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Deformation quantisation of Poisson manifolds

SIMONE GUTT

This introduction to deformation quantisation will focus on the construction of star
products on symplectic and Poisson manifolds. It corresponds to the first four lectures
I gave at the 2005 Summer School on Poisson Geometry in Trieste.

The first two lectures introduced the general concept of formal deformation quantisa-
tion with examples, with Fedosov’s construction of a star product on a symplectic
manifold and with the classification of star products on a symplectic manifold.

The next lectures introduced the notion of formality and its link with star products,
gave a flavour of Kontsevich’s construction of a formality for Rd and a sketch of
the globalisation of a star product on a Poisson manifold following the approach of
Cattaneo, Felder and Tomassini.

The notes here are a brief summary of those lectures; I start with a further reading
section which includes expository papers with details of what is presented.

In the last lectures I only briefly mentioned different aspects of the deformation
quantisation programme such as action of a Lie group on a deformed product, reduc-
tion procedures in deformation quantisation, states and representations in deformed
algebras, convergence of deformations, leaving out many interesting and deep aspects
of the theory (such as traces and index theorems, extension to fields theory); these
are not included in these notes and I include a bibliography with many references to
those topics.
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Further reading

Expository papers with details of what is presented in these notes:

1 D Arnal, D Manchon, M Masmoudi, Choix des signes pour la formalite de
M Kontsevich, Pacific J. Math. 202 (2002) 23–66

2 A S Cattaneo, Formality and star products, from: “Poisson geometry, defor-
mation quantisation and group representations”, London Math. Soc. Lecture
Note Ser. 323, Cambridge Univ. Press, Cambridge (2005) 79–144 MR2166452
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3 A S Cattaneo, G Felder, On the globalization of Kontsevich’s star product and
the perturbative Poisson sigma model, Progr. Theoret. Phys. Suppl. (2001)
38–53 MR2023844 Noncommutative geometry and string theory (Yokohama,
2001)

4 S Gutt, J Rawnsley, Equivalence of star products on a symplectic manifold; an
introduction to Deligne’s Čech cohomology classes, J. Geom. Phys. 29 (1999)
347–392 MR1675581

Expository and review papers on deformation quantisation:

5 M Bordemann, Deformation quantization: a mini-lecture, from: “Geometric
and topological methods for quantum field theory”, Contemp. Math. 434, Amer.
Math. Soc., Providence, RI (2007) 3–38 MR2349629

6 A Bruyère, A Cattaneo, B Keller, C Torossian, Déformation, quantification,
théorie de Lie, Panoramas et Synthèse 20 (1995)

7 D Sternheimer, Deformation quantization: twenty years after, from: “Particles,
fields, and gravitation (Lódź, 1998)”, AIP Conf. Proc. 453, Amer. Inst. Phys.,
Woodbury, NY (1998) 107–145 MR1765495

8 S Waldmann, States and representations in deformation quantization, Rev.
Math. Phys. 17 (2005) 15–75 MR2130623

1 Introduction

Quantisation of a classical system is a way to pass from classical to quantum results.

Classical mechanics, in its Hamiltonian formulation on the motion space, has for
framework a symplectic manifold (or more generally a Poisson manifold). Observables
are families of smooth functions on that manifold M . The dynamics is defined
in terms of a Hamiltonian H 2 C1.M / and the time evolution of an observable
ft 2 C1.M �R/ is governed by the equation

d

dt
ft D�fH; ftg :

Quantum mechanics, in its usual Heisenberg’s formulation, has for framework a Hilbert
space (states are rays in that space). Observables are families of self-adjoint operators
on the Hilbert space. The dynamics is defined in terms of a Hamiltonian H , which is
a self-adjoint operator, and the time evolution of an observable At is governed by the
equation

dAt

dt
D

i

„
ŒH;At �:
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Deformation quantisation of Poisson manifolds 173

A natural suggestion for quantisation is a correspondence QW f 7!Q.f / mapping a
function f to a self adjoint operator Q.f / on a Hilbert space H in such a way that
Q.1/D Id and

ŒQ.f /;Q.g/�D i„Q.ff;gg/:

There is no such correspondence defined on all smooth functions on M when one puts
an irreducibility requirement which is necessary not to violate Heisenberg’s principle.

Different mathematical treatments of quantisation appeared to deal with this problem:

� Geometric quantisation of Kostant and Souriau. This proceeds in two steps; first
prequantisation of a symplectic manifold .M; !/ where one builds a Hilbert
space and a correspondence Q as above defined on all smooth functions on
M but with no irreducibility, then polarization to “cut down the number of
variables”. One succeeds to quantize only a small class of functions.

� Berezin’s quantisation where one builds on a particular class of Kähler manifolds
a family of associative algebras using a symbolic calculus, that is, a dequantisation
procedure.

� Deformation quantisation introduced by Flato, Lichnerowicz and Sternheimer
in [31] and developed in conjunction with Bayen and Fronsdal [4] where they

“suggest that quantisation be understood as a deformation of the structure
of the algebra of classical observables rather than a radical change in
the nature of the observables.”

This deformation approach to quantisation is part of a general deformation approach to
physics. This was one of the seminal ideas stressed by Moshe Flato: one looks at some
level of a theory in physics as a deformation of another level [30].

One stresses here the fundamental aspect of the space of observables rather than the
set of states; observables behave indeed in a nice way when one deals with composed
systems: both in the classical and in the quantum picture, the space of observables for
combined systems is the tensor product of the spaces of observables.

The algebraic structure of classical observables that one deforms is the algebraic
structure of the space of smooth functions on a Poisson manifold: the associative
structure given by the usual product of functions and the Lie structure given by the
Poisson bracket. Formal deformation quantisation is defined in terms of a star product
which is a formal deformation of that structure.

The plan of this presentation is the following:

� Definition and Examples of star products;
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� Fedosov’s construction of a star product on a symplectic manifold;

� Classification of star products on symplectic manifolds;

� Star products on Poisson manifolds and formality.

2 Definition and examples of star products

Definition 1 A Poisson bracket defined on the space of smooth functions on a manifold
M , is a R–bilinear map on C1.M /, .u; v/ 7! fu; vg such that, for any u; v; w 2

C1.M /,

� fu; vg D �fv;ug (skew-symmetry);

� ffu; vg; wgC ffv;wg;ugC ffw;ug; vg D 0 (Jacobi’s identity);

� fu; vwg D fu; vgwCfu; wgv (Leibnitz rule).

The Leibnitz rule is equivalent to saying that bracketing with a function u is a derivation
of the associative algebra of smooth functions on M , hence is given by a vector field Xu

on M . By skew-symmetry, a Poisson bracket is thus given in terms of a contravariant
skew symmetric 2–tensor P on M , called the Poisson tensor, by

(1) fu; vg D P .du^ dv/:

The Jacobi identity for the Poisson bracket Lie algebra is equivalent to the vanishing of
the Schouten bracket

ŒP;P �D 0:

(The Schouten bracket is the extension – as a graded derivation for the exterior product –
of the bracket of vector fields to skew-symmetric contravariant tensor fields; it will be
developed further in section 6.)

A Poisson manifold, denoted .M;P /, is a manifold M with a Poisson bracket defined
by the Poisson tensor P .

A particular class of Poisson manifolds, essential in classical mechanics, is the class
of symplectic manifolds. If .M; !/ is a symplectic manifold (that is, ! is a closed
nondegenerate 2–form on M ) and if u; v 2 C1.M /, the Poisson bracket of u and v
is defined by

fu; vg WDXu.v/D !.Xv;Xu/;

where Xu denotes the Hamiltonian vector field corresponding to the function u, that is,
such that i.Xu/! D du. In coordinates the components of the corresponding Poisson
tensor P ij form the inverse matrix of the components !ij of ! .
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Duals of Lie algebras form the class of linear Poisson manifolds. If g is a Lie algebra
then its dual g� is endowed with the Poisson tensor P defined by

P�.X;Y / WD �.ŒX;Y �/

for X;Y 2 gD .g�/� � .T�g
�/� .

Definition 2 (Bayen et al. [4]) A star product on .M;P / is a bilinear map

N �N !N J�K; .u; v/ 7! u� v D u�� v WD
X
r�0

�r Cr .u; v/

where N D C1.M / [we consider here real valued functions; the results for complex
valued functions are similar], such that

(1) when the map is extended �–linearly (and continuously in the �–adic topology)
to N J�K�N J�K it is formally associative:

.u� v/�w D u� .v �w/I

(2) (a) C0.u; v/D uv ,
(b) C1.u; v/�C1.v;u/D fu; vg;

(3) 1�uD u� 1D u.

When the Cr ’s are bidifferential operators on M , one speaks of a differential star
product. When, furthermore, each bidifferential operator Cr is of order maximum r in
each argument, one speaks of a natural star product.

If there was a quantisation in the usual sense, that is, a correspondence between
functions on the Poisson manifold .M;P / and algebras Ah of operators on a Hilbert
space (depending on a parameter h related to the Plank’s constant), one could look at
the deformed products �h of two functions as corresponding to the composition of the
corresponding operators in Ah . One can think of a star product as the expansion in the
parameter h of such deformed products.

Remark 3 A star product can also be defined not on the whole of C1.M / but on any
subspace N of it which is stable under pointwise multiplication and Poisson bracket.

In (b) we follow Deligne’s normalisation for C1 : its skew symmetric part is 1
2
f ; g. In

the original definition it was equal to the Poisson bracket. One finds in the literature
other normalisations such as i

2
f ; g. All these amount to a rescaling of the parameter.

Property (b) above implies that an element in the centre of the deformed algebra
.C1.M /J�K;�/ is a series whose terms Poisson commute with all functions, so is an
element of RJ�K when M is symplectic and connected.
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Properties (a) and (b) of Definition 2 imply that the star commutator defined by
Œu; v�� D u � v � v � u, which obviously makes C1.M /J�K into a Lie algebra, has
the form Œu; v�� D �fu; vgC : : : so that repeated bracketing leads to higher and higher
order terms. This makes C1.M /J�K an example of a pronilpotent Lie algebra. We
denote the star adjoint representation ad�u .v/D Œu; v�� .

2.1 The Moyal star product on Rn

The simplest example of a deformation quantisation is the Moyal product for the
Poisson structure P on a vector space V DRm with constant coefficients:

P D
X
i;j

P ij@i ^ @j ; P ij
D�P ji

2R

where @i D @=@x
i is the partial derivative in the direction of the coordinate xi ; i D

1; : : : ; n. The formula for the Moyal product is

(2) .u�M v/.z/D exp
��

2
P rs@xr @ys

�
.u.x/v.y//

ˇ̌̌
xDyDz

:

Associativity follows from the fact that

@tk .u�M v/.t/D .@xk C @yk / exp
��

2
P rs@xr @ys

�
.u.x/v.y//

ˇ̌̌
xDyDt

:

Thus

..u�M v/�M w/.x0/D exp
��

2
P rs@tr @zs

�
..u�M v/.t/w.z//

ˇ̌̌
tDzDx0

D exp
��

2
P rs.@xr C @yr /@zs

�
exp

��
2

P r 0s0@xr 0@ys0

�
..u.x/v.y//w.z//

ˇ̌̌
xDyDzDx0

D exp
��

2
P rs.@xr @zs C @yr @zs C @xr @ys /

�
..u.x/v.y//w.z//

ˇ̌̌
xDyDzDx0

D .u�M .v �M w/.x0/:

Definition 4 When P is non degenerate (so V D R2n ), the space of polynomials
in � whose coefficients are polynomials on V with Moyal product is called the Weyl
algebra .S.V �/Œ��;�M /.

This Moyal star product is related to the composition of operators via Weyl’s quantisa-
tion. Weyl’s correspondence associates to a polynomial f on R2n an operator W .f /

on L2.Rn/ in the following way:
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Introduce canonical coordinates fpi ; q
i I i � ng so that the Poisson bracket reads

ff;gg D

nX
iD1

�
@f

@qi

@g

@pi
�
@f

@pi

@g

@qi

�
:

Assign to the classical observables qi and pi the quantum operators Qi D qi � and
Pi D�i„ @

@qi acting on functions depending on qj ’s. One has to specify what should

happen to other classical observables, in particular for the polynomials in qi and pj

since Qi and Pj do no longer commute. The Weyl ordering is the corresponding
totally symmetrized polynomial in Qi and Pj , e.g.

W .q1.p1/2/D 1
3
.Q1.P1/2CP1Q1P1

C .P1/2Q1/:

Then

W .f / ıW .g/DW .f �M g/ .� D i„/:

In fact, Moyal had used in 1949 the deformed bracket which corresponds to the
commutator of operators to study quantum statistical mechanics. The Moyal product
first appeared in Groenewold.

In 1978, in their seminal paper about deformation quantisation [4], Bayen, Flato,
Fronsdal, Lichnerowicz and Sternheimer proved that Moyal star product can be defined
on any symplectic manifold .M; !/ which admits a symplectic connection r (that is,
a linear connection such that r! D 0 and the torsion of r vanishes) with no curvature.

2.2 The standard �–product on g�

Let g� be the dual of a Lie algebra g. The algebra of polynomials on g� is identified
with the symmetric algebra S.g/. One defines a new associative law on this algebra by
a transfer of the product ı in the universal enveloping algebra U.g/, via the bijection
between S.g/ and U.g/ given by the total symmetrization � :

� W S.g/! U.g/ X1 : : :Xk 7!
1

k!

X
�2Sk

X�.1/ ı � � � ıX�.k/

Then U.g/D˚n�0Un where Un WD�.S
n.g// and we decompose an element u2U.g/

accordingly uD
P

un . We define for P 2 Sp.g/ and Q 2 Sq.g/

(3) P �QD
X
n�0

.�/n��1..�.P / ı �.Q//pCq�n/:
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This yields a differential star product on g� [35]. Using Vergne’s result on the multipli-
cation in U.g/, this star product is characterised by

X �X1 : : :Xk DXX1 : : :Xk

C

kX
jD1

.�1/j

j !
�j Bj ŒŒŒX;Xr1

�; : : : �;Xrj
�X1 : : : yXr1

: : : yXrj
: : :Xk

where Bj are the Bernoulli numbers. This star product can be written with an integral
formula for � D 2� i (see Drinfel’d [26]):

u� v.�/D

Z
g�g
yu.X /yv.Y /e2i�h�;CBH.X ;Y /idXdY

where yu.X / D
R
g� u.�/e�2i�h�;X i and where CBH denotes the Campbell–Baker–

Hausdorff formula for the product of elements in the group in a logarithmic chart
(exp X exp Y D exp CBH.X;Y / 8X;Y 2 g).

We call this the standard (or CBH) star product on the dual of a Lie algebra.

Remark 5 The standard star product on g� does not restrict to orbits (except for
the Heisenberg group) so other algebraic constructions of star products on S.g/ were
considered (with Michel Cahen in [13] and [14], with Cahen and Arnal in [1], by
Arnal, Ludwig and Masmoudi in [2] and by Fioresi and Lledo in [29]). For instance,
when g is semisimple, if H is the space of harmonic polynomials and if I1; : : : Ir are
generators of the space of invariant polynomials, then any polynomial P 2 S.g/ writes
uniquely as a sum P D

P
a1:::ar

I
a1

1
: : : I

ar
r ha1:::ar

where ha1:::ar
2H . One considers

the linear isomorphism � 0 between S.g/ and U.g/ induced by this decomposition

� 0.P /D
X

a1:::ar

.�.I1/ı/
a1 : : : .�.Ir /ı/

ar ı �.ha1:::ar
/:

The associative composition law in U.g/, pulled back by this isomorphism � 0 , gives
a star product on S.g/ which is not defined by differential operators. In fact, with
Cahen and Rawnsley, we proved [16] that if g is semisimple, there is no differential
star product on any neighbourhood of 0 in g� such that C �uD C u for the quadratic
invariant polynomial C 2 S.g/ and 8u 2 S.g/ (thus no differential star product which
is tangential to the orbits).

In 1983, De Wilde and Lecomte proved [22] that on any symplectic manifold there exists
a differential star product. This was obtained by imagining a very clever generalisation
of a homogeneity condition in the form of building at the same time the star product and
a special derivation of it. A very nice presentation of this proof appears in De Wilde’s
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preprint [21]. Their technique works to prove the existence of a differential star product
on a regular Poisson manifold (see Masmoudi [42]).

In 1985, but appearing only in the West in the nineties [27], Fedosov gave a recursive
construction of a star product on a symplectic manifold .M; !/ constructing flat
connections on the Weyl bundle. In 1994, he extended this result to give a recursive
construction in the context of regular Poisson manifold [28].

Independently, also using the framework of Weyl bundles, Omori, Maeda and Yoshioka
[46] gave an alternative proof of existence of a differential star product on a symplectic
manifold, gluing local Moyal star products.

In 1997, Kontsevich [39] gave a proof of the existence of a star product on any Poisson
manifold and gave an explicit formula for a star product for any Poisson structure
on V D Rm . This appeared as a consequence of the proof of his formality theorem.
Tamarkin [51; 52] gave a version of the proof in the framework of the theory of operads.

3 Fedosov’s construction of star products

Fedosov’s construction [27] gives a star product on a symplectic manifold .M; !/,
when one has chosen a symplectic connection and a sequence of closed 2–forms on
M . The star product is obtained by identifying the space C1.M /J�K with an algebra
of flat sections of the so-called Weyl bundle endowed with a flat connection whose
construction is related to the choice of the sequence of closed 2–forms on M .

3.1 The Weyl bundle

Let .V; �/ be a symplectic vector space; recall that we endow the space of polynomials
in � whose coefficients are polynomials on V with Moyal star product (this is the Weyl
algebra S.V �/Œ��). This algebra is isomorphic to the universal enveloping algebra of
the Heisenberg Lie algebra hD V �˚R� with Lie bracket�

yi ;yj
�
D .��1/ij�:

Indeed both associative algebras U.h/ and S.V �/Œ�� are generated by V � and � and
the map sending an element of V � � h to the corresponding element in V � � S.V �/

viewed as a linear function on V and mapping � 2 h on � 2RŒ��� S.V �/Œ�� has the
universal property

� �M � 0� � 0 �M � D Œ�; � 0� 8�; � 0 2 hD V �˚R�

so extends to a morphism of associative algebras.
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One defines a grading on U.h/ assigning the degree 1 to the yi ’s and the degree 2 to
the element � . The formal Weyl algebra W is the completion in that grading of the
above algebra. An element of the formal Weyl algebra is of the form

a.y; �/D

1X
mD0

� X
2kClDm

ak;i1;:::;il
�kyi1 : : :yil

�
:

The product in U.h/ is given by the Moyal star product

.a ı b/.y; �/D

�
exp

�
�

2
ƒij @

@yi

@

@zj

�
a.y; �/b.z; �/

�ˇ̌̌̌
yDz

with ƒij D .��1/ij and the same formula also defines the product in W .

Definition 6 The symplectic group Sp.V; �/ of the symplectic vector space .V; �/
consists of all invertible linear transformations A of V with �.Au;Av/D�.u; v/, for
all u; v 2 V . Sp.V; �/ acts as automorphisms of h by A �f D f ıA�1 for f 2 V �

and A � � D 0. This action extends to both U.h/ and W and on the latter is denoted
by � . It respects the multiplication �.A/.a ı b/ D �.A/.a/ ı �.A/.b/. Choosing a
symplectic basis we can regard this as an action of Sp.n;R/ as automorphisms of W .
Explicitly, we have

�.A/

� X
2kClDm

ak;i1;:::;il
�kyi1 : : :yil

�
D

X
2kClDm

ak;i1;:::;il
�k.A�1/

i1

j1
: : : .A�1/

il

jl
yj1 : : :yjl :

If B 2 sp.V; �/ we associate the quadratic element xB D 1
2

P
ij r �riB

r
j yiyj . This is

an identification since the condition to be in sp.V; �/ is that
P

r �riB
r
j is symmetric

in i and j . An easy calculation shows that the natural action ��.B/ is given by

��.B/y
l
D
�1

�
Œ xB;yl �

where Œa; b� WD .a ı b/� .b ı a/ for any a; b 2W . Since both sides act as derivations
this extends to all of W as

(4) ��.B/aD
�1

�
Œ xB; a�:

Definition 7 If .M; !/ is a symplectic manifold, we can form its bundle F.M / of
symplectic frames. Recall that a symplectic frame at the point x 2 M is a linear
symplectic isomorphism �x W .V; �/! .TxM; !x/. The bundle F.M / is a principal
Sp.V; �/–bundle over M (the action on the right of an element A 2 Sp.V; �/ on a
frame �x is given by �x ıA).
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The associated bundle W DF.M /�Sp.V;�/;�W is a bundle of algebras on M called
the bundle of formal Weyl algebras, or, more simply, the Weyl bundle.

Sections of the Weyl bundle have the form of formal series

(5) a.x;y; �/D
X

2kCl�0

�kak;i1;:::;il
.x/yi1 � � �yil

where the coefficients ak;i1;:::;il
define ( in the i 0s ) symmetric covariant l –tensor fields

on M . We denote by �.W/ the space of those sections.

The product of two sections taken pointwise makes �.W/ into an algebra, and in terms
of the above representation of sections the multiplication has the form

(6) .a ı b/.x;y; �/D

�
exp

�
�

2
ƒij @

@yi

@

@zj

�
a.x;y; �/b.x; z; �/

�ˇ̌̌̌
yDz

:

Note that the center of this algebra coincide with C1.M /J�K.

3.2 Flat connections on the Weyl bundle

Let .M; !/ be a symplectic manifold. A symplectic connection on M is a connection
r on TM which is torsion-free and satisfies rX! D 0.

Remark 8 It is well known that such connections always exist but, unlike the Rie-
mannian case, are not unique. To see the existence, take any torsion-free connection
r 0 and set T .X;Y;Z/D .r 0

X
!/.Y;Z/. Then

T .X;Y;Z/CT .Y;Z;X /CT .Z;X;Y /D .d!/.X;Y;Z/D 0

Define S by
!.S.X;Y /;Z/D 1

3
.T .X;Y;Z/CT .Y;X;Z//

so that S is symmetric, then it is easy to check that

rX Y Dr 0X Y CS.X;Y /

defines a symplectic connection, and S symmetric means that it is still torsion-free.

A symplectic connection defines a connection 1–form in the symplectic frame bundle
and so a connection in all associated bundles (that is, a covariant derivative of sections).
In particular we obtain a connection in W which we denote by @. Remark that for any
vector field X on M , the covariant derivative @X is a derivation of the algebra �.W/.
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In order to express the connection and its curvature, we need to consider also W –valued
forms on M . These are sections of the bundle W ˝ƒqT �M and locally have the
form X

2kCp�0

�kak;i1;:::;il ;j1;:::;jq
.x/yi1 : : :yip dxj1 ^ : : :^ dxjq

where the coefficients are again covariant tensors, symmetric in i1; : : : ; ip and anti-
symmetric in j1; : : : ; jq . Such sections can be multiplied using the product in W and
simultaneously exterior multiplication a˝!ıb˝!0D .aıb/˝.!^!0/. The space of
W –valued forms �.W˝ƒ�/ is then a graded Lie algebra with respect to the bracket

Œs; s0�D s ı s0� .�1/q1q2s0 ı s

if si 2 �.W˝ƒqi /.

The connection @ in W can then be viewed as a map

@W �.W/! �.W˝ƒ1/;

and we write it as follows. Let � i
kl

be the Christoffel symbols of r in TM . Then with
respect to the i l indices we have an element of the symplectic Lie algebra sp.n;R/.
If we introduce the W –valued 1–form x� given by

x� D 1
2

X
ijkr

!ki�
k
rj yiyj dxr ;

then the connection in W is given by

@aD da�
1

�
Œx�; a�:

As usual, the connection @ in W extends to a covariant exterior derivative on all of
�.W˝ƒ�/, also denoted by @, by using the Leibnitz rule

@.a˝!/D @.a/^!C a˝ d!:

The curvature of @ is then given by @ı@ which is a 2–form with values in End.W/. In
this case it admits a simple expression in terms of the curvature R of the symplectic
connection r

@ı@aD
1

�
Œ xR; a�

where
xRD 1

4

X
ijklr

!rlR
l
ijkyr yk dxi

^ dxj :
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The idea is to try to modify @ to have zero curvature. In order to do this we need
a further technical tool, coming from Koszul long exact sequence. Given any finite
dimensional vector space V 0 , the Koszul long exact sequence has the form

0 �! Sq.V 0/
ı0

�!V 0˝Sq�1.V 0/
ı0

�!ƒ2V 0˝Sq�2.V 0/
ı0

�!� � �

� � �
ı0

�!ƒq�1.V 0/˝V 0
ı0

�!ƒq.V 0/ �! 0

where ı0 is the skew-symmetrization operator

ı0.v1
^ : : :^ vq

˝w1
� � �wp/D

pX
iD1

v1
^ : : :^ vq

^wi
˝w1

� � �wi�1wiC1
� � �wp:

The symmetrization operator reads

s.v1
^ : : :^vq

˝w1
� � �wp/

qX
iD1

.�1/q�iv1
^ : : : vi�1

^viC1 : : :^vq
˝vi
�w1
� � �wp:

These two operators satisfy .ı0/2 D 0; s2 D 0; .ı0ısC sıı
0/jƒqV 0˝Sp.V 0/

D .pC q/ Id.

For any a 2 �.W˝ƒq/, write

aD
X

p�0;q�0

apq D

X
2kCp�0;q�0

�kak;i1;:::;ip;j1;:::;jq
yi1 : : :yip dxj1 ^ : : :^ dxjq :

In particular

a00 D

X
k

�kak with ak 2 C1.M /:

Define

ı.a/D
X

k

dxk
^
@a

@yk
; ı�1.apq/D

(
1

pCq

P
k yk i. @

@xk /apq if pC q > 0I

0 if pC q D 0:

Then
ı2
D 0; .ı�1/2 D 0; .ıı�1

C ı�1ı/.a/D a� a00:

Note that ı can be written in terms of the algebra structure by

ı.a/D
1

�

�X
ij

�!ij yidxj ; a

�
so that ı is a graded derivation of �.W ˝ƒ�/. It is also not difficult to verify that
@ıC ı@D 0.
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With these preliminaries we now look for a connection D on W , so that DX is a
derivation of the algebra �.W/ for any vector field X on M , and so that D is flat
in the sense that DıD D 0. Such a connection can be written as a sum of @ and a
End.W/–valued 1–form. The latter is taken in the form

(7) DaD @a� ı.a/�
1

�
Œr; a�:

Then an easy calculation shows that

DıDaD
1

�

�
xR� @r C ır C

1

2�
Œr; r �; a

�
and Œr; r �D 2r ı r . So we will have a flat connection D provided we can make the
first term in the bracket be a central 2–form.

Theorem 9 (Fedosov [27]) The equation

(8) ır D� xRC @r �
1

�
r2
C z�

for a given series

(9) z�D
X
i�1

hi!i

where the !i are closed 2–forms on M , has a unique solution r 2 �.W ˝ ƒ1/

satisfying the normalization condition

ı�1r D 0

and such that the W –degree of the leading term of r is at least 3.

Proof We apply ı�1 to the equation (8) and use the fact that r is a 1–form so that
r00 D 0. Then r , if it exists, must satisfy

(10) r D ı�1ır D�ı�1 xRC ı�1@r �
1

�
ı�1r2

C ı�1 z�:

Two solutions of this equation will have a difference which satisfies the same equation
but without the xR term and the z� term. If the first non-zero term of the difference has
finite degree m, then the leading term of ı�1@r has degree mC 1 and of ı�1.r2=h/

has degree 2m� 1. Since both of these are larger than m for m � 2, such a term
cannot exist so the difference must be zero. Hence the solution is unique.

Existence is very similar. We observe that the above argument shows that the equation
(10) for r determines the homogeneous components of r recursively. So it is enough to
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show that such a solution satisfies both conditions of the theorem. Obviously ı�1r D 0.
Let AD ır C xR� @r C 1

�
r2� z� 2 �.W˝ƒ2/. Then

ı�1AD ı�1ır C ı�1

�
xR� @r C

1

�
r2
� z�

�
D r � r D 0:

Also DAD @A�ıA� 1
�
Œr;A�D 0. We can now apply a similar argument to that which

proved uniqueness. Since A00 D 0, ı�1AD 0 and DAD 0 we have

AD ı�1ıAD ı�1

�
@A�

1

�
Œr;A�

�
and recursively we can see that each homogeneous component of A must vanish, which
shows that (8) holds and the theorem is proved.

Actually carrying out the recursion to determine r explicitly seems very complicated,
but one can easily see that the following proposition holds.

Proposition 10 (Bertelson [5; 7]) Let us consider z� D
P

i�1 hi!i and the corre-
sponding r in �.W˝ƒ1/ , solution of (8), given inductively by (10). Then rm only
depends on !i for 2i C 1�m and the first term in r which involves !k is

r2kC1 D ı
�1.�k!k/Czr2kC1

where the last term does not involve !k .

3.3 Flat sections of the Weyl bundle

In this section, we consider a flat connection D on the Weyl bundle constructed as
above. Since DX acts as a derivation of the pointwise multiplication of sections, the
space WD of flat sections will be a subalgebra of the space

WD D fa 2 �.W/jDaD 0g

of sections of W . The importance of this space of sections comes from

Theorem 11 (Fedosov [27]) Given a flat connection D , for any aı 2 C1.M /J�K
there is a unique a 2WD such that a.x; 0; �/D aı.x; �/.

Proof This is very much like the above argument. We have

(11) DaD 0” ıaD @a�
1

�
Œr; a�:
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Since ı�1aD 0 as it is a 0–form, we apply ı�1 and we get

(12) aD ı�1ıaC aı D ı
�1

�
@a�

1

�
Œr; a�

�
C aı:

We solve this equation recursively for a, so a.x; 0; �/Daı.x; �/. The fact that ADDa

vanishes follows as before by showing that ı�1AD 0 and DADD2aD 0. Unicity
for a follows by an induction argument for the difference of two solutions.

Definition 12 Define the symbol map � W �.W/! C1.M /J�K, by

(13) �.a/D a.x; 0; �/:

Theorem 11 tells us that � is a linear isomorphism when restricted to WD . So it can
be used to transport the algebra structure of WD to C1.M /J�K. We define

(14) a� b D �.��1.a/ ı ��1.b//; a; b 2 C1.M /J�K:

One checks easily that this defines a �–product on C1.M /, called the Fedosov star
product; its construction depends only on the choice of a symplectic connection r and
the choice of a series � of closed 2–forms on M . If the curvature and the � vanish,
one gets back the Moyal �–product.

Proposition 13 (Bertelson [5; 7]) Let us consider z�D
P

i�1 hi!i , the connection
Dz� corresponding to r in �.W˝ƒ1/ given by the solution of (8) and the correspond-
ing star product �z� on C1.M /J�K obtained by identifying this space with WDz�

. Let
us write u�z�v D

P
i�0 �

r C
z�

r .u; v/. Then, for any r , C
z�

r only depends on !i for
i < r and

C
z�

rC1.u; v/D !r .Xu;Xv/C zCrC1.u; v/

where the last term does not depend on !r .

Proof Take u in C1.M / and observe that the lowest term in the W grading of
��1u involving !k is in .��1u/2kC1 , coming from the term �1

�
@�1Œr2kC1;u1� and

one has

.��1u/2kC1 D�
1

�
@�1Œ@�1.hk!k/;u1�Cu0

where u0 does not depend on !k . Hence the lowest term in �.��1.u/ ı ��1.v// for
u; v 2 C1.M / involving !k comes from

..��1.u//2kC1 ı .�
�1.v//1C ..�

�1.u//1 ı .�
�1.v//2kC1/.x; 0; h/:
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4 Classification of Poisson deformations and star products on
a symplectic manifold

4.1 Hochschild cohomology

Star products on a manifold M are examples of deformations – in the sense of Gersten-
haber [32] – of associative algebras. The study of these uses the Hochschild cohomology
of the algebra, here C1.M / with values in C1.M /, where p–cochains are p–linear
maps from .C1.M //p to C1.M / and where the Hochschild coboundary operator
maps the p–cochain C to the .pC1/–cochain

.@C /.u0; : : : ;up/D u0C.u1; : : : ;up/

C

pX
rD1

.�1/r C.u0; : : : ;ur�1ur ; : : : ;up/C .�1/pC1C.u0; : : : ;up�1/up:

For differential star products, we consider differential cochains, that is, given by
differential operators on each argument. The associativity condition for a star product
at order k in the parameter � reads

.@Ck/.u; v; w/D
X

rCsDk;r;s>0

�
Cr .Cs.u; v/; w/�Cr .u;Cs.v; w//

�
:

If one has cochains Cj ; j < k such that the star product they define is associative to
order k � 1, then the right hand side above is a cocycle (@(RHS)D 0) and one can
extend the star product to order k if it is a coboundary (RHSD @.Ck//.

Theorem 14 (Vey [53]) Every differential p–cocycle C on a manifold M is the sum
of the coboundary of a differential .p�1/–cochain and a 1–differential skew-symmetric
p–cocycle A:

(15) C D @BCA

In particular, a cocycle is a coboundary if and only if its total skew-symmetrization,
which is automatically 1–differential in each argument, vanishes. Also

H
p
diff.C

1.M /;C1.M //D �.ƒpTM /:

Furthermore (see Cahen and Gutt [12]), given a connection r on M , B can be defined
from C by universal formulas.
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By universal, we mean the following: any p–differential operator D of order maximum
k in each argument can be written

(16) D.u1; : : : ;up/D
X

j˛1j<k:::j˛p j<k

D
˛1:::˛p

j˛1j;:::;j˛p j
r˛1

u1 : : :r˛p
up

where ˛ ’s are multi-indices, Dj˛1j;:::;j˛p j are tensors (symmetric in each of the p

groups of indices) and r˛u D .r : : : .ru//
�
@

@xi1
; : : : ; @

@xiq

�
when ˛ D .i1; : : : ; iq/.

We claim that there is a B such that the tensors defining B are universally defined as
linear combinations of the tensors defining C , universally meaning in a way which is
independent of the form of C . Note that requiring differentiability of the cochains is
essentially the same as requiring them to be local (see Cahen, Gutt and De Wilde [15]).

(An elementary proof of the above theorem can be found in Gutt and Rawnsley [37].)

Remark 15 Behind Theorem 14 above, there exist the following stronger results about
Hochschild cohomology:

Theorem 16 Let AD C1.M /, let C.A/ be the space of continuous Cochains and
Cdiff.A/ be the space of differential cochains. Then

(1) �.ƒpTM /�H p.C1.M /;C1.M //;

(2) the inclusions �.ƒpTM /� Cdiff.A/� C.A/ induce isomorphisms in cohomol-
ogy.

Point (1) follows from the fact that any cochain which is 1–differential in each argument
is a cocycle and that the skew-symmetric part of a coboundary always vanishes. The
fact that the inclusion �.ƒTM /� Cdiff.A/ induces an isomorphism in cohomology is
proven by Vey [53]; it gives Theorem 14. The general result about continuous cochains
is due to Connes [20]. Another proof of Connes result was given by Nadaud in [43].
In the somewhat pathological case of completely general cochains the full cohomology
does not seem to be known.

4.2 Equivalence of star products

Definition 17 Two star products � and �0 on .M;P / are said to be equivalent if
there is a series

(17) T D IdC
1X

rD1

�r Tr

where the Tr are linear operators on C1.M /, such that

(18) T .f �g/D Tf �0 Tg:
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Remark that the Tr automatically vanish on constants since 1 is a unit for � and for �0 .
Using in a similar way linear operators which do not necessarily vanish on constants,
one can pass from any associative deformation of the product of functions on a Poisson
manifold .M;P / to another such deformation with 1 being a unit. Remark also that
one can write T D exp A where A is a series of linear operators on C1.M /.

In the general theory of deformations, Gerstenhaber [32] showed how equivalence is
linked to some second cohomology space.

Recall that a star product � on .M; !/ is called differential if the 2–cochains Cr .u; v/

giving it are bidifferential operators. As was observed by Lichnerowicz [41] and
Deligne [24]:

Proposition 18 If � and �0 are differential star products and T .u/DuC
P

r�1�
rTr.u/

is an equivalence such that T .u � v/ D T .u/ �0 T .v/ then the Tr are differential
operators.

Proof Indeed if T D IdC�kTkC� � � then @Tk DC 0
k
�Ck is differential so C 0

k
�Ck

is a differential 2–cocycle with vanishing skew-symmetric part but then, using Vey’s
formula, it is the coboundary of a differential 1–cochain E and Tk �E , being a
1–cocycle, is a vector field so Tk is differential. One then proceeds by induction,
considering T 0 D .IdC�kTk/

�1 ıT D IdC�kC1T 0
kC1
C : : : and the two differential

star products � and �00 , where u�00vD .IdC�kTk/
�1..IdC�kTk/u�

0 .IdC�kTk/v/;

which are equivalent through T 0 (that is, T 0.u� v/D T 0.u/�00 T 0.v/).

A differential star product is equivalent to one with linear term in � given by 1
2
fu; vg.

Indeed C1.u; v/ is a Hochschild cocycle with antisymmetric part given by 1
2
fu; vg

so C1 D
1
2
P C @B for a differential 1–cochain B . Setting T .u/ D uC �B.u/ and

u�0 v D T .T �1.u/�T �1.v//, this equivalent star product �0 has the required form.

In 1979, we proved [33] that all differential deformed brackets on R2n (or on any
symplectic manifold such that b2D 0) are equivalent modulo a change of the parameter,
and this implies a similar result for star products; this was proven by direct methods by
Lichnerowicz [40]:

Proposition 19 Let � and �0 be two differential star products on .M; !/ and suppose
that H 2.M IR/D 0. Then there exists a local equivalence T D IdC

P
k�1 �

kTk on
C1.M /J�K such that u�0 v D T .T �1u�T �1v/ for all u; v 2 C1.M /J�K.

Proof Let us suppose that, modulo some equivalence, the two star products � and
�0 coincide up to order k . Then associativity at order k shows that Ck � C 0

k
is a

Geometry & Topology Monographs, Volume 17 (2011)



190 Simone Gutt

Hochschild 2–cocycle and so by Theorem 14 can be written as .Ck �C 0
k
/.u; v/ D

.@B/.u; v/ C A.Xu;Xv/ for a 2–form A. The total skew-symmetrization of the
associativity relation at order kC1 shows that A is a closed 2–form. Since the second
cohomology vanishes, A is exact, AD dF . Transforming by the equivalence defined
by T uD uC �k�12F.Xu/, we can assume that the skew-symmetric part of Ck �C 0

k

vanishes. Then Ck�C 0
k
D @B where B is a differential operator. Using the equivalence

defined by T D I C �kB we can assume that the star products coincide, modulo an
equivalence, up to order k C 1 and the result follows from induction since two star
products always agree in their leading term.

It followed from the above proof and results similar to [33] (that is, two star products
which are equivalent and coincide at order k differ at order k C 1 by a Hochschild
2–cocycle whose skew-symmetric part corresponds to an exact 2–form) that at each
step in � , equivalence classes of differential star products on a symplectic manifold
.M; !/ are parametrised by H 2.M IR/, if all such deformations exist. The general
existence was proven by De Wilde and Lecomte. At that time, one assumed the parity
condition Cn.u; v/D .�1/nCn.v;u/, so equivalence classes of such differential star
products were parametrised by series H 2.M IR/J�2K. The parametrization was not
canonical.

In 1994, Fedosov proved the recursive construction explained in Section 3: given any
series of closed 2–forms on a symplectic manifold .M; !/, he could build a connection
on the Weyl bundle whose curvature is linked to that series and a star product whose
equivalence class only depends on the element in H 2.M IR/J�K corresponding to that
series of forms.

In 1995, Nest and Tsygan [44], then Deligne [24] and Bertelson–Cahen–Gutt [5; 7]
proved that any differential star product on a symplectic manifold .M; !/ is equiv-
alent to a Fedosov star product and that its equivalence class is parametrised by the
corresponding element in H 2.M IR/J�K.

4.3 Poisson deformations on a symplectic manifold

Definition 20 A Poisson deformation of the Poisson bracket on a Poisson manifold
.M;P / is a Lie algebra deformation of .C1.M /; f ; g/ which is a derivation in each
argument, that is, of the form

(19) fu; vg� D P�.du; dv/

where P� D P C
P
�kPk is a series of skew-symmetric contravariant 2–tensors on

M (such that ŒP� ;P� �D 0).

Geometry & Topology Monographs, Volume 17 (2011)



Deformation quantisation of Poisson manifolds 191

Two Poisson deformations P� and P 0� of the Poisson bracket P on a Poisson manifold
.M;P / are equivalent if there exists a formal path in the diffeomorphism group of M ,
starting at the identity, i. e. a series

(20) T D exp D D IdC
X

j

1

j !
Dj for D D

X
r�1

�r Dr

where the Dr are vector fields on M , such that

(21) T fu; vg� D fT u;T vg0�

where fu; vg� D P�.du; dv/ and fu; vg0� D P 0�.du; dv/.

For symplectic manifolds, Flato, Lichnerowicz and Sternheimer in 1974 studied 1–
differential deformations of the Poisson bracket [31]; the next proposition follows from
their work.

Proposition 21 On a symplectic manifold .M; !/, the equivalence classes of Poisson
deformations of the Poisson bracket P are parametrised by H 2.M IR/J�K.

Indeed, one first shows by induction that any Poisson deformation P� of the Poisson
bracket P on a symplectic manifold .M; !/ is of the form P� for a series � D
!C

P
k�1 �

k!k where the !k are closed 2–forms, and P�.du; dv/D��.X�
u ;X

�
v /

where X�
u DXuC �.: : : / 2 �.TM /J�K is the element defined by i.X�

u /�D du.

One then shows that two Poisson deformations P� and P�0 are equivalent if and only
if !k and !0

k
are cohomologous for all k � 1. In fact

TP�.du; dv/D P�0.d.T u/; d.T v//

with T D exp D for D D
P

r�1 �
r Dr iff

�0 D exp.LD/�

so iff �0��D d˛ for ˛ D
P

k>0 �
k˛k with

d˛ D .exp.LD/� Id/�D d

�X
k�0

1

.kC 1/!
i.D/.LD/

k�

�
:

In 1997, Kontsevich proved that the coincidence of the set of equivalence classes of
star and Poisson deformations is true for general Poisson manifolds:

Theorem 22 (Kontsevich [39]) The set of equivalence classes of differential star
products on a Poisson manifold .M;P / can be naturally identified with the set of
equivalence classes of Poisson deformations of P :

P� D P�CP2�
2
C � � � 2 �.X; ƒ2TX /J�K; ŒP� ;P� �D 0
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All results concerning parametrisation of equivalence classes of differential star products
are still valid for star products defined by local cochains or for star products defined by
continuous cochains (see Gutt [36] and Pinczon [48]). Parametrization of equivalence
classes of special star products have been obtained: star products with separation of
variables (by Karabegov [38]), invariant star products on a symplectic manifold when
there exists an invariant symplectic connection (with Bertelson and Bieliavsky [6]),
and algebraic star products (Kontsevich [39]).

4.4 Deligne’s cohomology classes

Deligne defines two cohomological classes associated to differential star products on
a symplectic manifold. This leads to an intrinsic way to parametrise the equivalence
class of such a differential star product. Deligne’s method depends crucially on the
Darboux theorem and the uniqueness of the Moyal star product on R2n so the methods
do not extend to general Poisson manifolds.

The first class is a relative class; fixing a star product on the manifold, it intrinsically
associates to any equivalence class of star products an element in H 2.M IR/J�K. This
is done in Čech cohomology by looking at the obstruction to gluing local equivalences.

Deligne’s second class is built from special local derivations of a star product. The same
derivations played a special role in the first general existence theorem (see De Wilde
and Lecomte [22]) for a star product on a symplectic manifold. Deligne used some
properties of Fedosov’s construction and central curvature class to relate his two classes
and to see how to characterise an equivalence class of star products by the derivation
related class and some extra data obtained from the second term in the deformation.
With John Rawnsley [37], we did this by direct Čech methods which I shall present
here.

4.4.1 The relative class Let � and �0 be two differential star products on .M; !/.
Let U be a contractible open subset of M and NU D C1.U /. Remark that any
differential star product on M restricts to U and H 2.M IR/.U / D 0, hence, by
Proposition 19, there exists a local equivalence T D IdC

P
k�1 �

kTk on NU J�K so
that u�0 v D T .T �1u�T �1v/ for all u; v 2NU J�K.

Proposition 23 Consider a differential star product � on .M; !/, and assume that
H 1.M IR/ vanishes.

� Any self-equivalence AD IdC
P

k�1 �
kAk of � is inner: AD exp ad� a for

some a 2 C1.M /J�K.
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� Any �–linear derivation of � is of the form D D
P

i�0 �
iDi where each Di

corresponds to a symplectic vector field Xi and is given on a contractible open
set U by

DiujU D
1

�

�
f U

i �u�u�f U
i

�
if XiujU D ff

U
i ;ugjU .

Indeed, one builds a recursively; assuming A D IdC
P

r�k �
r Ar and k � 1, the

condition A.u � v/ D Au �Av implies at order k in � that Ak.uv/C Ck.u; v/ D

Ak.u/vC uAk.v/CCk.u; v/ so that Ak is a vector field. Taking the skew part of
the terms in �kC1 we have that Ak is a derivation of the Poisson bracket. Since
H 1.M IR/ D 0, one can write Ak.u/ D fak�1;ug for some function ak�1 . Then
.exp � ad� �k�1ak�1/ıAD IdCO.�kC1/ and the induction proceeds. The proof for
�–linear derivation is similar.

The above results can be applied to the restriction of a differential star product on .M; !/

to a contractible open set U . Set, as above, NU D C1.U /. If AD IdC
P

k�1 �
kAk

is a formal linear operator on NU J�K which preserves the differential star product �,
then there is a 2NU J�K with AD exp ad� a. Similarly, any local �–linear derivation
DU of � on NU J�K is essentially inner: DU D

1
�

ad� dU for some dU 2NU J�K.

It is convenient to write the composition of automorphisms of the form exp ad� a in
terms of a. In a pronilpotent situation this is done with the Campbell–Baker–Hausdorff
composition which is denoted by a ı� b :

(22) a ı� b D aC

Z 1

0

 .exp ad� a ı exp t ad� b/b dt

where

 .z/D
z log.z/

z� 1
D

X
n�1

�
.�1/n

nC 1
C
.�1/nC1

n

�
.z� 1/n:

Notice that the formula is well defined (at any given order in � , only a finite number
of terms arise) and it is given by the usual series

a ı� b D aC bC 1
2
Œa; b��C

1
12
.Œa; Œa; b����C Œb; Œb; a����/ : : : :

The following results are standard (see Bourbaki [10, Chapitre 2, Section 6]).

� ı� is an associative composition law;

� exp ad�.a ı� b/D exp ad� a ı exp ad� b ;

� a ı� b ı� .�a/D exp.ad� a/ b ;

� �.a ı� b/D .�b/ ı� .�a/;
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�
d

dt

ˇ̌̌̌
0

.�a/ ı� .aC tb/D
1� exp .� ad� a/

ad� a
.b/.

Let .M; !/ be a symplectic manifold. We fix a locally finite open cover U D fU˛g˛2I

by Darboux coordinate charts such that the U˛ and all their non-empty intersections
are contractible, and we fix a partition of unity f�˛g˛2I subordinate to U . Set N˛ D

C1.U˛/, N˛ˇ D C1.U˛ \Uˇ/, and so on.

Now suppose that � and �0 are two differential star products on .M; !/. We have
seen that their restrictions to N˛J�K are equivalent so there exist formal differential
operators T˛W N˛J�K!N˛J�K such that

(23) T˛.u� v/D T˛.u/�
0 T˛.v/; u; v 2N˛J�K:

On U˛ \Uˇ , T �1
ˇ
ıT˛ will be a self-equivalence of � on N˛ˇJ�K and so there will

be elements tˇ˛ D�t˛ˇ in N˛ˇJ�K with

(24) T �1
ˇ ıT˛ D exp ad� tˇ˛:

On U˛ \Uˇ \U
 the element

(25) t
ˇ˛ D t˛
 ı� t
ˇ ı� tˇ˛

induces the identity automorphism and hence is in the centre RJ�K of N˛ˇ
 J�K. The
family of t
ˇ˛ is thus a Čech 2–cocycle for the covering U with values in RJ�K.
The standard arguments show that its class does not depend on the choices made,
and is compatible with refinements. Since every open cover has a refinement of the
kind considered it follows that t
ˇ˛ determines a unique Čech cohomology class
Œt
ˇ˛ � 2H 2.M IR/J�K.

Definition 24

(26) t.�0;�/D Œt
ˇ˛ � 2H 2.M IR/J�K

is Deligne’s relative class.

It is easy to see, using the fact that the cohomology of the sheaf of smooth functions is
trivial:

Theorem 25 (Deligne) Fixing a differential star product � on .M; !/, the relative
class t.�0;�/ in H 2.M IR/J�K depends only on the equivalence class of the differential
star product �0 , and sets up a bijection between the set of equivalence classes of
differential star products and H 2.M IR/J�K.
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If �, �0 , �00 are three differential star products on .M; !/ then

(27) t.�00;�/D t.�00;�0/C t.�0;�/:

4.4.2 The derivation related class The addition formula above suggests that t.�0;�/

should be a difference of classes c.�0/; c.�/ 2 H 2.M IR/J�K. Moreover, the class
c.�/ should determine the star product � up to equivalence.

Definition 26 Let U be an open set of M . Say that a derivation D of .C1.U /J�K;�/
is �–Euler if it has the form

(28) D D �
@

@�
CX CD0

where X is conformally symplectic on U (LX!jU D !jU ) and D0 D
P

r�1 �
r D0r

with the D0r differential operators on U .

Proposition 27 Let � be a differential star product on .M; !/. For each U˛ 2U there
exists a �–Euler derivation D˛ D �

@
@�
CX˛CD0˛ of the algebra .N˛J�K;�/.

Proof On an open set in R2n with the standard symplectic structure �, denote the
Poisson bracket by P . Let X be a conformal vector field so LX�D�. The Moyal
star product �M is given by u�M vD uvC

P
r�1.

�
2
/r=r !P r .u; v/ and DD � @

@�
CX

is a derivation of �M .

Now .U˛; !/ is symplectomorphic to an open set in R2n and any differential star
product on this open set is equivalent to �M so we can pull back D and �M to U˛ by
a symplectomorphism to give a star product �0 with a derivation of the form � @

@�
CX˛ .

If T is an equivalence of � with �0 on U˛ then D˛ D T �1 ı .� @
@�
CX˛/ ı T is a

derivation of the required form.

We take such a collection of derivations D˛ given by Proposition 27 and on U˛ \Uˇ
we consider the differences Dˇ �D˛ . They are derivations of � and the � derivatives
cancel out, so Dˇ �D˛ is a �–linear derivation of N˛ˇJ�K. Any �–linear derivation
is of the form 1

�
ad� d , so there are dˇ˛ 2N˛ˇJ�K with

(29) Dˇ �D˛ D
1

�
ad� dˇ˛

with dˇ˛ unique up to a central element. On U˛ \Uˇ \U
 the combination d˛
 C

d
ˇCdˇ˛ must be central and hence defines d
ˇ˛ 2RJ�K. It is easy to see that d
ˇ˛
is a 2–cocycle whose Čech class Œd
ˇ˛ � 2H 2.M IR/J�K does not depend on any of
the choices made.
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Definition 28 d.�/D Œd
ˇ˛ �2H 2.M IR/J�K is Deligne’s intrinsic derivation-related
class.

� In fact the class considered by Deligne is actually 1
�
d.�/. A purely Čech-

theoretic account of this class is given in Karabegov [38].

� If � and �0 are equivalent then d.�0/D d.�/.

� If d.�/D
P

r�0 �
r dr .�/ then d0.�/D Œ!� under the de Rham isomorphism,

and d1.�/D 0.

Consider two differential star products � and �0 on .M; !/ with local equivalences
T˛ and local �–Euler derivations D˛ for �. Then D0˛ D T˛ ıD˛ ı T �1

˛ are local
�–Euler derivations for �0 . Let Dˇ �D˛ D

1
�

ad� dˇ˛ and T �1
ˇ
ıT˛ D exp ad� tˇ˛

on U˛ \Uˇ . Then D0
ˇ
�D0˛ D

1
�

ad�0d 0ˇ˛ where

d 0ˇ˛ D Tˇdˇ˛ � �Tˇ ı

�
1� exp .� ad� t˛ˇ/

ad� t˛ˇ

�
ıD˛t˛ˇ:

In this situation

d 0
ˇ˛ D T˛.d
ˇ˛C �
2 @

@�
t
ˇ˛/:

This gives a direct proof of the following theorem:

Theorem 29 (Deligne) The relative class and the intrinsic derivation-related classes
of two differential star products � and �0 are related by

(30) �2 @

@�
t.�0;�/D d.�0/� d.�/:

4.4.3 The characteristic class The formula above shows that the information which
is “lost” in d.�0/� d.�/ corresponds to the zeroth order term in � of t.�0;�/.

Remark 30 In Gutt [34] and De Wilde–Gutt–Lecomte [23] it was shown that any
bidifferential operator C , vanishing on constants, which is a 2–cocycle for the Chevalley
cohomology of .C1.M /; f ; g/ with values in C1.M / associated to the adjoint
representation (that is, such that

C̊
u;v;w

Œfu;C.v; w/g�C.fu; vg; w/�D 0

where C̊ u;v;w denotes the sum over cyclic permutations of u; v and w ) can be written
as

C.u; v/D aS3
�.u; v/CA.Xu;Xv/C Œfu;EvgC fEu; vg�E.fu; vg/�
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where a 2 R, where S3
�

is a bidifferential 2–cocycle introduced in Bayen et al. [4]
(which vanishes on constants and is never a coboundary and whose symbol is of order
3 in each argument), where A is a closed 2–form on M and where E is a differential
operator vanishing on constants. Hence

H 2
Chev;nc.C

1.M /;C1.M //DR˚H 2.M IR/

and we define the # operator as the projection on the second factor relative to this
decomposition.

Proposition 31 Given two differential star products � and �0 , the term of order zero
in Deligne’s relative class t.�0;�/D

P
r�0 �

r tr .�0;�/ is given by

t0.�0;�/D�2.C 0
�

2 /
#
C 2.C�2 /

#:

If C1 D
1
2
f ; g, then C�

2
.u; v/DA.Xu;Xv/ where A is a closed 2–form and .C�

2
/#D

ŒA� so it “is” the skew-symmetric part of C2 .

It follows from what we did before that the association to a differential star product of
.C�

2
/# and d.�/ completely determines its equivalence class.

Definition 32 The characteristic class of a differential star product � on .M; !/ is
the element c.�/ of the affine space �Œ!�

�
CH 2.M IR/J�K defined by

c.�/0 D�2.C�2 /
#;

@

@�
c.�/.�/D

1

�2
d.�/:

Theorem 33 (Gutt and Rawnsley [37]) The characteristic class has the following
properties:

� The relative class is given by

(31) t.�0;�/D c.�0/� c.�/

� The map C from equivalence classes of star products on .M; !/ to the affine
space �Œ!�

�
CH 2.M IR/J�K mapping Œ�� to c.�/ is a bijection.

� If  W M !M 0 is a diffeomorphism and if � is a star product on .M; !/ then
u�0 v D . �1/�. �u� �v/ defines a star product denoted �0 D . �1/�� on
.M 0; !0/ where !0 D . �1/�! . The characteristic class is natural relative to
diffeomorphisms:

(32) c.. �1/��/D . �1/�c.�/
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� Consider a change of parameter f .�/D
P

r�1 �
rfr where fr 2R and f1 ¤ 0

and let �0 be the star product obtained from � by this change of parameter, that is,
u�0vDu:vC

P
r�1.f .�//

r Cr .u; v/Du:vCf1�C1.u; v/C�
2..f1/

2C2.u; v/C

f2C1.u; v//C � � � . Then �0 is a differential star product on .M; !0/ where
!0 D 1

f1
! and we have equivariance under a change of parameter:

(33) c.�0/.�/D c.�/.f .�//

The characteristic class c.�/ coincides (see Deligne [24] and Neumaier [45]) for
Fedosov-type star products with their characteristic class introduced by Fedosov as the
de Rham class of the curvature of the generalised connection used to build them (up to
a sign and factors of 2). That characteristic class is also studied by Weinstein and Xu
in [55]. The fact that d.�/ and .C�

2
/# completely characterise the equivalence class

of a star product is also proven by Čech methods in De Wilde [21].

4.5 Automorphisms of a star product

The above proposition allows to study automorphisms of star products on a symplectic
manifold (see Rauch [49] and Gutt–Rawnsley [37]).

Definition 34 An isomorphism from a differential star product � on .M; !/ to a
differential star product �0 on .M 0; !0/ is an R–linear bijective map

AW C1.M /J�K! C1.M 0/J�K;

continuous in the �–adic topology (that is, A
�P

r�
r ur

�
is the limit of

P
r�N A.�r ur/),

such that
A.u� v/DAu�0Av:

Notice that if A is such an isomorphism, then A.�/ is central for �0 so that A.�/Df .�/

where f .�/2RJ�K is without constant term to get the �–adic continuity. Let us denote
by �00 the differential star product on .M; !1D

1
f1
!/ obtained by a change of parameter

u�00� v D u�f .�/ v D F.F�1u�F�1v/

for F W C1.M /J�K! C1.M /J�KI
P

r �
r ur 7!

P
r f .�/

r ur .

Define A0W C1.M /J�K ! C1.M 0/J�K by A D A0 ı F . Then A0 is a �–linear
isomorphism between �00 and �0 :

A0.u�00 v/DA0u�0A0v
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At order zero in � this yields A0
0
.u:v/DA0

0
u:A0

0
v so that there exists a diffeomorphism

 W M 0!M with A0
0
uD �u. The skew-symmetric part of the isomorphism relation

at order 1 in � implies that  �!1 D !
0 . Let us denote by �000 the differential star

product on .M; !1/ obtained by pullback via  of �0 ,

u�000 v D . �1/�. �u�0  �v/;

and define BW C1.M /J�K! C1.M /J�K so that A0 D  � ıB . Then B is �–linear,
starts with the identity and

B.u�00 v/D Bu�000Bv

so that B is an equivalence – in the usual sense – between �00 and �000 . Hence we have
the following proposition.

Proposition 35 (Gutt and Rawnsley [37]) Any isomorphism between two differential
star products on symplectic manifolds is the combination of a change of parameter
and a �–linear isomorphism. Any �–linear isomorphism between two star products
� on .M; !/ and �0 on .M 0; !0/ is the combination of the action on functions of a
symplectomorphism  W M 0!M and an equivalence between � and the pullback via
 of �0 . In particular, it exists if and only if those two star products are equivalent, that
is, if and only if . �1/�c.�0/D c.�/, where here . �1/� denotes the action on the
second de Rham cohomology space.

Thus two differential star products � on .M; !/ and �0 on .M 0; !0/ are isomorphic
if and only if there exist f .�/D

P
r�1�

rfr 2RJ�K with f1 ¤ 0 and  W M 0!M ,
a symplectomorphism, such that . �1/�c.�0/.f .�// D c.�/.�/. In particular (see
Gutt [33]): if H 2.M IR/DRŒ!� then there is only one star product up to equivalence
and change of parameter. Omori et al. [47] also show that when reparametrizations are
allowed then there is only one star product on CPn .

A special case of Proposition 35 gives the following proposition:

Proposition 36 A symplectomorphism  of a symplectic manifold can be extended
to a �–linear automorphism of a given differential star product on .M; !/ if and only
if . /�c.�/D c.�/.

Notice that this is always the case if  can be connected to the identity by a path of
symplectomorphisms (and this result is in Fedosov [28]).

Homomorphisms of star products are more difficult to study; we refer to the preprint
of Bordemann [8].
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5 Star products on Poisson manifolds and formality

The existence of a star product on a general Poisson manifold was proven by Kontsevich
in [39] as a straightforward consequence of the formality theorem. He showed that the
set of equivalence classes of star products is the same as the set of equivalence classes
of formal Poisson structure. As we already mentioned, a differential star product on
M is defined by a series of bidifferential operators satisfying some identities; on the
other hand a formal Poisson structure on a manifold M is completely defined by a
series of bivector fields P satisfying certain properties. To describe a correspondence
between these objects, one introduces the algebras they belong to.

5.1 DGLAs

Definition 37 A graded Lie algebra is a Z–graded vector space gD
L

i2Z gi endowed
with a bilinear operation

Œ ; �W g˝ g! g

satisfying the following conditions:

(a) (graded bracket) Œ a ; b � 2 g˛Cˇ

(b) (graded skew-symmetry) Œ a ; b �D�.�1/˛ˇ Œ b ; a �

(c) (graded Jacobi) Œ a ; Œ b ; c � �D Œ Œ a ; b � ; c �C .�1/˛ˇ Œ b ; Œ a ; c � �

for any a 2 g˛ , b 2 gˇ and c 2 g


Remark that any Lie algebra is a graded Lie algebra concentrated in degree 0 and that
the degree zero part g0 and the even part geven WD

L
i2Z g2i of any graded Lie algebra

are Lie algebras in the usual sense.

Definition 38 A differential graded Lie algebra (briefly DGLA) is a graded Lie
algebra g together with a differential, d W g! g, that is, a linear operator of degree 1
(d W gi! giC1 ) which satisfies the compatibility condition (Leibniz rule)

d Œ a ; b �D Œ d a ; b �C .�1/˛ Œ a ; d b � a 2 g˛; b 2 gˇ

and squares to zero (d ı d D 0).

The natural notions of morphisms of graded and differential graded Lie algebras are
graded linear maps which commute with the differentials and the brackets (a graded
linear map �W g! h of degree k is a linear map such that �.gi/ � hiCk 8i 2 N ).
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Remark that a morphism of DGLAs has to be a degree 0 in order to commute with the
other structures.

Any DGLA has a cohomology complex defined by

Hi.g/ WD ker.d W gi
! giC1/

ı
im.d W gi�1

! gi/:

The set H WD
L

i Hi.g/ has a natural structure of graded vector space and inherits the
structure of a graded Lie algebra, defined by

Œ jaj ; jbj �H WD
ˇ̌
Œ a ; b �g

ˇ̌
:

where jaj2H denote the equivalence classes of a closed element a2g. The cohomology
of a DGLA can itself be turned into a DGLA with zero differential.

Any morphism �W g1 ! g2 of DGLAs induces a morphism .�/W H1 ! H2 . A
morphism of DGLAs inducing an isomorphism in cohomology is called a quasi-
isomorphism.

5.1.1 The DGLA of polydifferential operators Let A be an associative algebra
with unit on a field K; consider the complex of multilinear maps from A to itself:

C WD
1X

iD�1

Ci Ci
WD HomK.A

˝.iC1/;A/

We remark that we shifted the degree by one; the degree jAj of a .pC 1/–linear map
A is equal to p .

The Lie bracket of linear operators is defined by skew-symmetrization of the com-
position of linear operators. One extends this notion to multilinear operators: for
A1 2 Cm1 ;A2 2 Cm2 , define

.A1 ıA2/.f1; : : : ; fm1Cm2C1/ WD

m1X
jD1

.�1/.m2/.j�1/A1.f1; : : : ; fj�1;A2.fj ; : : : ; fjCm2
/; fjCm2C1; : : : ; fm1Cm2C1/

for any .m1Cm2C1/–tuple of elements of A.

Then the Gerstenhaber bracket is defined by

ŒA1;A2�G WDA1 ıA2� .�1/m1m2A2 ıA1:

It gives C the structure of a graded Lie algebra.

Geometry & Topology Monographs, Volume 17 (2011)



202 Simone Gutt

The differential dD is defined by

dDAD�Œ�;A�D�� ıAC .�1/jAjA ı�

where � is the usual product in the algebra A. Hence dAD .�1/jAjC1ıA if ı is the
Hochschild coboundary

.ıA/.f0; : : : ; fp/D

p�1X
iD0

.�1/iC1A.f0; : : : ; fi�1; fi �fiC1; : : : ; fp/Cf0�A.f1; : : : ; fp/

C .�1/.pC1/A.f0; : : : ; fp/ �fpC1:

Proposition 39 The graded Lie algebra C together with the differential dD is a
differential graded Lie algebra.

Here we consider the algebra A D C1.M /, and we deal with the subalgebra of C
consisting of multidifferential operators Dpoly.M / WD

L
Di

poly.M / with Di
poly.M /

consisting of multi differential operators acting on i C 1 smooth functions on M

and vanishing on constants. It is easy to check that Dpoly.M / is closed under the
Gerstenhaber bracket and under the differential dD , so that it is a DGLA.

Proposition 40 An element C 2 �D1
poly.M /J�K (that is, a series of bidifferential

operator on the manifold M ) yields a deformation of the usual associative pointwise
product of functions �:

� D �CC

which defines a differential star product on M if and only if

dDC � 1
2
ŒC;C �G D 0:

5.1.2 The DGLA of multivector fields A k –multivector field is a section of the
k th exterior power ƒkTM of the tangent space TM ; the bracket of multivector fields
is the Schouten–Nijenhuis bracket defined by extending the usual Lie bracket of vector
fields:

ŒX1 ^ : : :^Xk ;Y1 ^ : : :^Yl �S D
kX

rD1

lX
sD1

.�1/rCs ŒXr ;Xs �X1 ^ : : : yXr ^ : : :^Xk ^Y1 ^ : : : yYs ^ : : :^Yl

Since the bracket of an r – and an s–multivector field on M is an .rCs�1/–multivector
field, we define a structure of graded Lie algebra on the space Tpoly.M / of multivector
fields on M by setting T i

poly.M / the set of skew-symmetric contravariant .iC1/–tensor
fields on M (remark again a shift in the grading).
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We shall consider here
ŒT1;T2�

0
S WD �ŒT2;T1�S :

The graded Lie algebra Tpoly.M / is then turned into a differential graded Lie algebra
setting the differential dT to be identically zero.

Proposition 41 An element P 2 �T 1
poly.M /J�K (that is, a series of bivector fields on

the manifold M ) defines a formal Poisson structure on M if and only if

dT P � 1
2
ŒP;P �0S D 0:

If one could construct an isomorphism of DGLA between the algebra Tpoly.M / of
multivector fields and the algebra Dpoly.M / of multidifferential operators, this would
give a correspondence between a formal Poisson tensor on M and a formal differential
star product on M . We have recalled previously that the cohomology of the algebra of
multidifferential operators is given by multivector fields

Hi.Dpoly.M //' T i
poly.M /:

This bijection is induced by the natural map

U1W T i
poly.M / �!Di

poly.M /

which extends the usual identification between vector fields and first order differential
operators, and is defined by

U1.X0 ^ : : :^Xn/.f0; : : : ; fn/D
1

.nC 1/!

X
�2SnC1

�.�/X0.f�.0// � � �Xn.f�.n//:

Unfortunately this map fails to preserve the Lie structure (as can be easily verified
already at order 2). We shall extend the notion of morphism between two DGLA to
construct a morphism whose first order approximation is this isomorphism of complexes.
To do this one introduces the notion of L1–morphism.

5.2 L1–algebras, L1–morphism and formality

A toy picture of our situation (finding a correspondence between a formal Poisson
tensor P on M and a formal differential star product � D �C C on M ) is the
following. If C and P were elements in neighborhoods of zero V1 and V2 of finite
dimensional vector spaces, one could consider analytic vector fields X1 on V1 , X2 on
V2 , vanishing at zero, given by .X1/C D dDC � 1

2
ŒC;C �G ; .X2/P D dT P� 1

2
ŒP;P �0

S

and one would be interested in finding a correspondence between zeros of X2 and zeros
of X1 . An idea would be to construct an analytic map �W V2! V1 so that �.0/D 0
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and ��X2 DX1 . Such a map can be viewed as an algebra morphism ��W A1!A2

where Ai is the algebra of analytic functions on Vi vanishing at zero. The vector
field Xi can be seen as a derivation of the algebra Ai . A real analytic function being
determined by its Taylor expansion at zero, one can look at C.Vi/ WD

P
n�1 Sn.Vi/ as

the dual space to Ai ; it is a coalgebra. One view the derivation of Ai corresponding to
the vector field Xi dually as a coderivation Qi of C.Vi/. One is then looking for a
coalgebra morphism F W C.V2/! C.V1/ so that F ıQ2 DQ1 ıF .

This is generalized to the framework of graded algebras with the notion of L1–
morphism between L1–algebras.

Definition 42 A graded coalgebra on the base ring K is a Z–graded vector space
C D

L
i2Z C i with a comultiplication, that is, a graded linear map

�W C ! C ˝C

such that
�.C i/�

M
jCkDi

C j
˝C k

and such that (by coassociativity)

.�˝ id/�.x/D .id˝�/�.x/

for every x 2 C . A counit (if it exists) is a morphism

eW C !K

such that e.C i/D 0 for any i > 0 and

.e˝ id/�D .id˝e/�D id :

The coalgebra is cocommutative if

T ı�D�

where T W C ˝C ! C ˝C is the twisting map

T .x˝y/ WD .�1/jxjjyj y˝x

for x;y homogeneous elements of degree respectively jxj and jyj.

Additional structures that can be put on an algebra can be dualized to give a dual
version on coalgebras.
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Example 43 (The coalgebra C.V /) If V is a graded vector space over K, V DL
i2Z V i , one defines the tensor algebra T .V /D

L1
nD0 V ˝n with V ˝0 D K, and

two quotients: the symmetric algebra S.V /D T .V /=hx˝y � .�1/jxjjyjy˝xi and
the exterior algebra ƒ.V / D T .V /=hx ˝ y C .�1/jxjjyjy ˝ xi; these spaces are
naturally graded associative algebras. They can be given a structure of coalgebras with
comultiplication � defined on a homogeneous element v 2 V by

�v WD 1˝ vC v˝ 1

and extended as algebra homomorphism.

The reduced symmetric space is C.V / WD SC.V / WD
L

n>0 Sn.V /; it is the cofree
cocommutative coalgebra without counit constructed on V . (Remark that �v D 0 iff
v 2 V .)

Definition 44 A coderivation of degree d on a graded coalgebra C is a graded linear
map ıW C i! C iCd which satisfies the (co)Leibniz identity

�ı.v/D ıv0˝ v00C .�1/d jv
0jv0˝ ıv00

if �v D
P
v0 ˝ v00 . This can be rewritten with the usual Koszul sign conventions

�ı D .ı˝ idC id˝ı/�.

Definition 45 A L1–algebra is a graded vector space V over K and a degree 1
coderivation Q defined on the reduced symmetric space C.V Œ1�/ so that

(34) Q ıQD 0:

[Given any graded vector space V , we can obtain a new graded vector space V Œk� by
shifting the grading of the elements of V by k , that is, V Œk� D

L
i2Z V Œk�i where

V Œk�i WD V iCk :�

Definition 46 A L1–morphism between two L1–algebras, F W .V;Q/! .V 0;Q0/,
is a morphism

F W C.V Œ1�/ �! C.V 0Œ1�/

of graded coalgebras, so that F ıQDQ0 ıF .

Any algebra morphism from SC.V / to SC.V 0/ is uniquely determined by its restriction
to V and any derivation of SC.V / is determined by its restriction to V . In a dual
way, a coalgebra–morphism F from the coalgebra C.V / to the coalgebra C.V 0/ is
uniquely determined by the composition of F and the projection on � 0W C.V 0/! V 0 .
Similarly, any coderivation Q of C.V / is determined by the composition F ı� where
� is the projection of C.V / on V .
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Definition 47 We call Taylor coefficients of a coalgebra-morphism F W C.V /!C.V 0/

the sequence of maps FnW S
n.V /! V 0 and Taylor coefficients of a coderivation Q of

C.V / the sequence of maps QnW S
n.V /! V .

Proposition 48 Given V and V 0 two graded vector spaces, any sequence of linear
maps FnW S

n.V / ! V 0 of degree zero determines a unique coalgebra morphism
F W C.V /! C.V 0/ for which the Fn are the Taylor coefficients. Explicitly

F.x1 : : :xn/D
X
j�1

1

j !

X
f1;:::;ngDI1t:::tIj

�x.I1; : : : ; Ij /FjI1j
.xI1

/ � � �FjIj j
.xIj

/

where the sum is taken over I1 : : : Ij partition of f1; : : : ; ng and �x.I1; : : : ; Ij / is
the signature of the effect on the odd xi ’s of the unshuffle associated to the partition
.I1; : : : ; Ij / of f1; : : : ; ng.

Similarly, if V is a graded vector space, any sequence QnW S
n.V /!V; n� 1 of linear

maps of degree i determines a unique coderivation Q of C.V / of degree i whose
Taylor coefficients are the Qn . Explicitly

Q.x1 : : :xn/D
X

f1;:::;ngDItJ

�x.I;J /.QjI j.xI /xJ :

A coderivation Q of C.V Œ1�/ of degree 1 has for Taylor coefficients linear maps

QnW S
n.V Œ1�/! V Œ2�:

The equation Q2 D 0 is equivalent to

� Q2
1
D 0 and Q1 is a linear map of degree 1 on V ,

� Q2.Q1x:yC .�1/jxj�1x:Q1y/CQ1Q2.x:y/D 0

(remark that jxj � 1 is the degree of x in V Œ1�),
� Q3

�
Q1x:y:zC .�1/jxj�1x:Q1y:zC .�1/jxjCjyj�2x:y:Q1z

�
CQ1Q3.x:y:z/CQ2.Q2.x:y/:z/C .�1/.jyj�1/.jzj�1/Q2.x:z/:y

C.�1/.jxj�1/.jyjCjzj�2/Q2.y:z/:x D 0,
� . . .

Introduce the natural isomorphisms

ˆnW S
n.V Œ1�/!ƒn.V Œn�/ ˆn.x1 : : :xn/D ˛.x1 : : :xn/x1 ^ � � � ^xn;

where ˛.x1 : : :xn/, for homogeneous xi s, is the signature of the unshuffle permutation
putting the even xi ’s on the left without permuting them and the odd ones on the right
without permuting them.
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Define xQn WDQn ı .ˆn/
�1W ƒn.V /! V Œ�nC 1� and

dx D .�1/jxjQ1x Œx;y� WD xQ2.x ^y/D .�1/jxj.jyj�1/Q2.x;y/:

Then d is a differential on V , and Œ ; � is a skew-symmetric bilinear map from V �V !

V satisfying

.�1/.jxj/.jzj/ŒŒx;y�; z�C.�1/.jyj/.jxj/ŒŒy; z�;x�.�1/.jzj/.jyj/ŒŒz;x�;y�Cterms in Q3D 0

and d Œx;y�D Œdx;y�C .�1/jxjŒx; dy�. In particular, we get the following.

Proposition 49 Any L1–algebra .V;Q/ so that all the Taylor coefficients Qn of Q

vanish for n> 2 yields a differential graded Lie algebra and vice versa

A morphism of graded coalgebras between C.V Œ1�/ and C.V 0Œ1�/ is equivalent to a
sequence of linear maps (the Taylor coefficients)

FnW S
n.V Œ1�/! V 0Œ1�I

it defines a L1–morphism between two L1–algebras .V;Q/ and .V 0;Q0/ iff FıQD

Q0 ıF and this equation is equivalent to
� F1 ıQ1 DQ0

1
ıF1 so F1W V ! V 0 is a morphism of complexes from .V; d/

to .V 0; d 0/.
� F1.Œx;y�/� ŒF1x;F1y�0 D expression involving F2

� . . .

So, for DGLAs, there exist L1–morphisms between two DGLAs which are not DGLA–
morphisms. The equations for F to be a L1–morphism between two DGLAs .V;Q/
and .V 0;Q0 (with Qn D 0;Q0n D 0 8n> 2) are

Q01Fn.x1 � : : : �xn/C
1
2

X
UtJDf1;:::;ng

I;J¤∅

�x.I;J /Q
0
2.FjI j.xI / �FjJ j.xJ //

D

nX
kD1

�x.k; 1; : : : yk : : : ; n/Fn.Q1.xk/ �x1 : : : yxk : : :xn/

C
1
2

X
k¤l

�x.k; l; 1; : : : ykl : : : ; n/Fn�1.Q2.xk �xl/ �x1 : : : yxk yxl : : :xn/

Definition 50 Given a L1 algebra .V;Q/ over a field of characteristic zero, and
given mD �RJ�K, a m–point is an element p 2 �C.V /J�K so that �p D p˝p or,
equivalently, it is an element

(35) p D ev � 1D vC
v2

2
C � � �
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where v is an even element in V Œ1�˝mD �V Œ1�J�K.

A solution of the generalized Maurer–Cartan equation is a m–point p where Q

vanishes; equivalently, it is an odd element v 2 �V J�K so that

(36) Q1.v/C
1
2
Q2.v � v/C � � � D 0:

If g is a DGLA, it is thus an element v 2 g so that dv� 1
2
Œv; v�D 0.

Remark 51 The image under a L1 morphism of a solution of the generalised Maurer–
Cartan equation is again such a solution. In particular, if one builds a L1 morphism
F between the two DGLA we consider, F W Tpoly.M /!Dpoly.M /, the image under
F of the point e˛ � 1 corresponding to a formal Poisson tensor,

(37) ˛ 2 �T 1
poly.M /J�K so that Œ˛; ˛�S D 0;

yields a star product on M ,

(38) � D �C
X

n

Fn.˛
n/:

Definition 52 Two L1–algebras .V;Q/ and .V 0;Q0/ are quasi-isomorphic if there
is a L1–morphism F so that F1W V ! V 0 induces an isomorphism in cohomology.

Kontsevich has proven that if F is a L1–morphism between two L1–algebras .V;Q/
and .V 0;Q0/ so that F1W V ! V 0 induces an isomorphism in cohomology, then there
exists a L1–morphism G between .V 0;Q0/ and .V;Q/ so that G1W V

0 ! V is a
quasi inverse for F1 .

Definition 53 Kontsevich’s formality is a quasi isomorphism between the (L1–
algebra structure associated to the) DGLA of multidifferential operators, Dpoly.M /,
and its cohomology, the DGLA of multivector fields Tpoly.M /.

5.3 Kontsevich’s formality for Rd

Kontsevich gave an explicit formula for the Taylor coefficients of a formality for Rd ,
that is, the Taylor coefficients Fn of an L1–morphism between the two DGLAs

F W .Tpoly.R
d /;Q/! .Dpoly.R

d /;Q0/

where Q corresponds to the DGLA of .Tpoly.Rd / ; Œ ; �0
S
; DT D 0/ and Q0 corre-

sponds to the DGLA .Dpoly.Rd / ; Œ ; �G ; dD/ as they were presented before, with
the first coefficient

F1W Tpoly.R
d /!Dpoly.R

d /

Geometry & Topology Monographs, Volume 17 (2011)



Deformation quantisation of Poisson manifolds 209

given by .U1/ with, as before

U1.X0 ^ : : :^Xn/.f0; : : : ; fn/D
1

.nC 1/!

X
�2SnC1

�.�/X0.f�.0// � � �Xn.f�.n//:

The formula is written as follows:

Fn D

X
m�0

X
E�2Gn;m

WE�BE�

� where Gn;m is a set of oriented admissible graphs;

� where BE� associates a m–differential operator to an n–tuple of multivector
fields;

� where WE� is the integral of a form !E� over the compactification of a configura-
tion space CC

fp1;:::;pngfq1;:::;qmg
.

For a detailed proof of this formality, we refer the reader to the article by Arnal,
Manchon and Masmoudi [3].

5.3.1 The set Gn;m of oriented admissible graphs An admissible graph E� 2Gn;m

has n aerial vertices labelled p1; : : : ;pn , has m ground vertices labelled q1; : : : ; qm .
From each aerial vertex pi , a number ki of arrows are issued; each of them can end on
any vertex except pi but there can not be multiple arrows. There are no arrows issued
from the ground vertices. One gives an order to the vertices: .p1; : : : ;pn; q1; : : : ; qm/,
and one gives a compatible order to the arrows, labeling those issued from pi with
.k1C� � �Cki�1C1; : : : ; k1C� � �Cki�1Cki/. The arrows issued from pi are named
Star.pi/D f

��!pia1; : : : ;
���!piaki

g with �����������!vk1C���Cki�1Cj D
��!piaj .

5.3.2 The m–differential operator BE�.˛1; : : : ; ˛n/ Given a graph E� 2 Gn;m and
given n multivector fields .˛1; : : : ; ˛n/ on Rd , one defines a m– differential operator
BE�.˛1 � : : : �˛n/; it vanishes unless ˛1 is a k1 –tensor, ˛2 is a k2 –tensor,. . . , ˛n is a
kn –tensor and in that case it is given by

BE�.˛1 � : : : �˛n/.f1; : : : ; fn/DX
i1;:::;iK

Dp1
˛

i1���ik1

1
Dp2

˛
ik1C1���ik1Ck2

2
: : :Dpn

˛
ik1C:::Ckn�1C1���iK
n Dq1

f1 : : :Dqm
fm

where K WD k1C � � �C kn and where Da WD
Q

j j
�!
vjD
�!
�a
@ij .
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5.3.3 The configuration space CC
fp1;:::;pngfq1;:::;qmg

Let H denote the upper half
plane HD fz 2Cj Im.z/ > 0g. We define

ConfC
fz1;:::;zngft1;:::;tmg

WD

�
z1; : : : ; zn; t1; : : : ; tm

ˇ̌̌̌
zj 2HI zi ¤ zj for i ¤ j I

tj 2RI t1 < t2 < � � �< tm

�
and CC

fp1;:::;pngfq1;:::;qmg
to be the quotient of this space by the action of the 2–

dimensional group G of all transformations of the form

zj 7! azj C b; ti 7! ati C b; a> 0; b 2R:

The configuration space CC
fp1;:::;pngfq1;:::;qmg

has dimension 2nCm� 2 and has an
orientation induced on the quotient by

�fz1;:::;znIt1;:::;tmg D dx1 ^ dy1 ^ : : : dxn ^ dyn ^ dt1 ^ : : :^ dtm

if zj D xj C iyj .

We define the compactification CC
fp1;:::;pngfq1;:::;qmg

to be the closure of the image of
the configuration space CC

fp1;:::;pngfq1;:::;qmg
into the product of a torus and the product

of real projective spaces P2.R/ under the map ‰ induced from a map  defined on
ConfC

fz1;:::;zngft1;:::;tmg
in the following way: to any pair of distinct points A;B taken

amongst the fzj ;xzj ; tkg  associates the angle arg.B�A/ and to any triple of distinct
points A;B;C in that set,  associates the element of P2.R/ which is the equivalence
class of the triple of real numbers .jA�Bj; jB �C j; jC �Aj/.

5.3.4 The form !E� For a graph E� 2Gn;m , one defines a form on CC
fp1;:::;pngfq1;:::;qmg

induced by

!E� D
1

.2�/k1C:::Ckn.k1/! : : : .kn/!
dˆ�!

v1
^ : : :^ dˆ�!

vK

where ˆ��!
pj a
D Arg

�a�pj

a�xpj

�
.

5.3.5 Sketch of the proof Remark that WE� ¤ 0 implies that the dimension of the
configuration space 2nCm� 2 is equal to the degree of the form D k1C : : :C kn D

K.Dthe number of arrows in the graph).

We shall write
Fn D

X
m�0

X
E�2Gn;m

WE�BE� D
X

F.k1;:::;kn/

where F.k1;:::;kn/ corresponds to the graphs E� 2 Gn;m with ki arrows starting from
pi .
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The formality equation reads

0D F.k1;:::;kn/.˛1 � �˛n/ ı�� .�1/
P

ki�1� ıF.k1;:::;kn/.˛1 � �˛n/

C

X
UtJDf1;:::;ng

I;J¤∅

�˛.I;J /.�1/.jkI j�1/jkJ jF.kI /.˛I / ıF.kJ /.˛J /

�

X
i¤j

�x.i;j ;1; : : : yij : : : ;n/F.kiCkj�1;k1;::: yki kj :::;kn/
..˛i� j̨ / �˛1 � : : : y̨i y̨j : : : �˛n/

where

˛1 �˛2 D
k1

.k1/!.k2/!
˛

ri1:::ik1�1

1
@r˛

j1:::jk2

2
@i1
^ � � � ^ @ik1�1

^ @j1
^ � � � ^ @jk2

so that
Œ˛1; ˛2�S D .�1/k1�1˛1 �˛2� .�1/k1.k2�1/˛2 �˛1:

Recall that, for multidifferential operators

.A1 ıA2/.f1; : : : ; fm1Cm2�1/D

m1X
jD1

.�1/.m2�1/.j�1/A1.f1; : : : ; fj�1;A2.fj ; : : : ; fjCm2�1/; : : : ; fm1Cm2�1/:

The right hand side of the formality equation can be written asX
�!
� 0

C�!
� 0

B�!
� 0
.˛1 � �˛n/

for graphs
�!
� 0 with n aerial vertices, m ground vertices and 2nCm� 3 arrows.

To a face G of codimension 1 in the boundary of CC
fp1;:::;pngfq1;:::;qmg

and an oriented
graph

�!
� 0 as above, one associates one term in the formality equation (or 0).

� G D @fpi1
;:::;pin1

gfqlC1;:::;qlCm1
gC
C

fp1;:::;pngfq1;:::;qmg
if it is the case that the

aerial points fpi1
; : : : ;pin1

g and the ground points fqlC1; : : : ; qlCm1
g all col-

lapse into a ground point q . We associate to G the term B0�!
� 0 ;G

.˛1 � �˛n/ in
the formality equation of the form B�!

� 0
obtained from

B�!
�2

. j̨1
� � j̨n2

/.f1; : : : ; fl ;B�!�1

.˛i1
� �˛in1

/.flC1; : : : ; flCm1
/; flCm1C1; : : : ; fm/

where
�!
�1 is the restriction of

�!
� 0 to fpi1

; : : : ;pin1
g[ fqlC1; : : : ; qlCm1

g, where
�!
�2 is obtained from

�!
� 0 by collapsing fpi1

; : : : ;pin1
g[ fqlC1; : : : ; qlCm1

g into
q and where fj1 < � � �< jn2

g D f1; : : : ; ng n fi1; : : : ; in1
g.
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� G D @fpi ;pj g
CC
fp1;:::;pngfq1;:::;qmg

if the aerial points fpi ;pj g collapse into an
aerial point p .
If the arrow ���!pipj belongs to

�!
� 0 , then we associate B0�!

� 0 ;G
.˛1 � �˛n/ which is

the term in the formality equation of B�!
� 0

obtained from

B�!
�2

.˛i � j̨ / �˛1 � y̨i y̨j �˛n/

where
�!
�2 is obtained from

�!
� 0 by collapsing fpi ;pj g into p , discarding the

arrow ���!pipj .
If ���!pipj is not an arrow in

�!
� 0 , we set B0�!

� 0 ;G
.˛1 � �˛n/D 0.

� G D @fpi1
;:::;pin1

gC
C

fp1;:::;pngfq1;:::;qmg
if the aerial points fpi1

; : : : ;pin1
g all

collapse with n1 > 2. We associate to such a face G , the operator B0�!
� 0 ;G
D 0.

Looking at the coefficients of B�!
� 0

in each of the B0�!
� 0 ;G

, the right hand side of the

formality equation now writesX
�!
� 0

C�!
� 0

B�!
� 0
.˛1 � �˛n/D

X
�!
� 0

X
G�@CC

B0�!
� 0 ;G

.˛1 � �˛n/

D

X
�!
� 02Gn;m

� X
G�@CC

Z
G

!�!
� 0

�
B�!
� 0
.˛1 � �˛n/

D 0

by Stokes theorem on the manifold with corners which is the compactification of CC .

This formality for Rd associates in particular a star product on C1.Rd / to a formal
Poisson tensor on Rd and gives:

Theorem 54 (Kontsevich [39]) Let ˛ be a Poisson tensor on Rd (thus ˛ 2T 1
poly.R

d /

and Œ˛; ˛�S D 0), let X be a vector field on Rd , let f;g 2 C1.Rd / Then

� the series of bidifferential operators

(39) P .˛/ WD �CC.˛/ WD �C

1X
jD1

�j

j !
Fj .˛ � �˛/

defines a star product on Rd ;

� the series of differential operators

(40) A.X; ˛/D

1X
jD0

�j

j !
FjC1.X �˛ � �˛/
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satisfies

(41) A.X; ˛/f �gCf �A.X; ˛/g�A.X; ˛/.f �g/D
d

dt j0
P .ˆX

t�
˛/.f;g/

where ˆX
t is the flow of X .

5.4 Star product on a Poisson manifold

Kontsevich builds a formality for any manifold M . Here, we shall sketch the approach
given by Cattaneo, Felder and Tomassini [19], which gives a globalization of Kontsevich
local formula for a star product on a Poisson manifold. For a detailed proof we refer to
Cattaneo and Felder [18]. Using similar techniques, Dolgushev [25] gave a globalisation
of Kontsevich formality, using a torsion free connection on the manifold.

Remark that given a Poisson bivector field ˛ on Rd , the star product P .˛/.f;g/.x/

on Rd only depends on the Taylor expansion at x of f;g and ˛ .

If .M;P D ˛/ is any Poisson manifold, we shall use a torsion free connection and the
exponential map associated to it to lift smooth functions and multivector fields from
M to U � TM and we shall consider their Taylor expansions in the fiber variables.
The lift of P allows to define a fiberwise Kontsevich star product on sections of the jet
bundle. One then defines a bijection between C1.M /J�K and a subalgebra of those
sections.

5.4.1 Formal exponential maps and ?–product on the sections of the jet bundle
Consider a smooth map ˆW U � TM !M where U is a neighborhood of the zero
section; denoting ˆx WDˆjTxM , we assume that ˆx.0/D x and that .ˆx/�0 D Id.
Define an equivalence relation on such maps, defining ˆ�‰ if all partial derivatives
of ˆx and ‰x at y D 0 coincide. A formal exponential map is an equivalence class
of such maps. In a chart, we can write a formal exponential map Œˆ�� as a collection
of formal power series

ˆi
x.y/D xi

Cyi
�

1
2
� i

jk.x/y
iyj
C � � � :

Here we shall look at the exponential map for a torsion free connection.

Consider the jet-bundle E . The fiber is the space of formal power series in y 2 Rd

with real coefficients, RJy1; : : : ;ydK; if F.M / is the frame bundle of TM

E D F.M /�Gl.m;R/RJy1; : : : ;ydK:

Given a formal exponential map, one associates to any f 2 C1.M /, the Taylor
expansion fˆ of the pullback ��xf ; it is a section of E and is given by

fˆ.xIy/D f .x/C @rfyr
C

1
2
r

2
rsfyr ys

C � � �
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with r2
rsf D @

2
rsf ��

i
rs.x/@if . Remark that any section of E is of the form

�.x;y/D
X

ai1:::ip .x/y
i1 � � �yip

where the ai1:::ip define covariant tensors on M .

To any polyvector field ˛ 2 Tpoly.M /, one associates the Taylor expansion ˛ˆ of the
pullback .�x/

�1
� ˛ . For instance, if X is a vector field on M one gets

X i
ˆ.x;y/D expansion of .X j .ˆ.x//

��
@ˆx

@y

��1�
j

D xi.x/C .rr X /iyr
C � � �

and for a Poisson bivector ˛ one gets

˛
ij
ˆ
.x;y/D ˛ij .x/C � � � :

Given a formal exponential map, Kontsevich formula for a star product on Rd yields
an associative algebra structure on the space of formal power series of sections of the
jet bundle. Indeed, if E WDEJ�K define

� ? � WD P .˛ˆ/.�; �/

with P .˛ˆ/ defined by formula (39), for sections �; � of E .

To define a star product on .M; ˛/ we shall try to find a subalgebra of this algebra of
sections .�.E/; ?/ which is in bijection with C1.M /J�K. The idea is to look at flat
sections for a flat covariant derivative which acts as a derivation of ?.

5.5 Grothendieck connection

Let us recall that a section � of the jet–bundle E is the pullback of a function, that is,
� D fˆ if and only if

(42) DX � D 0 8X 2 �1.TM /

where

(43) DX DX �X i

��
@ˆx

@y

��1�k

j

@ˆ
j
x

@xi

@

@yk
DWX C yX :

Remark that D2 D 0.

Introducing ıWDdxi @
@yi and defining the total degree of a form on M taking val-

ues in sections of E as the sum of the form degree and the degree in y (that is,
ai1:::ip;j1:::jq

yi1 : : :yip dxj1 ^ : : :^ dxjq is of degree pC q ), one can write

D D�ıC zD
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where zD is of order �1. This allows to show that the cohomology of D is concentrated
in degree 0.

5.6 Flat connection

The above shows that there is a connection D on the bundle E which is flat and so
that the subspace of D–flat sections is isomorphic to the algebra of smooth functions
on M . Remark that D is a derivation of the usual product of sections of E (extending
the product of polynomials in y to formal power series) but D is not a derivation of ?.

The aim is to modify the connection D in order to have a flat connection which is a
derivation of ?, then to build a bijection between the space of formal power series of
smooth functions on M and the space of flat sections of E for that new connection.

One first defines

(44) D0X WDX CA. yX ; ˛ˆ/

where A is defined as in formula (40) using the formality on Rd . It is a derivation of
? but in general it is not flat:

D02� D ŒFM ; � �?

where FM is a 2–form on M with values in the sections of E defined using the
formality as

FM .X;Y /D F. yX ; yY ; ˛ˆ/ WD

1X
jD0

�j

j !
FjC2. yX ; yY ; ˛ˆ; : : : ; ˛ˆ/:

One then modify D0 so that the new covariant derivative is again a derivation

(45) DDD0C Œ
; �?

where 
 is a 1– form on M with values in the sections of E and so that its curvature
vanishes. One has

D2� D ŒF
0M ; � �? where F

0M
D FM

CD0
 C 
 ? 


and one can find a solution 
 proceeding by induction using the fact that the D–
cohomology vanishes.
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5.7 Flat sections and star products

D is a flat connection on E which is a derivation of ? so the space of flat sections of
E is a ?–subalgebra. To identify this space of flat sections with the space of formal
power series of smooth functions on M , one builds a map

�W �1.E/J�K! �1.E/J�K with �D idCO.�/ and �jyD0
D id

so that

(46) D �.�/D �.D�/:

This is again possible by induction using the results on the cohomology of D .

The image under � of the space of D–flat sections of E (which is isomorphic to the
space of formal series of functions on M ) is the ?–subalgebra of D–flat sections of
E .

The star product of two formal series f;g of smooth functions on M , is defined as the
formal series of functions h so that �.h�/D .�.fˆ/ ? .�.gˆ//; hence the star product
is given by

(47) f �g D Œ��1.�.fˆ/ ? .�.gˆ//�yD0:

Remark that the construction of the star product only depends on the choice of a
torsion free connection. The existence of a universal star product when one has chosen
a torsion free connection r (universal meaning whose corresponding tensors -see
formula (16)- are polynomials in the Poisson tensor, the curvature tensor and their
covariant derivatives) follows also from Dolgushev [25]. Ammar and Chloup have
given an expression for a universal star product at order 3.

References
[1] D Arnal, M Cahen, S Gutt, Deformations on coadjoint orbits, J. Geom. Phys. 3 (1986)

327–351 MR894630

[2] D Arnal, J Ludwig, M Masmoudi, Déformations covariantes sur les orbites polarisées
d’un groupe de Lie, J. Geom. Phys. 14 (1994) 309–331 MR1303958

[3] D Arnal, D Manchon, M Masmoudi, Choix des signes pour la formalite de M Kont-
sevich, Pacific J. Math. 202 (2002) 23–66

[4] F Bayen, M Flato, C Fronsdal, A Lichnerowicz, D Sternheimer, Quantum mechan-
ics as a deformation of classical mechanics, Lett. Math. Phys. 1 (1975/77) 521–530
MR0674337

Geometry & Topology Monographs, Volume 17 (2011)



Deformation quantisation of Poisson manifolds 217

[5] M Bertelson, Equivalence de produits star, Mémoire de licence, Université Libre de
Bruxelles (1995)

[6] M Bertelson, P Bieliavsky, S Gutt, Parametrizing equivalence classes of invariant
star products, Lett. Math. Phys. 46 (1998) 339–345 MR1668581

[7] M Bertelson, M Cahen, S Gutt, Equivalence of star products, Classical Quantum
Gravity 14 (1997) A93–A107 MR1691889

[8] M Bordemann, (Bi)modules, morphismes et réduction des star-produits: le cas sym-
plectique, feuilletages et obstructions arXiv:math.QA/0403334

[9] M Bordemann, Deformation quantization: a mini-lecture, from: “Geometric and
topological methods for quantum field theory”, Contemp. Math. 434, Amer. Math. Soc.,
Providence, RI (2007) 3–38 MR2349629

[10] N Bourbaki, Éléments de mathématique. Fasc XXXVII: Groupes et algèbres de Lie.
Chapitre II: Algèbres de Lie libres. Chapitre III: Groupes de Lie, Actualités Scientifiques
et Industrielles 1349, Hermann, Paris (1972) MR0573068

[11] A Bruyère, A Cattaneo, B Keller, C Torossian, Déformation, quantification, théorie
de Lie, Panoramas et Synthèse 20 (1995)

[12] M Cahen, S Gutt, Produits ? sur les espaces affins symplectiques localement
symétriques, C. R. Acad. Sci. Paris Sér. I Math. 297 (1983) 417–420 MR732848

[13] M Cahen, S Gutt, Produits ? sur les orbites des groupes semi-simples de rang 1, C. R.
Acad. Sci. Paris Sér. I Math. 296 (1983) 821–823 MR711840

[14] M Cahen, S Gutt, An algebraic construction of � product on the regular orbits of
semisimple Lie groups, from: “Gravitation and geometry”, Monogr. Textbooks Phys.
Sci. 4, Bibliopolis, Naples (1987) 71–82 MR938533

[15] M Cahen, S Gutt, M De Wilde, Local cohomology of the algebra of C1 functions
on a connected manifold, Lett. Math. Phys. 4 (1980) 157–167 MR583079

[16] M Cahen, S Gutt, J Rawnsley, On tangential star products for the coadjoint Poisson
structure, Comm. Math. Phys. 180 (1996) 99–108 MR1403860

[17] A S Cattaneo, Formality and star products, from: “Poisson geometry, deformation
quantisation and group representations”, London Math. Soc. Lecture Note Ser. 323,
Cambridge Univ. Press, Cambridge (2005) 79–144 MR2166452 Lecture notes taken
by D Indelicato

[18] A S Cattaneo, G Felder, On the globalization of Kontsevich’s star product and
the perturbative Poisson sigma model, Progr. Theoret. Phys. Suppl. (2001) 38–53
MR2023844Noncommutative geometry and string theory (Yokohama, 2001)

[19] A S Cattaneo, G Felder, L Tomassini, From local to global deformation quantization
of Poisson manifolds, Duke Math. J. 115 (2002) 329–352 MR1944574

[20] A Connes, Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math.
(1985) 257–360 MR823176

Geometry & Topology Monographs, Volume 17 (2011)



218 Simone Gutt

[21] M De Wilde, Deformations of the algebra of functions on a symplectic manifold: a sim-
ple cohomological approach, publication 96.005, Institut de Mathématique, Université
de Liége (1996)

[22] M De Wilde, P B A Lecomte, Existence of star-products and of formal deformations
of the Poisson Lie algebra of arbitrary symplectic manifolds, Lett. Math. Phys. 7 (1983)
487–496 MR728644

[23] M De Wilde, P Lecomte, S Gutt, À propos des deuxième et troisième espaces de
cohomologie de l’algèbre de Lie de Poisson d’une variété symplectique, Ann. Inst. H.
Poincaré Sect. A .N.S./ 40 (1984) 77–83 MR745682

[24] P Deligne, Déformations de l’algèbre des fonctions d’une variété symplectique: com-
paraison entre Fedosov et De Wilde, Lecomte, Selecta Math. .N.S./ 1 (1995) 667–697
MR1383583

[25] V Dolgushev, Covariant and equivariant formality theorems, Adv. Math. 191 (2005)
147–177 MR2102846

[26] V G Drinfel’d, Quantum groups, from: “Proceedings of the International Congress of
Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986)”, Amer. Math. Soc., Providence, RI
(1987) 798–820 MR934283

[27] B V Fedosov, A simple geometrical construction of deformation quantization, J. Differ-
ential Geom. 40 (1994) 213–238 MR1293654

[28] B Fedosov, Deformation quantization and index theory, Mathematical Topics 9,
Akademie Verlag, Berlin (1996) MR1376365

[29] R Fioresi, M A Lledó, On the deformation quantization of coadjoint orbits of semisim-
ple groups, Pacific J. Math. 198 (2001) 411–436 MR1835516

[30] M Flato, Deformation view of physical theories, Czech J. Phys. B32 (1982) 472–475

[31] M Flato, A Lichnerowicz, D Sternheimer, Crochet de Moyal–Vey et quantification,
C. R. Acad. Sci. Paris Sér. A-B 283 (1976) Aii, A19–A24 MR0426048

[32] M Gerstenhaber, On the deformation of rings and algebras, Ann. of Math. .2/ 79
(1964) 59–103 MR0171807

[33] S Gutt, Equivalence of deformations and associated �–products, Lett. Math. Phys. 3
(1979) 297–309 MR545408

[34] S Gutt, Second et troisième espaces de cohomologie différentiable de l’algèbre de Lie
de Poisson d’une variété symplectique, Ann. Inst. H. Poincaré Sect. A .N.S./ 33 (1980)
1–31 MR593022

[35] S Gutt, An explicit �–product on the cotangent bundle of a Lie group, Lett. Math. Phys.
7 (1983) 249–258 MR706215

[36] S Gutt, On some second Hochschild cohomology spaces for algebras of functions on a
manifold, Lett. Math. Phys. 39 (1997) 157–162 MR1437749

Geometry & Topology Monographs, Volume 17 (2011)



Deformation quantisation of Poisson manifolds 219

[37] S Gutt, J Rawnsley, Equivalence of star products on a symplectic manifold; an
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