi decomposition

Theorem 5.13 (Monnier–Zung [51]) For any n 2 N and p 2 N [ f1g there is
p0 2N [f1g, p0 <1 if p <1, such that the following statement holds: Let … be
a C p0 –smooth Poisson structure in a neighborhood of 0 in Rn . Denote by l the Lie
algebra of linear functions in Rn under the Lie–Poisson bracket …1 which is the linear
part of …, and by g a compact Levi factor of l. Then there exists a C p –smooth Levi
decomposition of … with respect to g in a neighborhood of 0 .

For a sketch of the proof of the above theorem see [23, Chapter 3]; for the full proof see
Monnier–Zung [51]. Let us just mention that the proof of Theorem 5.13 is inspired by
Conn’s proof [15] of Theorem 4.14, and is somewhat similar to the proof of Theorem 5.8,
though technically more involved. The main new ingredient compared to the analytic
case is the use of the Nash–Moser fast convergence method, with smoothing operators.
The paper [51] also contains an abstract Nash–Moser normal form theorem, which
might be helpful for other smooth normal form problems.

Remark 5.14 Remark 5.9 and Remark 5.10 also apply to the smooth case (provided
that g is compact). In particular, when lD g, one recovers from Theorem 5.13 Conn’s
Theorem 4.14: any smooth Poisson structure whose linear part is compact semisim-
ple is locally smoothly linearizable. When l D g˚R with g compact semisimple,
Theorem 5.13 still gives a smooth linearization. And the existence of a local smooth
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Levi decomposition is equivalent to the existence of a compact Levi factor. The
condition that g be compact in Theorem 5.13 is in a sense necessary, already in the
case when lD g.

5.5 Levi decomposition of Lie algebroids

Since Lie algebroids may be viewed as fiber-wise linear Poisson structures (see
Section 1.10), the Levi decomposition theorems stated in the previous sections also
admit a Lie algebroid version:

Theorem 5.15 (Zung [74]) Let A be a local analytic (resp. formal) Lie algebroid
over .KN ; 0/, whose anchor map #x W Ax! TxKN vanishes at 0: #0 D 0. Denote by
lDA0 the isotropy algebra A at 0, and by lD gËr its Levi decomposition. Then there
exists a local analytic (resp. formal) system of coordinates .x1

1
; : : : ;x1

N
/ of .KN ; 0/,

and a local analytic (resp. formal) basis of sections .˛1
1
; : : : ; ˛1m ; ˇ

1
1
; : : : ; ˇ1n�m/ of

A, where nD dim l and mD dim g, such that we have:

(5-23)

Œ˛1i ; ˛
1
j �D

X
k

ck
ij˛
1
k ;

Œ˛1i ; ˇ
1
j �D

X
k

ak
ijˇ
1
k ;

#˛1i D
X
j ;k

bk
ij x1k @=@x

1
j ;

where ck
ij ; a

k
ij ; b

k
ij are constants, with ck

ij being the structural coefficients of the semi-
simple Lie algebra g.

Theorem 5.16 (Monnier–Zung [51]) For each p 2N [f1g and n;N 2N there is
p0 2N [f1g, p0 <1 if p <1, such that the following statement holds: Let A be
n–dimensional C p0 –smooth Lie algebroid over a neighborhood of the origin 0 in RN

with anchor map #W A!T RN , such that #0D 0. Denote by l the isotropy Lie algebra
of A at 0, and by lD gC r a decomposition of L into a direct sum of a semisimple
compact Lie algebra g and a linear subspace r which is invariant under the adjoint action
of g. Then there exists a local C p –smooth system of coordinates .x1

1
; : : : ;x1

N
/ of

.RN ; 0/, and a local C p –smooth basis of sections .s1
1
; s1

2
; : : : ; s1m ; v

1
1
; : : : ; v1n�m/
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of A, where mD dim g, such that we have:

(5-24)

Œs1i ; s
1
j �D

X
k

ck
ij s1k ;

Œs1i ; v
1
j �D

X
k

ak
ijv
1
k ;

#s1i D
X
j ;k

bk
ij x1k @=@x

1
j ;

where ck
ij ; a

k
ij ; b

k
ij are constants, with ck

ij being the structural constants of the compact
semisimple Lie algebra g.

Remark 5.17 A particular case of the above theorems is when the isotropy algebra
lD g is semisimple (and compact if the setting is smooth). In that case the theorems
say that the Lie algebroid is analytically (resp. formally, resp. smoothly) linearizable.
A related local linearization result for proper Lie groupoids is obtained in Zung [75].
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