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Applications of Poisson geometry to physical problems

DARRYL D HOLM

These being lecture notes for a summer school, one should not seek original material
in them. Rather, the most one could hope to find would be the insight arising from
incorporating a unified approach (based on reduction by symmetry of Hamilton’s
principle) with some novel applications. I hope the reader will find insight in the
lecture notes, which are meant to be informal, more like stepping stones than a proper
path.

37K05, 53Z05, 70S05; 37K10, 37K65, 70S10

Preface

Many excellent encyclopedic texts have already been published on the foundations of
this subject and its links to symplectic and Poisson geometry. See, for example, Abra-
ham and Marsden [1], Arnold [3], Guillemin and Sternberg [21], José and Saletan [35],
Libermann and Marle [39], Marsden and Ratiu [44], McDuff and Salamon [50] and
many more. In fact, the scope encompassed by the modern literature on this subject is a
bit overwhelming. In following the symmetry-reduction theme in geometric mechanics
from the Euler–Poincaré viewpoint, I have tried to select only the material the student
will find absolutely necessary for solving the problems and exercises, at the level of a
beginning postgraduate student. The primary references are Marsden [42], Marsden and
Ratiu [44], Lee [38], Bloch [5], and Ratiu, Tudoran, Sbano, Sousa Dias and Terra [57].
Other very useful references are Arnold and Khesin [4] and Olver [53]. The reader may
see the strong influences of all these references in these lecture notes, but expressed at
a considerably lower level of mathematical sophistication than the originals.

The scope of these lectures is quite limited: a list of the topics in geometric mechanics
not included in these lectures would fill volumes! The necessary elements of calculus
on smooth manifolds and the basics of Lie group theory are only briefly described here,
because these topics were discussed in more depth by other lecturers at the summer
school. Occasional handouts are included that add a bit more depth in certain key topics.
The main subject of these lecture notes is the use of Lie symmetries in Hamilton’s
principle to derive symmetry-reduced equations of motion and to analyze their solutions.
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222 Darryl D Holm

The Legendre transformation provides the Hamiltonian formulation of these equations
in terms of Lie–Poisson brackets.

For example, we consider Lagrangians in Hamilton’s principle defined on the tangent
space T G of a Lie group G . Invariance of such a Lagrangian under the action of G

leads to the symmetry-reduced Euler–Lagrange equations called the Euler–Poincaré
equations. In this case, the invariant Lagrangian is defined on the Lie algebra of the
group and its Euler–Poincaré equations are defined on the dual Lie algebra, where
dual is defined by the operation of taking variational derivative. On the Hamiltonian
side, the Euler–Poincaré equations are Lie–Poisson and they possess accompanying
momentum maps, which encode both their conservation laws and the geometry of their
solution space.

The standard Euler–Poincaré examples are treated, including particle dynamics, the
rigid body, the heavy top and geodesic motion on Lie groups. Additional topics
deal with Fermat’s principle, the R3 Poisson bracket, polarized optical traveling
waves, deformable bodies (Riemann ellipsoids) and shallow water waves, including
the integrable shallow water wave system known as the Camassa–Holm equation.
The lectures end with the semidirect-product Euler–Poincaré reduction theorem for
ideal fluid dynamics. This theorem introduces the Euler–Poincaré variational principle
for incompressible and compressible motions of ideal fluids, with applications to
geophysical fluids. It also leads to their Lie–Poisson Hamiltonian formulation.

Some of these lectures were first given at the MASIE (Mechanics and Symmetry in
Europe) summer school in 2000 [24]. I am grateful to the MASIE participants for their
helpful remarks and suggestions which led to many improvements in those lectures. For
their feedback and comments, I am also grateful to my colleagues at Imperial College
London, especially Colin Cotter, Matthew Dixon, J D Gibbon, J Gibbons, G Gottwald,
J T Stuart, J-L Thiffeault, Cesare Tronci and the students who attended these thirty
three lectures in my classes at Imperial College in Spring 2005. After each class,
the students were requested to turn in a response sheet on which they answered two
questions. These questions were, “What was this class about?” and “What question
would you like to see pursued in the class?” The answers to these questions helped
keep the lectures on track with the interests and understanding of the students and it
enfranchised the students because they themselves selected the material in several of
the lectures. Over the past few years, these lectures have evolved into the textbooks
[25; 26; 33]. However, the lecture form here conveys the immediacy of the original
course.

I am enormously grateful to many friends and colleagues whose encouragement, advice
and support have helped sustain my interest in this field. I am particularly grateful to
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J E Marsden, T S Ratiu and A Weinstein for their faithful camaraderie in many research
endeavors.
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1 Introduction

1.1 Road map for the course
� Spaces – Smooth Manifolds

� Motion – Flows �t ı�s D �tCs of Lie groups acting on smooth manifolds

� Laws of Motion and discussion of solutions

� Newton’s Laws
– Newton: dp=dt D F , for momentum p and prescribed force F (on Rn

historically)
– Optimal motion
� Euler–Lagrange equations – optimal “action” (Hamilton’s principle)
� Geodesic motion – optimal with respect to kinetic energy metric

� Lagrangian and Hamiltonian Formalism
– Newton’s Law of motion
– Euler–Lagrange theorem
– Noether theorem
– Euler–Poincaré theorem
– Kelvin–Noether theorem

� Applications and examples
– Geodesic motion on a Riemannian manifold
– Rigid body – geodesic motion on SO.3/

– Other geodesic motion, for example, Riemann ellipsoids on GL.3;R/

– Heavy top

� Lagrangian mechanics on Lie groups and Euler–Poincaré (EP) equations
– EP.G/, EP equations for geodesics on a Lie group G

– EPDiff.R/ for geodesics on Diff.R/
– Pulsons, the singular solutions of EPDiff.R/) with respect to any norm
– Peakons, the singular solitons for EPDiff.R;H 1/, with respect to the H 1

norm
– EPDiff.Rn/ and singular geodesics
– Diffeons and momentum maps for EPDiff.Rn/

� Euler–Poincaré (EP) equations for continua
– EP semidirect-product reduction theorem
– Kelvin–Noether circulation theorem
– EP equations with advected parameters for geophysical fluid dynamics
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1.2 Hamilton’s principle of stationary action

Lagrangians on T R3N

Euler–Lagrange equations
Noether’s theorem
Symmetry H) cons. laws
Legendre transformation
Hamilton’s canonical equations
Poisson brackets
Symplectic manifold
Momentum map
Reduction by symmetry

G–invariant Lagrangians on T G
Euler–Poincaré equations
Kelvin–Noether theorem
Cons. laws are built-in
Legendre transformation
Lie–Hamilton equations
Lie–Poisson brackets
Poisson manifold
Momentum map
Reduction to coadjoint orbits

1.3 Motivation for the geometric approach

We begin with a series of outline sketches to motivate the geometric approach taken in
the course and explain more about its content.

Why is the geometric approach useful?

� Defines problems on manifolds
– coordinate-free
� don’t have to re-do calculations when changing coordinates
� more compact
� unified framework for expressing ideas and using symmetry

� “First principles” approach
– variational principles
– systematic – unified approach

for example, similarity between tops and fluid dynamics (semi-direct prod-
uct), and MHD, and . . .

– POWER
Geometric constructions can give useful answers without us having to find
and work with complicated explicit solutions. For example, stability of rigid
body equilibria.

1.4 Course outline
� Geometrical Structure of Classical Mechanics

– Smooth manifolds
� calculus
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� tangent vectors
� action principles

– Lie groups
� flow property �tCs D �t ı�s

� symmetries encode conservation laws into geometry
� richer than vector spaces

– Variational principles with symmetries
� Euler–Lagrange equations ! Euler–Poincaré equations (more compact)
� Two main formulations:

Lagrangian side:
Hamilton’s principle
Noether’s theorem
symmetry H) cons. laws
momentum maps

Hamiltonian side:
Lie–Poisson brackets
cons. laws () symmetries
momentum maps
Jacobi identity

(These two views are mutual beneficial!)

� Applications and Modelling
– oscillators and resonance (for example, LASER)
– tops – integrable case
– fluids

– waves

8̂<̂
:

shallow water waves

optical pulses

solitons

1.5 Range of topics

Rigid body

� Euler–Lagrange and Euler–Poincaré equations

� Kelvin–Noether theorem

� Lie–Poisson bracket, Casimirs and coadjoint orbits

� Reconstruction and momentum maps

� The symmetric form of the rigid body equations ( PQDQ�, PP D P�)

� R3 bracket and intersecting level surfaces

PxDrC �rH Dr.˛C CˇH /�r.C C �H /; for ˛��ˇ D 1
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Examples:
(1) Conversion: rigid body ” pendulum,
(3) Fermat’s principle and ray optics,
(2) Self-induced transparency.

� Nonlinear oscillators: the n Wm resonance
� SU.2/ rigid body, Cayley–Klein parameters and Hopf fibration
� The Poincaré sphere for polarization dynamics
� 3–wave resonance, Maxwell–Bloch equations, cavity resonators, symmetry

reduction and the Hopf fibration
� 4–wave resonance, coupled Hopf fibrations, coupled Poincaré spheres and cou-

pled rigid bodies
� Higher dimensional rigid bodies

– Manakov integrable top on O.n/ and its spectral problem

� Semi-rigid bodies – geodesic motion on GL.3/ and Riemann ellipsoids
� Reduction with respect to subgroups of GL.3/ and Calogero equations

Heavy top

� Euler–Poincaré variational principle for the heavy top
� Kaluza–Klein formulation of the heavy top

Utility

� Kirchhoff elastica, underwater vehicles, liquid crystals, stratified flows, polariza-
tion dynamics of telecom optical pulses

General theory

� Euler–Poincaré semidirect-product reduction theorem
� Semidirect-product Lie–Poisson formulation

Shallow water waves

� CH equation – peakons (geodesics)
� EPDiff equation – (also geodesics)

Fluid dynamics

� Euler–Poincaré variational principle for incompressible ideal fluids
� Euler–Poincaré variational principle for compressible ideal fluids
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228 Darryl D Holm

Outlook The variational principles and the Poisson brackets for the rigid body and
the heavy top provide models of a general construction associated to Euler–Poincaré
reduction with respect to any Lie group. The Hamiltonian counterpart will be the
semidirect-product Lie–Poisson formulation. We will often refer to the rigid body and
the heavy top for interpretation and enhanced understanding of the general results.

2 Review: Newton, Lagrange and Hamilton

2.1 Newton’s Law

m Rq D F.q; Pq/, inertial frames, uniform motion, etc.

2.2 Lagrange’s equations

d
dt
@L
@ Pq
D

@L
@q

for Lagrangian L.q; Pq; t/.

Defined on the tangent bundle1 TQ of the configuration space Q with coordinates
.q; Pq/ 2 TQ, the solution is a curve (or trajectory) in Q parametrized by time t . The
tangent vector of the curve q.t/ through each point q 2Q is the velocity Pq along the
trajectory that passes though the point q at time t . This vector is written Pq 2 TqQ.

Lagrange’s equations may be expressed compactly in terms of vector fields and one-
forms (differentials). Namely, the Lagrangian vector field XL D Pq

@
@q
CF.q; Pq/ @

@ Pq
acts

on the one-form .@L
@ Pq

dq/ just as a time-derivative does, to yield

d

dt

�@L
@ Pq

dq
�
D

� d

dt

@L

@ Pq

�
dqC

�@L
@ Pq

�
d Pq D dL H)

d

dt

@L

@ Pq
D
@L

@q

2.3 Hamiltonian H.p � q/D p Pq �L and Hamilton’s canonical equations

Pq D
@H

@p
; Pp D�

@H

@q

The configuration space Q has coordinates q 2Q. Its phase space, or cotangent bundle
T �Q has coordinates .q;p/ 2 T �Q.

1The terms tangent bundle and cotangent bundle are defined in Section 5. For now, we may think of
the tangent bundle as the space of positions and velocities. Likewise, the cotangent bundle is the space of
positions and momenta.

Geometry & Topology Monographs, Volume 17 (2011)



Applications of Poisson geometry to physical problems 229

Hamilton’s canonical equations are associated to the canonical Poisson bracket for
functions on phase space, by

Pp D fp;H g; Pq D fq;H g” PF .q;p/D fF;H g D
@F

@q

@H

@p
�
@F

@p

@H

@q

The canonical Poisson bracket has the following familiar properties, which may be
readily verified:

(1) It is bilinear,

(2) skew symmetric, fF;H g D �fH;Fg,

(3) satisfies the Leibniz rule (chain rule),

fFG;H g D fF;H gGCFfG;H g

for the product of any two phase space functions F and G ,

(4) and satisfies the Jacobi identity

fF; fG;H ggC fG; fH;FggC fH; fF;Ggg D 0

for any three phase space functions F , G and H .

Its Leibniz property (chain rule) property means the canonical Poisson bracket is a type
of derivative. This derivation property of the Poisson bracket allows its use in defining
the Hamiltonian vector field XH , by

XH D f�;H g D
@H

@p

@

@q
�
@H

@q

@

@p
;

for any phase space function H . The action of XH on phase space functions is given
by

Pp DXH p; Pq DXH q; and XH .FG/D .XH F /GCFXH G D PFGCF PG:

Thus, solutions of Hamilton’s canonical equations are the characteristic paths of the
first order linear partial differential operator XH . That is, XH corresponds to the time
derivative along these characteristic paths, given by

dt D
dq

@H=@p
D

dp

�@H=@q
(1)

The union of these paths in phase space is called the flow of the Hamiltonian vector
field XH .

Geometry & Topology Monographs, Volume 17 (2011)



230 Darryl D Holm

Proposition 2.1 (Poisson bracket as commutator of Hamiltonian vector fields) The
Poisson bracket fF;H g is associated to the commutator of the corresponding Hamil-
tonian vector fields XF and XH by

XfF;H g DXH XF �XF XH DW �ŒXF ;XH �

Proof Verified by direct computation.

Corollary 2.2 Thus, the Jacobi identity for the canonical Poisson bracket f�; �g is asso-
ciated to the Jacobi identity for the commutator Œ�; �� of the corresponding Hamiltonian
vector fields,

ŒXF ; ŒXG ;XH �C ŒXG ; ŒXH ;XF �C ŒXH ; ŒXF ;XG �D 0:

Proof This is the Lie algebra property of Hamiltonian vector fields, as verified by
direct computation.

2.4 Differential forms

The differential, or exterior derivative of a function F on phase space is written

dF D FqdqCFpdp;

in which subscripts denote partial derivatives. For the Hamiltonian itself, the exterior
derivative and the canonical equations yield

dH DHqdqCHpdp D� PpdqC Pqdp:

The action of a Hamiltonian vector field XH on a phase space function F commutes
with its differential, or exterior derivative. Thus,

d.XH F /DXH .dF /:

This means XH may also act as a time derivative on differential forms defined on phase
space. For example, it acts on the time-dependent one-form p dq.t/ along solutions of
Hamilton’s equations as

XH

�
p dq

�
D

d

dt

�
p dq

�
D Pp dqCp d Pq

D Pp dq� Pq dpC d.p Pq/

D�Hqdq�HpdpC d.p Pq/

D d.�H Cp Pq/DW dL.q;p/

upon substituting Hamilton’s canonical equations.
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The exterior derivative of the one-form pdq yields the canonical, or symplectic two-
form2

d.pdq/D dp^ dq

Here we have used the chain rule for the exterior derivative and its property that
d2 D 0. (The latter amounts to equality of cross derivatives for continuous functions.)
The result is written in terms of the wedge product ^, which combines two one-
forms (the line elements dq and dp ) into a two-form (the oriented surface element
dp ^ dq D �dq ^ dp ). As a result, the two-form ! D dq ^ dp representing area in
phase space is conserved along the Hamiltonian flows:

XH

�
dq ^ dp

�
D

d

dt

�
dq ^ dp

�
D 0

This proves

Theorem 2.3 (Poincaré’s theorem) Hamiltonian flows preserve area in phase space.

Definition 2.4 (Symplectic two-form) The phase space area ! D dq ^ dp is called
the symplectic two-form.

Definition 2.5 (Symplectic flows) Flows that preserve area in phase space are said
to be symplectic.

Remark 2.6 (Poincaré’s theorem) Hamiltonian flows are symplectic.

3 Handout on exterior calculus, symplectic forms and Poin-
caré’s theorem in higher dimensions

Exterior calculus on symplectic manifolds is the geometric language of Hamiltonian
mechanics. As an introduction and motivation for more detailed study, we begin with a
preliminary discussion.

In differential geometry, the operation of contraction denoted as introduces a pairing
between vector fields and differential forms. Contraction is also called substitution of a
vector field into a differential form. For example, there are the dual relations,

@q dq D 1D @p dp; and @q dp D 0D @p dq

2 The properties of differential forms are summarized in the handouts in sections 3 and 15.
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A Hamiltonian vector field

XH D Pq
@

@q
C Pp

@

@p
DHp@q �Hq@p D f�;H g

satisfies

XH dq DHp and XH dp D�Hq:

The rule for contraction or substitution of a vector field into a differential form is to
sum the substitutions of XH over the permutations of the factors in the differential
form that bring the corresponding dual basis element into its leftmost position. For
example, substitution of the Hamiltonian vector field XH into the symplectic form
! D dq ^ dp yields

XH ! DXH .dq ^ dp/D .XH dq/ dp� .XH dp/ dq

In this example, XH dq DHp and XH dp D�Hq , so

XH ! DHpdpCHqdq D dH

which follows because @q dq D 1 D @p dp and @q dp D 0 D @p dq . This
calculation proves

Theorem 3.1 (Hamiltonian vector field) The Hamiltonian vector field XH D f�;H g

satisfies

XH ! D dH with ! D dq ^ dp(2)

Relation (2) may be taken as the definition of a Hamiltonian vector field.

As a consequence of this formula, the flow of XH preserves the closed exact two form
! for any Hamiltonian H . This preservation may be verified by a formal calculation
using (2). Along .dq=dt; dp=dt/D . Pq; Pp/D .Hp;�Hq/, we have

d!

dt
D d Pq ^ dpC dq ^ d Pp D dHp ^ dp� dq ^ dHq

D d.Hp dpCHq dq/D d.XH !/D d.dH /D 0

The first step uses the chain rule for differential forms and the third and last steps use
the property of the exterior derivative d that d2 D 0 for continuous forms. The latter
is due to equality of cross derivatives Hpq D Hqp and antisymmetry of the wedge
product: dq ^ dp D�dp^ dq .

Consequently, the relation d.XH !/ D d2H D 0 for Hamiltonian vector fields
shows the following.
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Theorem 3.2 (Poincaré’s theorem for one degree of freedom) The flow of a Hamil-
tonian vector field is symplectic, which means it preserves the phase-space area, or
two-form, ! D dq ^ dp .

Definition 3.3 (Cartan’s formula for the Lie derivative) The operation of Lie deriva-
tive of a differential form ! by a vector field XH is defined by

£XH
! WD d.XH !/CXH d!(3)

Corollary 3.4 Because d! D 0, the symplectic property d!=dt D d.XH !/D 0

in Poincaré’s Theorem 3.2 may be rewritten using Lie derivative notation as

0D
d!

dt
D £XH

! WD d.XH !/CXH d! DW .div XH /!:(4)

The last equality defines the divergence of the vector field XH in terms of the Lie
derivative.

Remark 3.5
� Relation (4) associates Hamiltonian dynamics with the symplectic flow in phase

space of the Hamiltonian vector field XH , which is divergenceless with respect
to the symplectic form ! .

� The Lie derivative operation defined in (4) is equivalent to the time derivative
along the characteristic paths (flow) of the first order linear partial differential
operator XH , which are obtained from its characteristic equations in (1). This
is the dynamical meaning of the Lie derivative £XH

in (3) for which invariance
£XH

! D 0 gives the geometric definition of symplectic flows in phase space.

Theorem 3.6 (Poincaré’s theorem for N degrees of freedom) For a system of N

particles, or N degrees of freedom, the flow of a Hamiltonian vector field preserves each
subvolume in the phase space T �RN . That is, let !n � dqn ^ dpn be the symplectic
form expressed in terms of the position and momentum of the nth particle. Then

d!M

dt
D 0; for !M D…

M
nD1!n; 8M �N:

The proof of the preservation of these Poincaré invariants !M with M D 1; 2; : : : ;N

follows the same pattern as the verification above for a single degree of freedom.
Basically, this is because each factor !nDdqn^dpn in the wedge product of symplectic
forms is preserved by its corresponding Hamiltonian flow in the sum

XH D

MX
nD1

�
Pqn
@

@qn
C Ppn

@

@pn

�
D

MX
nD1

�
Hpn

@qn
�Hqn

@pn

�
D

MX
nD1

XHn
D f�;H g
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That is, £XHn
!M vanishes for each term in the sum £XH

!M D
PM

nD1 £XHn
!M since

@qm
dqn D ımn D @pm

dpn and @qm
dpn D 0D @pm

dqn .

4 Fermat’s theorem in geometrical ray optics

4.1 Fermat’s principle: Rays take paths of least optical length

In geometrical optics, the ray path is determined by Fermat’s principle of least optical
length,

ı

Z
n.x;y; z/ ds D 0:

Here n.x;y; z/ is the index of refraction at the spatial point .x;y; z/ and ds is the
element of arc length along the ray path through that point. Choosing coordinates so
that the z–axis coincides with the optical axis (the general direction of propagation),
gives

ds D Œ.dx/2C .dy/2C .dz/2�1=2 D Œ1C Px2
C Py2�1=2 dz;

with PxDdx=dz and PyDdy=dz . Thus, Fermat’s principle can be written in Lagrangian
form, with z playing the role of time,

ı

Z
L.x;y; Px; Py; z/ dz D 0:

Here, the optical Lagrangian is,

L.x;y; Px; Py; z/D n.x;y; z/Œ1C Px2
C Py2�1=2 DW n=;

or, equivalently, in two-dimensional vector notation with qD .x;y/,

L.q; Pq; z/D n.q; z/Œ1CjPqj2�1=2 DW n= with  D Œ1CjPqj2��1=2
� 1:

Consequently, the vector Euler–Lagrange equation of the light rays is

d

ds

�
n

dq
ds

�
D 

d

dz

�
n

dq
dz

�
D
@n

@q
:

The momentum p canonically conjugate to the ray path position q in an “image plane”,
or on an “image screen”, at a fixed value of z is given by

pD
@L

@ Pq
D n Pq

which satisfies jpj2 D n2.1�  2/. This implies the velocity PqD p=.n2� jpj2/1=2 .
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Hence, the momentum is real-valued and the Lagrangian is hyperregular, provided
n2�jpj2 > 0. When n2D jpj2 , the ray trajectory is vertical and has grazing incidence
with the image screen.

Defining sin � Ddz=dsD  leads to jpjDn cos � , and gives the following geometrical
picture of the ray path. Along the optical axis (the z–axis) each image plane normal to
the axis is pierced at a point qD .x;y/ by a vector of magnitude n.q; z/ tangent to the
ray path. This vector makes an angle � to the plane. The projection of this vector onto
the image plane is the canonical momentum p. This picture of the ray paths captures
all but the rays of grazing incidence to the image planes. Such grazing rays are ignored
in what follows.

Passing now via the usual Legendre transformation from the Lagrangian to the Hamil-
tonian description gives

H D p � Pq�LD n j Pqj2� n= D�n D�
�
n.q; z/2� jpj2

�1=2
Thus, in the geometrical picture, the component of the tangent vector of the ray-path
along the optical axis is (minus) the Hamiltonian, that is, n.q; z/ sin � D�H .

The phase space description of the ray path now follows from Hamilton’s equations,

PqD
@H

@p
D
�1

H
p; PpD�

@H

@q
D
�1

2H

@n2

@q
:

Remark 4.1 (Translation invariant media) If nD n.q/, so that the medium is transla-
tion invariant along the optical axis, z , then H D�n sin � is conserved. (Conservation
of H at an interface is Snell’s law.) For translation-invariant media, the vector ray-path
equation simplifies to

RqD�
1

2H 2

@n2

@q
;

Newtonian dynamics for q 2R2 .

Thus, in this case geometrical ray tracing reduces to “Newtonian dynamics” in z , with
potential �n2.q/ and with “time” rescaled along each path by the value of

p
2H

determined from the initial conditions for each ray.

4.2 Axisymmetric, translation invariant materials

In axisymmetric, translation invariant media, the index of refraction is a function of
the radius alone. Axisymmetry implies an additional constant of motion and, hence,
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reduction of the Hamiltonian system for the light rays to phase plane analysis. For such
media, the index of refraction satisfies

n.q; z/D n.r/; r D jqj:

Passing to polar coordinates .r; �/ with qD .x;y/D r.cos�; sin�/ leads in the usual
way to

jpj2 D p2
r Cp2

�=r2:

Consequently, the optical Hamiltonian,

H D�
�
n.r/2�p2

r �p2
�=r2

�1=2
is independent of the azimuthal angle � ; so its canonically conjugate “angular momen-
tum” p� is conserved.

Using the relation q � pD rpr leads to an interpretation of p� in terms of the image-
screen phase space variables p and q. Namely,

jp�qj2 D jpj2jqj2� .p �q/2 D p2
�

The conserved quantity p� D p�qD ypx �xpy is called the skewness function, or
the Petzval invariant for axisymmetric media. Vanishing of p� occurs for meridional
rays, for which p and q are collinear in the image plane. On the other hand, p� takes
its maximum value for sagittal rays, for which p �qD 0, so that p and q are orthogonal
in the image plane.

Exercise 4.2 (Axisymmetric, translation invariant materials) Write Hamilton’s canon-
ical equations for axisymmetric, translation invariant media. Solve these equations for
the case of an optical fiber with radially graded index of refraction in the following
form:

n2.r/D �2
C .�� �r2/2; �; �; � D constants;

by reducing the problem to phase plane analysis. How does the phase space portrait
differ between p� D 0 and p� ¤ 0? Show that for p� ¤ 0 the problem reduces to
a Duffing oscillator in a rotating frame, up to a rescaling of time by the value of the
Hamiltonian on each ray “orbit.”

4.3 The Petzval invariant and its Poisson bracket relations

The skewness function

S D p� D p�qD ypx �xpy
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generates rotations of phase space, of q and p jointly, each in its plane, around the
optical axis. Its square, S2 (called the Petzval invariant) is conserved for ray optics in
axisymmetric media. That is, fS2;H g D 0 for optical Hamiltonians of the form,

H D�
�
n.jqj2/2� jpj2

�1=2
:

We define the axisymmetric invariant coordinates by the map T �R2 7!R3 .q;p/ 7!
.X;Y;Z/,

X D jqj2 � 0; Y D jpj2 � 0; Z D p �q:

The following Poisson bracket relations hold

fS2;X g D 0; fS2;Y g D 0; fS2;Zg D 0;

since rotations preserve dot products. In terms of these invariant coordinates, the
Petzval invariant and optical Hamiltonian satisfy

S2
DXY �Z2

� 0; and H 2
D n2.X /�Y � 0:

The level sets of S2 are hyperboloids of revolution around the X D Y axis, extending
up through the interior of the S D 0 cone, and lying between the X – and Y –axes.
The level sets of H 2 depend on the functional form of the index of refraction, but they
are Z–independent.

4.4 R3 Poisson bracket for ray optics

The Poisson brackets among the axisymmetric variables X , Y and Z close among
themselves,

fX;Y g D 4Z; fY;Zg D �2Y; fZ;X g D �2X:

These Poisson brackets derive from a single R3 Poisson bracket for XD .X;Y;Z/
given by

fF;H g D �rS2
� rF �rH

Consequently, we may re-express the equations of Hamiltonian ray optics in axisym-
metric media with H DH.X;Y / as

PXDrS2
�rH:

with Casimir S2 , for which fS2;H g D 0, for every H . Thus, the flow preserves
volume (div PXD 0) and the evolution takes place on intersections of level surfaces of
the axisymmetric media invariants S2 and H.X;Y /.
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4.5 Recognition of the Lie–Poisson bracket for ray optics

The Casimir invariant S2 DXY �Z2 is quadratic. In such cases, one may write the
R3 Poisson bracket in the suggestive form

fF;H g D �C k
ij Xk

@F

@Xi

@H

@Xj
:

In this particular case, C 3
12
D 4, C 2

23
D 2 and C 1

31
D 2 and the rest either vanish, or

are obtained from antisymmetry of C k
ij under exchange of any pair of its indices.

These values are the structure constants of any of the Lie algebras sp.2;R/, so.2; 1/,
su.1; 1/, or sl.2;R/. Thus, the reduced description of Hamiltonian ray optics in terms
of axisymmetric R3 variables is said to be “Lie–Poisson” on the dual space of any of
these Lie algebras, say, sp.2;R/� for definiteness. We will have more to say about
Lie–Poisson brackets later, when we reach the Euler–Poincaré reduction theorem.

Exercise 4.3 Consider the R3 Poisson bracket

(5) ff; hg D �rc � rf �rh

Let c D xT �Cx be a quadratic form on R3 , and let C be the associated symmetric
3� 3 matrix. Show that this is the Lie–Poisson bracket for the Lie algebra structure

Œu; v�C DC.u� v/

What is the underlying matrix Lie algebra? What are the coadjoint orbits of this Lie
algebra?

Remark 4.4 (Coadjoint orbits) As one might expect, the coadjoint orbits of the
group SP .2;R/ are the hyperboloids corresponding to the level sets of S2 .

Remark 4.5 As we shall see later, the map T �R2 7! sp.2;R/� taking .q;p/ 7!
.X;Y;Z/ is an example of a momentum map.

5 Geometrical structure of classical mechanics

5.1 Manifolds

Configuration space: coordinates q 2M , where M is a smooth manifold.

The composition �ˇ ı��1
˛ is a smooth change of variables.

For later, smooth coordinate transformations: q!Q with dQD @Q
@q

dq
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Definition 5.1 A smooth manifold M is a set of points together with a finite (or
perhaps countable) set of subsets U˛ �M and one-to-one mappings �˛W U˛!Rn

such that

(1)
S
˛ U˛ DM

(2) For every nonempty intersection U˛ \ Uˇ , the set �˛
�
U˛ \Uˇ

�
is an open

subset of Rn and the one-to-one mapping �ˇ ı ��1
˛ is a smooth function on

�˛
�
U˛ \Uˇ

�
.

Remark 5.2 The sets U˛ in the definition are called coordinate charts. The mappings
�˛ are called coordinate functions or local coordinates. A collection of charts satisfying
1 and 2 is called an atlas. Condition 3 allows the definition of manifold to be made
independently of a choice of atlas. A set of charts satisfying 1 and 2 can always be
extended to a maximal set; so, in practice, conditions 1 and 2 define the manifold.

Example 5.3 Manifolds often arise as intersections of zero level sets

M D
˚
x
ˇ̌
fi.x/D 0; i D 1; : : : ; k

	
;

for a given set of functions fi W Rn!R, i D 1; : : : ; k . If the gradients rfi are linearly
independent, or more generally if the rank of frf .x/g is a constant r for all x , then
M is a smooth manifold of dimension n� r . The proof uses the Implicit Function
Theorem to show that an .n�r/–dimensional coordinate chart may be defined in a
neighborhood of each point on M . In this situation, the set M is called a submanifold
of Rn (see Lee [38]).

Definition 5.4 If r D k , then the map ffig is called a submersion.

Exercise 5.5 Prove that all submersions are submanifolds (see Lee [38]).

Definition 5.6 (Tangent space to level sets) Let

M D
˚
x
ˇ̌
fi.x/D 0; i D 1; : : : ; k

	
be a manifold in Rn . The tangent space at each x 2M; is defined by

TxM D

�
v 2Rn

ˇ̌̌̌
@fi

@xa
.x/va

D 0; i D 1; : : : ; k

�
:

Note: we use the summation convention, that is, repeated indices are summed over
their range.

Remark 5.7 The tangent space is a linear vector space.
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Example 5.8 (Tangent space to the sphere in R3 )

Example 5.9 (Tangent space to the sphere in R3 ) The sphere S2 is the set of points
.x;y; z/ 2 R3 solving x2C y2C z2 D 1. The tangent space to the sphere at such a
point .x;y; z/ is the plane containing vectors .u; v; w/ satisfying xuCyvC zw D 0.

Definition 5.10 (Tangent bundle) The tangent bundle of a manifold M , denoted by
TM , is the smooth manifold whose underlying set is the disjoint union of the tangent
spaces to M at the points x 2M ; that is,

TM D
[

x2M

TxM

Thus, a point of TM is a vector v which is tangent to M at some point x 2M .

Example 5.11 (Tangent bundle TS2 of S2 ) The tangent bundle TS2 of S2 2R3

is the union of the tangent spaces of S2 :

TS2
D
˚
.x;y; zIu; v; w/ 2R6

ˇ̌
x2
Cy2

C z2
D 1 and xuCyvC zw D 0

	
:

Remark 5.12 (Dimension of tangent bundle TS2 ) Defining TS2 requires two
independent conditions in R6 ; so dimTS2 D 4.

Exercise 5.13 Define the sphere Sn�1 in Rn . What is the dimension of its tangent
space TSn�1 ?

Example 5.14 (The two stereographic projections of S2!R2 ) The unit sphere

S2
D f.x;y; z/ W x2

Cy2
C z2

D 1g

is a smooth two-dimensional manifold realized as a submersion in R3 . Let

UN D S2
nf0; 0; 1g; and US D S2

nf0; 0;�1g

be the subsets obtained by deleting the North and South poles of S2 , respectively. Let

�N W UN ! .�N ; �N / 2R2; and �S W US ! .�S ; �S / 2R2

be stereographic projections from the North and South poles onto the equatorial plane,
z D 0.

Thus, one may place two different coordinate patches in S2 intersecting everywhere
except at the points along the z–axis at z D 1 (North pole) and z D�1 (South pole).
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In the equatorial plane z D 0, one may define two sets of (right-handed) coordinates,

�˛W U˛!R2
nf0g; ˛ DN;S;

obtained by the following two stereographic projections from the North and South
poles:

(1) (valid everywhere except z D 1)

�N .x;y; z/D .�N ; �N /D
� x

1� z
;

y

1� z

�
;

(2) (valid everywhere except z D�1)

�S .x;y; z/D .�S ; �S /D

�
x

1C z
;
�y

1C z

�
:

(The two complex planes are identified differently with the plane zD 0. An orientation-
reversal is necessary to maintain consistent coordinates on the sphere.)

One may check directly that on the overlap UN \US the map,

�N ı�
�1
S W R

2
nf0g !R2

nf0g

is a smooth diffeomorphism, given by the inversion

�N ı�
�1
S .x;y/D

� x

x2Cy2
;

y

x2Cy2

�
:

Exercise 5.15 Construct the mapping from .�N ; �N /! .�S ; �S / and verify that it is
a diffeomorphism in R2nf0g. Hint: .1C z/.1� z/D 1� z2 D x2Cy2 .

Answer 5.16

.�S ;��S /D
1� z

1C z
.�N ; �N /D

1

�2
N
C �2

N

.�N ; �N /:

The map .�N ; �N /! .�S ; �S / is smooth and invertible except at .�N ; �N /D .0; 0/.

Example 5.17 If we start with two identical circles in the xz–plane, of radius r and
centered at x D˙2r , then rotate them round the z axis in R3 , we get a torus, written
T 2 . It’s a manifold.

Exercise 5.18 If we begin with a figure eight in the xz–plane, along the x axis and
centered at the origin, and spin it round the z axis in R3 , we get a “pinched surface”
that looks like a sphere that has been “pinched” so that the north and south poles touch.
Is this a manifold? Prove it.
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Answer 5.19 The origin has a neighbourhood diffeomorphic to a double cone. This
is not diffeomorphic to R2 . A proof of this is that, if the origin of the cone is removed,
two components remain; while if the origin of R2 is removed, only one component
remains.

Remark 5.20 The sphere will appear in several examples as a reduced space in which
motion takes place after applying a symmetry. Reduction by symmetry is associated
with a classical topic in celestial mechanics known as normal form theory. Reduction
may be “singular,” in which case it leads to “pointed” spaces that are smooth manifolds
except at one or more points. For example different resonances of coupled oscillators
correspond to the following reduced spaces: 1:1 resonance – sphere; 1:2 resonance –
pinched sphere with one cone point; 1:3 resonance – pinched sphere with one cusp
point; 2:3 resonance – pinched sphere with one cone point and one cusp point.

5.2 Motion: tangent vectors and flows

Envisioning our later considerations of dynamical systems, we shall consider mo-
tion along curves c.t/ parametrized by time t on a smooth manifold M . Suppose
these curves are trajectories of a flow �t of a vector field. We anticipate this means
�t .c.0//D c.t/ and �t ı�s D �tCs (flow property). The flow will be tangent to M

along the curve. To deal with such flows, we will need the concept of tangent vectors.

Recall from Definition 5.10 that the tangent bundle of M is

TM D
[

x2M

TxM:

We will now add a bit more to that definition. The tangent bundle is an example of a
more general structure than a manifold.

Definition 5.21 (Bundle) A bundle consists of a manifold B , another manifold M

called the “base space” and a projection between them …W B!M . Locally, in small
enough regions of x the inverse images of the projection … exist. These are called
the fibers of the bundle. Thus, subsets of the bundle B locally have the structure of a
Cartesian product. An example is .B;M;…/ consisting of .R2;R1;…W R2!R1/. In
this case, …W .x;y/2R2! x 2R1 . Likewise, the tangent bundle consists of M;TM

and a map �M W TM !M .

Let x D
�
x1; : : : ;xn

�
be local coordinates on M , and let vD

�
v1; : : : ; vn

�
be compo-

nents of a tangent vector.

TxM D

�
v 2Rn

ˇ̌ @fi

@x
� v D 0; i D 1; : : : ;m

�
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for
M D

˚
x 2Rn

ˇ̌
fi.x/D 0; i D 1; : : : ;m

	
These 2n numbers .x; v/ give local coordinates on TM , where dim TM D 2 dim M .
The tangent bundle projection is a map �M W TM !M which takes a tangent vector
v to a point x 2M where the tangent vector v is attached (that is, v 2 TxM ). The
inverse of this projection ��1

M
.x/ is called the fiber over x in the tangent bundle.

5.3 Vector fields, integral curves and flows

Definition 5.22 A vector field on a manifold M is a map X W M ! TM that assigns
a vector X.x/ at each point x 2M . This implies that �M ıX D Id.

Definition 5.23 An integral curve of X with initial conditions x0 at t D 0 is a
differentiable map cW �a; bŒ!M , where �a; bŒ is an open interval containing 0, such
that c.0/D 0 and c0.t/DX .c.t// for all t 2�a; bŒ.

Remark 5.24 A standard result from the theory of ordinary differential equations
states that X being Lipschitz implies its integral curves are unique and C 1 (see
Coddington and Levinson [12]). The integral curves c.t/ are differentiable for smooth
X .

5.4 Summary

Definition 5.25 The flow of X is the collection of maps �t W M !M , where t !

�t .x/ is the integral curve of X with initial condition x .

Remark 5.26

(1) Existence and uniqueness results for solutions of c0.t/DX.c.t// guarantee that
flow � of X is smooth in .x; t/, for smooth X .

(2) Uniqueness implies the flow property

�tCs D �t ı�s; .FP/

for initial condition �0 D Id.

(3) The flow property (FP) generalizes to the nonlinear case the familiar linear
situation where M is a vector space, X.x/DAx is a linear vector field for a
bounded linear operator A, and �t .x/D eAtx .
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5.5 Differentials of functions and the cotangent bundle

We are now ready to define differentials of smooth functions and the cotangent bundle.

Let f W M ! R be a smooth function. We differentiate f at x 2 M to obtain
Txf W TxM ! Tf .x/R. As is standard, we identify Tf .x/R with R itself, thereby
obtaining a linear map df .x/W TxM ! R. The result df .x/ is an element of the
cotangent space T �x M , the dual space of the tangent space TxM . The natural pair-
ing between elements of the tangent space and the cotangent space is denoted as
h�; �iW T �x M �TxM 7!R.

In coordinates, the linear map df .x/W TxM ! R may be written as the directional
derivative,

hdf .x/; vi D df .x/ � v D
@f

@xi
� vi ;

for all v 2 TxM . (Reminder: the summation convention is intended over repeated
indices.) Hence, elements df .x/ 2 T �x M are dual to vectors v 2 TxM with respect
to the pairing h�; �i.

Definition 5.27 df is the differential of the function f .

Definition 5.28 The dual space of the tangent bundle TM is the cotangent bundle
T �M . That is,

.TxM /� D T �x M and T �M D
[
x

T �x M:

Thus, replacing v 2TxM with df 2T �x M , for all x 2M and for all smooth functions
f W M !R, yields the cotangent bundle T �M .

Differential bases When the basis of vector fields is denoted as @
@xi for i D 1; : : : ; n,

its dual basis is often denoted as dxi . In this notation, the differential of a function at
a point x 2M is expressed as

df .x/D
@f

@xi
dxi

The corresponding pairing h�; �i of bases is written in this notation as�
dxj ;

@

@xi

�
D ı

j
i

Here ıj
i is the Kronecker delta, which equals unity for i D j and vanishes otherwise.

That is, defining T �M requires a pairing h�; �i W T �M �TM !R.

(Different pairings exist for curvilinear coordinates, Riemannian manifolds, etc.)
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6 Derivatives of differentiable maps – the tangent lift

We next define derivatives of differentiable maps between manifolds (tangent lifts).

We expect that a smooth map f W U ! V from a chart U �M to a chart V � N ,
will lift to a map between the tangent bundles TM and TN so as to make sense from
the viewpoint of ordinary calculus,

U �Rm
� TM �! V �Rn

� TN�
q1; : : : ; qm

IX 1; : : : ;X m
�
7�!

�
Q1; : : : ;Qn

IY 1; : : : ;Y n
�

Namely, the relations between the vector field components should be obtained from
the differential of the map f W U ! V . Perhaps not unexpectedly, these vector field
components will be related by

Y i @

@Qi
DX j @

@qj
; so Y i

D
@Qi

@qj
X j ;

in which the quantity called the tangent lift

Tf D
@Q

@q

of the function f arises from the chain rule and is equal to the Jacobian for the
transformation Tf W TM 7! TN .

The dual of the tangent lift is the cotangent lift, explained later in Definition 16.11.
Roughly speaking, the cotangent lift of the function f ,

T �f D
@q

@Q

arises from

ˇidQi
D j̨ dqj ; so ˇi D j̨

@qj

@Qi

and T �f W T �N 7! T �M . Note the directions of these maps:

Tf W q;X 2 TM 7!Q;Y 2 TN

f W q 2M 7!Q 2N

T �f W Q; ˇ 2 T �N 7! q; ˛ 2 T �M (map goes the other way)
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6.1 Summary remarks about derivatives on manifolds

Definition 6.1 (Differentiable map) A map f W M !N from manifold M to mani-
fold N is said to be differentiable (resp. C k ) if it is represented in local coordinates
on M and N by differentiable (resp. C k ) functions.

Definition 6.2 (Derivative of a differentiable map) The derivative of a differentiable
map

f W M !N

at a point x 2M is defined to be the linear map

Txf W TxM ! TxN

constructed, as follows. For v 2 TxM , choose a curve c.t/ that maps an open interval
t 2 .��; �/ around the point t D 0 to the manifold M :

cW .��; �/!M

with c.0/D x and velocity vector c0.0/ WD dc
dt

ˇ̌
tD0
D v .

Then Txf � v is the velocity vector at t D 0 of the curve f ı cW R!N . That is,

Txf � v D
d

dt
f .c.t//

ˇ̌̌
tD0
D
@f

@c

d

dt
c.t/

ˇ̌̌
tD0

Definition 6.3 The union Tf D
S

x Txf of the derivatives Txf W TxM ! TxN

over points x 2M is called the tangent lift of the map f W M !N .

Remark 6.4 The chain-rule definition of the derivative Txf of a differentiable map at
a point x depends on the function f and the vector v . Other degrees of differentiability
are possible. For example, if M and N are manifolds and f W M ! N is of class
C kC1 , then the tangent lift (Jacobian) Txf W TxM ! TxN is C k .

Exercise 6.5 Let �t W S
2 ! S2 rotate points on S2 about a fixed axis through an

angle  .t/. Show that �t is the flow of a certain vector field on S2 .

Exercise 6.6 Let f W S2 ! R be defined by f .x;y; z/ D z . Compute df using
spherical coordinates .�; �/.

Exercise 6.7 Compute the tangent lifts for the two stereographic projections of S2!

R2 in Example 5.14. That is, assuming .x;y; z/ depend smoothly on t , find:
(1) How . P�N ; P�N / depend on . Px; Py; Pz/. Likewise for . P�S ; P�S /.
(2) How . P�N ; P�N / depend on . P�S ; P�S /.

Hint: Recall .1C z/.1� z/ D 1� z2 D x2C y2 and use x PxC y Py C z Pz D 0 when
. Px; Py; Pz/ is tangent to S2 at .x;y; z/.
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7 Lie groups and Lie algebras

7.1 Matrix Lie groups

Definition 7.1 A group is a set of elements with:

(1) A binary product (multiplication), G �G!G , such that
� the product of g and h is written gh, and
� the product is associative: .gh/k D g.hk/.

(2) An identity element e such that eg D g and ge D g , 8g 2G

(3) An inverse operation G!G , such that gg�1 D g�1g D e

Definition 7.2 A Lie group is a smooth manifold G which is a group and for which the
group operations of multiplication, .g; h/! gh for g; h 2G , and inversion, g! g�1

with gg�1 D g�1g D e , are smooth.

Definition 7.3 A matrix Lie group is a set of invertible n�n matrices which is closed
under matrix multiplication and which is a submanifold of Rn�n . The conditions
showing that a matrix Lie group is a Lie group are easily checked:

� A matrix Lie group is a manifold, because it is a submanifold of Rn�n

� Its group operations are smooth, since they are algebraic operations on the matrix
entries.

Example 7.4 (The general linear group GL.n;R/) The matrix Lie group GL.n;R/
is the group of linear isomorphisms of Rn to itself. The dimension of the matrices in
GL.n;R/ is n2 .

Proposition 7.5 Let K 2 GL.n;R/ be a symmetric matrix, KT D K . Then the
subgroup S of GL.n;R/ defined by the mapping

S D fU 2GL.n;R/jU T KU DKg

is a submanifold of Rn�n of dimension n.n� 1/=2.

Remark 7.6 The subgroup S leaves invariant a certain symmetric quadratic form
under linear transformations, S �Rn!Rn given by x! U x, since

xT KxD xT U T KU x:

So the matrices U 2 S change the basis for this quadratic form, but they leave its value
unchanged. Thus, S is the isotropy subgroup of the quadratic form associated with K .
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Proof

� Is S a subgroup? We check the following three defining properties
(1) Identity: I 2 S because IT KI DK .
(2) Inverse: U 2 S H) U�1 2 S , because

K D U�T .U T KU /U�1
D U�T .K/U�1:

(3) Closed under multiplication: U;V 2 S H) U V 2 S , because

.U V /T KU V D V T .U T KU /V D V T .K/V DK:

� Hence, S is a subgroup of GL.n;R/.

� Is S is a submanifold of Rn�n of dimension n.n� 1/=2?
– Indeed, S is the zero locus of the mapping UKU T �K . This makes it a

submanifold, because it turns out to be a submersion.
– For a submersion, the dimension of the level set is the dimension of the

domain minus the dimension of the range space. In this case, this dimension
is n2� n.nC 1/=2D n.n� 1/=2.

Exercise 7.7 Explain why one can conclude that the zero locus map for S is a
submersion. In particular, pay close attention to establishing the constant rank condition
for the linearization of this map.

Solution Here is why S is a submanifold of Rn�n .

First, S is the zero locus of the mapping

U ! U T KU �K; (locus map)

Let U 2 S , and let ıU be an arbitrary element of Rn�n . Then linearize to find

.U C ıU /T K.U C ıU /�K D U T KU �KC ıU T KU CU T KıU CO.ıU /2:

We may conclude that S is a submanifold of Rn�n if we can show that the linearization
of the locus map, namely the linear mapping defined by

L� ıU ! ıU T KU CU T KıU; Rn�n
!Rn�n

has constant rank for all U 2 S .

Lemma 7.8 The linearization map L is onto the space of n� n of symmetric matrices
and hence the original map is a submersion.

Proof that L is onto
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� Both the original locus map and the image of L lie in the subspace of n� n

symmetric matrices.

� Indeed, given U and any symmetric matrix S we can find ıU such that

ıU T KU CU T KıU D S:

Namely
ıU DK�1U�T S=2:

� Thus, the linearization map L is onto the space of n� n of symmetric matrices
and the original locus map U !UKU T �K to the space of symmetric matrices
is a submersion.

For a submersion, the dimension of the level set is the dimension of the domain minus
the dimension of the range space. In this case, this dimension is n2 � n.nC 1/=2D

n.n� 1/=2.

Corollary 7.9 (S is a matrix Lie group) S is both a subgroup and a submanifold of
the general linear group GL.n;R/. Thus, by Definition 7.3, S is a matrix Lie group.

Exercise 7.10 What is the tangent space to S at the identity, TI S ?

Exercise 7.11 Show that for any pair of matrices A;B 2TI S , the matrix commutator
ŒA;B��AB �BA 2 TI S .

Proposition 7.12 The linear space of matrices A satisfying

AT KCKAD 0

defines TI S , the tangent space at the identity of the matrix Lie group S defined in
Proposition 7.5.

Proof Near the identity the defining condition for S expands to

.I C �AT
CO.�2//K.I C �ACO.�2//DK; for �� 1:

At linear order O.�/ one finds,

AT KCKAD 0:

This relation defines the linear space of matrices A 2 TI S .
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If A;B 2 TI S , does it follow that ŒA;B� 2 TI S ?

Using ŒA;B�T D ŒBT ;AT �, we check closure by a direct computation,

ŒBT ;AT �KCKŒA;B�D BT AT K�AT BT KCKAB �KBA

D BT AT K�AT BT K�AT KBCBT KAD 0:

Hence, the tangent space of S at the identity TI S is closed under the matrix commutator
Œ�; ��.

Remark 7.13 In a moment, we will show that the matrix commutator for TI S also
satisfies the Jacobi identity. This will imply that the condition AT KCKAD 0 defines
a matrix Lie algebra.

7.2 Defining matrix Lie algebras

We are ready to prove the following, in preparation for defining matrix Lie algebras.

Proposition 7.14 Let S be a matrix Lie group, and let A;B 2TI S (the tangent space
to S at the identity element). Then AB �BA 2 TI S .

The proof makes use of a lemma.

Lemma 7.15 Let R be an arbitrary element of a matrix Lie group S , and let B 2TI S .
Then RBR�1 2 TI S .

Proof Let RB.t/ be a curve in S such that RB.0/ D I and R0.0/ D B . Define
S.t/DRRB.t/R

�1 2 TI S for all t . Then S.0/D I and S 0.0/DRBR�1 . Hence,
S 0.0/ 2 TI S , thereby proving the lemma.

Proof of Proposition 7.14 Let RA.s/ be a curve in S such that RA.0/ D I and
R0

A
.0/ D A. Define S.t/ D RA.t/BRA.t/

�1 2 TI S . Then the lemma implies that
S.t/ 2 TI S for every t . Hence, S 0.t/ 2 TI S , and in particular, S 0.0/DAB �BA 2

TI S .

Definition 7.16 (Matrix commutator) For any pair of n�n matrices A;B , the matrix
commutator is defined as ŒA;B�DAB �BA.

Proposition 7.17 (Properties of the matrix commutator) The matrix commutator has
the following two properties:
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(i) Any two n� n matrices A and B satisfy

ŒB;A�D�ŒA;B�

(This is the property of skew-symmetry.)

(ii) Any three n� n matrices A, B and C satisfy

ŒŒA;B�;C �C ŒŒB;C �;A�C ŒŒC;A�;B�D 0

(This is known as the Jacobi identity.)

Definition 7.18 (Matrix Lie algebra) A matrix Lie algebra g is a set of n� n ma-
trices which is a vector space with respect to the usual operations of matrix addition
and multiplication by real numbers (scalars) and which is closed under the matrix
commutator Œ�; ��.

Proposition 7.19 For any matrix Lie group S , the tangent space at the identity TI S

is a matrix Lie algebra.

Proof This follows by Proposition 7.14 and because TI S is a vector space.

7.3 Examples of matrix Lie groups

Example 7.20 (The Orthogonal Group O.n/) The mapping condition U T KU DK

in Proposition 7.5 specializes for K D I to U T U D I , which defines the orthogonal
group. Thus, in this case, S specializes to O.n/, the group of n� n orthogonal
matrices. The orthogonal group is of special interest in mechanics.

Corollary 7.21 (O.n/ is a matrix Lie group) By Proposition 7.5 the orthogonal group
O.n/ is both a subgroup and a submanifold of the general linear group GL.n;R/. Thus,
by Definition 7.3, the orthogonal group O.n/ is a matrix Lie group.

Example 7.22 (The Special Linear Group SL.n;R/) The subgroup of GL.n;R/
with det.U /D 1 is called SL.n;R/.

Example 7.23 (The Special Orthogonal Group SO.n/) The special case of S with
det.U /D1 and KD I is called SO.n/. In this case, the mapping condition U T KU D

K specializes to U T U D I with the extra condition det.U /D 1.
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Example 7.24 (The tangent space of SO.n/ at the identity TI SO.n/) The special
case with K D I of TI SO.n/ yields,

AT
CAD 0:

These are antisymmetric matrices. Lying in the tangent space at the identity of a matrix
Lie group, this linear vector space forms a matrix Lie algebra.

Example 7.25 (The Symplectic Group) Suppose nD 2l (that is, let n be even) and
consider the nonsingular skew-symmetric matrix

J D

�
0 I

�I 0

�
where I is the l � l identity matrix. One may verify that

Sp.l/D fU 2GL.2l;R/jU T JU D J g

is a group. This is called the symplectic group. Reasoning as before, the matrix algebra
TI Sp.l/ is defined as the set of n� n matrices A satisfying JAT CAJ D 0. This
algebra is denoted as sp.l/.

Example 7.26 (The Special Euclidean Group) Consider the Lie group of 4 � 4

matrices of the form

E.R; v/D

�
R v

0 1

�
where R 2 SO.3/ and v 2R3 . This is the special Euclidean group, denoted SE.3/.
The special Euclidean group is of central interest in mechanics since it describes the
set of rigid motions and coordinate transformations of three-dimensional space.

Exercise 7.27 A point P in R3 undergoes a rigid motion associated with E.R1; v1/

followed by a rigid motion associated with E.R2; v2/. What matrix element of SE.3/

is associated with the composition of these motions in the given order?

Exercise 7.28 Multiply the special Euclidean matrices of SE.3/. Investigate their
matrix commutators in their tangent space at the identity. (This is an example of a
semidirect product Lie group.)

Exercise 7.29 (Tripos question) When does a stone at the equator of the Earth weigh
the most? Two hints: (1) Assume the Earth’s orbit is a circle around the Sun and ignore
the declination of the Earth’s axis of rotation. (2) This is an exercise in using SE.2/.
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Exercise 7.30 Suppose the n� n matrices A and M satisfy

AM CMAT
D 0:

Show that exp.At/M exp.AT t/ D M for all t . Hint: AnM D M.�AT /n . This
direct calculation shows that for A 2 so.n/ or A 2 sp.l/, we have exp.At/ 2 SO.n/

or exp.At/ 2 Sp.l/, respectively.

7.4 Lie group actions

The action of a Lie group G on a manifold M is a group of transformations of M

associated to elements of the group G , whose composition acting on M is corresponds
to group multiplication in G .

Definition 7.31 Let M be a manifold and let G be a Lie group. A left action of a
Lie group G on M is a smooth mapping ˆW G �M !M such that

(i) ˆ.e;x/D x for all x 2M ,

(ii) ˆ.g; ˆ.h;x//Dˆ.gh;x/ for all g; h 2G and x 2M , and

(iii) ˆ.g; �/ is a diffeomorphism on M for each g 2G .

We often use the convenient notation gx for ˆ.g;x/ and think of the group element
g acting on the point x 2M . The associativity condition (ii) above then simply reads
.gh/x D g.hx/.

Similarly, one can define a right action, which is a map ‰W M �G!M satisfying
‰.x; e/Dx and ‰.‰.x;g/; h/D‰.x;gh/. The convenient notation for right action is
xg for ‰.x;g/, the right action of a group element g on the point x2M . Associativity
‰.‰.x;g/; h/D‰.x;gh/ is then be expressed conveniently as .xg/hD x.gh/.

Example 7.32 (Properties of group actions) The action ˆW G�M !M of a group
G on a manifold M is said to be

(1) transitive, if for every x;y 2M there exists a g 2G , such that gx D y ;

(2) free, if it has no fixed points, that is, ˆg.x/D x implies g D e ; and

(3) proper, if whenever a convergent subsequence fxng in M exists, and the mapping
gnxn converges in M , then fgng has a convergent subsequence in G .
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Orbits Given a group action of G on M , for a given point x 2M , the subset

Orb x D fgx j g 2Gg �M;

is called the group orbit through x . In finite dimensions, it can be shown that group
orbits are always smooth (possibly immersed) manifolds. Group orbits generalize the
notion of orbits of a dynamical system.

Exercise 7.33 The flow of a vector field on M can be thought of as an action of R
on M . Show that in this case the general notion of group orbit reduces to the familiar
notion of orbit used in dynamical systems.

Theorem 7.34 Orbits of proper group actions are embedded submanifolds.

This theorem is stated by Marsden and Ratiu [44, Chapter 9], who refer to Abraham
and Marsden [1] for the proof.

Example 7.35 (Orbits of SO.3/) A simple example of a group orbit is the action
of SO.3/ on R3 given by matrix multiplication: The action of A 2 SO.3/ on a point
x 2R3 is simply the product Ax. In this case, the orbit of the origin is a single point
(the origin itself), while the orbit of any other point is the sphere through that point.

Example 7.36 (Orbits of a Lie group acting on itself) The action of a group G on
itself from either the left, or the right, also produces group orbits. This action sets the
stage for discussing the tangent lifted action of a Lie group on its tangent bundle.

Left and right translations on the group are denoted Lg and Rg , respectively. For
example, LgW G ! G is the map given by h! gh, while RgW G ! G is the map
given by h! hg , for g; h 2G .

(a) Left translation LgW G ! GI h! gh defines a transitive and free action of
G on itself. Right multiplication RgW G! GI h! hg defines a right action,
while h! hg�1 defines a left action of G on itself.

(b) G acts on G by conjugation, g! IgDRg�1 ıLg . The map IgW G!G given
by h! ghg�1 is the inner automorphism associated with g . Orbits of this
action are called conjugacy classes.

(c) Differentiating conjugation at e gives the adjoint action of G on g:

Adg WD TeIg W TeG D g! TeG D g:

Explicitly, the adjoint action of G on g is given by

AdW G � g! g; Adg.�/D Te.Rg�1 ıLg/�
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We have already seen an example of adjoint action for matrix Lie groups acting
on matrix Lie algebras, when we defined S.t/DRA.t/BRA.t/

�1 2 TI S as a
key step in the proof of Proposition 7.14.

(d) The coadjoint action of G on g� , the dual of the Lie algebra g of G , is defined
as follows. Let Ad�gW g

�! g� be the dual of Adg , defined by

hAd�g ˛; �i D h˛;Adg �i

for ˛ 2 g� , � 2 g and pairing h�; �iW g� � g!R. Then the map

ˆ�W G � g�! g� given by .g; ˛/ 7! Ad�
g�1 ˛

is the coadjoint action of G on g� .

7.5 Examples: SO.3/, SE.3/, etc

A basis for the matrix Lie algebra so.3/ and a map to R3

The Lie algebra of SO.n/ is called so.n/. A basis .e1; e2; e3/ for so.3/ when nD 3

is given by

yxD

24 0 �z y

z 0 �x

�y x 0

35D xe1Cye2C ze3

Exercise 7.37 Show that Œe1; e2�D e3 and cyclic permutations, while all other matrix
commutators among the basis elements vanish.

Example 7.38 (The isomorphism between so.3/ and R3 ) The previous equation
may be written equivalently by defining the hat-operation y� as

yxij D �ijkxk ; where .x1;x2;x3/D .x;y; z/:

Here �123 D 1 and �213 D �1, with cyclic permutations. The totally antisymmet-
ric tensor �ijk D ��jik D ��ikj also defines the cross product of vectors in R3 .
Consequently, we may write,

.x� y/i D �ijkxj yk
D yxij yj ; that is, x� yD yxy

Exercise 7.39 What is the analog of the hat map so.3/ 7!R3 for the three dimensional
Lie algebras sp.2;R/, so.2; 1/, su.1; 1/, or sl.2;R/?

Background reading for this lecture is Marsden and Ratiu [44, Chapter 9].
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Compute the Adjoint and adjoint operations by differentiation

(1) Differentiate Ig.h/ with respect to h at hD e to produce the Adjoint operation

AdW G � g! g W Adg �D TeIg�

(2) Differentiate Adg � with respect to g at g D e in the direction � to get the Lie
bracket Œ�; ��W g� g! g and thereby to produce the adjoint operation

Te.Adg �/� D Œ�; ��D ad� �

Compute the co-Adjoint and coadjoint operations by taking duals

(1) Ad�gW g
�! g� , the dual of Adg , is defined by

hAd�g ˛; �i D h˛;Adg �i

for ˛ 2 g� , � 2 g and pairing h�; �iW g� � g!R. The map

ˆ�W G � g�! g� given by .g; ˛/ 7! Ad�
g�1 ˛

defines the co-Adjoint action of G on g� .

(2) The pairing
had�� ˛; �i D h˛; ad� �i

defines the coadjoint action of g on g� , for ˛ 2 g� and �; � 2 g.

See [44, Chapter 9] for more discussion of the Ad and ad operations.

Example: the rotation group SO.3/

The Lie algebra so.3/ and its dual The special orthogonal group is defined by

SO.3/ WD fA jA a 3� 3 orthogonal matrix; det.A/D 1g:

Its Lie algebra so.3/ is formed by 3 � 3 skew symmetric matrices, and its dual is
denoted so.3/� .

The isomorphism y� W .so.3/; Œ�; ��/ ! .R3;�/ The Lie algebra .so.3/; Œ�; ��/, where
Œ�; �� is the commutator bracket of matrices, is isomorphic to the Lie algebra .R3;�/,
where � denotes the vector product in R3 , by the isomorphism

u WD .u1;u2;u3/ 2R3
7! yu WD

24 0 �u3 u2

u3 0 �u1

�u2 u1 0

35 2 so.3/;
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that is, yuij WD ��ijkuk . Equivalently, this isomorphism is given by

yuvD u� v for all u; v 2R3:

The following formulas for u; v;w 2R3 may be easily verified:

.u� v/y D Œyu; yv�
Œyu; yv�wD .u� v/�w

u � vD�1
2

trace.yuyv/:

The Ad action of SO.3/ on so.3/ The corresponding adjoint action of SO.3/ on
so.3/ may be obtained as follows. For SO.3/ we have IA.B/DABA�1 . Differenti-
ating B.t/ at B.0/D Id gives

AdA yvD
d

dt

ˇ̌̌
tD0

AB.t/A�1
DAyvA�1; with yvD B0.0/:

One calculates the pairing with a vector w 2R3 as

AdA yv.w/DAyv.A�1w/DA.v�A�1w/DAv�wD .Av/yw

where we have used a relation

A.u� v/DAu�Av

which holds for any u; v 2R3 and A 2 SO.3/.

Consequently,
AdA yvD .Av/y

Identifying so.3/'R3 then gives

AdA vDAv:

So (speaking prose all our lives) the adjoint action of SO.3/ on so.3/ may be identified
with multiplication of a matrix in SO.3/ times a vector in R3 .

The ad action of so.2/ on so.3/ Differentiating again gives the ad–action of the Lie
algebra so.3/ on itself:

Œyu; yv�D adyu yvD
d

dt

ˇ̌̌̌
tD0

�
etyuv

�
y D .yuv/y D .u� v/y :

So in this isomorphism the vector cross product is identified with the matrix commutator
of skew symmetric matrices.
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Infinitesimal generator Likewise, the infinitesimal generator corresponding to u 2
R3 has the expression

uR3.x/ WD
d

dt

ˇ̌̌̌
tD0

etyuxD yu xD u� x:

Exercise 7.40 What is the analog of the hat map so.3/ 7!R3 for the three dimensional
Lie algebras sp.2;R/, so.2; 1/, su.1; 1/, or sl.2;R/?

The dual Lie algebra isomorphism zW so.3/�!R3

Coadjoint actions The dual so.3/� is identified with R3 by the isomorphism

2R3
7!z2 so.3/�Wz.yu/ WD �u for any u 2R3:

In terms of this isomorphism, the co-Adjoint action of SO.3/ on so.3/� is given by

Ad�
A�1zD .A…/z

and the coadjoint action of so.3/ on so.3/� is given by

ad�
yu
z…D .…�u/z:(6)

Computing the co-Adjoint action of SO.3/ on so.3/� This is given by�
Ad�

A�1z
�
.yu/Dz�AdA�1 yuDz� .A�1u/y D… �AT u

DA… �uD .A…/z .yu/;

that is, the co-Adjoint action of SO.3/ on so.3/� has the expression

Ad�
A�1zD .A…/z ;

Therefore, the co-Adjoint orbit O D fA… jA 2 SO.3/g � R3 of SO.3/ through
… 2R3 is a 2–sphere of radius k…k.

Computing the coadjoint action of so.3/ on so.3/� Let u; v 2R3 and note that˝
ad�
yu
z…; yv

˛
D
˝
z…;
�
yu; yv

�˛
D
˝
z…; .u� v/y

˛
D… � .u� v/

D .…�u/ � vD
˝
…�u/z; yv

˛
;

which shows that ad�
yu
z…D .…�u/z , thereby proving (6). Therefore

T…OD
˚
…�u j u 2R3

	
;

since the plane perpendicular to …, that is, the tangent space to the sphere centered at
the origin of radius k…k, is given by

˚
…�u j u 2R3

	
.
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8 Lifted actions

Definition 8.1 Let ˆW G �M !M be a left action, and write ˆg.x/ D ˆ.g;x/

for x 2M . The tangent lift action of G on the tangent bundle TM is defined by
gv D Txˆg.v/ for every v 2 TxM .

Remark 8.2 In standard calculus notation, the expression for tangent lift may be
written as

Txˆ � v D
d

dt
ˆ.c.t//

ˇ̌̌
tD0
D
@ˆ

@c
c0.t/

ˇ̌̌
tD0
DWDˆ.x/ � v;

with c.0/D x and c0.0/D v .

Definition 8.3 If X is a vector field on M and � is a differentiable map from
M to itself, then the push-forward of X by � is the vector field ��X defined by
.��X / .�.x//D Tx� .X.x//. That is, the following diagram commutes:

-TM TM

T�

6

��X

-
�

6

M M

X

If � is a diffeomorphism then the pull-back ��X is also defined: .��X / .x/ D
T�.x/�

�1 .X .�.x///.

Definition 8.4 Let ˆW G �M !M be a left action, and write ˆg.m/D ˆ.g;m/.
Then G has a left action on X 2 X.M / (the set of vector fields on M ) by the
push-forward: gX D

�
ˆg

�
�

X .

Definition 8.5 Let G act on M on the left. A vector field X on M is invariant with
respect to this action (we often say “G –invariant” if the action is understood) if gX DX

for all g 2G ; equivalently (using all of the above definitions!) g .X.x//DX.gx/ for
all g 2G and all x 2X .

Definition 8.6 Consider the left action of G on itself by left multiplication, ˆg.h/D

Lg.h/D gh. A vector field on G that is invariant with respect to this action is called
left-invariant. From Definition 8.5, we see that X is left-invariant if and only if
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g .X.h//DX.gh/, which in less compact notation means ThLgX.h/DX.gh/. The
set of all such vector fields is written XL.G/.

Proposition 8.7 Given a � 2 TeG , define X L
�
.g/D g� (recall: g� � TeLg� ). Then

X L
�

is the unique left-invariant vector field such that X L
�
.e/D � .

Proof To show that X L
�

is left-invariant, we need to show that g
�
X L
�
.h/
�
DX L

�
.gh/

for every g; h 2 G . This follows from the definition of X L
�

and the associativity
property of group actions:

g
�
X L
� .h/

�
D g.h�/D .gh/� DX L

� .gh/

We repeat the last line in less compact notation:

ThLg

�
X L
� .h/

�
D ThLg.h�/D TeLgh� DX L

� .gh/

For uniqueness, suppose X is left-invariant and X.e/D � . Then for any g 2G , we
have X.g/D g.X.e//D g� DX L

�
.g/.

Remark 8.8 Note that the map � 7!X L
�

is an vector space isomorphism from TeG

to XL.G/.

All of the above definitions have analogues for right actions. The definitions of right-
invariant, XR.G/ and X R

�
use the right action of G on itself defined by ˆ.g; h/D

Rg.h/D hg .

Exercise 8.9 There is a left action of G on itself defined by ˆg.h/D hg�1 .

We will use the map � 7!X L
�

to relate the Lie bracket on g, defined as Œ�; ��D ad� �,
with the Jacobi–Lie bracket on vector fields.

Definition 8.10 The Jacobi–Lie bracket on X.M / is defined in local coordinates by

ŒX;Y �J–L � .DX / �Y � .DY / �X

which, in finite dimensions, is equivalent to

ŒX;Y �J–L ��.X � r/Y C .Y � r/X ��ŒX;Y �

Theorem 8.11 (Properties of the Jacobi–Lie bracket)
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(1) The Jacobi–Lie bracket satisfies

ŒX;Y �J–L D LX Y �
d

dt

ˇ̌̌
tD0

ˆ�t Y;

where ˆ is the flow of X . (This is coordinate-free, and can be used as an
alternative definition.)

(2) This bracket makes XL.M / a Lie algebra with ŒX;Y �J–L D �ŒX;Y �, where
ŒX;Y � is the Lie algebra bracket on X.M /.

(3) ��ŒX;Y �D Œ��X; ��Y � for any differentiable �W M !M .

Remark 8.12 The first property of the Jacobi–Lie bracket is proved for matrices in
Section 9. The other two properties are proved below for the case that M is the Lie
group G .

Theorem 8.13 XL.G/ is a subalgebra of X.G/.

Proof Let X;Y 2 XL.G/. Using the last item of the previous theorem, and then the
G invariance of X and Y , gives the push-forward relations�

Lg

�
�
ŒX;Y �J–L D Œ

�
Lg

�
�

X;
�
Lg

�
�

Y �J–L

for all g 2G . Hence ŒX;Y �J–L 2X
L.G/. This is the second property in Theorem 8.11.

Theorem 8.14 Set
�
X L
�
;X L

�

�
J–L.e/D Œ�; �� for every �; � 2 g, where the bracket on

the right is the Jacobi–Lie bracket. (We say: the Lie bracket on g is the pull-back of the
Jacobi–Lie bracket by the map � 7!X L

�
.)

Proof The proof of this theorem for matrix Lie algebras is relatively easy: we have
already seen that adAB DAB �BA. On the other hand, since X L

A
.C /D CA for all

C , and this is linear in C , we have DX L
B
.I/ �ADAB , so

ŒA;B�D
�
X L

A ;X
L
B

�
J–L.I/DDX L

B .I/ �X
L

A .I/�DX L
A .I/ �X

L
B .I/

DDX L
B .I/ �A�DX L

A .I/ �B DAB �BA

This is the third property of the Jacobi–Lie bracket listed in Theorem 8.11. For the
general proof, see Marsden and Ratiu [44, Proposition 9.14].

Remark 8.15 This theorem, together with Item 2 in Theorem 8.11, proves that the
Jacobi–Lie bracket makes g into a Lie algebra.
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Remark 8.16 By Theorem 8.13, the vector field
�
X L
�
;X L

�

�
is left-invariant. Since�

X L
�
;X L

�

�
J–L.e/D Œ�; ��, it follows that�

X L
� ;X

L
�

�
DX L

Œ�;��:

Definition 8.17 Let ˆW G �M !M be a left action, and let � 2 g. Let g.t/ be a
path in G such that g.0/D e and g0.0/D � . Then the infinitesimal generator of the
action in the � direction is the vector field �M on M defined by

�M .x/D
d

dt

ˇ̌̌
tD0

ˆg.t/.x/

Remark 8.18 Note: this definition does not depend on the choice of g.t/. For
example, the choice in Marsden and Ratiu [44] is exp.t�/, where exp denotes the
exponentiation on Lie groups (not defined here).

Exercise 8.19 Consider the action of SO.3/ on the unit sphere S2 around the ori-
gin, and let � D .0; 0; 1/y. Sketch the vector field �M . (Hint: the vectors all point
“Eastward.”)

Theorem 8.20 For any left action of G , the Jacobi–Lie bracket of infinitesimal gener-
ators is related to the Lie bracket on g as follows (note the minus sign):

Œ�M ; �M �D�Œ�; ��M

For a proof, see Marsden and Ratiu [44, Proposition 9.3.6].

Exercise 8.21 Express the statements and formulas of this lecture for the case of
SO.3/ action on its Lie algebra so.3/. (Hint: look at the previous lecture.) Wherever
possible, translate these formulas to R3 by using the ymap: so.3/!R3 .

Write the Lie algebra for so.3/ using the Jacobi–Lie bracket in terms of linear vector
fields on R3 . What are the characteristic curves of these linear vector fields?

9 Handout: the Lie derivative and the Jacobi–Lie bracket

Let X and Y be two vector fields on the same manifold M .

Definition 9.1 The Lie derivative of Y with respect to X is LX Y � d
dt
ˆ�t Y

ˇ̌
tD0

,
where ˆ is the flow of X .
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The Lie derivative LX Y is “the derivative of Y in the direction given by X .” Its
definition is coordinate-independent. By contrast, DY �X (also written as X ŒY �) is
also “the derivative of Y in the X direction”, but the value of DY �X depends on
the coordinate system, and in particular does not usually equal LX Y in the chosen
coordinate system.

Theorem 9.2 LX Y D ŒX;Y �, where the bracket on the right is the Jacobi–Lie bracket.

Proof In the following calculation, we assume that M is finite-dimensional, and
we work in local coordinates. Thus we may consider everything as matrices, which
allows us to use the product rule and the identities

�
M�1

�0
D �M�1M 0M�1 and

d
dt

�
Dˆt .x/

�
DD

�
d
dt
ˆt

�
.x/.

LX Y .x/D
d

dt
ˆ�t Y .x/

ˇ̌̌
tD0

D
d

dt

�
Dˆt .x/

��1
Y
�
ˆt .x/

�ˇ̌̌
tD0

D

��
d

dt
.Dˆt .x//

�1

�
Y
�
ˆt .x/

�
C
�
Dˆt .x/

��1 d

dt
Y
�
ˆt .x/

��
tD0

D

�
�
�
Dˆt .x/

��1
�

d

dt
Dˆt .x/

��
Dˆt .x/

��1
Y
�
ˆt .x/

�
C
�
Dˆt .x/

��1 d

dt
Y
�
ˆt .x/

��
tD0

D

�
�

�
d

dt
Dˆt .x/

�
Y .x/C

d

dt
Y
�
ˆt .x/

��
tD0

D�D

�
d

dt
ˆt .x/

ˇ̌̌̌
tD0

�
Y .x/CDY .x/

�
d

dt
ˆt .x/

ˇ̌̌̌
tD0

�
D�DX.x/ �Y .x/CDY .x/ �X.x/

D ŒX;Y �J–L.x/

Therefore LX Y D ŒX;Y �J–L .

Vorticity dynamics

The same formula applies in infinite dimensions, although the proof is more elaborate.
For example, the equation for the vorticity dynamics of an Euler fluid with velocity u
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(with div uD 0) and vorticity ! D curl u may be written as

@t! D�u � r!C! � ru
D�Œu; !�

D� adu !

D�Lu!

All of these equations express the invariance of the vorticity vector field ! under the flow
of its corresponding divergenceless velocity vector field u. This is also encapsulated in
the language of fluid dynamics in characteristic form as

d

dt

�
! �

@

@x

�
D 0; along

dx
dt
D u.x; t/D curl�1 !:

Here, the curl-inverse operator is defined by the Biot–Savart Law,

uD curl�1 ! D curl.��/�1!;

which follows from the identity

curl curl uD��uCr div u;

and application of div uD 0. Thus, in coordinates,

dx
dt
D u.x; t/ H) x.t; x0/Dˆt x0

with ˆ0 D Id, that is, x.0; x0/D x0 at t D 0, and

!j .x.t; x0/; t/
@

@xj .t; x0/
D !A.x0/

@

@xA
0

ıˆ�1
t :

Consequently,

ˆt�!
j .x.t; x0/; t/D !

A.x0/
@xj .t; x0/

@xA
0

DWDˆt �!:

This is the Cauchy (1859) solution of Euler’s equation for vorticity,

@!

@t
D Œ!; curl�1 !�:

This type of equation will reappear several more times in the remaining lectures. In it,
the vorticity ! evolves by the ad-action of the right-invariant vector field uD curl�1 ! .
That is,

@!

@t
D� adcurl�1 ! !:
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The Cauchy solution is the tangent lift of this flow, namely,

ˆt�!.ˆt .x0//D Tx0
ˆt .!.x0//:

10 Handout: summary of Euler’s equations for incompress-
ible flow

Euler’s equation of incompressible fluid motion

ut Cu � ru„ ƒ‚ …
du=dt along dx=dtDu

(advective time derivative)

Crp D 0

where uW R3 �R!R3 satisfies div uD 0.

Geometric dynamics of vorticity

!D curl u
!t D�u � r!C! � ru
D�Œu;!�
D�adu!

D�Lu!

In these equations, one denotes d
dt
D

@
@t
CLu and, hence, may write Euler vorticity

dynamics equivalently in any of the following three forms

d!

dt
D! � ru;

as well as �
@

@t
CLu

��
! �

@

@x

�
D 0

or
d

dt
.! � r/D 0 along

dx
dt
D u

The last form is found using the chain rule as

d

dt
.! � r/D

d!

dt
� r C! �

d

dt
r D

� d

dt
!�! � ru

�
� r D 0:
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Ertel’s theorem [18]

The operators d=dt and ! � r commute on solutions of Euler’s fluid equations. That
is, �

d

dt
;! � r

�
D 0;

so that
d

dt
.! � rA/D! � r

d

dt
A

for all differentiable A when ! D curl u and u is a solution of Euler’s equations
for incompressible fluid flow. Consequently, one finds the following infinite set of
conservation laws:

If
dA
dt
D 0; then

Z
ˆ.! � rA/d3xD const for all differentiable ˆ

Ohktani’s formula [52]

d2!

dt2
D

d

dt
.! � ru/D! � r

du
dt
D�! � rrp D�P!

where

Pij D
@2p

@xi@xj
(“Hessian” of pressure):

In addition, one has the relations

p D���1 tr
�
ruT

� ru
�

S D 1
2
.ruCruT / (strain rate tensor)

so that, the following system of equations results,

d!

dt
D S!

d2!

dt2
D�P!

Kelvin (1890’s) circulation theorem

! �
@

@x
D !j @

@xj

du
dt
Crp D 0;

where div uD 0, or equivalently u
j
;j D 0 in index notation.
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The motion equation may be rewritten equivalently as a 1–form relation,

dui

dt
dxi
D�dp Drip dxi along

dx
dt
D u

d

dt
.ui dxi/� ui

d

dt
dxi„ ƒ‚ …

Dui duiDd juj2=2

D�dp

Consequently

d

dt
.u � dx/D�d

�
p� 1

2
juj2

�
which becomes

d

dt

I
C.u/

u � dxD�
I

C.u/
d
�
p� 1

2
u2
�
D 0

upon integrating around a closed loop C.u/ moving with velocity u The 1–form
relation above may be rewritten as

.@t CLu/.u � dx/D�d
�
p� 1

2
u2
�

whose exterior derivative yields using d2 D 0

.@t CLu/.! � dS/D 0

where ! � dSD curl u � dSD d.u � dx/.

For these geometric quantities, one sees that the characteristic, or advective derivative
is equivalent to a Lie derivative. Namely,

d

dt

ˇ̌̌
advect„ ƒ‚ …

fluids

D @t CLu„ ƒ‚ …
geometry

Stokes theorem

The classical theorem due to StokesI
@S

u � dxD
“

S

curl u � dS

shows that Kelvin’s circulation theorem is equivalent to conservation of flux of vorticity

d

dt

“
S

! � dSD 0;

with @S D C.u/ through any surface comoving with the flow.
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Recall the definition,

! �
@

@x
d3x D! � dS

One may check this formula directly, by computing�
!1 @

@x1
C!2 @

@x2
C!3 @

@x3

� �
dx1
^ dx2

^ dx3
�

D !1dx2
^ dx3

C!2dx3
^ dx1!dx1

^ dx2

D! � dS

One may then use the vorticity equation in vector-field form,

.@t CLu/! �
@

@x
D 0

to prove that the flux of vorticity through any comoving surface is conserved, as follows.

.@t CLu/

�
! �

@

@x
d3x

�
D

�
.@t CLu/! �

@

@x„ ƒ‚ …
D 0

�
d3xC! �

@

@x
.@t CLu/d

3x„ ƒ‚ …
D div u d3x D 0

D 0

That is, as computed above using the exterior derivative

.@t CLu/! � dSD 0:

Momentum conservation

From Euler’s fluid equation dui=dt Crip D 0 with u
j
;j D 0 one finds,Z �

@tui Cuj@j ui C @ip
�
d3x D 0

D
d

dt

Z
ui d3xC

Z
@j
�
uiu

j
Cp ı

j
i

�
d3x

D
d

dt
Mi„ƒ‚…
D 0

C

I bnj

�
uiu

j
Cpı

j
i

�
dS„ ƒ‚ …

D 0, ifbn �uD 0

Local conservation of fluid momentum is expressed using differentiation by parts as

@tui D�@j T
j

i

where T
j

i WD ui uj Cp ı
j
i is the fluid stress tensor.
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Moreover, each component of the total momentum Mi D
R

ui d3x for i D 1; 2; 3, is
conserved for an incompressible Euler flow, provided the flow is tangential to any fixed
boundaries, that is, bn �uD 0.

Mass conservation

For mass density D.x; t/ with total mass
R

D.x; t/ d3x , along dx=dt D u.x; t/ one
finds,

d

dt
D d3x D .@t CLu/.Dd3x/D .@tDC div Du/„ ƒ‚ …

continuity equation

d3x D 0

The solution of this equation is written in Lagrangian form as

.D d3x/ �g�1.t/DD.x0/ d3x

For incompressible flow, this becomes

1

D
D det

@x
@x0

D
d3x

d3x0

D 1

Likewise, in the Eulerian representation one finds the equivalent relations,

D D 1

@tDC div.Du/D 0

�
H) div uD 0

Energy conservation

Euler’s fluid equation for incompressible flow div uD 0

@t uCu � ruCrp D 0

conserves the total kinetic energy, defined by

KE D

Z
1
2
juj2d3x

The vector calculus identity

u � ruD�u� curl uC 1
2
rjuj2

recasts Euler’s equation as

@t u�u� curl uCr
�
pC 1

2
u2
�
D 0

So that
@

@t
1
2
juj2C div

�
pC 1

2
juj2

�
uD 0:
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Consequently,

d

dt

Z
�

1
2
juj2d3x D�

I
@�

�
pC 1

2
juj2

�
u � dSD 0

since u � dSD u �bn dS D 0 on any fixed boundary and one finds

KE D

Z
1
2
juj2d3x D const

for Euler fluid motion.

11 Lie group action on its tangent bundle

Definition 11.1 A Lie group G acts on its tangent bundle T G by tangent lifts.3 Given
X 2 ThG we can consider the action of G on X by either left or right translations,
denoted as ThLgX or ThRgX , respectively. These expressions may be abbreviated
as

ThLgX DL�gX D gX and ThRgX DR�gX DXg:

Left action of a Lie group G on its tangent bundle T G is illustrated in the figure below.

-T G T G

TLg

6

gX

-
Lg

6

G G

X

For matrix Lie groups, this action is just multiplication on the left or right, respectively.

Left- and right-invariant vector fields A vector field X on G is called left-invariant,
if for every g 2G one has L�gX DX , that is, if

.ThLg/X.h/DX.gh/

for every h 2G . The commutative diagram for a left-invariant vector field is illustrated
in the figure below.

3Recall Definition 6.3 of tangent lifts of a differentiable manifold.
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-T G T G

TLg

6

X

-
Lg

6

G G

X

Proposition 11.2 The set XL.G/ of left invariant vector fields on the Lie group G is
a subalgebra of X.G/ the set of all vector fields on G .

Proof If X;Y 2 XL.G/ and g 2G , then

L�gŒX;Y �D
�
L�gX;L�gY

�
D ŒX;Y �:

Consequently, the Lie bracket ŒX;Y � 2 XL.G/. Therefore, XL.G/ is a subalgebra of
X.G/, the set of all vector fields on G .

Proposition 11.3 The linear maps XL.G/ and TeG are isomorphic as vector spaces.

Demonstration of proposition. For each � 2 TeG , define a vector field X� on G by
letting X�.g/D TeLg.�/: Then

X�.gh/D TeLgh.�/D Te.Lg ıLh/.�/

D ThLg.TeLh.�//D ThLg.X�.h//;

which shows that X� is left invariant. (This proposition is stated by Marsden and
Ratiu [44, Chapter 9], who refer to Abraham and Marsden [1] for the full proof.)

Definition 11.4 (Jacobi–Lie bracket of vector fields) Let g.t/ and h.s/ be curves in
G with g.0/D e , h.0/D e and define vector fields at the identity of G by the tangent
vectors g0.0/D � , h0.0/D �. Compute the linearization of the Adjoint action of G on
TeG as

Œ�; �� WD
d

dt

d

ds
g.t/h.s/g.t/�1

ˇ̌̌
sD0;tD0

D
d

dt
g.t/�g.t/�1

ˇ̌̌
tD0
D ��� ��:

This is the Jacobi–Lie bracket of the vector fields � and �.
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Definition 11.5 The Lie bracket in TeG is defined by

Œ�; �� WD ŒX� ;X��.e/;

for �; � 2 TeG and for ŒX� ;X�� the Jacobi–Lie bracket of vector fields. This makes
TeG into a Lie algebra. Note that

ŒX� ;X��DXŒ�;��;

for all �; � 2 TeG .

Definition 11.6 The vector space TeG with this Lie algebra structure is called the
Lie algebra of G and is denoted by g.

If we let �L.g/D TeLg� , then the Jacobi–Lie bracket of two such left-invariant vector
fields in fact gives the Lie algebra bracket:

Œ�L; �L�.g/D Œ�; ��L.g/

For the right-invariant case, the right hand side obtains a minus sign,

Œ�R; �R �.g/D�Œ�; ��R.g/:

The relative minus sign arises because of the difference in action .xh�1/g�1Dx.gh/�1

on the right versus .gh/x D g.hx/ on the left.

Infinitesimal generators In mechanics, group actions often appear as symmetry trans-
formations, which arise through their infinitesimal generators, defined as follows.

Definition 11.7 Suppose ˆW G�M!M is an action. For � 2g, ˆ�.t;x/W R�M!

M defined by ˆ�.x/ D ˆ.exp t�;x/ D ˆexp t�.x/ is an R–action on M . In other
words, ˆexp t� !M is a flow on M . The vector field on M defined by4

�M .x/D
d

dt

ˇ̌̌
tD0

ˆexp t�.x/

is called the infinitesimal generator of the action corresponding to � .

The Jacobi–Lie bracket of infinitesimal generators is related to the Lie algebra bracket
as follows:

Œ�M ; �M �D�Œ�; ��M

See, for example, Marsden and Ratiu [44, Chapter 9] for the proof.

4Recall Definition 5.22 of vector fields.
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12 Lie algebras as vector fields

Definition 12.1 (The ad–operation) For A 2 g we define the operator adA to be the
operator adW g� g! g that maps B 2 g to ŒA;B�. We write adA B D ŒA;B�.

Definition 12.2 A representation of a Lie algebra g on a vector space V is a mapping
� from g to the linear transformations of V such that for A;B 2 g and any constant
scalar c ,

(i) �.AC cB/D �.A/C c�.B/,

(ii) �.ŒA;B�/D �.A/�.B/� �.B/�.A/.

If the map � is one-to-one, the representation is said to faithful.

Exercise 12.3 For a Lie algebra g, show that the map A! ad A is a representation
of the Lie algebra g, with g itself the vector space of the representation. This is called
the adjoint representation.

Example 12.4 (Vector field representations of Lie algebras) The Jacobi–Lie bracket
of the vector fields � and � in Theorem 9.2 may be represented in coordinate charts as

�D
dx

ds

ˇ̌̌
sD0
D v.x/; and � D

dx

dt

ˇ̌̌
tD0
D u.x/:

The Jacobi–Lie bracket of these two vector fields yields a third vector field,

��� �� D
d�

dt

ˇ̌̌
tD0
�

d�

ds

ˇ̌̌
sD0

D
dv

dx

dx

dt

ˇ̌̌
tD0
�

du

dx

dx

ds

ˇ̌̌
sD0
D

dv

dx
�u�

du

dx
� v D u � rv� v � ru:

Thus, the Jacobi–Lie bracket of vector fields at the tangent space of the identity TeG

is closed and may be represented in coordinate charts by the Lie bracket (commutator
of vector fields)

Œ�; �� WD ��� �� D u � rv� v � ruDW Œu; v�:

This example also proves the following

Proposition 12.5 Let X.Rn/ be the set of vector fields defined on Rn . A Lie algebra
g may be represented on coordinate charts by vector fields X� DX i

�
@
@xi 2 X.R

n/ for
each element � 2 g. This vector field representation satisfies

XŒ�;�� D ŒX� ;X��

where Œ�; �� 2 g is the Lie algebra product and ŒX� ;X�� is the vector field commutator.
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13 Lagrangian and Hamiltonian formulations

13.1 Newton’s equations for particle motion in Euclidean space

Newton’s equations

(7) mi Rqi D Fi ; i D 1; : : : ;N; (no sum on i/

describe the accelerations Rqi of N particles with

Masses mi ; i D 1; : : : ;N;

Euclidean positions q WD .q1; : : : ;qN / 2R3N ;

in response to prescribed forces,

FD .F1; : : : ;FN /;

acting on these particles. Suppose the forces arise from a potential. That is, let

(8) Fi.q/D�
@V .fqg/
@qi

; V W R3N
!R;

where @V =@qi denotes the gradient of the potential with respect to the variable qi .
Then Newton’s equations (7) become

(9) mi Rqi D�
@V

@qi
; i D 1; : : : ;N:

Remark 13.1 Newton (1620) introduced the gravitational potential for celestial me-
chanics, now called the Newtonian potential,

(10) V .fqg/D
NX

i;jD1

�Gmimj

jqi �qj j
:

13.2 Equivalence Theorem

Theorem 13.2 (Lagrangian and Hamiltonian formulations) Newton’s equations in
potential form,

(11) mi Rqi D�
@V

@qi
; i D 1; : : : ;N;

for particle motion in Euclidean space R3N are equivalent to the following four
statements:
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(i) The Euler–Lagrange equations

(12)
d

dt

�
@L

@ Pqi

�
�
@L

@qi
D 0; i D 1; : : : ;N;

hold for the Lagrangian LW R6N D f.q; Pq/ j q; Pq 2R3N g !R; defined by

(13) L.q; Pq/ WD
NX

iD1

mi

2
kPqik

2
�V .q/;

with kPqik
2 D Pqi � Pqi D Pq

j
i Pq

k
i ıjk (no sum on i ).

(ii) Hamilton’s principle of stationary action, ıS D 0, holds for the action functional
(dropping i s)

(14) S Œq.�/� WD
Z b

a

L.q.t/; Pq.t// dt:

(iii) Hamilton’s equations of motion,

(15) PqD
@H

@p
; PpD�

@H

@q
;

hold for the Hamiltonian resulting from the Legendre transform,

(16) H.q;p/ WD p � Pq.q;p/�L.q; Pq.q;p//;

where Pq.q;p/ solves for Pq from the definition p WD @L.q; Pq/=@ Pq.
In the case of Newton’s equations in potential form (11), the Lagrangian in
equation (13) yields pi Dmi Pqi and the resulting Hamiltonian is (restoring i s)

H D

NX
iD1

1

2mi
kpik

2

„ ƒ‚ …
Kinetic energy

C V .q/„ƒ‚…
Potential

(iv) Hamilton’s equations in their Poisson bracket formulation,

(17) PF D fF;H g for all F 2 F.P /;

hold with Poisson bracket defined by

(18) fF;Gg WD

NX
iD1

�
@F

@qi
�
@G

@pi
�
@F

@pi
�
@G

@qi

�
for all F;G 2 F.P /:

We will prove this theorem by proving a chain of linked equivalence relations: (11) ,
(i) , (ii) , (iii) , (iv) as propositions. (The symbol , means “equivalent to”.)
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Step I: Proof that Newton’s equations (11), (i) Check by direct verification.

Step II: Proof that (i), (ii) The Euler–Lagrange equations (12) are equivalent to
Hamilton’s principle of stationary action.

To simplify notation, we momentarily suppress the particle index i .

We need to prove the solutions of (12) are critical points ıSD 0 of the action functional

(19) S Œq.�/� WD
Z b

a

L.q.t/; Pq.t// dt;

(where Pq D dq.t/=dt ) with respect to variations on C1.Œa; b�;R3N /, the space of
smooth trajectories qW Œa; b�!R3N with fixed endpoints qa , qb .

In C1.Œa; b�;R3N / consider a deformation q.t; s/, s 2 .��; �/, � > 0, with fixed
endpoints qa , qb , of a curve q0.t/, that is, q.t; 0/ D q0.t/ for all t 2 Œa; b� and
q.a; s/D q0.a/D qa , q.b; s/D q0.b/D qb for all s 2 .��; �/.

Define a variation of the curve q0.�/ in C1.Œa; b�;R3N / by

ıq.�/ WD
d

ds

ˇ̌̌
sD0

q.�; s/ 2 Tq0.�/C
1.Œa; b�;R3N /;

and define the first variation of S at q0.t/ to be the derivative

(20) ıS WD DS Œq0.�/�.ıq.�// WD
d

ds

ˇ̌̌
sD0

S Œq.�; s/�:

Note that ıq.a/D ıq.b/D 0. With these notations, Hamilton’s principle of stationary
action states that the curve q0.t/ satisfies the Euler–Lagrange equations (12) if and
only if q0.�/ is a critical point of the action functional, that is, DS Œq0.�/�D 0. Indeed,
using the equality of mixed partials, integrating by parts, and taking into account that
ıq.a/D ıq.b/D 0, one finds

ıS WD DS Œq0.�/�.ıq.�//D
d

ds

ˇ̌̌̌
sD0

S Œq.�; s/�D
d

ds

ˇ̌̌̌
sD0

Z b

a

L.q.t; s/; Pq.t; s// dt

D

NX
iD1

Z b

a

�
@L

@qi
� ıqi.t; s/C

@L

@ Pqi
� ı Pqi

�
dt

D�

NX
iD1

Z b

a

�
d

dt

�
@L

@ Pqi

�
�
@L

@qi

�
� ıqi dt D 0

for all smooth ıqi.t/ satisfying ıqi.a/D ıqi.b/D 0. This proves the equivalence of
(i) and (ii), upon restoring particle index i in the last two lines.
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Definition 13.3 The conjugate momenta for the Lagrangian in (13) are defined as

(21) pi WD
@L

@ Pqi
Dmi Pqi 2R3; i D 1; : : : ;N; (no sum on i/

Definition 13.4 The Hamiltonian is defined via the change of variables .q; Pq/ 7! .q;p/,
called the Legendre transform,

H.q;p/ W D p � Pq.q;p/�L.q; Pq.q;p//

D

NX
iD1

mi

2
kPqik

2
CV .q/

D

NX
iD1

1

2mi
kpik

2

„ ƒ‚ …
Kinetic energy

C V .q/„ƒ‚…
Potential

(22)

Remark 13.5 The value of the Hamiltonian coincides with the total energy of the
system. This value will be shown momentarily to remain constant under the evolution
of Euler–Lagrange equations (12).

Remark 13.6 The Hamiltonian H may be obtained from the Legendre transformation
as a function of the variables .q;p/, provided one may solve for Pq.q;p/, which requires
the Lagrangian to be regular, for example,

det
@2L

@ Pqi@ Pqi
¤ 0 (no sum on i/:

Step III: Proof that (ii), (iii) (Hamilton’s principle of stationary action is equiva-
lent to Hamilton’s canonical equations.) Lagrangian (13) is regular and the derivatives
of the Hamiltonian may be shown to satisfy,

@H

@pi
D

1

mi
pi D Pqi D

dqi

dt
and

@H

@qi
D
@V

@qi
D�

@L

@qi
:

Consequently, the Euler–Lagrange equations (12) imply

Ppi D
dpi

dt
D

d

dt

�
@L

@ Pqi

�
D
@L

@qi
D�

@H

@qi
:

These calculations show that the Euler–Lagrange equations (12) are equivalent to
Hamilton’s canonical equations:

(23) Pqi D
@H

@pi
; Ppi D�

@H

@qi
;
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where @H=@qi ; @H=@pi 2 R3 are the gradients of H with respect to qi ;pi 2 R3 ,
respectively. This proves the equivalence of (ii) and (iii).

Remark 13.7 The Euler–Lagrange equations are second order and they determine
curves in configuration space qi 2C1.Œa; b�;R3N /. In contrast, Hamilton’s equations
are first order and they determine curves in phase space .qi ;pi/ 2 C1.Œa; b�;R6N /, a
space whose dimension is twice the dimension of the configuration space.

Step IV: Proof that (iii) , (iv) (Hamilton’s canonical equations may be written
using a Poisson bracket.)

By the chain rule and (23) any F 2 F.P / satisfies

dF

dt
D

NX
iD1

�
@F

@qi
� Pqi C

@F

@pi
� Ppi

�

D

NX
iD1

�
@F

@qi
�
@H

@pi
�
@F

@pi
�
@H

@qi

�
D fF;H g:

This finishes the proof of the theorem, by proving the equivalence of (iii) and (iv).

Remark 13.8 (Energy conservation) Since the Poisson bracket is skew symmetric,
fH;Fg D �fF;H g, one finds that PH D fH;H g D 0. Consequently, the value of
the Hamiltonian is preserved by the evolution. Thus, the Hamiltonian is said to be a
constant of the motion.

Exercise 13.9 Show that the Poisson bracket is bilinear, skew symmetric, satisfies the
Jacobi identity and acts as derivation on products of functions in phase space.

Exercise 13.10 Given two constants of motion, what does the Jacobi identity imply
about additional constants of motion?

Exercise 13.11 Compute the Poisson brackets among

Ji D �ijkpj qk

in Euclidean space. What Lie algebra do these Poisson brackets recall to you?

Exercise 13.12 Verify that Hamilton’s equations determined by the function

hJ.z/; �i D � � .q�p/

give infinitesimal rotations about the �–axis.

Geometry & Topology Monographs, Volume 17 (2011)



Applications of Poisson geometry to physical problems 279

14 Hamilton’s principle on manifolds

Theorem 14.1 (Hamilton’s Principle of Stationary Action) Let the smooth function
LW TQ! R be a Lagrangian on TQ. A C 2 curve cW Œa; b�!Q joining qa D c.a/

to qb D c.b/ satisfies the Euler–Lagrange equations if and only if

ı

Z b

a

L.c.t/; Pc.t//dt D 0:

Proof The meaning of the variational derivative in the statement is the following.
Consider a family of C 2 curves c.t; s/ for jsj<" satisfying c0.t/D c.t/, c.a; s/D qa ,
and c.b; s/D qb for all s 2 .�"; "/. Then

ı

Z b

a

L.c.t/; Pc.t//dt WD
d

ds

ˇ̌̌
sD0

Z b

a

L.c.t; s/; Pc.t; s//dt:

Differentiating under the integral sign, working in local coordinates (covering the curve
c.t/ by a finite number of coordinate charts), integrating by parts, denoting

v.t/ WD
d

ds

ˇ̌̌
sD0

c.t; s/;

and taking into account that v.a/D v.b/D 0, yieldsZ b

a

�
@L

@qi
vi
C
@L

@ Pqi
Pvi

�
dt D

Z b

a

�
@L

@qi
�

d

dt

@L

@ Pqi

�
vidt:

This vanishes for any C 1 function v.t/ if and only if the Euler–Lagrange equations
hold.

Remark 14.2 The integral appearing in this theorem

S.c.�// WD
Z b

a

L.c.t/; Pc.t//dt

is called the action integral. It is defined on C 2 curves cW Œa; b� ! Q with fixed
endpoints, c.a/D qa and c.b/D qb .

Remark 14.3 (Variational derivatives of functionals vs Lie derivatives of functions)
The variational derivative of a functional S Œu� is defined as the linearization

lim
�!0

S ŒuC �v��S Œu�

�
D

d

d�

ˇ̌̌
�D0

S ŒuC �v�D
DıS
ıv
; v
E
:
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Compare this to the expression for the Lie derivative of a function. If f is a real valued
function on a manifold M and X is a vector field on M , the Lie derivative of f along
X is defined as the directional derivative

LX f DX.f / WD df �X:

If M is finite-dimensional, this is

LX f DX Œf � WD df �X D
@f

@xi
X i
D lim
�!0

f .xC �X /�f .x/

�
:

The similarity is suggestive: Namely, the Lie derivative of a function and the variational
derivative of a functional are both defined as linearizations of smooth maps in certain
directions.

The next theorem emphasizes the role of Lagrangian one-forms and two-forms in the
variational principle. The following is a direct corollary of the previous theorem.

Theorem 14.4 Given a C k Lagrangian LW TQ!R for k � 2, there exists a unique
C k�2 map EL.L/W RQ! T �Q, where

RQ WD

�
d2q

dt2

ˇ̌̌
tD0
2 T .TQ/

ˇ̌̌̌
q.t/ is a C 2 curve in Q

�
is a submanifold of T .TQ/, and a unique C k�1 one-form ‚L 2ƒ

1.TQ/, such that
for all C 2 variations q.t; s/ (defined on a fixed t –interval) of q.t; 0/D q0.t/ WD q.t/,
we have

(24) ıS WD
d

ds

ˇ̌̌
sD0

S Œc.�; s/�D DS Œq.�/� � ıq.�/

D

Z b

a

EL.L/ .q; Pq; Rq/ � ıq dt C ‚L

�
q; Pq

�
� ıq

ˇ̌̌b
a„ ƒ‚ …

cf. Noether’s Theorem

where

ıq.t/D
d

ds

ˇ̌̌
sD0

q.t; s/:

15 Summary handout for differential forms

Vector fields and 1–forms

Let M be a manifold. In what follows, all maps may be assumed to be C1 , although
that’s not necessary.
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A vector field on M is a map X W M ! TM such that X.x/ 2 TxM for every
x 2M . The set of all smooth vector fields on M is written X.M /. (“Smooth” means
differentiable or C r for some r �1, depending on context.)

A (differential) 1–form on M is a map � W M ! T �M such that �.x/ 2 T �x M for
every x 2M .

More generally, if � W E ! M is a bundle, then a section of the bundle is a map
'W M !E such that � ı'.x/D x for all x 2M . So a vector field is a section of the
tangent bundle, while a 1–form is section of the cotangent bundle.

Vector fields can added and also multiplied by scalar functions kW M !R, as follows:
.X1CX2/ .x/DX1.x/CX2.x/; .kX / .x/D k.x/X.x/.

Differential forms can added and also multiplied by scalar functions kW M !R, as
follows: .˛Cˇ/ .x/D ˛.x/Cˇ.x/; .k�/ .x/D k.x/�.x/.

We have already defined the push-forward and pull-back of a vector field. The pull-back
of a 1–form � on N by a map 'W M !N is the 1–form '�� on M defined by�

'��
�
.x/ � v D � .'.x// �T '.v/

The push-forward of a 1–form ˛ on M by a diffeomorphism  W M ! N is the
pull-back of ˛ by  �1 .

A vector field can be contracted with a differential form, using the pairing between
tangent and cotangent vectors: .X �/ .x/D �.x/ �X.x/. Note that X � is a map
from M to R. Many books write iX � in place of X � , and the contraction operation
is often called interior product.

The differential of f W M !R is a 1–form df on M defined by

df .x/ � v D
d

dt
f .c.t/

ˇ̌̌
tD0

for any x 2 M , any v 2 TxM and any path c.t/ in M such that c.0/ D 0 and
c0.0/ D v . The left hand side, df .x/ � v , means the pairing between cotangent and
tangent vectors, which could also be written df .x/.v/ or hdf .x/; vi.

Note:
X df D £X f DX Œf �

Remark 15.1 df is very similar to Tf , but Tf is defined for all differentiable
f W M !N , whereas df is only defined when N DR (in this course, anyway). In
this case, Tf is a map from TM to T R, and Tf .v/D df .x/ � v 2 Tf .x/R for every
v 2 TxM (we have identified Tf .x/R with R.)
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In coordinates. . .

Let M be n–dimensional, and let x1; : : : ;xn be differentiable local coordinates
for M . This means that there’s an open subset U of M and an open subset V

of Rn such that the map 'W U ! V defined by '.x/ D
�
x1.x/; : : : ;xn.x/

�
is a

diffeomorphism. In particular, each xi is a map from M to R, so the differential
dxi is defined. There is also a vector field @

@xi for every i , which is defined by
@
@xi .x/D

d
dt
'�1

�
'.x/C tei

�ˇ̌
tD0

, where ei is the i th standard basis vector.

Exercise 15.2 Verify that
@

@xi
dxj
� ıi

j

(where � means the left hand side is a constant function with value ıi
j ).

Remark 15.3 Of course, given a coordinate system ' D
�
x1; : : : ;xn

�
, it is usual to

write xD
�
x1; : : : ;xn

�
, which means x is identified with

�
x1.x/; : : : ;xn.x/

�
D '.x/.

For every x 2M , the vectors @
@xi .x/ form a basis for TxM , so every v 2 T xM can

be uniquely expressed as v D vi @
@xi .x/. This expression defines the tangent-lifted

coordinates x1; : : : ;xn; v1; : : : vn on TM (they are local coordinates, defined on
T U � TM ).

For every x 2M , the covectors dxi.x/ form a basis for T �x M , so every ˛2T xM can
be uniquely expressed as ˛ D ˛idxi.x/. This expression defines the cotangent-lifted
coordinates x1; : : : ;xn; ˛1; : : : ; ˛n on T �M (they are local coordinates, defined on
T �U � T �M ).

Note that the basis
�
@
@xi

�
is dual to the basis

�
dx1; : : : ; dxn

�
, by the previous exercise.

It follows that �
˛idxi

�
�

�
vi @

@xi

�
D ˛iv

i

(we have used the summation convention).

In mechanics, the configuration space is often called Q, and the lifted coordinates are
written: q1; : : : ; qn; Pq1; : : : ; Pqn (on TQ) and q1; : : : ; qn;p1; : : : ;pn (on T �Q).

Why the distinction between subscripts and superscripts? This is to keep track of
how quantities vary if coordinates are changed (see next exercise). One benefit is that
using the summation convention gives coordinate-independent answers.
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Exercise 15.4 Consider two sets of local coordinates qi and si on Q, related by�
s1; : : : ; sn

�
D 

�
q1; : : : ; qn

�
. Verify that the corresponding tangent lifted coordinates

Pqi and Psi are related by

Psi
D
@ i

@qj
Pqj :

Note that the last equation can be written as PsDD .q/ Pq, where Ps is the column vector
.Ps1; : : : Psn/, and similarly for Pq.

Do the corresponding calculation on the cotangent bundle side. See Definition 16.11.

The next level: T TQ, T �T �Q, et cetera

Since TQ is a manifold, we can consider vector fields on it, which are sections of
T .TQ/. In coordinates, every vector field on T TQ has the form X D ai @

@qi C bi @
@ Pqi ,

where the ai and bi are functions of q and Pq . Note that the same symbol qi has two
interpretations: as a coordinate on TQ and as a coordinate on Q, so @

@qi can mean a
vector field TQ (as above) or on Q.

The tangent lift of the bundle projection � W TQ!Q is a map T � W T TQ! TQ. If
X is written in coordinates as above, then T � ıX D ai @

@qi . A vector field X on T TQ

is second order if T � ıX.v/D v ; in coordinates, ai D Pqi . The name comes from the
process of reducing of second order equations to first order ones by introducing new
variables Pqi D

dqi

dt
.

One may also consider T �TQ, T T �Q and T �T �Q. However, the subscript/super-
script distinction is problematic here.

1–forms The 1–forms on T �Q are sections of T �T �Q. Given cotangent-lifted
local coordinates �

q1; : : : ; qn;p1; : : : ;pn

�
on T �Q, the general 1–form on T �Q has the form aidqi C bidpi , where ai and bi

are functions of .q;p/. The canonical 1–form on T �Q is

� D pidqi ;

also written in the short form p dq . Pairing �.q;p/ with an arbitrary tangent vector
v D ai @

@qi C bi @
@pi 2 T.q;p/T

�Q gives˝
�.q;p/; v

˛
D

�
pidqi ; ai @

@qi
C bi @

@pi

�
D pia

i
D

�
pidqi ; ai @

@qi

�
D
˝
p;T ��.v/

˛
;
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where ��W T �Q ! Q is projection. In the last line we have interpreted qi as a
coordinate on Q, which implies that pidqi D p , by definition of the coordinates pi .
Note that the last line is coordinate-free.

2–forms Recall that a 1–form on M , evaluated at a point x 2M , is a linear map
from TxM to R.

A 2–form on M , evaluated at a point x 2M , is a skew-symmetric bilinear form on
TxM ; and the bilinear form has to vary smoothly as x changes. (Confusingly, bilinear
forms can be skew-symmetric, symmetric or neither; differential forms are assumed to
be skew-symmetric.)

The pull-back of a 2–form ! on N by a map 'W M !N is the 2–form '�! on M

defined by �
'�!

�
.x/ .v; w/D � .'.x// .T '.v/;T '.w//

The push-forward of a 2–form ! on M by a diffeomorphism  W M ! N is the
pull-back of ! by  �1 .

A vector field X can be contracted with a 2–form ! to get a 1–form X ! defined
by

.X !/ .x/.v/D !.x/ .X.x/; v/

for any v 2 TxM . A shorthand for this is .X !/ .v/D !.X; v/, or just X ! D

!.X; �/.

The tensor product of two 1–forms ˛ and ˇ is the 2–form ˛˝ˇ defined by

.˛˝ˇ/ .v; w/D ˛.v/ˇ.w/

for all v;w 2 T �x M .

The wedge product of two 1–forms ˛ and ˇ is the skew-symmetric 2–form ˛ ^ ˇ

defined by
.˛^ˇ/ .v; w/D ˛.v/ˇ.w/�˛.w/ˇ.v/ :

Exterior derivative The differential df of a real-valued function is also called the
exterior derivative of f . In this context, real-valued functions can be called 0–forms.
The exterior derivative is a linear operation from 0–forms to 1–forms that satisfies the
Leibniz identity, a.k.a. the product rule,

d.fg/D f dgCg df

The exterior derivative of a 1–form is an alternating 2–form, defined as follows:

d
�
aidxi

�
D
@ai

@xj
dxj
^ dxi :
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Exterior derivative is a linear operation from 1–forms to 2 forms. The following
identity is easily checked:

d.df /D 0

for all scalar functions f .

n–forms See Marsden and Ratiu [44], Lee [38], or Abraham and Marsden [1]. Unless
otherwise specified, n–forms are assumed to be alternating. Wedge products and
contractions generalise.

It is a fact that all n–forms are linear combinations of wedge products of 1–forms.
Thus we can define exterior derivative recursively by the properties

d.˛^ˇ/D d˛^ˇC .�1/k˛^ dˇ;

for all k –forms ˛ and all forms ˇ , and

d ı d D 0

In local coordinates, if ˛ D ˛i1���ik
dxi1 ^ � � � ^ dxik (sum over all i1 < � � �< ik ), then

d˛ D
@˛i1���ik

@xj
dxj
^ dxi1 ^ � � � ^ dxik

The Lie derivative of an n–form � in the direction of the vector field X is defined as

£X � D
d

dt
'�t �

ˇ̌̌̌
tD0

;

where ' is the flow of X .

Pull-back commutes with the operations d; ;^ and Lie derivative.

Cartan’s magic formula

£X ˛ D d .X ˛/CX d˛

This looks even more magic when written using the notation iX ˛ DX ˛ :

£X D diX C iX d

An n–form ˛ is closed if d˛ D 0, and exact if ˛ D dˇ for some ˇ . All exact forms
are closed (since d ı d D 0), but the converse is false. It is true that all closed forms
are locally exact; this is the Poincaré Lemma.

Remark 15.5 For a survey of the basic definitions, properties, and operations on
differential forms, as well as useful of tables of relations between differential calculus
and vector calculus, see, for example, Bloch [5, Chapter 2].
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16 Euler–Lagrange equations of manifolds

In Theorem 14.4,

(25) ıS WD
d

ds

ˇ̌̌̌
sD0

S Œc.�; s/�D DS Œq.�/� � ıq.�/

D

Z b

a

EL.L/
�
q; Pq; Rq

�
� ıq dt C ‚L .q; Pq/ � ıq

ˇ̌b
a„ ƒ‚ …

cf. Noether’s Theorem

where

ıq.t/D
d

ds

ˇ̌̌̌
sD0

q.t; s/;

the map ELW RQ! T �Q is called the Euler–Lagrange operator and its expression in
local coordinates is

EL.q; Pq; Rq/ i D
@L

@qi
�

d

dt

@L

@ Pqi
:

One understands that the formal time derivative is taken in the second summand and
everything is expressed as a function of .q; Pq; Rq/.

Theorem 16.1 (Noether (1918) Symmetries and Conservation Laws) If the action
variation in (25) vanishes ıS D 0 because of a symmetry transformation which does
not preserve the end points and the Euler–Lagrange equations hold, then the term
marked cf. Noether’s Theorem must also vanish. However, vanishing of this term now
is interpreted as a constant of motion. Namely, the term,

A.v; w/ WD hFL.v/; wi; or, in coordinates A.q; Pq; ıq/D
@L

@ Pqi
ıqi ;

is constant for solutions of the Euler–Lagrange equations. This result first appeared in
Noether [36]. In fact, the result in [36] is more general than this. In particular, in the
PDE (Partial Differential Equation) setting one must also include the transformation
of the volume element in the action principle. See, for example, Olver [53] for good
discussions of the history, framework and applications of Noether’s theorem.

Exercise 16.2 Show that conservation of energy results from Noether’s Theorem if,
in Hamilton’s principle, the variations are chosen as

ıq.t/D
d

ds

ˇ̌̌̌
sD0

q.t; s/;

corresponding to symmetry of the Lagrangian under reparametrizations of time along
the given curve q.t/! q.�.t; s//.
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The canonical Lagrangian one-form and two-form.The one-form ‚L , whose existence
and uniqueness is guaranteed by Theorem 14.4, appears as the boundary term of the
derivative of the action integral, when the endpoints of the curves on the configuration
manifold are free. In finite dimensions, its local expression is

‚L

�
q; Pq

�
WD

@L

@ Pqi
dqi

�
D pi

�
q; Pq

�
dqi

�
:

The corresponding closed two-form �L D d‚L obtained by taking its exterior deriva-
tive may be expressed as

�L WD �d‚L D
@2L

@ Pqi@qj
dqi
^dqj

C
@2L

@ Pqi@ Pqj
dqi
^d Pqj

�
D dpi

�
q; Pq

�
^dqi

�
:

These coefficients may be written as the 2n� 2n skew-symmetric matrix

(26) �L D

 
A @2L

@ Pqi@ Pqj

�
@2L
@ Pqi@ Pqj

0

!
;

where A is the skew-symmetric n�n matrix
�
@2L
@ Pqi@qj

�
�
�
@2L
@ Pqi@qj

�T .

Non-degeneracy of �L is equivalent to the invertibility of the matrix
�
@2L
@ Pqi@ Pqj

�
.

Definition 16.3 The Legendre transformation FLW TQ! T �Q is the smooth map
near the identity defined by

hFL.vq/; wqi WD
d

ds

ˇ̌̌̌
sD0

L.vqC swq/:

In the finite dimensional case, the local expression of FL is

FL.qi ; Pqi/D

�
qi ;

@L

@ Pqi

�
D .qi ;pi.q; Pq//:

If the skew-symmetric matrix (26) is invertible, the Lagrangian L is said to be regular.
In this case, by the implicit function theorem, FL is locally invertible. If FL is a
diffeomorphism, L is called hyperregular.

Definition 16.4 Given a Lagrangian L, the action of L is the map AW TQ!R given
by

(27) A.v/ WD hFL.v/; vi; or, in coordinates A.q; Pq/D
@L

@ Pqi
Pqi ;
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and the energy of L is

(28) E.v/ WDA.v/�L.v/; or, in coordinates E.q; Pq/D
@L

@ Pqi
Pqi
�L.q; Pq/:

16.1 Lagrangian vector fields and conservation laws

Definition 16.5 A vector field Z on TQ is called a Lagrangian vector field if

�L.v/.Z.v/; w/D hdE.v/; wi;

for all v 2 TqQ, w 2 Tv.TQ/.

Proposition 16.6 The energy is conserved along the flow of a Lagrangian vector field
Z .

Proof Let v.t/ 2 TQ be an integral curve of Z . Skew-symmetry of �L implies

d

dt
E.v.t//D hdE.v.t//; Pv.t/i D hdE.v.t//;Z.v.t//i

D�L.v.t// .Z.v.t//;Z.v.t///D 0:

Thus, E.v.t// is constant in t .

16.2 Equivalence of dynamics for hyperregular Lagrangians and Hamil-
tonians

Recall that a Lagrangian L is said to be hyperregular if its Legendre transformation
FLW TQ! T �Q is a diffeomorphism.

The equivalence between the Lagrangian and Hamiltonian formulations for hyperregular
Lagrangians and Hamiltonians is summarized below, following Marsden and Ratiu [44].

(a) Let L be a hyperregular Lagrangian on TQ and H DE ı .FL/�1 , where E

is the energy of L and .FL/�1W T �Q! TQ is the inverse of the Legendre
transformation. Then the Lagrangian vector field Z on TQ and the Hamiltonian
vector field XH on T �Q are related by the identity

.FL/�XH DZ:

Furthermore, if c.t/ is an integral curve of Z and d.t/ an integral curve of XH

with FL.c.0//D d.0/, then FL.c.t//D d.t/ and their integral curves coincide
on the manifold Q. That is, �Q.c.t//D �Q.d.t//D  .t/, where �QW TQ!Q

and �QW T
�Q!Q are the canonical bundle projections.
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In particular, the pull back of the inverse Legendre transformation FL�1 induces
a one-form ‚ and a closed two-form � on T �Q by

‚D .FL�1/�‚L; �D�d‚D .FL�1/��L:

In coordinates, these are the canonical presymplectic and symplectic forms,
respectively,

‚D pi dqi ; �D�d‚D dpi ^dqi :

(b) A Hamiltonian H W T �Q! R is said to be hyperregular if the smooth map
FH W T �Q! TQ, defined by

hFH.˛q/; ˇqi WD
d

ds

ˇ̌̌̌
sD0

H.˛qC sˇq/; ˛q; ˇq 2 T �q Q;

is a diffeomorphism. Define the action of H by G WD h‚;XH i. If H is a
hyperregular Hamiltonian then the energies of L and H and the actions of L

and H are related by

E DH ı .FH /�1; ADG ı .FH /�1:

Also, the Lagrangian LDA�E is hyperregular and FLD FH�1 .

(c) These constructions define a bijective correspondence between hyperregular
Lagrangians and Hamiltonians.

Remark 16.7 For thorough discussions of many additional results arising from the
Hamilton’s principle for hyperregular Lagrangians see, for example, Marsden and
Ratiu [44, Chapters 7 and 8].

Exercise 16.8 (Spherical pendulum) A particle rolling on the interior of a spherical
surface under gravity is called a spherical pendulum. Write down the Lagrangian and
the equations of motion for a spherical pendulum with S2 as its configuration space.
Show explicitly that the Lagrangian is hyperregular. Use the Legendre transformation
to convert the equations to Hamiltonian form. Find the conservation law corresponding
to angular momentum about the axis of gravity by “bare hands” methods.

Exercise 16.9 (Differentially rotating frames) The Lagrangian for a free particle of
unit mass relative to a moving frame is obtained by setting

L. Pq;q; t/D 1
2
kPqk2C Pq �R.q; t/

for a function R.q; t/ which prescribes the space and time dependence of the moving
frame velocity. For example, a frame rotating with time-dependent frequency �.t/
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about the vertical axis yz is obtained by choosing R.q; t/ D q ��.t/yz. Calculate
‚L .q; Pq/ ;�L .q; Pq/, the Euler–Lagrange operator EL.L/ .q; Pq; Rq/, the Hamiltonian
and its corresponding canonical equations.

Exercise 16.10 Calculate the action and the energy for the Lagrangian in Exercise 16.9.

Definition 16.11 (Cotangent lift) Given two manifolds Q and S related by a dif-
feomorphism f W Q 7! S , the cotangent lift T �f W T �S 7! T �Q of f is defined by

(29) hT �f .˛/; vi D h˛;Tf .v/i

where
˛ 2 T �s S; v 2 TqQ; and s D f .q/:

As explained by Marsden and Ratiu [44, Chapter 6], cotangent lifts preserve the action
of the Lagrangian L, which we write as

(30) hp; Pqi D h˛; Psi;

where pD T �f .˛/ is the cotangent lift of ˛ under the diffeomorphism f and PsD
Tf . Pq/ is the tangent lift of Pq under the function f , which is written in Euclidean
coordinate components as qi ! si D f i.q/. Preservation of the action in (30) yields
the coordinate relations,

(Tangent lift in coordinates) Psj
D
@f j

@qi
Pqi

H)

pi D ˛k

@f k

@qi
(Cotangent lift in coordinates)

Thus, in coordinates, the cotangent lift is the inverse transpose of the tangent lift.

Remark 16.12 The cotangent lift of a function preserves the induced action one-form,

hp;dqi D h˛;dsi;

so it is a source of (pre-)symplectic transformations.

16.3 The classic Euler–Lagrange example: geodesic flow

An important example of a Lagrangian vector field is the geodesic spray of a Riemannian
metric. A Riemannian manifold is a smooth manifold Q endowed with a symmetric
nondegenerate covariant tensor g , which is positive definite. Thus, on each tangent
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space TqQ there is a nondegenerate definite inner product defined by pairing with
g.q/.

If .Q;g/ is a Riemannian manifold, there is a natural Lagrangian on it given by the
kinetic energy K of the metric g , namely,

K.v/ WD 1
2
g.q/.vq; vq/;

for q 2Q and vq 2 TqQ. In finite dimensions, in a local chart,

K.q; Pq/D 1
2
gij .q/ Pq

i
Pqj :

The Legendre transformation is in this case FK.vq/D g.q/.vq; �/, for vq 2 TqQ. In
coordinates, this is

FK.q; Pq/D

�
qi ;

@K

@ Pqi

�
D .qi ;gij .q/ Pq

j /DW .qi ;pi/:

The Euler–Lagrange equations become the geodesic equations for the metric g , given
(for finite dimensional Q in a local chart) by

Rqi
C� i

jk Pq
j
Pqk
D 0; i D 1; : : : n;

where the three-index quantities

�h
jk D

1
2
ghl

�
@gjl

@qk
C
@gkl

@qj
�
@gjk

@ql

�
; with gihghl

D ıl
i ;

are the Christoffel symbols of the Levi-Civita connection on .Q;g/.

Exercise 16.13 Explicitly compute the geodesic equation as an Euler–Lagrange equa-
tion for the kinetic energy Lagrangian K.q; Pq/D 1

2
gij .q/ Pq

i Pqj .

Exercise 16.14 For the kinetic energy Lagrangian K.q; Pq/D 1
2
gij .q/ Pq

i Pqj with i; j D

1; 2; : : : ;N :

� Compute the momentum pi canonical to qi for geodesic motion.

� Perform the Legendre transformation to obtain the Hamiltonian for geodesic
motion.

� Write out the geodesic equations in terms of qi and its canonical momentum
pi .

� Check directly that Hamilton’s equations are satisfied.

Remark 16.15 A classic problem is to determine the metric tensors gij .q/ for which
these geodesic equations admit enough additional conservation laws to be integrable.
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Exercise 16.16 Consider the Lagrangian

L�.q; Pq/D 1
2
kPqk2� 1

2�
.1�kqk2/2

for a particle in R3 . Let �.t/ be the curve in R3 obtained by solving the Euler–
Lagrange equations for L� with the initial conditions q0 D �.0/; Pq0 D P�.0/. Show
that

lim
�!0

�.t/

is a great circle on the two-sphere S2 , provided that q0 has unit length and the initial
conditions satisfy q0 � Pq0 D 0.

Remark 16.17 The Lagrangian vector field associated to K is called the geodesic
spray. Since the Legendre transformation is a diffeomorphism (in finite dimensions
or in infinite dimensions if the metric is assumed to be strong), the geodesic spray is
always a second order equation.

16.4 Covariant derivative

The variational approach to geodesics recovers the classical formulation using covariant
derivatives, as follows. Let X.Q/ denote the set of vector fields on the manifold Q.
The covariant derivative

rW X.Q/�X.Q/! X.Q/ .X;Y / 7! rX .Y /;

of the Levi-Civita connection on .Q;g/ is given in local charts by

rX .Y /D �
k
ij X iY j @

@qk
CX i @Y

k

@qi

@

@qk
:

If c.t/ is a curve on Q and Y 2 X.Q/, the covariant derivative of Y along c.t/ is
defined by

DY

Dt
WD r PcY;

or locally, �
DY

Dt

�k

D �k
ij .c.t// Pc

i.t/Y j .c.t//C
d

dt
Y k.c.t//:

A vector field is said to be parallel transported along c.t/ if

DY

Dt
D 0:

Thus Pc.t/ is parallel transported along c.t/ if and only if

Rc i
C� i

jk Pc
j
Pck
D 0:
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In classical differential geometry a geodesic is defined to be a curve c.t/ in Q whose
tangent vector Pc.t/ is parallel transported along c.t/. As the expression above shows,
geodesics are integral curves of the Lagrangian vector field defined by the kinetic
energy of g .

Definition 16.18 A classical mechanical system is given by a Lagrangian of the form
L.vq/DK.vq/�V .q/, for vq 2 TqQ. The smooth function V W Q!R is called the
potential energy. The total energy of this system is given by EDKCV and the Euler–
Lagrange equations (which are always second order for a hyperregular Lagrangian)
are

Rq i
C� i

jk Pq
j
Pqk
Cgil @V

@ql
D 0; i D 1; : : : n;

where gij are the entries of the inverse matrix of .gij /.

Definition 16.19 If QDR3 and the metric is given by gij D ıij , these equations are
Newton’s equations of motion (9) of a particle in a potential field which launched our
discussion in Lecture 13.

Exercise 16.20 (Gauge invariance) Show that the Euler–Lagrange equations are
unchanged under

(31) L.q.t/; Pq.t//!L0 DLC
d

dt
 .q.t/; Pq.t//;

for any function  W R6N D f.q; Pq/ j q; Pq 2R3N g !R.

Exercise 16.21 (Generalized coordinate theorem) Show that the Euler–Lagrange
equations are unchanged in form under any smooth invertible mapping f W fq 7! sg.
That is, with

(32) L.q.t/; Pq.t//D zL.s.t/; Ps.t//;

show that

(33)
d

dt

�
@L

@ Pq

�
�
@L

@q
D 0 ”

d

dt

 
@ zL

@Ps

!
�
@ zL

@s
D 0:

Exercise 16.22 How do the Euler–Lagrange equations transform under q.t/D r.t/C
s.t/?

Exercise 16.23 (Other example Lagrangians) Write the Euler–Lagrange equations,
then apply the Legendre transformation to determine the Hamiltonian and Hamilton’s
canonical equations for the following Lagrangians. Determine which of them are
hyperregular.
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� L.q; Pq/D
�
gij .q/ Pq

i Pqj
�1=2

(Is it possible to assume that L.q; Pq/D 1? Why?)

� L.q; Pq/D�
�
1� Pq � Pq

�1=2

� L.q; Pq/D m
2
Pq � PqC e

c
Pq �A.q/, for constants m, c and prescribed function A.q/.

How do the Euler–Lagrange equations for this Lagrangian differ from free motion
in a moving frame with velocity e

mc
A.q/?

Example: charged particle in a magnetic field Consider a particle of charge e and
mass m moving in a magnetic field B, where BDr �A is a given magnetic field on
R3 . The Lagrangian for the motion is given by the “minimal coupling” prescription
(jay-dot-ay)

L.q; Pq/D
m

2
kPqk2C

e

c
A.q/ � Pq;

in which the constant c is the speed of light. The derivatives of this Lagrangian are

@L

@ Pq
Dm PqC

e

c
ADW p and

@L

@q
D

e

c
rAT

� Pq

Hence, the Euler–Lagrange equations for this system are

m RqD
e

c
.rAT

� Pq�rA � Pq/D
e

c
Pq�B

(Newton’s equations for the Lorentz force). The Lagrangian L is hyperregular, because

pD FL.q; Pq/Dm PqC
e

c
A.q/

has the inverse

PqD FH.q;p/D
1

m

�
p�

e

c
A.q/

�
:

The corresponding Hamiltonian is given by the invertible change of variables,

(34) H.q;p/D p � Pq�L.q; Pq/D
1

2m

p�
e

c
A
2

:

The Hamiltonian H is hyperregular since

PqD FH.q;p/D
1

m

�
p�

e

c
A
�

has the inverse pD FL.q; Pq/Dm PqC
e

c
A:

The canonical equations for this Hamiltonian recover Newton’s equations for the
Lorentz force law.
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Example: charged particle in a magnetic field by the Kaluza–Klein construction
Although the minimal-coupling Lagrangian is not expressed as the kinetic energy of a
metric, Newton’s equations for the Lorentz force law may still be obtained as geodesic
equations. This is accomplished by suspending them in a higher dimensional space via
the Kaluza–Klein construction, which proceeds as follows.

Let QKK be the manifold R3 � S1 with variables .q; �/. On QKK introduce the
one-form AC d� (which defines a connection one-form on the trivial circle bundle
R3 �S1!R3 ) and introduce the Kaluza–Klein Lagrangian LKKW TQKK ' T R3 �

TS1 7!R as

LKK.q; �; Pq; P�/D 1
2
mkPqk2C 1

2

˝ACd�; .q; Pq; �; P�/
˛2

D
1
2
mkPqk2C 1

2

�
A � PqC P�

�2
:

The Lagrangian LKK is positive definite in . Pq; P�/; so it may be regarded as the kinetic
energy of a metric, the Kaluza–Klein metric on TQKK . (This construction fits the idea
of U.1/ gauge symmetry for electromagnetic fields in R3 . It can be generalized to a
principal bundle with compact structure group endowed with a connection. The Kaluza–
Klein Lagrangian in this generalization leads to Wong’s equations for a color-charged
particle moving in a classical Yang–Mills field.) The Legendre transformation for LKK

gives the momenta

(35) pDm PqC .A � PqC P�/A and � D A � PqC P�:

Since LKK does not depend on � , the Euler–Lagrange equation

d

dt

@LKK

@ P�
D
@LKK

@�
D 0;

shows that � D @LKK=@ P� is conserved. The charge is now defined by e WD c� . The
Hamiltonian HKK associated to LKK by the Legendre transformation (35) is

(36)

HKK.q; �;p; �/D p � PqC� P� �LKK.q; Pq; �; P�/

D p � 1
m
.p��A/C�.� �A � Pq/� 1

2
mkPqk2� 1

2
�2

D p � 1
m
.p��A/C 1

2
�2
��A � 1

m
.p��A/� 1

2m
kp��Ak2

D
1

2m
kp��Ak2C 1

2
�2:

On the constant level set � D e=c , the Kaluza–Klein Hamiltonian HKK is a function
of only the variables .q;p/ and is equal to the Hamiltonian (34) for charged particle
motion under the Lorentz force up to an additive constant. This example provides
an easy but fundamental illustration of the geometry of (Lagrangian) reduction by
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symmetry. The canonical equations for the Kaluza–Klein Hamiltonian HKK now
reproduce Newton’s equations for the Lorentz force law.

17 The rigid body in three dimensions

In the absence of external torques, Euler’s equations for rigid body motion are:

(37)

I1
P�1 D .I2� I3/�2�3;

I2
P�2 D .I3� I1/�3�1;

I3
P�3 D .I1� I2/�1�2;

or, equivalently,
I P�D I���;

where � D .�1; �2; �3/ is the body angular velocity vector and I1; I2; I3 are the
moments of inertia of the rigid body.

Question 17.1 Can these equations – as they are written – be cast into Lagrangian
or Hamiltonian form in any sense? (Since there are an odd number of equations, they
cannot be put into canonical Hamiltonian form.)

We could reformulate them as:

� Euler–Lagrange equations on T SO.3/ or

� Canonical Hamiltonian equations on T �SO.3/,

by using Euler angles and their velocities, or their conjugate momenta. However, these
reformulations on T SO.3/ or T �SO.3/ would answer a different question for a six
dimensional system. We are interested in these structures for the equations as given
above.

Answer 17.2 (Lagrangian formulation) The Lagrangian answer is this: These equa-
tions may be expressed in Euler–Poincaré form on the Lie algebra R3 using the
Lagrangian

(38) l.�/D 1
2
.I1�

2
1C I2�

2
2C I3�

2
3/D

1
2
�T
� I�;

which is the (rotational) kinetic energy of the rigid body.

The Hamiltonian answer to this question will be discussed later.
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Proposition 17.3 The Euler rigid body equations are equivalent to the rigid body
action principle for a reduced action

(39) ıSred D ı

Z b

a

l.�/ dt D 0;

where variations of � are restricted to be of the form

(40) ı�D P†C��†;

in which †.t/ is a curve in R3 that vanishes at the endpoints in time.

Proof Since l.�/D 1
2
hI�;�i, and I is symmetric, we obtain

ı

Z b

a

l.�/ dt D

Z b

a

hI�; ı�i dt

D

Z b

a

hI�; P†C��†i dt

D

Z b

a

��
�

d

dt
I�;†

�
ChI�;��†i

�
dt

D

Z b

a

�
�

d

dt
I�C I���;†

�
dt;

upon integrating by parts and using the endpoint conditions, †.b/D†.a/D 0. Since
† is otherwise arbitrary, (102) is equivalent to

�
d

dt
.I�/C I���D 0;

which are Euler’s equations (37).

Let’s derive this variational principle from the standard Hamilton’s principle.

17.1 Hamilton’s principle for rigid body motion on T SO.3/

An element R 2 SO.3/ gives the configuration of the body as a map of a reference
configuration B �R3 to the current configuration R.B/; the map R takes a reference
or label point X 2 B to a current point x D R.X / 2 R.B/.

When the rigid body is in motion, the matrix R is time-dependent. Thus,

x.t/D R.t/X
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with R.t/ a curve parametrized by time in SO.3/. The velocity of a point of the body
is

Px.t/D PR.t/X D PRR�1.t/x.t/:

Since R is an orthogonal matrix, R�1 PR and PRR�1 are skew matrices. Consequently,
we can write (recall the hat map)

(41) Px D PRR�1x D!�x:

This formula defines the spatial angular velocity vector !. Thus, ! is essentially
given by right translation of PR to the identity. That is, the vector

!D
�
PRR�1

�
y:

The corresponding body angular velocity is defined by

(42) �D R�1!;

so that � is the angular velocity relative to a body fixed frame. Notice that

R�1 PRX D R�1 PRR�1x D R�1.!�x/

D R�1!�R�1x D��X;(43)

so that � is given by left translation of PR to the identity. That is, the vector

�D
�
R�1 PR

�
y:

The kinetic energy is obtained by summing up mj Pxj2=2 (where j�j denotes the Euclidean
norm) over the body. This yields

(44) K D
1

2

Z
B
�.X /j PRX j2 d3X;

in which � is a given mass density in the reference configuration. Since

j PRX j D j!�xj D jR�1.!�x/j D j��X j;

K is a quadratic function of �. Writing

(45) K D 1
2
�T
� I�

defines the moment of inertia tensor I , which, provided the body does not degenerate
to a line, is a positive-definite .3�3/ matrix, or better, a quadratic form. This quadratic
form can be diagonalized by a change of basis; thereby defining the principal axes and
moments of inertia. In this basis, we write I D diag.I1; I2; I3/.

The function K is taken to be the Lagrangian of the system on T SO.3/ (and by means
of the Legendre transformation we obtain the corresponding Hamiltonian description
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on T �SO.3/). Notice that K in equation (44) is left (not right) invariant on T SO.3/,
since

�D
�
R�1 PR

�
y:

It follows that the corresponding Hamiltonian will also be left invariant.

In the framework of Hamilton’s principle, the relation between motion in R space and
motion in body angular velocity (or �) space is as follows.

Proposition 17.4 The curve R.t/ 2 SO.3/ satisfies the Euler–Lagrange equations for

(46) L.R; PR/D
1

2

Z
B
�.X /j PRX j2 d3X;

if and only if �.t/ defined by R�1 PRvD��v for all v2R3 satisfies Euler’s equations

(47) I P�D I���:

The proof of this relation will illustrate how to reduce variational principles using
their symmetry groups. By Hamilton’s principle, R.t/ satisfies the Euler–Lagrange
equations, if and only if

ı

Z
L.R; PR/ dt D 0:

Let l.�/D 1
2
.I�/��, so that l.�/DL.R; PR/ where the matrix R and the vector � are

related by the hat map, �D
�
R�1 PR

�
y. Thus, the Lagrangian L is left SO(3)-invariant.

That is,
l.�/DL.R; PR/DL.e;R�1 PR/:

To see how we should use this left-invariance to transform Hamilton’s principle, define
the skew matrix y� by y�vD�� v for any v 2R3 .

We differentiate the relation R�1 PRD y� with respect to R to get

(48) �R�1.ıR/R�1 PRCR�1.ı PR/D cı�:
Let the skew matrix y† be defined by

(49) y† D R�1ıR;

and define the vector † by

(50) y†vD†� v:

Note that
Py† D�R�1 PRR�1ıRCR�1ı PR;
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so

(51) R�1ı PRD Py†CR�1 PRy†:

Substituting (51) and (49) into (48) gives

�y† y�C
Py†C y�y† D cı�;

that is,

(52) cı� D Py†C Œ y�; y†�:
The identity Œ y�; y†�D .��†/y holds by Jacobi’s identity for the cross product and so

(53) ı�D P†C��†:

These calculations prove the following:

Theorem 17.5 For a Lagrangian which is left-invariant under SO(3), Hamilton’s
variational principle

(54) ıS D ı

Z b

a

L.R; PR/ dt D 0

on T SO.3/ is equivalent to the reduced variational principle

(55) ıSred D ı

Z b

a

l.�/ dt D 0

with �D
�
R�1 PR

�
y on R3 where the variations ı� are of the form

ı�D P†C��†;

with †.a/D†.b/D 0.

Reconstruction of R.t/ 2 SO.3/ In Theorem 17.5, Euler’s equations for the rigid
body

I P�D I���;

follow from the reduced variational principle (55) for the Lagrangian

(56) l.�/D 1
2
.I�/ ��;

which is expressed in terms of the left-invariant time-dependent angular velocity in
the body, � 2 so.3/. The body angular velocity �.t/ yields the tangent vector
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PR.t/ 2 TR.t/SO.3/ along the integral curve in the rotation group R.t/ 2 SO.3/ by the
relation,

PR.t/D R.t/�.t/:

This relation provides the reconstruction formula. It’s solution as a linear differential
equation with time-dependent coefficients yields the integral curve R.t/ 2 SO.3/ for
the orientation of the rigid body, once the time dependence of �.t/ is determined from
the Euler equations.

17.2 Hamiltonian form of rigid body motion

A dynamical system on a manifold M

Px.t/D F.x/; x 2M

is said to be in Hamiltonian form, if it can be expressed as

Px.t/D fx;H g; for H W M 7!R;

in terms of a Poisson bracket operation,

f�; �gW F.M /�F.M / 7! F.M /;

which is bilinear, skew-symmetric and satisfies the Jacobi identity and (usually) the
Leibniz rule.

As we shall explain, reduced equations arising from group-invariant Hamilton’s princi-
ples on Lie groups are naturally Hamiltonian. If we Legendre transform our reduced
Lagrangian for the SO.3/ left invariant variational principle (55) for rigid body dy-
namics, then its simple, beautiful and well-known Hamiltonian formulation emerges.

Definition 17.6 The Legendre transformation F l W so.3/! so.3/� is defined by

F l.�/D
ıl

ı�
D…:

The Legendre transformation defines the body angular momentum by the variations of
the rigid-body’s reduced Lagrangian with respect to the body angular velocity. For the
Lagrangian in (56), the R3 components of the body angular momentum are

(57) …i D Ii�i D
@l

@�i
; i D 1; 2; 3:
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17.3 Lie–Poisson Hamiltonian formulation of rigid body dynamics

Let
h.…/ WD h…;�i � l.�/;

where the pairing h�; �iW so.3/�� so.3/!R is understood in components as the vector
dot product on R3

h…;�i WD… ��:

Hence, one finds the expected expression for the rigid-body Hamiltonian

(58) hD 1
2
… � I�1… WD

…2
1

2I1

C
…2

2

2I2

C
…2

3

2I3

:

The Legendre transform F l for this case is a diffeomorphism, so we may solve for

@h

@…
D�C

�
…;

@�

@…

�
�

�
@l

@�
;
@�

@…

�
D�:

In R3 coordinates, this relation expresses the body angular velocity as the derivative
of the reduced Hamiltonian with respect to the body angular momentum, namely
(introducing grad-notation),

r…h WD
@h

@…
D�:

Hence, the reduced Euler–Lagrange equations for l may be expressed equivalently in
angular momentum vector components in R3 and Hamiltonian h as:

d

dt
.I�/D I���” P…D…�r…h WD f…; hg:

This expression suggests we introduce the following rigid body Poisson bracket on
functions of the …’s:

(59) ff; hg.…/ WD �… � .r…f �r…h/:

For the Hamiltonian (58), one checks that the Euler equations in terms of the rigid-body
angular momenta,

(60) P…1 D
I2� I3

I2I3

…2…3; P…2 D
I3� I1

I3I1

…3…1; P…3 D
I1� I2

I1I2

…1…2;

that is,

(61) P…D…��:

are equivalent to
Pf D ff; hg; with f D…:
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The Poisson bracket proposed in (59) is an example of a Lie Poisson bracket, which
we will show separately satisfies the defining relations to be a Poisson bracket.

17.4 R3 Poisson bracket

The rigid body Poisson bracket (59) is a special case of the Poisson bracket for functions
on R3 ,

(62) ff; hg D �rc � rf �rh

This bracket generates the motion

(63) PxD fx; hg D rc �rh

For this bracket the motion takes place along the intersections of level surfaces of the
functions c and h in R3 . In particular, for the rigid body, the motion takes place
along intersections of angular momentum spheres c D kxk2=2 and energy ellipsoids
hD x � Ix. (See the cover illustration of Marsden and Ratiu [2003].)

Exercise 17.7 Consider the R3 Poisson bracket

(64) ff; hg D �rc � rf �rh

Let c D xT �Cx be a quadratic form on R3 , and let C be the associated symmetric
3 � 3 matrix. Determine the conditions on the quadratic function c.x/ so that this
Poisson bracket will satisfy the Jacobi identity.

Exercise 17.8 Find the general conditions on the function c.x/ so that the R3 bracket

ff; hg D �rc � rf �rh

satisfies the defining properties of a Poisson bracket. Is this R3 bracket also a derivation
satisfying the Leibniz relation for a product of functions on R3 ? If so, why?

Exercise 17.9 How is the R3 bracket related to the canonical Poisson bracket? Hint:
restrict to level surfaces of the function c.x/.

Exercise 17.10 (Casimirs of the R3 bracket) The Casimirs (or distinguished func-
tions, as Lie called them) of a Poisson bracket satisfy

fc; hg.x/D 0; 8h.x/:

Suppose the function c.x/ is chosen so that the R3 bracket (62) satisfies the defining
properties of a Poisson bracket. What are the Casimirs for the R3 bracket (62)? Why?
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Exercise 17.11 Show that the motion equation

PxD fx; hg

for the R3 bracket (62) is invariant under a certain linear combination of the functions
c and h. Interpret this invariance geometrically.

18 Momentum maps

The main idea Symmetries are often associated with conserved quantities. For ex-
ample, the flow of any SO.3/–invariant Hamiltonian vector field on T �R3 conserves
angular momentum, q� p. More generally, given a Hamiltonian H on a phase space
P , and a group action of G on P that conserves H , there is often an associated
“momentum map” J W P ! g� that is conserved by the flow of the Hamiltonian vector
field.

Note: all group actions in this section will be left actions until otherwise specified.

18.1 Hamiltonian systems on Poisson manifolds

Definition 18.1 A Poisson bracket on a manifold P is a skew-symmetric bilinear
operation on

F.P / WD C1 .P;R/
satisfying the Jacobi identity and the Leibniz identity,

fFG;H g D FfG;H gC fF;H gG

The pair .P; f�; �g/ is called a Poisson manifold.

Remark 18.2 The Leibniz identity is sometimes not included in the definition. Note
that bilinearity, skew-symmetry and the Jacobi identity are the axioms of a Lie algebra.
In what follows, a Poisson bracket is a binary operation that makes F.P / into a Lie
algebra and also satisfies the Leibniz identity.

Exercise 18.3 Show that the classical Poisson bracket, defined in cotangent-lifted
coordinates �

q1; : : : ; qN ;p1; : : : ;pN

�
on an 2N –dimensional cotangent bundle T �Q by

fF;Gg D

NX
iD1

�
@F

@qi

@G

@pi
�
@F

@pi

@G

@qi

�
;
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satisfies the axioms of a Poisson bracket. Show also that the definition of this bracket
is independent of the choice of local coordinates

�
q1; : : : ; qN

�
.

Definition 18.4 A Poisson map between two Poisson manifolds is a map

'W
�
P1; f�; �g1

�
!
�
P2; f�; �g2

�
that preserves the brackets, meaning

fF ı';G ı'g1 D fF;Gg2 ı'; for all F;G 2 F .P2/ :

Definition 18.5 An action ˆ of G on a Poisson manifold .P; f; g/ is canonical if ˆg

is a Poisson map for every g , that is,˚
F ıˆg;K ıˆg

	
D fF;Kg ıˆg

for every F;K 2 F.P /.

Definition 18.6 Let .P; f�; �g/ be a Poisson manifold, and let H W P !R be differen-
tiable. The Hamiltonian vector field for H is the vector field XH defined by

XH .F /D fF;H g; for any F 2 F.P /

Remark 18.7 XH is well-defined because of the Leibniz identity and the correspon-
dence between vector fields and derivations (see Lee [38]).

Remark 18.8 XH .F /D £XH
F D PF , the Lie derivative of F along the flow of XH .

The equations
PF D fF;H g;

called “Hamilton’s equations”, have already appeared in Theorem 13.2, and are an
equivalent definition of XH .

Exercise 18.9 Show that Hamilton’s equations for the classical Poisson bracket are
the canonical Hamilton’s equations,

Pqi
D
@H

@pi
; Ppi D�

@H

@qi
:
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18.2 Infinitesimal invariance under Hamiltonian vector fields

Let G act smoothly on P , and let � 2 g. Recall (from Lecture 11) that the infinitesimal
generator �P is the vector field on P defined by

�P .x/D
d

dt
g.t/x

ˇ̌̌̌
tD0

;

for some path g.t/ in G such that g.0/D e and g0.0/D � .

Remark 18.10 For matrix groups, we can take g.t/D exp .t�/. This works in general
for the exponential map of an arbitrary Lie group. For matrix groups,

�P .x/D
d

dt
exp.t�/x

ˇ̌̌̌
tD0

D �x (matrix multiplication):

Exercise 18.11 If H W P !R is G–invariant, meaning that H.gx/DH.x/ for all
g 2G and x 2 P , then £�P H D 0 for all � 2 g. This property is called infinitesimal
invariance.

Example 18.12 (The momentum map for the rotation group) Consider the cotangent
bundle of ordinary Euclidean space R3 . This is the Poisson (symplectic) manifold
with coordinates .q;p/ 2 T �R3 'R6 , equipped with the canonical Poisson bracket.
An element g of the rotation group SO.3/ acts on T �R3 according to

g.q;p/D .gq;gp/

Set g.t/D exp.tA/, so that d
dt

ˇ̌
tD0

g.t/DA and the corresponding Hamiltonian vector
field is

XA D . Pq; Pp/D .Aq;Ap/
where A2 so.3/ is a skew-symmetric matrix. The corresponding Hamiltonian equations
read

PqDAqD
@JA

@p
; PpDApD�

@JA

@q
:

Hence,
JA .q;p/D�Ap �qD ai�ijkpkqj D a �q�p:

for a vector a 2R3 with components ai , i D 1; 2; 3. So the momentum map for the
rotation group is the angular momentum J D q�p.

Example 18.13 Consider angular momentum J D q�p, defined on P D T �R3 . For
every � 2R3 , define

J� .q;p/ WD � � .q�p/D p � .� �q/
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Using Exercise 18.9 and Remark 18.10,

XJ� .q;p/D
�
@J�

@p
;�
@J�

@q

�
D .� �q; � �p/D y�P .q;p/ ;

where the last line is the infinitesimal generator corresponding to y� 2 so.3/. Now
suppose H W P !R is SO.3/–invariant. From Exercise 18.11, we have £y�H D 0. It
follows that

£XH
J� D

˚
J� ;H

	
D�

˚
H;J�

	
D�£XJ�

H D�£�P H D 0:

Since this holds for all � , we have shown that J is conserved by the Hamiltonian flow.

18.3 Defining momentum maps

In order to generalise this example, we recast it using the hat map yW R3! so.3/ and
the associated map zW

�
R3
��
! so.3/� , and the standard identification

�
R3
��
Š R3

via the Euclidean dot product. We consider J as a function from P to so.3/� given
by J

�
q;p

�
D .q�p/z. For any � D yv, we define J�.q;p/D

˝
.q�p/z; yv

˛
D .q�p/ � v.

As before, we find that XJ� D �P for every � , and J is conserved by the Hamiltonian
flow. We take the first property, XJ� D �P , as the general definition of a momentum
map. The conservation of J follows by the same Poisson bracket calculation as in the
example; the result is Noether’s Theorem.

Definition 18.14 A momentum map for a canonical action of G on P is a map
J W P!g� such that, for every � 2g, the map J� W P!R defined by J�.p/DhJ.p/; �i

satisfies
XJ� D �P

Theorem 18.15 (Noether’s Theorem) Let G act canonically on .P; f�; �g/ with mo-
mentum map J . If H is G –invariant, then J is conserved by the flow of XH .

Proof For every � 2 g,

£XH
J� D

˚
J� ;H

	
D�

˚
H;J�

	
D�£XJ�

H D�£�P H D 0:

Exercise 18.16 Momentum maps are unique up to a choice of a constant element of
g� on every connected component of M .

Exercise 18.17 Show that the S1 action on the torus T 2 WD S1 � S1 given by
˛ .�; �/D .˛C �; �/ is canonical with respect to the classical bracket (with �; � in
place of q;p ), but doesn’t have a momentum map.
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Exercise 18.18 Show that the Petzval invariant for Fermat’s principle in axisymmetric,
translation-invariant media is a momentum map, T �R2 7! sp.2;R/� taking .q;p/ 7!
.X;Y;Z/. What is its symmetry? What is its Hamiltonian vector field?

Theorem 18.19 (also due to Noether) Let G act on Q, and by cotangent lifts on
T �Q. Then J W T �Q! g� defined by, for every � 2 g,

J�
�
˛q

�
D
˝
˛q; �Q .q/

˛
; for every ˛q 2 T �q Q;

is a momentum map (the “standard one”) for the G action with respect to the classical
Poisson bracket.

(A proof using symplectic forms is given in Marsden and Ratiu [45].)

Proof We need to show that XJ� D �T �Q , for every � 2 g. From the definition of
Hamiltonian vector fields, this is equivalent to showing that �T �QŒF �D fF;J�g for
every F 2F.T �Q/. We verify this for finite-dimensional Q by using cotangent-lifted
local coordinates.

@J�

@p
.q;p/D �Q.q/

@J�

@qi
.q;p/D

�
p;

@

@qi

�
�Q.q/

��
D

�
p;

@

@qi

�
@

@t
ˆ.exp.t�//.q/

ˇ̌̌̌
tD0

��
D

�
p;
@

@t

�
@

@qi
ˆ.exp.t�//.q/

�ˇ̌̌̌
tD0

�
D

@

@t

�
p;Tˆ.exp.t�//

@

@qi
.q/

�ˇ̌̌̌
tD0

D
@

@t

�
T �ˆ.exp.t�//p;

@

@qi
.q/

�ˇ̌̌̌
tD0

D

�
��T �Q.q;p/;

@

@qi
.q/

�
@J�

@q
.q;p/D��T �Q.q;p/

So for every F 2 F.T �Q/,

�T �QŒF �D
@

@t
F .exp.t�/q; exp.t�/p/

ˇ̌̌̌
tD0

D
@F

@q
�Q.q/C

@F

@p
�T �Q.q;p/D

@F

@q

@J�

@p
�
@F

@p

@J�

@q
D fF;J�g

which completes the proof.
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Example 18.20 Let G � Mn .R/ be a matrix group, with cotangent-lifted action
on .q;p/ 2 T �Rn . For every g �Mn .R/, q 7! gq . The cotangent-lifted action is
.q;p/ 7! .gq;g�T p/. Thus, writing gD exp.t�/, the linearization of this group action
yields the vector field

X� D .�q;��
T p/

The corresponding Hamiltonian equations read

�q D
@J�

@p
; ��T p D�

@J�

@q

This yields the momentum map J.q;p/ given by

J� .q;p/D hJ.q;p/; �i D pT �Q .q/D pT �q:

In coordinates, pT �q D pi�
i
j qj , so J.q;p/D qipj .

Exercise 18.21 Calculate the momentum map of the cotangent lifted action of the
group of translations of R3 .

Solution The element x 2R3 acts on q 2R3 by addition of vectors,

x � .q/D qC x:

The infinitesimal generator is limx!0
d
dx.qC x/D Id. Thus, �q D Id and

hJk ; �i D h.q;p/; �qi D hp; Idi D piı
i
k D pk

This is also Hamiltonian with J� D p, so that fp;J�g D 0 and fq;J�g D Id.

Example 18.22 Let G act on itself by left multiplication, and by cotangent lifts on
T �G . We first note that the infinitesimal action on G is

�G .g/D
d

dt
exp.t�/g

ˇ̌̌̌
tD0

D TRg�:

Let JL be the momentum map for this action. Let ˛g 2 T �g G . For every � 2 g, we
have ˝

JL

�
˛g

�
; �
˛
D
˝
˛g; �G .g/

˛
D
˝
˛g;TRg�

˛
D
˝
TR�g˛g; �

˛
so JL

�
˛g

�
D TR�g˛g . Alternatively, writing ˛g D T �Lg�1� for some � 2 g� we

have
JL

�
T �Lg�1�

�
D TR�gT �Lg�1�DAd�

g�1�:

Exercise 18.23 Show that the momentum map for the right multiplication action
Rg.h/D hg is JR

�
˛g

�
D TL�g˛g .
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For matrix groups, the tangent lift of the left (or right) multiplication action is again
matrix multiplication. Indeed, to compute TRG.A/ for any A 2 TQSO.3/, let B.t/

be a path in SO.3/ such that B.0/DQ and B0.0/DA. Then

TRG.A/D
d

dt
B.t/G

ˇ̌̌̌
tD0

DAG:

Similarly, TLG.A/DGA. To compute the cotangent lift similarly, we need to be able
to consider elements of T �G as matrices. This can be done using any nondegenerate
bilinear form on each tangent space TQG . We will use the pairing defined by

hhA;Bii WD �1
2

tr
�
AT B

�
D�

1
2

tr
�
ABT

�
:

(The equivalence of the two formulas follows from the properties tr.CD/D tr.DC /

and tr.C T /D tr.C /).

Exercise 18.24 Check that this pairing, restricted to so.3/, corresponds to the Eu-
clidean inner product via the hat map.

Example 18.25 Consider the previous example for a matrix group G . For any Q2G ,
the pairing given above allows use to consider any element P 2 T �

Q
G as a matrix. The

natural pairing of T �
Q

G with TQG now has the formula,

hP;Ai D �1
2

tr
�
PT A

�
; for all A 2 TQG:

We compute the cotangent-lifts of the left and right multiplication actions:˝
T �LQ.P /;A

˛
D
˝
P;TLQ.A/

˛
D
˝
P;QA

˛
D�

1
2

tr
�
PT QA

�
D�

1
2

tr
��

QT P
�T

A
�
D
˝
QT P;A

˛˝
T �RQ.P /;A

˛
D
˝
P;TRQ.A/

˛
D hP;AQi

D �
1
2

tr
�
P .AQ/T

�
D�

1
2

tr
�
PQT AT

�
D
˝
PQT ;A

˛
In summary,

T �LQ.P /DQT P and T �RQ.P /D PQT

We thus compute the momentum maps as

JL.Q;P /D T �RQP D PQT

JR.Q;P /D T �LQP DQT P
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In the special case of GDSO.3/, these matrices PQT and QT P are skew-symmetric,
since they are elements of so.3/. Therefore,

JL.Q;P /D T �RQP D 1
2

�
PQT

�QPT
�

JR.Q;P /D T �LQP D 1
2

�
QT P �PT Q

�
Exercise 18.26 Show that the cotangent lifted action on SO.n/ is expressed as

Q �P DQT P

as matrix multiplication.

Definition 18.27 A momentum map is said to be equivariant when it is equivariant
with respect to the given action on P and the coadjoint action on g� . That is,

J.g �p/D Ad�
g�1 J.p/

for every g 2G , p 2P , where g �p denotes the action of g on the point p and where
Ad denotes the adjoint action.

Exercise 18.28 Show that the momentum map derived from the cotangent lift in
Theorem 18.19 is equivariant.

Example 18.29 (Momentum map for symplectic representations) Let .V; �/ be a
symplectic vector space and let G be a Lie group acting linearly and symplectically on
V . This action admits an equivariant momentum map JW V ! g given by

J �.v/D hJ.v/; �i D 1
2
�.� � v; v/;

where � � v denotes the Lie algebra representation of the element � 2 g on the vector
v2V . To verify this, note that the infinitesimal generator �V .v/D � �v , by the definition
of the Lie algebra representation induced by the given Lie group representation, and
that �.� �u; v/D��.u; � � v/ for all u; v 2 V . Therefore

dJ �.u/.v/D 1
2
�.� �u; v/C 1

2
�.� � v;u/D�.� �u; v/:

Equivariance of J follows from the obvious relation g�1 � � �g � v D .Adg�1 �/ � v for
any g 2G , � 2 g, and v 2 V .

Example 18.30 (Cayley–Klein parameters and the Hopf fibration) Consider the
natural action of SU.2/ on C2 . Since this action is by isometries of the Hermitian
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metric, it is automatically symplectic and therefore has a momentum map JW C2!

su.2/� given in Example 18.29, that is,

hJ.z; w/; �i D 1
2
�.� � .z; w/; .z; w//;

where z; w 2 C and � 2 su.2/. Now the symplectic form on C2 is given by minus
the imaginary part of the Hermitian inner product. That is, Cn has Hermitian inner
product given by z �w WD

Pn
jD1 zjwj , where zD .z1; : : : ; zn/;wD .w1; : : : ; wn/2Cn .

The symplectic form is thus given by �.z;w/ WD � Im.z � w/ and it is identical to
the one given before on R2n by identifying zD uC iv 2Cn with .u; v/ 2R2n and
wD u0C iv0 2Cn with .u0; v0/ 2R2n .

The Lie algebra su.2/ of SU.2/ consists of 2�2 skew Hermitian matrices of trace zero.
This Lie algebra is isomorphic to so.3/ and therefore to .R3;�/ by the isomorphism
given by

xD .x1;x2;x3/ 2R3
7!ex WD 1

2

�
�ix3 �ix1�x2

�ix1Cx2 ix3

�
2 su.2/:

Thus we have Œex;ey �D .x�y/e for any x; y2R3 . Other useful relations are det.2ex/D
kxk2 and trace.exey/D �1

2
x � y. Identify su.2/� with R3 by the map � 2 su.2/� 7!

L� 2R3 defined by
L� � x WD �2h�;exi

for any x2R3 . With these notations, the momentum map LJW C2!R3 can be explicitly
computed in coordinates: for any x 2R3 we have

LJ.z; w/ � xD�2hJ.z; w/;exi
D

1
2

Im
��

�ix3 �ix1�x2

�ix1Cx2 ix3

� �
z

w

�
�

�
z

w

��
D�

1
2
.2 Re.wz/; 2 Im.wz/; jzj2� jwj2/ � x:

Therefore
LJ.z; w/D�1

2
.2wz; jzj2� jwj2/ 2R3:

Thus, LJ is a Poisson map from C2 , endowed with the canonical symplectic structure,
to R3 , endowed with the C Lie–Poisson structure. Therefore, �LJW C2 ! R3 is a
canonical map, if R3 has the � Lie–Poisson bracket relative to which the free rigid
body equations are Hamiltonian. Pulling back the Hamiltonian H.…/D… � I�1…=2

to C2 gives a Hamiltonian function (called collective) on C2 . The classical Hamilton
equations for this function are therefore projected by �LJ to the rigid body equations
P… D … � I�1…. In this context, the variables .z; w/ are called the Cayley–Klein

parameters.
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Exercise 18.31 Show that �LJjS3 W S3! S2 is the Hopf fibration. In other words, the
momentum map of the SU.2/–action on C2 , the Cayley–Klein parameters and the
family of Hopf fibrations on concentric three-spheres in C2 are all the same map.

Exercise 18.32 (Optical traveling wave pulses) The equation for the evolution of the
complex amplitude of a polarized optical traveling wave pulse in a material medium is
given as

Pzi D
1
p
�1

@H

@z�i

with Hamiltonian H W C2!R defined by

H D z�i �
.1/
ij zj C 3z�i z�j �

.3/

ijkl
zkzl

and the constant complex tensor coefficients �.1/ij and �.1/
ijkl

have the proper Hermitian
and permutation symmetries for H to be real. Define the Stokes vectors by the
isomorphism,

uD .u1;u2;u3/ 2R3
7!eu WD 1

2

�
�iu3 �iu1�U 2

�iu1Cu2 iu3

�
2 su.2/:

(1) Prove that this isomorphism is an equivariant momentum map.

(2) Deduce the equations of motion for the Stokes vectors of this optical traveling
wave and write it as a Lie–Poisson Hamiltonian system.

(3) Determine how this system is related to the equations for an SO.3/ rigid body.

Exercise 18.33 The formula determining the momentum map for the cotangent-lifted
action of a Lie group G on a smooth manifold Q may be expressed in terms of the
pairing h�; �iW g� � g 7!R as

hJ; �i D hp; £�qi;

where .q;p/ 2 T �q Q and £�q is the infinitesimal generator of the action of the Lie
algebra element � on the coordinate q .

Define appropriate pairings and determine the momentum maps explicitly for the
following actions:

(a) £�q D � � q for R3 �R3 7!R3

(b) £�q D ad� q for ad–action adW g� g 7! g in a Lie algebra g

(c) AqA�1 for A 2GL.3;R/ acting on q 2GL.3;R/ by matrix conjugation

(d) Aq for left action of A 2 SO.3/ on q 2 SO.3/
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(e) AqAT for A 2GL.3;R/ acting on q 2 Sym.3/, that is q D qT .

Answer 18.34

(a) p � � � q D q �p � �) J D q �p . (The pairing is scalar product of vectors.)

(b) hp; ad� qi D �had�q p; �i ) J D ad�q p for the pairing h�; �iW g� � g 7!R

(c) Compute Te.AqA�1/ D �q � q� D Œ�; q� for � D A0.0/ 2 gl.3;R/ acting on
q 2 GL.3;R/ by matrix Lie bracket Œ�; ��. For the matrix pairing hA;Bi D
trace.AT B/, we have

trace
�
pT Œ�; q�

�
D trace

��
pqT
� qT p

�
T �
�
) J D pqT

� qT p:

(d) Compute Te.Aq/ D �q for � D A0.0/ 2 so.3/ acting on q 2 SO.3/ by left
matrix multiplication. For the matrix pairing hA;Bi D trace.AT B/, we have

trace
�
pT �q

�
D trace

��
pqT

�
T �
�
) J D 1

2

�
pqT
� qT p

�
;

where we have used antisymmetry of the matrix � 2 so.3/.

(e) Compute Te

�
AqAT

�
D�qCq�T for �DA0.0/2gl.3;R/ acting on q2Sym.3/.

For the matrix pairing hA;Bi D trace.AT B/, we have

trace
�
pT
�
�qC q�T

��
D trace

�
q
�
pT
Cp

�
�
�
D trace

��
2qp

�
T �
�
) J D 2qp;

where we have used symmetry of the matrix �qCq�T to choose pD pT . (The
momentum canonical to the symmetric matrix q D qT should be symmetric to
have the correct number of components!)

Equivariance

Definition 18.35 A momentum map is Ad�–equivariant iff

J.g �x/DAd�
g�1J.x/

for all g 2G;x 2 P .

Proposition 18.36 All cotangent-lifted actions are Ad�–equivariant.

Proposition 18.37 Every Ad�–equivariant momentum map J W P ! g� is a Poisson
map, with respect to the ‘C’ Lie–Poisson bracket on g� .
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19 Quick summary for momentum maps

Let G be a Lie group, g its Lie algebra, and let g� be its dual. Suppose that G

acts symplectically on a symplectic manifold P with symplectic form denoted by �.
Denote the infinitesimal generator associated with the Lie algebra element � by �P
and let the Hamiltonian vector field associated to a function f W P ! R be denoted
Xf , so that df DXf �.

19.1 Definition, history and overview

A momentum map J W P ! g� is defined by the condition relating the infinitesimal
generator �P of a symmetry to the vector field of its corresponding conservation law,
hJ; �i,

�P DXhJ ;� i

for all � 2 g. Here hJ; � iW P !R is defined by the natural pointwise pairing.

A momentum map is said to be equivariant when it is equivariant with respect to the
given action on P and the coadjoint action on g� . That is,

J.g �p/D Ad�
g�1 J.p/

for every g 2G , p 2P , where g �p denotes the action of g on the point p and where
Ad denotes the adjoint action.

According to Weinstein [62], Lie [40] already knew that
(1) An action of a Lie group G with Lie algebra g on a symplectic manifold P

should be accompanied by such an equivariant momentum map J W P ! g� and
(2) The orbits of this action are themselves symplectic manifolds.

The links with mechanics were developed in the work of Lagrange, Poisson, Jacobi and,
later, Noether. In particular, Noether showed that a momentum map for the action of a
group G that is a symmetry of the Hamiltonian for a given system is a conservation
law for that system.

In modern form, the momentum map and its equivariance were rediscovered by
Kostant [37] and Souriau [61] in the general symplectic case, and by Smale [59; 60]
for the case of the lifted action from a manifold Q to its cotangent bundle P D T �Q.
In this case, the equivariant momentum map is given explicitly by

hJ.˛q/; � i D h˛q; �Q.q/i;

where ˛q 2 T �Q, � 2 g, and where the angular brackets denote the natural pairing
on the appropriate spaces. See Marsden and Ratiu [44] and Ortega and Ratiu [54] for
additional history and description of the momentum map and its properties.
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20 Rigid body equations on SO.n/

Recall from Manakov [41] and Ratiu [56] that the left invariant generalized rigid body
equations on SO.n/ may be written as

PQDQ�;

PM DM���M DW ŒM; ��;(RBn)

where Q 2 SO.n/ denotes the configuration space variable (the attitude of the body),
�DQ�1 PQ 2 so.n/ is the body angular velocity, and

M WD J.�/DD2�C�D2
2 so�.n/;

is the body angular momentum. Here J W so.n/ ! so.n/� is the symmetric (with
respect to the above inner product) positive definite operator defined by

J.�/DD2�C�D2;

where D2 is the square of the constant diagonal matrix DDdiag fd1; d2; d3g satisfying
d2

i C d2
j > 0 for all i ¤ j . For nD 3 the elements of d2

i are related to the standard
diagonal moment of inertia tensor I by

I D diagfI1; I2; I3g; I1 D d2
2 C d2

3 ; I2 D d2
3 C d2

1 ; I3 D d2
1 C d2

2 :

The Euler equations for the SO.n/ rigid body PM D ŒM; �� are readily checked to be
the Euler–Lagrange equations on so.n/ for the Lagrangian

L.Q; PQ/D l.�/D 1
2
h�;J.�/i ; with �DQT PQ:

The momentum is found via the Legendre transformation to be

@l

@�
D J.�/DM;

and the corresponding Hamiltonian is

H.M /D
@l

@�
��� l.�/D 1

2

˝
M;J�1.M /

˛
:

The quantity M is the angular momentum in the body frame. The corresponding
angular momentum in space,

mDQMQT ; is conserved PmD 0:

Indeed, conservation of spatial angular momentum m implies Euler’s equations for the
body angular momentum M DQT mQD Ad�Q m.
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20.1 Implications of left invariance

This Hamiltonian H.M / is invariant under the action of SO.n/ from the left. The
corresponding conserved momentum map under this symmetry is known from the
previous lecture as

JLW T
�SO.n/ 7! so.n/� is JL.Q;P /D PQT

On the other hand, we know (from Lectures 18 and 19) that the momentum map for
right action is

JRW T
�SO.n/ 7! so.n/�; JR.Q;P /DQT P

Hence M DQT P D JR . Therefore, one computes

H.Q;P /DH.Q;Q �M /DH.Id;M / (by left invariance)

DH.M /D 1
2
hM;J�1.M /i

D
1
2
hQT P;J�1.QT P /i

Hence, we may write the SO.n/ rigid body Hamiltonian as

H.Q;P /D 1
2

˝
QT P; �.Q;P /

˛
Consequently, the variational derivatives of H.Q;P /D 1

2
hQT P; �.Q;P /i are

ıH D
D
QT ıP C ıQT P; �.Q;P /

E
D tr.ıPT Q�/C tr.PT ıQ�/

D tr.ıPT Q�/C tr.ıQ�PT /

D tr.ıPT Q�/C tr.ıQT P�T /

D hıP;Q�i � hıQ;P�i

where skew symmetry of � is used in the last step, that is, �T D��. Thus, Hamilton’s
canonical equations take the form,

(65)
PQD

ıH

ıP
DQ�;

PP D�
ıH

ıQ
D P�:

Equations (65) are the symmetric generalized rigid body equations, derived earlier by
Bloch, Brockett and Crouch [7; 6] from the viewpoint of optimal control. Combining
them yields,

Q�1 PQD�D P�1 PP ” .PQT /PD 0;
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in agreement with conservation of the momentum map JL.Q;P /DPQT correspond-
ing to symmetry of the Hamiltonian under left action of SO.n/. This momentum
map is the angular momentum in space, which is related to the angular momentum in
the body by PQT DmDQMQT . Thus, we recognize the canonical momentum as
P DQM (see Example 18.22), and the momentum maps for left and right actions as

JL DmD PQT (spatial angular momentum)

JR DM DQT P (body angular momentum)

Thus, momentum maps T G� 7! g� corresponding to symmetries of the Hamiltonian
produce conservation laws; while momentum maps T G� 7!g� which do not correspond
to symmetries may be used to re-express the equations on g� , in terms of variables on
T G� .

21 Manakov’s formulation of the SO.4/ rigid body

The Euler equations on SO.4/ are

(RBn)
dM

dt
DM���M D ŒM; ��;

where � and M are skew symmetric 4� 4 matrices. The angular frequency � is
a linear function of the angular momentum, M . Manakov [41] “deformed” these
equations into

d

dt
.M C�A/D Œ.M C�A/; .�C�B/�;

where A, B are also skew symmetric 4�4 matrices and � is a scalar constant parameter.
For these equations to hold for any value of �, the coefficent of each power must vanish.

� The coefficent of �2 is
0D ŒA;B�

So A and B must commute. So, let them be constant and diagonal:

(no sum) Aij D diag.ai/ıij ; Bij D diag.bi/ıij

� The coefficent of � is

0D
dA

dt
D ŒA; ��C ŒM;B�

Therefore, by antisymmetry of M and �,

(no sum) .ai � aj /�ij D .bi � bj /Mij ” �ij D
bi � bj

ai � aj
Mij
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� Finally, the coefficent of �0 is the Euler equation,

dM

dt
D ŒM; ��;

but now with the restriction that the moments of inertia are of the form,

(no sum) �ij D
bi � bj

ai � aj
Mij

which turns out to possess only 5 free parameters.

With these conditions, Manakov’s deformation of the SO.4/ rigid body implies for
every power n that

d

dt
.M C�A/n D Œ.M C�A/n; .�C�B/�;

Since the commutator is antisymmetric, its trace vanishes and one has

d

dt
trace.M C�A/n D 0

after commuting the trace operation with time derivative. Consequently,

trace.M C�A/n D constant

for each power of �. That is, all the coefficients of each power of � are constant in
time for the SO.4/ rigid body. Manakov [41] proved that these constants of motion
are sufficient to completely determine the solution.

Remark 21.1 This result generalizes considerably. First, it holds for SO.n/. Indeed,
as as proven using the theory of algebraic varieties by Haine [22], Manakov’s method
captures all the algebraically integrable rigid bodies on SO.n/ and the moments of
inertia of these bodies possess only 2n� 3 parameters. (Recall that in Manakov’s case
for SO.4/ the moment of inertia possesses only five parameters.) Moreover, Miščenko
and Fomenko [51] prove that every compact Lie group admits a family of left-invariant
metrics with completely integrable geodesic flows.

Exercise 21.2 Try computing the constants of motion trace.M C�A/n for the values
nD 2; 3; 4. How many additional constants of motion are needed for integrability for
these cases? How many for general n? Hint: keep in mind that M is a skew symmetric
matrix, M T D�M , so the trace of the product of any diagonal matrix times an odd
power of M vanishes.
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Answer 21.3 The traces of the powers trace.M C�A/n are given by

nD2 W tr M 2
C2� tr.AM /C�2 tr A2

nD3 W tr M 3
C3� tr.AM 2/C3�2 tr A2MC�3 tr A3

nD4 W tr M 4
C4� tr.AM 3/C�2.2 tr A2M 2

C4 tr AMAM /C�3 tr A3MC�4 tr A4

The number of conserved quantities for nD 2; 3; 4 are, respectively, one (C1D tr M 2 ),
one (I1 D tr AM 2 ) and two (C2 D tr M 4 and I2 D 2 tr A2M 2C 4 tr AMAM ). The
quantities C1 and C2 are Casimirs for the Lie–Poisson bracket for the rigid body. Thus,
fC1;H g D 0 D fC2;H g for any Hamiltonian H.M /; so of course C1 and C2 are
conserved. However, each Casimir only reduces the dimension of the system by one.
The dimension of the original phase space is dim T �SO.n/D n.n�1/. This is reduced
in half by left invariance of the Hamiltonian to the dimension of the dual Lie algebra
dim so.n/� D n.n� 1/=2. For nD 4, dim so.4/� D 6. One then subtracts the number
of Casimirs (two) by passing to their level surfaces, which leaves four dimensions
remaining in this case. The other two constants of motion I1 and I2 turn out to be
sufficient for integrability, because they are in involution fI1; I2g D 0 and because the
level surfaces of the Casimirs are symplectic manifolds, by the Marsden–Weinstein
reduction theorem [48]. For more details, see Ratiu [56].

Exercise 21.4 How do the Euler equations look on so.4/� as a matrix equation? Is
there an analog of the hat map for so.3/�? Hint: the Lie algebra so.4/ is locally
isomorphic to so.3/� so.3/.

Exercise 21.5 Write Manakov’s deformation of the rigid body equations in the sym-
metric form (65).

22 Free ellipsoidal motion on GL.n/

Riemann [58] considered the deformation of a body in Rn given by

(66) x.t;x0/DQ.t/x0;

with x;x0 2 Rn , Q.t/ 2 GLC.n;R/ and x.t0;x0/ D x0 , so that Q.t0/ D Id. (The
subscript C in GLC.n;R/ means n� n matrices with positive determinant.) Thus,
x.t;x0/ is the current (Eulerian) position at time t of a material parcel that was at
(Lagrangian) position x0 at time t0 . The “deformation gradient,” that is, the Jacobian
matrix QD @x=@x0 of this “Lagrange-to-Euler map,” is a function of only time, t ,

@x=@x0 DQ.t/; with det Q> 0:
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The velocity of such a motion is given by

(67) Px.t;x0/D PQ.t/x0 D
PQ.t/Q�1.t/x D u.t;x/:

The kinetic energy for such a body occupying a reference volume B defines the
quadratic form,

LD 1
2

Z
B
�.x0/j Px.t;x0/j

2 d3x0 D
1
2

tr
�
PQ.t/T I PQ.t/

�
D

1
2
PQi

A IAB PQi
B:

Here I is the constant symmetric tensor,

IAB
D

Z
B
�.x0/x

A
0 xB

0 d3x0;

which we will take as being proportional to the identity IABD c2
0
ıAB for the remainder

of these considerations. This corresponds to taking an initially spherical reference
configuration for the fluid. Hence, we are dealing with the Lagrangian consisting only
of kinetic energy,5

LD 1
2

tr
�
PQ.t/T PQ.t/

�
:

The Euler–Lagrange equations for this Lagrangian simply represent free motion on the
group GLC.n;R/,

RQ.t/D 0;

which is immediately integrable as

Q.t/DQ.0/C PQ.0/t;

where Q.0/ and PQ.0/ are the values at the initial time t D 0. Legendre transforming
this Lagrangian for free motion yields

P D
@L

@ PQT
D PQ:

The corresponding Hamiltonian is expressed as

H.Q;P /D 1
2

tr
�
PT P

�
D

1
2
kPk2:

The canonical equations for this Hamiltonian are simply

PQD P; with PP D 0:

5Riemann [58] considered the much more difficult problem of a self-gravitating ellipsoid deforming
according to (66) in R3 . See Chandrasekhar [11] for the history of this problem.

Geometry & Topology Monographs, Volume 17 (2011)



322 Darryl D Holm

22.1 Polar decomposition of free motion on GLC.n;R/

The deformation tensor Q.t/ 2GLC.n;R/ for such a body may be decomposed as

(68) Q.t/DR�1.t/D.t/S.t/:

This is the polar decomposition of a matrix in GLC.n;R/. The interpretations of the
various components of the motion can be seen from equation (66). Namely,

� R 2 SO.n/ rotates the x–coordinates,

� S 2 SO.n/ rotates the x0 –coordinates in the reference configuration6 and

� D is a diagonal matrix which represents stretching deformations along the
principal axes of the body.

The two SO.n/ rotations lead to their corresponding angular frequencies, defined by

(69) �D PRR�1; ƒD PSS�1:

Rigid body motion will result, when S restricts to the identity matrix and D is a
constant diagonal matrix.

Remark 22.1 The combined motion of a set of fluid parcels governed by (66) along
the curve Q.t/ 2 GLC.n;R/ is called “ellipsoidal,” because it can be envisioned
in three dimensions as a fluid ellipsoid whose orientation in space is governed by
R 2 SO.n/, whose shape is determined by D consisting of its instantaneous principle
axes lengths and whose internal circulation of material is described by S 2 SO.n/.
In addition, fluid parcels initially arranged along a straight line within the ellipse will
remain on a straight line.

22.2 Euler–Poincaré dynamics of free Riemann ellipsoids

In Hamilton’s principle, ı
R

L dt D 0, we chose a Lagrangian LW T GLC.n;R/!R
in the form

(70) L.Q; PQ/D T .�;ƒ;D; PD/;

in which the kinetic energy T is given by using the polar decomposition Q.t/ D

R�1.t/D.t/S.t/ in (68), as follows.

PQDR�1.��DC PDCDƒ/S:(71)

6This is the “particle relabeling map” for this class of motions.
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Consequently, the kinetic energy for ellipsoidal motion becomes

(72)

T D 1
2

trace
�
��D2���D PDC�DƒDC PDD�C PD2

�Dƒ2D� PDƒDCDƒD�CDƒ PD
�

D
1
2

trace
�
��2D2

�ƒ2D2
C2�DƒD„ ƒ‚ …
Coriolis coupling

C PD2
�
:

Remark 22.2 Note the discrete exchange symmetry of the kinetic energy: T is
invariant under �$ƒ.7

For ƒD 0 and D constant expression (72) for T reduces to the usual kinetic energy
for the rigid-body,

(73) T
ˇ̌
ƒD0;DDconst D�

1
4

trace
�
�.D�C�D/

�
:

This Lagrangian (70) is invariant under the right action, R!Rg and S ! Sg , for
g 2 SO.n/. In taking variations we shall use the formulas8

ı�D P†C Œ†;��� P†� ad�†; †� ıR R�1;(74)

ıƒD P„C Œ„;ƒ�� P„� adƒ„; „� ıS S�1;(75)

in which the ad-operation is defined in terms of the Lie-algebra (matrix) commutator
Œ�; �� as, for example, ad�† � Œ�;† �. Substituting these formulas into Hamilton’s
principle gives

(76)

0D ı

Z
L dt D

Z
dt
@L

@�
�ı�C

@L

@ƒ
�ıƒC

@L

@D
ıDC

@L

@ PD
ı PD;

D

Z
dt
@L

@�
�
�
P†� ad�†

�
C
@L

@ƒ
�
�
P„� adƒ„

�
C

�
@L

@D
�

d

dt

@L

@ PD

�
ıD;

D�

Z
dt

�
d

dt

@L

@�
� ad��

ıL

ı�

�
�†C

�
d

dt

@L

@ƒ
� ad�ƒ

@L

@ƒ

�
�„C

�
d

dt

@L

@ PD
�
@L

@D

�
ıD;

where the operation ad�� , for example, is defined by

(77) ad��
@L

@�
�†D�

@L

@�
� ad�†D�

@L

@�
� Œ�;†�;

7According to Chandrasekhar [11] this discrete symmetry was first noticed by Riemann’s friend,
Dedekind [13].

8These variational formulas are obtained directly from the definitions of � and ƒ .
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and the dot ‘ �’ denotes pairing between the Lie algebra and its dual. This could also
have been written in the notation using h�; �iW g� � g!R, as

(78)
�
ad��

@L

@�
;†

�
D�

�
@L

@�
; ad�†

�
D�

�
@L

@�
; Œ�;† �

�
:

The Euler–Poincaré dynamics is given by the stationarity conditions for Hamilton’s
principle,

† W
d

dt

@L

@�
� ad��

@L

@�
D 0;(79)

„ W
d

dt

@L

@ƒ
� ad�ƒ

@L

@ƒ
D 0;(80)

ıD W
d

dt

@L

@ PD
�
@L

@D
D 0:(81)

These are the Euler–Poincaré equations for the ellipsoidal motions generated by
Lagrangians of the form given in equation (70). For example, such Lagrangians
determine the dynamics of the Riemann ellipsoids – circulating, rotating, self-gravitating
fluid flows at constant density within an ellipsoidal boundary.

22.3 Left and right momentum maps: angular momentum versus circu-
lation

The Euler–Poincaré equations ((79)–(81)) involve angular momenta defined in terms
of the angular velocities �, ƒ and the shape D by

M D
@T

@�
D��D2

�D2�C 2DƒD;(82)

N D
@T

@ƒ
D�ƒD2

�D2ƒC 2D�D:(83)

These angular momenta are related to the original deformation gradient QDR�1DS

in equation (66) by the two momentum maps from Example 18.25

PQT
�QPT

D PQQ T
�Q PQ T

DR�1MR;(84)

PT Q�QT P D PQ T Q�Q T PQD S�1NS:(85)

To see that N is related to the vorticity, we consider the exterior derivative of the
circulation one-form u � dx defined as

(86) d.u � dx/D curl u � dS
D

1
2

�
PQT Q�QT PQ

�
jk

dx
j
0
^ dxk

0 D .S
�1NS/jkdx

j
0
^ dxk

0 :
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Thus, S�1NS is the fluid vorticity, referred to the Lagrangian coordinate frame. For
Euler’s fluid equations, Kelvin’s circulation theorem implies .S�1NS/PD 0.

Likewise, M is related to the angular momentum by considering

(87) uixj �uj xi D
PQikxk

0 xl
0Q T

lj �Qikxk
0 xl

0
PQ T

lj :

For spherical symmetry, we may choose xk
0

xl
0
D ıkl and, in this case, the previous

expression becomes

(88) uixj �uj xi D
�
PQQT

�Q PQT
�
ij
D ŒR�1MR�ij :

Thus, R�1MR is the angular momentum of the motion, referred to the Lagrangian
coordinate frame for spherical symmetry. In this case, the angular momentum is
conserved, so that .R�1MR/PD 0.

In terms of these angular momenta, the Euler–Poincaré–Lagrange equations ((79)–(81))
are expressed as

PM D Œ�;M �;(89)
PN D Œƒ;N �;(90)

d

dt

�
@L

@ PD

�
D
@L

@D
:(91)

Perhaps not unexpectedly, because of the combined symmetries of the kinetic-energy
Lagrangian (70) under both left and right actions of SO.n/, the first two equations are
consistent with the conservation laws,

.R�1MR/PD 0 and .S�1NS/PD 0;

respectively. Thus, equation (89) is the angular momentum equation while (90) is the
vorticity equation. (Fluids have both types of circulatory motions.) The remaining
equation (91) for the diagonal matrix D determines the shape of the ellipsoid undergoing
free motion on GL.n;R/.

22.4 Vector representation of free Riemann ellipsoids in 3D

In three dimensions these expressions may be written in vector form by using the hat
map, written now using upper and lower case Greek letters as

�ij D �ijk!k ; ƒij D �ijk�k ;

with �123 D 1, and D D diag fd1; d2; d3g.
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Exercise 22.3 What is the analog of the hat map in four dimensions? Hint: locally
the Lie algebra so.4/ is isomorphic to so.3/� so.3/.

Hence, the angular-motion terms in the kinetic energy may be rewritten as

�
1
2

trace
�
�2D2

�
D

1
2

��
d2

1 C d2
2

�
!2

3 C
�
d2

2 C d2
3

�
!2

1 C
�
d2

3 C d2
1

�
!2

2

�
;(92)

�
1
2

trace
�
ƒ2D2

�
D

1
2

��
d2

1 C d2
2

�
�2

3C
�
d2

2 C d2
3

�
�2

1C
�
d2

3 C d2
1

�
�2

2

�
;(93)

�
1
2

trace.�DƒD/D
�
d1d2.!3�3/C d2d3.!1�1/C d3d1.!2�2/

�
:(94)

On comparing equations (73) and (92) for the kinetic energy of the rigid body part of
the motion, we identify the usual moments of inertia as

Ik D d2
i C d2

j ; with i; j ; k cyclic.

The antisymmetric matrices M and N have vector representations in 3D given by

Mk D
@T

@!k

D .d2
i C d2

j /!k � 2didj�k ;(95)

Nk D
@T

@�k

D .d2
i C d2

j /�k � 2didj!k ;(96)

again with i; j ; k cyclic permutations of f1; 2; 3g.

Vector representation in 3D In terms of their 3D vector representations of the angular
momenta in equations (95) and (96), the two equations (89) and (90) become

(97) PMD . PRR�1/MD�MD!�M; PND . PSS�1/NDƒND ��N:

Relative to the Lagrangian fluid frame of reference, these equations become

.R�1M/PDR�1. PM�!�M/D 0;(98)

.S�1N/PD S�1. PN���N/D 0:(99)

So each of these degrees of freedom represents a rotating, deforming body, whose
ellipsoidal shape is governed by the Euler–Lagrange equations (91) for the lengths of
its three principal axes.

Exercise 22.4 (Elliptical motions with potential energy on GL.2;R/) Compute
equations (89)–(91) for elliptical motion in the plane. Find what potentials V .D/ are
solvable for LD T .�;ƒ;D; PD/�V .D/ by reducing these equations to the separated
Newtonian forms,

d2r2

dt2
D�

dV .r/

dr2
;

d2˛

dt2
D�

dW .˛/

d˛
;
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for r2 D d2
1
C d2

2
and ˛ D tan�1.d2=d1/ with d1.t/ and d2.t/ in two dimensions.

Hint: consider the potential energy,

V .D/D V
�

tr D2; det.D/
�
;

for which the equations become homogeneous in r2.t/.

Exercise 22.5 (Ellipsoidal motions with potential energy on GL.3;R/) Choose the
Lagrangian in 3D,

LD 1
2

tr
�
PQT PQ

�
�V

�
tr
�
QT Q

�
; det.Q/

�
;

where Q.t/ 2GL.3;R/ is a 3� 3 matrix function of time and the potential energy V

is an arbitrary function of tr.QT Q/ and det.Q/.

(1) Legendre transform this Lagrangian. That is, find the momenta Pij canonically
conjugate to Qij , construct the Hamiltonian H.Q;P / and write Hamilton’s
canonical equations of motion for this problem.

(2) Show that the Hamiltonian is invariant under Q! OQ where O 2 SO.3/.
Construct the cotangent lift of this action on P . Hence, construct the momentum
map of this action.

(3) Construct another distinct action of SO.3/ on this system which also leaves
its Hamiltonian H.Q;P / invariant. Construct its momentum map. Do the two
momentum maps Poisson commute? Why?

(4) How are these two momentum maps related to the angular momentum and
circulation in equations (82) and (83)?

(5) How does the 2D restriction of this problem inform the previous one?

Exercise 22.6 (GL.n;R/–invariant motions) Begin with the Lagrangian

LD 1
2

tr
�
PSS�1 PSS�1

�
C

1
2
PqT S�1

Pq

where S is an n� n symmetric matrix and q 2Rn is an n–component column vector.

(1) Legendre transform to construct the corresponding Hamiltonian and canonical
equations.

(2) Show that the system is invariant under the group action

q!Aq and S !ASAT

for any constant invertible n� n matrix, A.

(3) Compute the infinitesimal generator for this group action and construct its
corresponding momentum map. Is this momentum map equivariant?
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(4) Verify directly that this momentum map is a conserved n�n matrix quantity by
using the equations of motion.

(5) Is this system completely integrable for any value of n> 2?

23 Heavy top equations

23.1 Introduction and definitions

A top is a rigid body of mass m rotating with a fixed point of support in a constant
gravitational field of acceleration �gyz pointing vertically downward. The orientation
of the body relative to the vertical axis yz is defined by the unit vector � D R�1.t/yz
for a curve R.t/ 2 SO.3/. According to its definition, the unit vector � represents
the motion of the vertical direction as seen from the rotating body. Consequently, it
satisfies the auxiliary motion equation,

P� D�R�1 PR.t/� D � ��:

Here the rotation matrix R.t/ 2 SO.3/, the skew matrix y�D R�1 PR 2 so.3/ and the
body angular frequency vector � 2 R3 are related by the hat map, � D

�
R�1 PR

�
y,

where yW .so.3/; Œ�; ��/! .R3;�/ with y�vD�� v for any v 2R3 .

The motion of a top is determined from Euler’s equations in vector form,

I P�D I���Cmg � ��;(100)
P� D � ��;(101)

where �;� ;� 2R3 are vectors in the rotating body frame. Here

� �D .�1; �2; �3/ is the body angular velocity vector,

� I D diag.I1; I2; I3/ is the moment of inertia tensor, diagonalized in the body
principle axes,

� � DR�1.t/yz represents the motion of the unit vector along the vertical axis, as
seen from the body,

� � is the constant vector in the body from the point of support to the body’s
center of mass,

� m is the total mass of the body and g is the constant acceleration of gravity.
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23.2 Heavy top action principle

Proposition 23.1 The heavy top equations are equivalent to the heavy top action
principle for a reduced action

(102) ıSred D 0; with Sred D

Z b

a

l.�;�/ dt D

Z b

a

1
2
hI�;�i � hmg�;�i dt;

where variations of � and � are restricted to be of the form

(103) ı�D P†C��† and ı� D � �†;

arising from variations of the definitions � D
�
R�1 PR

�
y and � D R�1.t/yz in which

†.t/D
�
R�1ıR

�
y is a curve in R3 that vanishes at the endpoints in time.

Proof Since I is symmetric and � is constant, we obtain the variation,

ı

Z b

a

l.�;�/ dt D

Z b

a

h I�; ı�i � hmg �; ı�i dt

D

Z b

a

h I�; P†C��†i � hmg �;� �†i dt

D

Z b

a

�
�

d

dt
I�;†

�
Ch I�;��†i � hmg �;� �†idt

D

Z b

a

�
�

d

dt
I�C I���Cmg � ��;†

�
dt;

upon integrating by parts and using the endpoint conditions, †.b/D†.a/D 0. Since
† is otherwise arbitrary, (102) is equivalent to

�
d

dt
I�C I���Cmg � �� D 0;

which is Euler’s motion equation for the heavy top (100). This motion equation is
completed by the auxiliary equation P� D � �� in (101) arising from the definition of
� .

The Legendre transformation for l.�;�/ gives the body angular momentum

…D
@l

@�
D I�:

The well known energy Hamiltonian for the heavy top then emerges as

h.…;�/D… ��� l.�;�/D 1
2
h…; I�1…iC hmg �;� i;(104)

which is the sum of the kinetic and potential energies of the top.
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The Lie–Poisson equations Let f; hW g�!R be real-valued functions on the dual
space g� . Denoting elements of g� by �, the functional derivative of f at � is defined
as the unique element ıf=ı� of g defined by

(105) lim
"!0

1

"
Œf .�C "ı�/�f .�/�D

�
ı�;

ıf

ı�

�
;

for all ı� 2 g� , where h�; �i denotes the pairing between g� and g.

Definition 23.2 (Lie–Poisson brackets and Lie–Poisson equations) The .˙/ Lie–
Poisson brackets are defined by

(106) ff; hg˙.�/D˙

�
�;

�
ıf

ı�
;
ıh

ı�

��
D�

�
�; adıh=ı�

ıf

ı�

�
:

The corresponding Lie–Poisson equations, determined by Pf D ff; hg read

(107) P�D f�; hg D � ad�ıh=ı� �;

where one defines the ad� operation in terms of the pairing h�; �i, by

ff; hg D

�
�; adıh=ı�

ıf

ı�

�
D

�
ad�ıh=ı� �;

ıf

ı�

�
:

The Lie–Poisson setting of mechanics is a special case of the general theory of systems
on Poisson manifolds, for which there is now an extensive theoretical development.
(See Marsden and Ratiu [2003] for a start on this literature.)

23.3 Lie–Poisson brackets and momentum maps

An important feature of the rigid body bracket carries over to general Lie algebras.
Namely, Lie–Poisson brackets on g� arise from canonical brackets on the cotangent
bundle (phase space) T �G associated with a Lie group G which has g as its associated
Lie algebra. Thus, the process by which the Lie–Poisson brackets arise is the momentum
map

T �G 7! g�:

For example, a rigid body is free to rotate about its center of mass and G is the
(proper) rotation group SO.3/. The choice of T �G as the primitive phase space is
made according to the classical procedures of mechanics described earlier. For the
description using Lagrangian mechanics, one forms the velocity phase space T G . The
Hamiltonian description on T �G is then obtained by standard procedures: Legendre
transforms, etc.
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The passage from T �G to the space of …’s (body angular momentum space) is
determined by left translation on the group. This mapping is an example of a momentum
map; that is, a mapping whose components are the “Noether quantities” associated
with a symmetry group. The map from T �G to g� being a Poisson map is a general
fact about momentum maps. The Hamiltonian point of view of all this is a standard
subject.

Remark 23.3 (Lie–Poisson description of the heavy top) As it turns out, the under-
lying Lie algebra for the Lie–Poisson description of the heavy top consists of the Lie
algebra se.3;R/ of infinitesimal Euclidean motions in R3 . This is a bit surprising,
because heavy top motion itself does not actually arise through actions of the Euclidean
group of rotations and translations on the body, since the body has a fixed point! Instead,
the Lie algebra se.3;R/ arises for another reason associated with the breaking of the
SO.3/ isotropy by the presence of the gravitational field. This symmetry breaking
introduces a semidirect-product Lie–Poisson structure which happens to coincide with
the dual of the Lie algebra se.3;R/ in the case of the heavy top. As we shall see later,
a close parallel exists between this case and the Lie–Poisson structure for compressible
fluids.

23.4 The heavy top Lie–Poisson brackets

The Lie algebra of the special Euclidean group in 3D is se.3/DR3�R3 with the Lie
bracket

(108) Œ.� ;u/; .�; v/�D .� ��; � � v���u/:

We identify the dual space with pairs .…;�/; the corresponding .�/ Lie–Poisson
bracket called the heavy top bracket is

ff; hg.…;�/D�… � r…f �r…h �� �
�
r…f �r�h�r…h�r�f

�
:(109)

This Lie–Poisson bracket and the Hamiltonian (104) recover the equations (100) and
(101) for the heavy top, as

P…D f…; hg D…�r…hC� �r�hD…� I�1…C� �mg �;

P� D f� ; hg D � �r…hD � � I�1…:

Remark 23.4 (Semidirect products and symmetry breaking) The Lie algebra of the
Euclidean group has a structure which is a special case of what is called a semidirect
product. Here, it is the semidirect product action so.3/sR3 of the Lie algebra of
rotations so.3/ acting on the infinitesimal translations R3 , which happens to coincide
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with se.3;R/. In general, the Lie bracket for semidirect product action gs V of a
Lie algebra g on a vector space V is given by�

.X; a/; . xX ; xa/
�
D
�
ŒX; xX �; xX .a/�X.xa/

�
in which X; xX 2 g and a; xa 2 V . Here, the action of the Lie algebra on the vector
space is denoted, for example, X.a/. Usually, this action would be the Lie derivative.

Lie–Poisson brackets defined on the dual spaces of semidirect product Lie algebras tend
to occur under rather general circumstances when the symmetry in T �G is broken,
for example, reduced to an isotropy subgroup of a set of parameters. In particular,
there are similarities in structure between the Poisson bracket for compressible flow
and that for the heavy top. In the latter case, the vertical direction of gravity breaks
isotropy of R3 from SO.3/ to SO.2/. The general theory for semidirect products
is reviewed in a variety of places, including Marsden, Ratiu and Weinstein [47; 46].
Many interesting examples of Lie–Poisson brackets on semidirect products exist for
fluid dynamics. These semidirect-product Lie–Poisson Hamiltonian theories range
from simple fluids, to charged fluid plasmas, to magnetized fluids, to multiphase fluids,
to super fluids, to Yang–Mills fluids, relativistic, or not, and to liquid crystals. See,
for example, the papers by Gibbons, Holm and Kupershmidt [20; 27; 28; 29]. For
discussions of many of these theories from the Euler–Poincaré viewpoint, see Holm,
Marsden and Ratiu [31] and Holm [23].

23.5 The heavy top formulation by the Kaluza–Klein construction

The Lagrangian in the heavy top action principle (102) may be transformed into a
quadratic form. This is accomplished by suspending the system in a higher dimensional
space via the Kaluza–Klein construction. This construction proceeds for the heavy top
as a slight modification of the well-known Kaluza–Klein construction for a charged
particle in a prescribed magnetic field.

Let QKK be the manifold SO.3/�R3 with variables .R;q/. On QKK introduce the
Kaluza–Klein Lagrangian LKKW TQKK ' TSO.3/�T R3 7!R as

(110) LKK.R;q; PR; PqI yz/DLKK.�;� ;q; Pq/D 1
2
h I�;� iC 1

2
j� C Pqj2;

with � D
�
R�1 PR

�
y and � D R�1yz. The Lagrangian LKK is positive definite in

.�;� ; Pq/; so it may be regarded as the kinetic energy of a metric, the Kaluza–Klein
metric on TQKK .

The Legendre transformation for LKK gives the momenta

(111) …D I� and pD � C Pq:
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Since LKK does not depend on q, the Euler–Lagrange equation

d

dt

@LKK

@ Pq
D
@LKK

@q
D 0;

shows that pD @LKK=@ Pq is conserved. The constant vector p is now identified as the
vector in the body,

pD � C PqD�mg �:

After this identification, the heavy top action principle in Proposition 23.1 with the
Kaluza–Klein Lagrangian returns Euler’s motion equation for the heavy top (100).

The Hamiltonian HKK associated to LKK by the Legendre transformation (111) is

HKK.…;� ;q;p/D… ��Cp � Pq�LKK.�;� ;q; Pq/
D

1
2
… � I�1…�p �� C 1

2
jpj2

D
1
2
… � I�1…C 1

2
jp�� j2� 1

2
j� j2:

Recall that � is a unit vector. On the constant level set j� j2 D 1, the Kaluza–Klein
Hamiltonian HKK is a positive quadratic function, shifted by a constant. Likewise, on
the constant level set pD�mg � , the Kaluza–Klein Hamiltonian HKK is a function of
only the variables .…;�/ and is equal to the Hamiltonian (104) for the heavy top up
to an additive constant. Consequently, the Lie–Poisson equations for the Kaluza–Klein
Hamiltonian HKK now reproduce Euler’s motion equation for the heavy top (100).

Exercise 23.5 Write the Kaluza–Klein construction on SE.3/D SO.3/sR3 .

24 Euler–Poincaré (EP) reduction theorem

Remark 24.1 (Geodesic motion) As emphasized by Arnold [2], in many interesting
cases, the Euler–Poincaré equations on the dual of a Lie algebra g� correspond to
geodesic motion on the corresponding group G . The relationship between the equations
on g� and on G is the content of the basic Euler–Poincaré theorem discussed later.
Similarly, on the Hamiltonian side, the preceding paragraphs described the relation
between the Hamiltonian equations on T �G and the Lie–Poisson equations on g� .
The issue of geodesic motion is especially simple: if either the Lagrangian on g or the
Hamiltonian on g� is purely quadratic, then the corresponding motion on the group is
geodesic motion.
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24.1 We were already speaking prose (EP)

Many of our previous considerations may be recast immediately as Euler–Poincaré
equations.

� Rigid bodies '
�
EPSO.n/

�
,

� Deforming bodies '
�
EPGLC.n;R/

�
,

� Heavy tops '
�
EPSO.3/�R3

�
,

� EPDiff

24.2 Euler–Poincaré reduction

This lecture applies reduction by symmetry to Hamilton’s principle. For a G –invariant
Lagrangian defined on T G , this reduction takes Hamilton’s principle from T G to
T G=G ' g. Stationarity of the symmetry-reduced Hamilton’s principle yields the
Euler–Poincaré equations on g� . The corresponding reduced Legendre transformation
yields the Lie–Poisson Hamiltonian formulation of these equations.

Euler–Poincaré Reduction starts with a right (respectively, left) invariant Lagrangian
LW T G!R on the tangent bundle of a Lie group G . This means that L.TgRh.v//D

L.v/, respectively L.TgLh.v//DL.v/, for all g; h 2G and all v 2 TgG . In shorter
notation, right invariance of the Lagrangian may be written as

L.g.t/; Pg.t//DL.g.t/h; Pg.t/h/;

for all h 2G .

Theorem 24.2 (Euler–Poincaré Reduction) Let G be a Lie group, LW T G! R a
right-invariant Lagrangian, and l WD LjgW g! R be its restriction to g. For a curve
g.t/ 2G , let

�.t/D Pg.t/ �g.t/�1
WD Tg.t/Rg.t/�1 Pg.t/ 2 g:

Then the following four statements are equivalent:

(i) g.t/ satisfies the Euler–Lagrange equations for Lagrangian L defined on G .

(ii) The variational principle

ı

Z b

a

L.g.t/; Pg.t//dt D 0

holds, for variations with fixed endpoints.
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(iii) The (right invariant) Euler–Poincaré equations hold:

d

dt

ıl

ı�
D� ad��

ıl

ı�
:

(iv) The variational principle

ı

Z b

a

l.�.t//dt D 0

holds on g, using variations of the form ı�D P�� Œ�; ��, where �.t/ is an arbitrary
path in g which vanishes at the endpoints, that is, �.a/D �.b/D 0.

Proof The proof consists of three steps.

Step I: Proof that (i) ” (ii) This is Hamilton’s principle: the Euler–Lagrange
equations follow from stationary action for variations ıg which vanish at the endpoints.
(See Lecture 13.)

Step II: Proof that (ii) ” (iv) Proving equivalence of the variational principles
(ii) on T G and (iv) on g for a right-invariant Lagrangian requires calculation of the
variations ı� of � D Pgg�1 induced by ıg . To simplify the exposition, the calculation
will be done first for matrix Lie groups, then generalized to arbitrary Lie groups.

Step IIA: Proof that (ii) ” (iv) for a matrix Lie group For � D Pgg�1 , define
g�.t/ to be a family of curves in G such that g0.t/D g.t/ and denote

ıg WD
dg�.t/

d�

ˇ̌̌̌
�D0:

The variation of � is computed in terms of ıg as

(112) ı� D
d

d�

ˇ̌̌̌
�D0

. Pg�g
�1
� /D

d2g

dtd�

ˇ̌̌̌
�D0

g�1
� Pgg�1.ıg/g�1:

Set � WDg�1ıg . That is, �.t/ is an arbitrary curve in g which vanishes at the endpoints.
The time derivative of � is computed as

(113) P�D
d�

dt
D

d

dt

��
d

d�

ˇ̌̌̌
�D0

g�

�
g�1

�
D

d2g

dtd�

ˇ̌̌̌
�D0

g�1
� .ıg/g�1

Pgg�1:

Taking the difference of (112) and (113) implies

ı� � P�D� Pgg�1.ıg/g�1
C .ıg/g�1

Pgg�1
D���C �� D�Œ�; ��:

That is, for matrix Lie algebras,

ı� D P�� Œ�; ��;
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where Œ�; �� is the matrix commutator. Next, we notice that right invariance of L allows
one to change variables in the Lagrangian by applying g�1.t/ from the right, as

L.g.t/; Pg.t//DL.e; Pg.t/g�1.t//DW l.�.t//:

Combining this definition of the symmetry-reduced Lagrangian l W g! R together
with the formula for variations ı� just deduced proves the equivalence of (ii) and (iv)
for matrix Lie groups.

Step IIB: Proof that (ii) ” (iv) for an arbitrary Lie group The same proof
extends to any Lie group G by using the following lemma.

Lemma 24.3 Let gW U �R2!G be a smooth map and denote its partial derivatives
by

(114) �.t; "/ WD Tg.t;"/Rg.t;"/�1

@g.t; "/

@t
; �.t; "/ WD Tg.t;"/Rg.t;"/�1

@g.t; "/

@"
:

Then

(115)
@�

@"
�
@�

@t
D�Œ�; ��;

where Œ�; �� is the Lie algebra bracket on g. Conversely, if U �R2 is simply connected
and �; �W U ! g are smooth functions satisfying (115), then there exists a smooth
function gW U !G such that (114) holds.

Proof of Lemma 24.3 Write �D Pgg�1 and �Dg0g�1 in natural notation and express
the partial derivatives Pg D @g=@t and g0 D @g=@� using the right translations as

Pg D � ıg and g0 D � ıg:

By the chain rule, these definitions have mixed partial derivatives

Pg0 D � 0 Dr� � � and Pg0 D P�Dr� � �:

The difference of the mixed partial derivatives implies the desired formula (115),

� 0� P�Dr� � ��r� � � D�Œ�; ��D� ad� �:

(Note the minus sign in the last two terms.)

Step III: Proof of equivalence (iii)” (iv) Let us show that the reduced variational
principle produces the Euler–Poincaré equations. We write the functional derivative
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of the reduced action Sred D
R b

a l.�/ dt with Lagrangian l.�/ in terms of the natural
pairing h�; �i between g� and g as

ı

Z b

a

l.�.t//dt D

Z b

a

�
ıl

ı�
; ı�

�
dt D

Z b

a

�
ıl

ı�
; P�� ad� �

�
dt

D

Z b

a

�
ıl

ı�
; P�

�
dt �

Z b

a

�
ıl

ı�
; ad� �

�
dt

D�

Z b

a

�
d

dt

ıl

ı�
C ad��

ıl

ı�
; �

�
dt:

The last equality follows from integration by parts and vanishing of the variation �.t/
at the endpoints. Thus, stationarity ı

R b
a l.�.t//dt D 0 for any �.t/ that vanishes at the

endpoints is equivalent to
d

dt

ıl

ı�
D� ad��

ıl

ı�
;

which are the Euler–Poincaré equations.

Remark 24.4 (Left-invariant Euler–Poincaré equations) The same theorem holds for
left invariant Lagrangians on T G , except for a sign in the Euler–Poincaré equations,

d

dt

ıl

ı�
DC ad��

ıl

ı�
;

which arises because left-invariant variations satisfy ı� D P�C Œ�; �� (with the opposite
sign).

Exercise 24.5 Write out the corresponding proof of the Euler–Poincaré reduction
theorem for left-invariant Lagrangians defined on the tangent space T G of a group G .

Reconstruction The procedure for reconstructing the solution v.t/ 2 Tg.t/G of the
Euler–Lagrange equations with initial conditions g.0/D g0 and Pg.0/D v0 starting
from the solution of the Euler–Poincaré equations is as follows. First, solve the initial
value problem for the right-invariant Euler–Poincaré equations:

d

dt

ıl

ı�
D� ad��

ıl

ı�
with �.0/D �0 WD v0g�1

0

Then from the solution for �.t/ reconstruct the curve g.t/ on the group by solving the
“linear differential equation with time-dependent coefficients"

Pg.t/D �.t/g.t/ with g.0/D g0:

The Euler–Poincaré reduction theorem guarantees then that v.t/D Pg.t/D �.t/ �g.t/
is a solution of the Euler–Lagrange equations with initial condition v0 D �0g0 .
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Remark 24.6 A similar statement holds, with obvious changes for left-invariant
Lagrangian systems on T G .

24.3 Reduced Legendre transformation

As in the equivalence relation between the Lagrangian and Hamiltonian formulations
discussed earlier, the relationship between symmetry-reduced Euler–Poincaré and
Lie–Poisson formulations is determined by the Legendre transformation.

Definition 24.7 The Legendre transformation F l W g! g� is defined by

F l.�/D
ıl

ı�
D �:

Lie–Poisson Hamiltonian formulation Let h.�/ WD h�; �i � l.�/. Assuming that
F l is a diffeomorphism yields

ıh

ı�
D �C

�
�;
ı�

ı�

�
�

�
ıl

ı�
;
ı�

ı�

�
D �:

So the Euler–Poincaré equations for l are equivalent to the Lie–Poisson equations for
h:

d

dt

�
ıl

ı�

�
D�ad��

ıl

ı�
” P�D�ad�ıh=ı��:

The Lie–Poisson equations may be written in the Poisson bracket form

(116) Pf D ff; hg ;

where f W g�!R is an arbitrary smooth function and the bracket is the (right) Lie–
Poisson bracket given by

(117) ff; hg.�/D

�
�;

�
ıf

ı�
;
ıh

ı�

��
D�

�
�; adıh=ı�

ıf

ı�

�
D�

�
ad�ıh=ı� �;

ıf

ı�

�
:

In the important case when ` is quadratic, the Lagrangian L is the quadratic form
associated to a right invariant Riemannian metric on G . In this case, the Euler–
Lagrange equations for L on G describe geodesic motion relative to this metric and
these geodesics are then equivalently described by either the Euler–Poincaré, or the
Lie–Poisson equations.

Exercise 24.8 Exercise 22.6 requires an extension of the pure EP reduction theorem
for a Lagrangian LW .T G � TQ/ ! R. Following the proof of the EP reduction
theorem, make this extension.
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Exercise 24.9 Compute the pure EP equations for geodesic motion on SE.3/. These
equations turn out to be applicable to the motion of an ellipsoidal body through a fluid.

25 EPDiff: the Euler–Poincaré equation on the diffeomor-
phisms

25.1 The n–dimensional EPDiff equation and its properties

Eulerian geodesic motion of a fluid in n dimensions is generated as an EP equation via
Hamilton’s principle, when the Lagrangian is given by the kinetic energy. The kinetic
energy defines a norm kuk2 for the Eulerian fluid velocity, taken as u.x; t/W Rn�R1!

Rn . The choice of the kinetic energy as a positive functional of fluid velocity u is a
modeling step that depends upon the physics of the problem being studied. We shall
choose the Lagrangian,

(118) kuk2 D
Z

u �Qopu dnx D

Z
u �m dnx;

so that the positive-definite, symmetric, operator Qop defines the norm kuk, for
appropriate (homogeneous, say, or periodic) boundary conditions. The EPDiff equation
is the Euler–Poincaré equation for this Eulerian geodesic motion of a fluid. Namely,

(119)
d

dt

ı`

ıu
C ad�u

ı`

ıu
D 0; with `Œu�D 1

2
kuk2:

Here ad� is the dual of the vector-field ad-operation (the commutator) under the natural
L2 pairing h�; �i induced by the variational derivative ı`Œu�Dhı`=ıu ; ıui. This pairing
provides the definition of ad� ,

(120) had�u m; vi D �hm; adu vi;

where u and v are vector fields, aduvD Œu; v� is the commutator, that is, the Lie bracket
given in components by (summing on repeated indices)

(121) Œu; v�i D uj @v
i

@xj
� vj @u

i

@xj
; or Œu; v�D u � rv� v � ru:

The notation adu v WD Œu; v� formally denotes the adjoint action of the right Lie algebra
of Diff.D/ on itself, and mD ı`=ıu is the fluid momentum, a one-form density whose
co-vector components are also denoted as m.

Geometry & Topology Monographs, Volume 17 (2011)



340 Darryl D Holm

If uD uj@=@xj ;mDmidxi˝dV , then the preceding formula for ad�u.m˝dV / has
the coordinate expression in Rn ,

�
ad�u m

�
i
dxi
˝ dV D

�
@

@xj
.uj mi/Cmj

@uj

@xi

�
dxi
˝ dV:(122)

In this notation, the abstract EPDiff equation (119) may be written explicitly in Eu-
clidean coordinates as a partial differential equation for a co-vector function

m.x; t/W Rn
�R1

!Rn:

Namely,

(123)
@

@t
mC u � rm„ƒ‚…

Convection

C ruT
�m„ ƒ‚ …

Stretching

C m.div u/„ ƒ‚ …
Expansion

D 0; with mD
ı`

ıu
DQopu:

To explain the terms in underbraces, we rewrite EPDiff as preservation of the one-form
density of momentum along the characteristic curves of the velocity. Namely,

(124)
d

dt

�
m � dx˝ dV

�
D 0 along

dx
dt
D uDG �m:

This form of the EPDiff equation also emphasizes its nonlocality, since the velocity is
obtained from the momentum density by convolution against the Green’s function G

of the operator Qop . Thus, uDG �m with QopGD ı.x/, the Dirac measure. We may
check that this “characteristic form” of EPDiff recovers its Eulerian form by computing
directly,

d

dt

�
m � dx˝ dV

�
D

dm
dt
� dx˝ dV Cm � d

dx
dt
˝ dV Cm � dx˝

�
d

dt
dV

�
along

dx
dt
D uDG �m

D

�
@

@t
mCu � rmCruT

�mCm.div u/
�
� dx˝ dV D 0:

Exercise 25.1 Show that EPDiff may be written as

(125)
� @
@t
CLu

��
m � dx˝ dV

�
D 0;

where Lu is the Lie derivative with respect to the vector field with components uD
G �m. Hint: How does this Lie-derivative form of EPDiff in (125) differ from its
characteristic form (124)?
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EPDiff may also be written equivalently in terms of the operators div, grad and curl in
2D and 3D as

(126)
@

@t
m�u� curl mCr.u �m/Cm.div u/D 0:

Thus, for example, its numerical solution would require an algorithm which has the
capability to deal with the distinctions and relationships among the operators div, grad
and curl.

25.2 Derivation of the n–dimensional EPDiff equation as geodesic flow

Let’s derive the EPDiff equation (123) by following the proof of the EP reduction
theorem leading to the Euler–Poincaré equations for right invariance in the form (119).
Following this calculation for the present case yields

ı

Z b

a

l.u/dt D

Z b

a

�
ıl

ıu
; ıu

�
dt D

Z b

a

�
ıl

ıu
; Pv� adu v

�
dt

D

Z b

a

�
ıl

ıu
; Pv
�

dt �

Z b

a

�
ıl

ıu
; adu v

�
dt D�

Z b

a

�
d

dt

ıl

ıu
C ad�u

ıl

ıu
; v
�

dt;

where h�; �i is the pairing between elements of the Lie algebra and its dual. In our case,
this is the L2 pairing, for example,�

ıl

ıu
; ıu

�
D

Z
ıl

ıui
ıui dnx

This pairing allows us to compute the coordinate form of the EPDiff equation explicitly,
as Z b

a

�
ıl

ıu
; ıu

�
dt D

Z b

a

dt

Z
ıl

ıui

�
@vi

@t
Cuj @v

i

@xj
� vj @u

i

@xj

�
dnx

D�

Z b

a

dt

Z �
@

@t

ıl

ıui
C

@

@xj

�
ıl

ıui
uj

�
C

ıl

ıuj

@uj

@xi

�
vi dnx

Substituting mD ıl=ıu now recovers the coordinate forms for the coadjoint action
of vector fields in (122) and the EPDiff equation itself in (123). When `Œu�D 1

2
kuk2 ,

EPDiff describes geodesic motion on the diffeomorphisms with respect to the norm
kuk.

Lemma 25.2 In Step IIB of the proof of the Euler–Poincaré reduction theorem (that
(ii)” (iv) for an arbitrary Lie group) a certain formula for the variations for time-
dependent vector fields was employed. That formula was employed again in the
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calculation above as

(127) ıuD Pv� adu v:

This formula may be rederived as follows in the present context. We write uD Pgg�1

and vD g0g�1 in natural notation and express the partial derivatives Pg D @g=@t and
g0 D @g=@� using the right translations as

Pg D u ıg and g0 D v ıg:

To compute the mixed partials, consider the chain rule for say u.g.t; �/x0/ and set
x.t; �/D g.t; �/ � x0 . Then,

u0 D
@u
@x
�
@x
@�
D
@u
@x
�g0.t; �/x0 D

@u
@x
�g0g�1xD

@u
@x
� v.x/:

The chain rule for Pv gives a similar formula with u and v exchanged. Thus, the chain
rule gives two expressions for the mixed partial derivative Pg0 as

Pg0 D u0 Dru � v and Pg0 D PvDrv �u:

The difference of the mixed partial derivatives then implies the desired formula (127),
since

u0� PvDru � v�rv �uD�Œu; v�D� adu v:

26 EPDiff: the Euler–Poincaré equation on the diffeomor-
phisms

In this lecture, we shall discuss the solutions of EPDiff for pressureless compressible
geodesic motion in one spatial dimension. This is the EPDiff equation in 1D, 9

@tmC ad�u mD 0; or, equivalently,(128)

@tmCumxC 2uxmD 0; with mDQopu:(129)

9 A one-form density in 1D takes the form m.dx/2 and the EP equation is given by

d

dt

�
m .dx/2

�
D

dm

dt
.dx/2C 2m .du/.dx/D 0 with

d

dt
dx D duD uxdx and uDG �m;

where G �m denotes convolution with a function G on the real line.
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� The EPDiff equation describes geodesic motion on the diffeomorphism group
with respect to a family of metrics for the fluid velocity u.t;x/, with notation,

mD
ı`

ıu
DQopu for a kinetic-energy Lagrangian(130)

`.u/D 1
2

Z
u Qopu dx D 1

2
kuk2:(131)

� In one dimension, Qop in equation (130) is a positive, symmetric operator that
defines the kinetic energy metric for the velocity.

� The EPDiff equation (129) is written in terms of the variable mD ı`=ıu. It is
appropriate to call this variational derivative m, because it is the momentum
density associated with the fluid velocity u.

� Physically, the first nonlinear term in the EPDiff equation (129) is fluid transport.
� The coefficient 2 arises in the second nonlinear term, because, in one dimension,

two of the summands in ad�u m D umx C 2uxm are the same, cf. equation
(122).

� The momentum is expressed in terms of the velocity by mD ı`=ıuDQopu.
Equivalently, for solutions that vanish at spatial infinity, one may think of the
velocity as being obtained from the convolution,

(132) u.x/DG �m.x/D

Z
G.x�y/m.y/ dy;

where G is the Green’s function for the operator Qop on the real line.
� The operator Qop and its Green’s function G are chosen to be even under

reflection, G.�x/ D G.x/, so that u and m have the same parity. Moreover,
the EPDiff equation (129) conserves the total momentum M D

R
m.y/ dy , for

any even Green’s function.

Exercise 26.1 Show that equation (129) conserves M D
R

m.y/ dy for any even
Green’s function G.�x/ D G.x/, for either periodic, or homogeneous boundary
conditions.

� The traveling wave solutions of 1D EPDiff when the Green’s function G is
chosen to be even under reflection are the “pulsons,”

u.x; t/D c G.x� ct/:

Exercise 26.2 Prove this statement, that the traveling wave solutions of 1D EPDiff
are pulsons when the Green’s function is even. What role is played in the solution by
the Green’s function being even? Hint: Evaluate the derivative of an even function at
x D 0.
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� See Fringer and Holm [19] and references therein for further discussions and
numerical simulations of the pulson solutions of the 1D EPDiff equation.

26.1 Pulsons

The EPDiff equation (129) on the real line has the remarkable property that its solutions
collectivize10 into the finite dimensional solutions of the “N –pulson” form that was
discovered for a special form of G in Camassa and Holm [10], then was extended for
any even G in Fringer and Holm [19],

(133) u.x; t/D

NX
iD1

pi.t/G.x� qi.t//:

Since G.x/ is the Green’s function for the operator Qop , the corresponding solution
for the momentum mDQopu is given by a sum of delta functions,

(134) m.x; t/D

NX
iD1

pi.t/ ı.x� qi.t//:

Thus, the time-dependent “collective coordinates” qi.t/ and pi.t/ are the positions
and velocities of the N pulses in this solution. These parameters satisfy the finite
dimensional geodesic motion equations obtained as canonical Hamiltonian equations

Pqi D
@HN

@pi
D

NX
jD1

pj G.qi � qj /;(135)

Ppi D�
@HN

@qi
D�pi

NX
jD1

pj G 0.qi � qj /;(136)

in which the Hamiltonian is given by the quadratic form,

(137) HN D
1
2

NX
i;jD1

pi pj G.qi � qj /:

Remark 26.3 In a certain sense, equations (135)–(136) comprise the analog for the
peakon momentum relation (134) of the “symmetric generalized rigid body equations”
in (65).

10See Guillemin and Sternberg [21] for discussions of the concept of collective variables for Hamil-
tonian theories. We will discuss the collectivization for the EPDiff equation later from the viewpoint of
momentum maps.

Geometry & Topology Monographs, Volume 17 (2011)



Applications of Poisson geometry to physical problems 345

Thus, the canonical equations for the Hamiltonian HN describe the nonlinear col-
lective interactions of the N –pulson solutions of the EPDiff equation (129) as finite-
dimensional geodesic motion of a particle on an N –dimensional surface whose co-
metric is

(138) Gij .q/DG.qi � qj /:

Fringer and Holm [19] showed numerically that the N –pulson solutions describe the
emergent patterns in the solution of the initial value problem for EPDiff equation (129)
with spatially confined initial conditions.

Exercise 26.4 Equations (135)–(136) describe geodesic motion.

(1) Write the Lagrangian and Euler–Lagrange equations for this motion.

(2) Solve equations (135)–(136) for N D 2 when limjxj!1G.x/D 0.
(a) Why should the solution be described as exchange of momentum in elastic

collisions?
(b) Consider both head-on and overtaking collisions.
(c) Consider the antisymmetric case, when the total momentum vanishes.

Integrability Calogero and Francoise [8; 9] found that for any finite number N the
Hamiltonian equations for HN in (137) are completely integrable in the Liouville
sense11 for

G �G1.x/D �C� cos.�x/C�1 sin.�jxj/
and G �G2.x/D ˛CˇjxjC x2;

with �, �, �1 , � , and ˛ , ˇ ,  being arbitrary constants, such that � and � are
real and �1 and � both real or both imaginary.12 Particular cases of G1 and G2

are the peakons G1.x/ D e�jxj=˛ of Camassa and Holm [10] and the compactons
G2.x/Dmax.1� jxj; 0/ of the Hunter–Saxton equation, (see Hunter and Zheng [34]).
The latter is the EPDiff equation (129), with `.u/D 1

2

R
u2

x dx and thus mD�uxx .

Lie–Poisson Hamiltonian form of EPDiff In terms of m, the conserved energy
Hamiltonian for the EPDiff equation (129) is obtained by Legendre transforming the
kinetic energy Lagrangian, as

hD
D ı`
ıu
;u
E
� `.u/:

11A Hamiltonian system is integrable in the Liouville sense, if the number of independent constants of
motion in involution is the same as the number of its degrees of freedom.

12 This choice of the constants keeps HN real in (137).
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Thus, the Hamiltonian depends on m, as

h.m/D 1
2

Z
m.x/G.x�y/m.y/ dxdy;

which also reveals the geodesic nature of the EPDiff equation (129) and the role of
G.x/ in the kinetic energy metric on the Hamiltonian side.

The corresponding Lie–Poisson bracket for EPDiff as a Hamiltonian evolution equation
is given by,

@tmD
˚
m; h

	
D�.@mCm@/

ıh

ım
and

ıh

ım
D u;

which recovers the starting equation and indicates some of its connections with fluid
equations on the Hamiltonian side. For any two smooth functionals f; h of m in
the space for which the solutions of EPDiff exist, this Lie–Poisson bracket may be
expressed as˚

f; h
	
D�

Z
ıf

ım
.@mCm@/

ıh

ım
dx D�

Z
m

�
ıf

ım
;
ıh

ım

�
dx

where Œ�; �� denotes the Lie algebra bracket of vector fields. That is,�
ıf

ım
;
ıh

ım

�
D
ıf

ım
@
ıh

ım
�
ıh

ım
@
ıf

ım
:

Exercise 26.5 What is the Casimir for this Lie–Poisson bracket? What does it mean
from the viewpoint of coadjoint orbits?

26.2 Peakons

The case G.x/D e�jxj=˛ with a constant length scale ˛ is the Green’s function for
which the operator in the kinetic energy Lagrangian (130) is Qop D 1�˛2@2

x . For this
(Helmholtz) operator Qop , the Lagrangian and corresponding kinetic energy norm are
given by,

`Œu�D 1
2
kuk2 D 1

2

Z
uQopu dx D 1

2

Z
u2
C˛2u2

x dx; for lim
jxj!1

uD 0:

This Lagrangian is the H 1 norm of the velocity in one dimension. In this case, the
EPDiff equation (129) is also the zero-dispersion limit of the completely integrable CH
equation for unidirectional shallow water waves first derived in Camassa and Holm [10],

(139) mt CumxC 2mux D�c0uxC uxxx; mD u�˛2uxx :
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This equation describes shallow water dynamics as completely integrable soliton motion
at quadratic order in the asymptotic expansion for unidirectional shallow water waves
on a free surface under gravity. See Dullin, Gottwald and Holm [14; 15; 16] for more
details and explanations of this asymptotic expansion for unidirectional shallow water
waves to quadratic order.

Because of the relation mD u�˛2uxx , equation (139) is nonlocal. In other words, it
is an integral-partial differential equation. In fact, after writing equation (139) in the
equivalent form,

(140) .1�˛2@2/.ut Cuux/D�@
�
u2
C

1
2
˛2u2

x

�
� c0uxC uxxx;

one sees the interplay between local and nonlocal linear dispersion in its phase velocity
relation,

(141)
!

k
D

c0� k2

1C˛2k2
;

for waves with frequency ! and wave number k linearized around uD0. For =c0<0,
short waves and long waves travel in the same direction. Long waves travel faster
than short ones (as required in shallow water) provided =c0 > �˛

2 . Then the phase
velocity lies in the interval !=k 2 .�=˛ 2; c0�.

The famous Korteweg–de Vries (KdV) soliton equation,

(142) ut C 3uux D�c0uxC uxxx;

emerges at linear order in the asymptotic expansion for shallow water waves, in which
one takes ˛2! 0 in (140) and (141). In KdV, the parameters c0 and  are seen as
deformations of the Riemann equation,

ut C 3uux D 0:

The parameters c0 and  represent linear wave dispersion, which modifies and eventu-
ally balances the tendency for nonlinear waves to steepen and break. The parameter
˛ , which introduces nonlocality, also regularizes this nonlinear tendency, even in the
absence of c0 and  .

27 Diffeons – singular momentum solutions of the EPDiff
equation for geodesic motion in higher dimensions

As an example of the EP theory in higher dimensions, we shall generalize the one-
dimensional pulson solutions of the previous section to n–dimensions. The correspond-
ing singular momentum solutions of the EPDiff equation in higher dimensions are
called “diffeons.”
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27.1 n–dimensional EPDiff equation

Eulerian geodesic motion of a fluid in n–dimensions is generated as an EP equation via
Hamilton’s principle, when the Lagrangian is given by the kinetic energy. The kinetic
energy defines a norm kuk2 for the Eulerian fluid velocity, u.x; t/W Rn �R1!Rn .
As mentioned earlier, the choice of the kinetic energy as a positive functional of fluid
velocity u is a modeling step that depends upon the physics of the problem being
studied. Following our earlier procedure, as in equations (118) and (119), we shall
choose the Lagrangian,

(143) kuk2 D
Z

u �Qopu dnx D

Z
u �m dnx;

so that the positive-definite, symmetric, operator Qop defines the norm kuk, for
appropriate boundary conditions and the EPDiff equation for Eulerian geodesic motion
of a fluid emerges,

(144)
d

dt

ı`

ıu
C ad�u

ı`

ıu
D 0; with `Œu�D 1

2
kuk2:

Legendre transforming to the Hamiltonian side The corresponding Legendre trans-
form yields the following invertible relations between momentum and velocity,

(145) mDQopu and uDG �m;

where G is the Green’s function for the operator Qop , assuming appropriate boundary
conditions (on u) that allow inversion of the operator Qop to determine u from m.

The corresponding Hamiltonian is,

(146) hŒm�D hm;ui � 1
2
kuk2 D 1

2

Z
m �G �m dnx � 1

2
kmk2;

which also defines a norm kmk via a convolution kernel G that is symmetric and
positive, when the Lagrangian `Œu� is a norm. As expected, the norm kmk given by the
Hamiltonian hŒm� specifies the velocity u in terms of its Legendre-dual momentum m
by the variational operation,

(147) uD
ıh

ım
DG �m�

Z
G.x� y/m.y/ dny:

We shall choose the kernel G.x� y/ to be translation-invariant (so Noether’s theorem
implies that total momentum MD

R
m dnx is conserved) and symmetric under spatial

reflections (so that u and m have the same parity).
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After the Legendre transformation (146), the EPDiff equation (144) appears in its
equivalent Lie–Poisson Hamiltonian form,

(148)
@

@t
mD fm; hg D � ad�ıh=ım m:

Here the operation f�; �g denotes the Lie–Poisson bracket dual to the (right) action of
vector fields amongst themselves by vector-field commutation

ff; h g D �

�
m;
�
ıf

ım
;
ıh

ım

��
For more details and additional background concerning the relation of classical EP
theory to Lie–Poisson Hamiltonian equations, see Holm, Marsden and Ratiu [44; 31].

In a moment we will also consider the momentum maps for EPDiff.

27.2 Diffeons: n–dimensional analogs of pulsons for the EPDiff equation

The momentum for the one-dimensional pulson solutions (134) on the real line is
supported at points via the Dirac delta measures in its solution ansatz,

(149) m.x; t/D

NX
iD1

pi.t/ ı
�
x� qi.t/

�
; m 2R1:

We shall develop n–dimensional analogs of these one-dimensional pulson solutions
for the Euler–Poincaré equation (126) by generalizing this solution ansatz to allow
measure-valued n–dimensional vector solutions m 2Rn for which the Euler–Poincaré
momentum is supported on co-dimension–k subspaces Rn�k with integer k 2 Œ1; n�.
For example, one may consider the two-dimensional vector momentum m 2R2 in the
plane that is supported on one-dimensional curves (momentum fronts). Likewise, in
three dimensions, one could consider two-dimensional momentum surfaces (sheets),
one-dimensional momentum filaments, etc. The corresponding vector momentum
ansatz that we shall use is the following, cf. the pulson solutions (149),

(150) m.x; t/D
NX

iD1

Z
Pi.s; t/ ı

�
x�Q i.s; t/

�
ds; m 2Rn:

Here, Pi ;Qi 2Rn for i D 1; 2; : : : ;N . For example, when n�k D 1, so that s 2R1

is one-dimensional, the delta function in solution (150) supports an evolving family
of vector-valued curves, called momentum filaments. (For simplicity of notation, we
suppress the implied subscript i in the arclength s for each Pi and Qi .) The Legendre-
dual relations (145) imply that the velocity corresponding to the momentum filament
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ansatz (150) is,

(151) u.x; t/DG �mD
NX

jD1

Z
Pj .s

0; t/G
�

x�Qj .s
0; t/

�
ds0:

Just as for the 1D case of the pulsons, we shall show that substitution of the nD solution
ansatz (150) and (151) into the EPDiff equation (123) produces canonical geodesic
Hamiltonian equations for the n–dimensional vector parameters Qi.s; t/ and Pi.s; t/,
i D 1; 2; : : : ;N .

27.2.1 Canonical Hamiltonian dynamics of diffeon momentum filaments in Rn

For definiteness in what follows, we shall consider the example of momentum filaments
m 2Rn supported on one-dimensional space curves in Rn , so s 2R1 is the arclength
parameter of one of these curves. This solution ansatz is reminiscent of the Biot–Savart
Law for vortex filaments, although the flow is not incompressible. The dynamics of
momentum surfaces, for s 2Rk with k < n, follow a similar analysis.

Substituting the momentum filament ansatz (150) for s 2 R1 and its correspond-
ing velocity (151) into the Euler–Poincaré equation (123), then integrating against a
smooth test function �.x/ implies the following canonical equations (denoting explicit
summation on i; j 2 1; 2; : : :N ),

@

@t
Qi.s; t/D

NX
jD1

Z
Pj .s

0; t/G.Qi.s; t/�Qj .s
0; t//

�
ds0 D

ıHN

ıPi
;(152)

@

@t
Pi.s; t/D�

NX
jD1

Z �
Pi.s; t/�Pj .s

0; t/
� @

@Qi.s; t/
G
�
Qi.s; t/�Qj .s

0; t/
�

ds0(153)

D�
ıHN

ıQi
; (sum on j , no sum on i ):

The dot product Pi � Pj denotes the inner, or scalar, product of the two vectors Pi

and Pj in Rn . Thus, the solution ansatz (150) yields a closed set of integro-partial-
differential equations (IPDEs) given by (152) and (153) for the vector parameters
Qi.s; t/ and Pi.s; t/ with i D 1; 2 : : :N . These equations are generated canonically
by the following Hamiltonian function HN W .R

n �Rn/˝N !R,

(154) HN D
1
2

ZZ NX
i;jD1

�
Pi.s; t/ �Pj .s

0; t/
�

G
�
Qi.s; t/�Q j .s

0; t/
�

ds ds0:

This Hamiltonian arises by substituting the momentum ansatz (150) into the Hamiltonian
(146) obtained from the Legendre transformation of the Lagrangian corresponding
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to the kinetic energy norm of the fluid velocity. Thus, the evolutionary IPDE system
(152) and (153) represents canonically Hamiltonian geodesic motion on the space
of curves in Rn with respect to the co-metric given on these curves in (154). The
Hamiltonian HN D

1
2
kPk2 in (154) defines the norm kPk in terms of this co-metric

that combines convolution using the Green’s function G and sum over filaments with
the scalar product of momentum vectors in Rn .

Remark 27.1 Note the Lagrangian property of the s coordinate, since

@

@t
Qi.s; t/D u.Qi.s; t/; t/:

28 Singular solution momentum map JSing for diffeons

The diffeon momentum filament ansatz (150) reduces, and collectivizes the solution of
the geodesic EP PDE (123) in nC 1 dimensions into the system (152) and (153) of
2N canonical evolutionary IPDEs. One can summarize the mechanism by which this
process occurs, by saying that the map that implements the canonical .Q;P/ variables
in terms of singular solutions is a (cotangent bundle) momentum map. Such momentum
maps are Poisson maps; so the canonical Hamiltonian nature of the dynamical equations
for .Q;P/ fits into a general theory which also provides a framework for suggesting
other avenues of investigation.

Theorem 28.1 The momentum ansatz (150) for measure-valued solutions of the
EPDiff equation (123), defines an equivariant momentum map

JSingW T
� Emb.S;Rn/! X.Rn/�

that is called the singular solution momentum map in Holm and Marsden [30].

We shall explain the notation used in the theorem’s statement in the course of its proof.
Right away, however, we note that the sense of “defines” is that the momentum solution
ansatz (150) expressing m (a vector function of spatial position x) in terms of Q;P
(which are functions of s ) can be regarded as a map from the space of .Q.s/;P.s//
to the space of m’s. This will turn out to be the Lagrange-to-Euler map for the fluid
description of the singular solutions.

Following Holm and Marsden [30], we shall give two proofs of this result from two
rather different viewpoints. The first proof below uses the formula for a momentum
map for a cotangent lifted action, while the second proof focuses on a Poisson bracket
computation. Each proof also explains the context in which one has a momentum map.
(See Marsden and Ratiu [44] for general background on momentum maps.)
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First proof For simplicity and without loss of generality, let us take N D 1 and so
suppress the index a. That is, we shall take the case of an isolated singular solution.
As the proof will show, this is not a real restriction.

To set the notation, fix a k –dimensional manifold S with a given volume element and
whose points are denoted s 2S . Let Emb.S;Rn/ denote the set of smooth embeddings
QW S ! Rn . (If the EPDiff equations are taken on a manifold M , replace Rn with
M .) Under appropriate technical conditions, which we shall just treat formally here,
Emb.S;Rn/ is a smooth manifold. (See, for example, Ebin and Marsden [17], and
Marsden and Hughes [43] for a discussion and references.)

The tangent space TQ Emb.S;Rn/ to Emb.S;Rn/ at the point Q 2 Emb.S;Rn/

is given by the space of material velocity fields, namely the linear space of maps
VW S !Rn that are vector fields over the map Q. The dual space to this space will be
identified with the space of one-form densities over Q, which we shall regard as maps
PW S ! .Rn/� . In summary, the cotangent bundle T � Emb.S;Rn/ is identified with
the space of pairs of maps .Q;P/.

These give us the domain space for the singular solution momentum map. Now
we consider the action of the symmetry group. Consider the group G D Diff of
diffeomorphisms of the space S in which the EPDiff equations are operating, concretely
in our case Rn . Let it act on S by composition on the left. Namely for � 2 Diff.Rn/,
we let

(155) � �QD � ıQ:

Now lift this action to the cotangent bundle T � Emb.S;Rn/ in the standard way (see,
for instance, Marsden and Ratiu [44] for this construction). This lifted action is a
symplectic (and hence Poisson) action and has an equivariant momentum map. We
claim that this momentum map is precisely given by the ansatz (150).

To see this, one only needs to recall and then apply the general formula for the
momentum map associated with an action of a general Lie group G on a configuration
manifold Q and cotangent lifted to T �Q.

First let us recall the general formula. Namely, the momentum map is the map
JW T �Q! g� (g� denotes the dual of the Lie algebra g of G) defined by

(156) J.˛q/ � � D
˝
˛q; �Q.q/

˛
;

where ˛q 2 T �q Q and � 2 g, where �Q is the infinitesimal generator of the action of
G on Q associated to the Lie algebra element � , and where

˝
˛q; �Q.q/

˛
is the natural

pairing of an element of T �q Q with an element of TqQ.
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Now we apply this formula to the special case in which the group G is the diffeo-
morphism group Diff.Rn/, the manifold Q is Emb.S;Rn/ and where the action of
the group on Emb.S;Rn/ is given by (155). The sense in which the Lie algebra of
G D Diff is the space g D X of vector fields is well-understood. Hence, its dual is
naturally regarded as the space of one-form densities. The momentum map is thus a
map JW T � Emb.S;Rn/! X� .

With J given by (156), we only need to work out this formula. First, we shall work out
the infinitesimal generators. Let X 2 X be a Lie algebra element. By differentiating
the action (155) with respect to � in the direction of X at the identity element we find
that the infinitesimal generator is given by

XEmb.S;Rn/.Q/DX ıQ:

Thus, taking ˛q to be the cotangent vector .Q;P/, equation (156) gives

hJ.Q;P/;X i D h.Q;P/;X ıQi

D

Z
S

Pi.s/X
i.Q.s//dks:

On the other hand, note that the right hand side of (150) (again with the index a

suppressed, and with t suppressed as well), when paired with the Lie algebra element
X is�Z

S

P.s/ ı .x�Q.s// dks;X

�
D

Z
Rn

Z
S

�
Pi.s/ ı .x�Q.s// dks

�
X i.x/dnx

D

Z
S

Pi.s/X
i.Q.s/dks:

This shows the expression given by (150) is equal to J and so the result is proved.

Second proof As is standard (see, for example, Marsden and Ratiu [44]), one can
characterize momentum maps by means of the following relation, required to hold for
all functions F on T � Emb.S;Rn/; that is, functions of Q and P:

(157) fF; hJ; �ig D �P ŒF �:

In our case, we shall take J to be given by the solution ansatz and verify that it satisfies
this relation. To do so, let � 2 X so that the left side of (157) becomes�

F;

Z
S

Pi.s/�
i.Q.s//d ks

�
D

Z
S

�
ıF

ıQi
� i.Q.s//�Pi.s/

ıF

ıPj

ı

ıQj
� i.Q.s//

�
d ks:

On the other hand, one can directly compute from the definitions that the infinitesimal
generator of the action on the space T � Emb.S;Rn/ corresponding to the vector field
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�i.x/ @
@Qi (a Lie algebra element), is given by

ıQD � ıQ; ıPD�Pi.s/
@

@Q
� i.Q.s//;

(see Marsden and Ratiu [44, (12.1.14)]) which verifies that (157) holds.

An important element left out in this proof so far is that it does not make clear that
the momentum map is equivariant, a condition needed for the momentum map to be
Poisson. The first proof took care of this automatically since momentum maps for
cotangent lifted actions are always equivariant and hence are Poisson.

Thus, to complete the second proof, we need to check directly that the momentum
map is equivariant. Actually, we shall only check that it is infinitesimally invariant by
showing that it is a Poisson map from T � Emb.S;Rn/ to the space of m’s (the dual of
the Lie algebra of X) with its Lie–Poisson bracket. This sort of approach to characterize
equivariant momentum maps is discussed in an interesting way by Weinstein [63].

The following direct computation shows that the singular solution momentum map
(150) is Poisson. This is accomplished by using the canonical Poisson brackets
for fPg; fQg and applying the chain rule to compute

˚
mi.x/;mj .y/

	
, with notation

ı 0
k
.y/� @ı.y/=@yk .

We get

˚
mi.x/;mj .y/

	
D

� NX
aD1

Z
ds Pa

i .s; t/ı
�
x�Qa.s; t/

�
;

NX
bD1

Z
ds0Pb

j .s
0; t/ ı

�
y�Qb.s0; t/

��

D

NX
a;bD1

ZZ
ds ds0

h̊
Pa

i .s/;P
b
j .s
0/
	
ı
�
x�Qa.s/

�
ı
�
y�Qb.s0/

�
�
˚
Pa

i .s/;Q
b
k.s
0/
	
Pb

j .s
0/ı
�
x�Qa.s/

�
ı0k
�
y�Qb.s0/

�
�
˚
Qa

k.s/;P
b
j .s
0/
	
Pa

i .s/ı
0
k

�
x�Qa.s/

�
ı
�
y�Qb.s0/

�
C
˚
Qa

k.s/;Q
b
` .s
0/
	
Pa

i .s/P
b
j .s
0/ı0k

�
x�Qa.s/

�
ı0`
�
y�Qb.s0/

�i
:

Substituting the canonical Poisson bracket relations

fPa
i .s/;P

b
j .s
0/g D 0

fQa
k.s/;Q

b
` .s
0/g D 0;

and fQa
k.s/;P

b
j .s
0/g D ıabıkjı.s� s0/
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into the preceding computation yields

˚
mi.x/;mj .y/

	
D

� NX
aD1

Z
dsPa

i .s; t/ ı.x�Qa.s; t//;

NX
bD1

Z
ds0Pb

j .s
0; t/ ı.y�Qb.s0; t//

�

D

NX
aD1

Z
dsPa

j .s/ı.x�Qa.s//ı0i.y�Qa.s//

�

NX
aD1

Z
dsPa

i .s/ı
0
j .x�Qa.s//ı.y�Qa.s//

D�

�
mj .x/

@

@xi
C

@

@x j
mi.x/

�
ı.x�y/:

Thus, ˚
mi.x/;mj .y/

	
D�

�
mj .x/

@

@xi
C

@

@x j
mi.x/

�
ı.x� y/;(158)

which is readily checked to be the Lie–Poisson bracket on the space of m’s, restricted
to their singular support. This completes the second proof of theorem.

Each of these proofs has shown the following basic fact.

Corollary 28.2 The singular solution momentum map defined by the singular solution
ansatz (150), namely,

JSingW T
� Emb.S;Rn/! X.Rn/�

is a Poisson map from the canonical Poisson structure on T � Emb.S;Rn/ to the
Lie–Poisson structure on X.Rn/� .

This is perhaps the most basic property of the singular solution momentum map. Some
of its more sophisticated properties are outlined by Holm and Marsden [30].

Pulling back the equations Since the solution ansatz (150) has been shown in the
preceding Corollary to be a Poisson map, the pull back of the Hamiltonian from X�

to T � Emb.S;Rn/ gives equations of motion on the latter space that project to the
equations on X� .

Thus, the basic fact that the momentum map JSing is Poisson explains
why the functions Qa.s; t/ and Pa.s; t/ satisfy canonical Hamiltonian
equations.
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Note that the coordinate s 2Rk that labels these functions is a “Lagrangian coordinate”
in the sense that it does not evolve in time but rather labels the solution.

In terms of the pairing

(159) h�; �iW g� � g!R;

between the Lie algebra g (vector fields in Rn ) and its dual g� (one-form densities in
Rn ), the following relation holds for measure-valued solutions under the momentum
map (150),

(160)

hm;ui D
Z

m �u dnx; L2 pairing for m;u 2Rn;

D

Z Z NX
a;bD1

�
Pa.s; t/ �Pb.s0; t/

�
G
�
Qa.s; t/�Q b.s0; t/

�
ds ds0

D

Z NX
aD1

Pa.s; t/ �
@Qa.s; t/

@t
ds

� hhP; PQii;

which is the natural pairing between the points .Q;P/2 T � Emb.S;Rn/ and .Q; PQ/2
T Emb.S;Rn/. This corresponds to preservation of the action of the Lagrangian `Œu�
under cotangent lift of Diff.Rn/.

The pull-back of the Hamiltonian H Œm� defined on the dual of the Lie algebra g� , to
T � Emb.S;Rn/ is easily seen to be consistent with what we had before:

(161) H Œm�� 1
2
hm;G �mi D 1

2
hhP;G �Pii �HN ŒP;Q�:

In summary, in concert with the Poisson nature of the singular solution momentum map,
we see that the singular solutions in terms of Q and P satisfy Hamiltonian equations
and also define an invariant solution set for the EPDiff equations. In fact:

This invariant solution set is a special coadjoint orbit for the diffeo-
morphism group, as we shall discuss in the next section.

29 The geometry of the momentum map

In this section we explore the geometry of the singular solution momentum map
discussed earlier in a little more detail. The treatment is formal, in the sense that there
are a number of technical issues in the infinite dimensional case that will be left open.
We will mention a few of these as we proceed.
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29.1 Coadjoint orbits

We claim that the image of the singular solution momentum map is a coadjoint orbit in
X� . This means that (modulo some issues of connectedness and smoothness, which
we do not consider here) the solution ansatz given by (150) defines a coadjoint orbit
in the space of all one-form densities, regarded as the dual of the Lie algebra of
the diffeomorphism group. These coadjoint orbits should be thought of as singular
orbits—that is, due to their special nature, they are not generic.

Recognizing them as coadjoint orbits is one way of gaining further insight into why the
singular solutions form dynamically invariant sets—it is a general fact that coadjoint
orbits in g� are symplectic submanifolds of the Lie–Poisson manifold g� (in our case
X.Rn/� ) and, correspondingly, are dynamically invariant for any Hamiltonian system
on g� .

The idea of the proof of our claim is simply this: whenever one has an equivariant
momentum map JW P ! g� for the action of a group G on a symplectic or Poisson
manifold P , and that action is transitive, then the image of J is an orbit (or at least
a piece of an orbit). This general result, due to Kostant, is stated more precisely by
Marsden and Ratiu [44, Theorem 14.4.5]. Roughly speaking, the reason that transitivity
holds in our case is because one can “move the images of the manifolds S around at
will with arbitrary velocity fields” using diffeomorphisms of Rn .

29.2 The momentum map JS and the Kelvin circulation theorem

The momentum map JSing involves Diff.Rn/, the left action of the diffeomorphism
group on the space of embeddings Emb.S;Rn/ by smooth maps of the target space
Rn , namely,

(162) Diff.Rn/W Q � �D � ıQ;

where, recall, QW S !Rn . As above, the cotangent bundle T � Emb.S;Rn/ is identi-
fied with the space of pairs of maps .Q;P/, with QW S !Rn and PW S ! T �Rn .

However, there is another momentum map JS associated with the right action of the
diffeomorphism group of S on the embeddings Emb.S;Rn/ by smooth maps of the
“Lagrangian labels” S (fluid particle relabeling by �W S! S ). This action is given by

(163) Diff.S/W Q � �DQ ı �:

The infinitesimal generator of this right action is

(164) XEmb.S;Rn/.Q/D
d

dt

ˇ̌̌̌
tD0

Q ı �t D T Q ıX:
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where X 2 X is tangent to the curve �t at t D 0. Thus, again taking N D 1 (so we
suppress the index a) and also letting ˛q in the momentum map formula (156) be the
cotangent vector .Q;P/, one computes JS :

hJS .Q;P/;X i D h.Q;P/;T Q �X i

D

Z
S

Pi.s/
@Qi.s/

@sm
X m.s/ dks

D

Z
S

X
�

P.s/ � dQ.s/
�

dks

D

�Z
S

P.s/ � dQ.s/˝ dks;X.s/

�
D hP � dQ;X i:

Consequently, the momentum map formula (156) yields

(165) JS .Q;P/D P � dQ;

with the indicated pairing of the one-form density P � dQ with the vector field X .

We have set things up so that the following is true.

Proposition 29.1 The momentum map JS is preserved by the evolution equations
(152)–(153) for Q and P.

Proof It is enough to notice that the Hamiltonian HN in equation (154) is invariant
under the cotangent lift of the action of Diff.S/; it merely amounts to the invariance of
the integral over S under reparametrization; that is, the change of variables formula;
keep in mind that P includes a density factor.

Remark 29.2

� This result is similar to the Kelvin–Noether theorem for circulation � of an ideal
fluid, which may be written as �D

H
c.s/D.s/�1P.s/�dQ.s/ for each Lagrangian

circuit c.s/, where D is the mass density and P is again the canonical momentum
density. This similarity should come as no surprise, because the Kelvin–Noether
theorem for ideal fluids arises from invariance of Hamilton’s principle under
fluid parcel relabeling by the same right action of the diffeomorphism group, as
in (163).

� Note that, being an equivariant momentum map, the map JS , as with JSing , is
also a Poisson map. That is, substituting the canonical Poisson bracket into
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relation (165); that is, the relation M.x/ D
P

i Pi.x/rQi.x/ yields the Lie–
Poisson bracket on the space of M’s. We use the different notations m and M
because these quantities are analogous to the body and spatial angular momentum
for rigid body mechanics. In fact, the quantity m given by the solution Ansatz;
specifically, mDJSing.Q;P/ gives the singular solutions of the EPDiff equations,
while M.x/D JS .Q;P/D

P
i Pi.x/rQi.x/ is a conserved quantity.

� In the language of fluid mechanics, the expression of m in terms of .Q;P/ is an
example of a Clebsch representation, which expresses the solution of the EPDiff
equations in terms of canonical variables that evolve by standard canonical
Hamilton equations. This has been known in the case of fluid mechanics for
more than 100 years. For modern discussions of the Clebsch representation for
ideal fluids, see, for example, Holm and Kupershmidt [28] and Marsden and
Weinstein [49].

� One more remark is in order; namely the special case in which S D M is
of course allowed. In this case, Q corresponds to the map � itself and P
just corresponds to its conjugate momentum. The quantity m corresponds to
the spatial (dynamic) momentum density (that is, right translation of P to the
identity), while M corresponds to the conserved “body” momentum density
(that is, left translation of P to the identity).

29.3 Brief summary

Emb.S;Rn/ admits two group actions. These are: the group Diff.S/ of diffeomor-
phisms of S , which acts by composition on the right; and the group Diff.Rn/ which
acts by composition on the left. The group Diff.Rn/ acting from the left produces the
singular solution momentum map, JSing . The action of Diff.S/ from the right produces
the conserved momentum map JS W T

� Emb.S;Rn/!X.S/� . We now assemble both
momentum maps into one figure as follows:

T � Emb.S;M /

JSing JS

X.M /� X.S/�

�
�
�

�	

@
@
@
@R
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30 The Euler–Poincaré framework: fluids à la Holm, Mars-
den and Ratiu [31]

Almost all fluid models of interest admit the following general assumptions. These
assumptions form the basis of the Euler–Poincaré theorem for Continua that we shall
state later in this section, after introducing the notation necessary for dealing geomet-
rically with the reduction of Hamilton’s Principle from the material (or Lagrangian)
picture of fluid dynamics, to the spatial (or Eulerian) picture. This theorem was first
stated and proved by Holm, Marsden and Ratiu [31], to which we refer for additional
details, as well as for abstract definitions and proofs.

Basic assumptions underlying the Euler–Poincaré theorem for continua

� There is a right representation of a Lie group G on the vector space V and G

acts in the natural way on the right on T G �V � : .Ug; a/hD .Ugh; ah/.

� The Lagrangian function LW T G � V � ! R is right G–invariant under the
isotropy group of a0 2 V � .13

� In particular, if a0 2 V � , define the Lagrangian La0
W T G!R by La0

.Ug/D

L.Ug; a0/. Then La0
is right invariant under the lift to T G of the right action

of Ga0
on G , where Ga0

is the isotropy group of a0 .

� Right G –invariance of L permits one to define the Lagrangian on the Lie algebra
g of the group G . Namely, `W g�V �!R is defined by,

`.u; a/DL
�
Ugg�1.t/; a0g�1.t/

�
DL.Ug; a0/;

where uD Ugg�1.t/ and aD a0g�1.t/: Conversely, this relation defines for
any `W g�V �!R a right G –invariant function LW T G �V �!R.

� For a curve g.t/ 2G; let u.t/ WD Pg.t/g.t/�1 and define the curve a.t/ as the
unique solution of the linear differential equation with time dependent coefficients
Pa.t/D�a.t/u.t/, where the action of an element of the Lie algebra u 2 g on
an advected quantity a 2 V � is denoted by concatenation from the right. The
solution with initial condition a.0/Da0 2V � can be written as a.t/Da0g.t/�1 .

Notation for reduction of Hamilton’s Principle by symmetries

� Let g.D/ denote the space of vector fields on D of some fixed differentiability
class. These vector fields are endowed with the Lie bracket given in components

13For fluid dynamics, right G –invariance of the Lagrangian function L is traditionally called “particle
relabeling symmetry.”
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by (summing on repeated indices)

(166) Œu; v�i D uj @v
i

@xj
� vj @u

i

@xj
:

The notation adu v WD Œu; v� formally denotes the adjoint action of the right Lie
algebra of Diff.D/ on itself.

� Identify the Lie algebra of vector fields g with its dual g� by using the L2

pairing

(167) hu; vi D
Z
D

u � v dV:

� Let g.D/� denote the geometric dual space of g.D/, that is, g.D/� WDƒ1.D/˝
Den.D/. This is the space of one–form densities on D . If m ˝dV 2ƒ1.D/˝
Den.D/, then the pairing of m˝dV with u 2 g.D/ is given by the L2 pairing,

(168) hm˝ dV;ui D
Z
D

m �u dV

where m �u is the standard contraction of a one–form m with a vector field u.

� For u 2 g.D/ and m˝ dV 2 g.D/� , the dual of the adjoint representation is
defined by

(169) had�u.m˝ dV /; vi D �
Z
D

m � aduv dV D�

Z
D

m � Œu; v� dV

and its expression is

(170) ad�u.m˝ dV /D .£umC .divdV u/m/˝ dV D £u.m˝ dV /;

where divdV u is the divergence of u relative to the measure dV , that is, £udV D

.divdV u/dV . Hence, ad�u coincides with the Lie-derivative £u for one-form
densities.

� If uD uj@=@xj ;mDmidxi , then the one–form factor in the preceding formula
for ad�u.m˝ dV / has the coordinate expression

�
ad�u m

�
i
dxi
D

�
uj @mi

@xj
Cmj

@uj

@xi
C .divdV u/mi

�
dxi(171)

D

�
@

@xj
.uj mi/Cmj

@uj

@xi

�
dxi :(172)
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The last equality assumes that the divergence is taken relative to the standard
measure dV D dnx in Rn . (On a Riemannian manifold the metric divergence
needs to be used.)

Conventions and terminology in continuum mechanics Throughout the rest of the
lecture notes, we shall follow Holm, Marsden and Ratiu [31] in using the conventions
and terminology for the standard quantities in continuum mechanics.

Definition 30.1 Elements of D representing the material particles of the system are
denoted by X ; their coordinates X A;AD 1; : : : ; n may thus be regarded as the particle
labels.

� A configuration, which we typically denote by �, or g , is an element of Diff.D/.
� A motion, denoted as �t or alternatively as g.t/, is a time dependent curve in

Diff.D/.

Definition 30.2 The Lagrangian, or material velocity U.X; t/ of the continuum along
the motion �t or g.t/ is defined by taking the time derivative of the motion keeping
the particle labels X fixed:

U.X; t/ WD
d�t .X /

dt
WD

@

@t

ˇ̌̌̌
X

�t .X / WD Pg.t/ �X:

These are convenient shorthand notations for the time derivative at fixed Lagrangian
coordinate X .

Consistent with this definition of material velocity, the tangent space to Diff.D/ at
� 2 Diff.D/ is given by

T� Diff.D/D fU�W D! TD j U�.X / 2 T�.X /Dg:

Elements of T� Diff.D/ are usually thought of as vector fields on D covering �. The
tangent lift of right translations on T Diff.D/ by ' 2 Diff.D/ is given by

U�' WD T�R'.U�/D U� ı':

Definition 30.3 During a motion �t or g.t/, the particle labeled by X describes a
path in D , whose points

x.X; t/ WD �t .X / WD g.t/ �X;

are called the Eulerian or spatial points of this path, which is also called the Lagrangian
trajectory, because a Lagrangian fluid parcel follows this path in space. The derivative
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u.x; t/ of this path, evaluated at fixed Eulerian point x , is called the Eulerian or spatial
velocity of the system:

u.x; t/ WD u.�t .X /; t/ WD U.X; t/ WD
@

@t

ˇ̌̌̌
X

�t .X / WD Pg.t/ �X WD Pg.t/g
�1.t/ �x:

Thus the Eulerian velocity u is a time dependent vector field on D , denoted as ut 2g.D/,
where ut .x/ WD u.x; t/. We also have the fundamental relationships

Ut D ut ı �t and ut D Pg.t/g
�1.t/;

where we denote Ut .X / WD U.X; t/.

Definition 30.4 The representation space V � of Diff.D/ in continuum mechanics is
often some subspace of the tensor field densities on D , denoted as T.D/˝Den.D/,
and the representation is given by pull back. It is thus a right representation of Diff.D/
on T.D/˝Den.D/. The right action of the Lie algebra g.D/ on V � is denoted as
concatenation from the right. That is, we denote

au WD £ua;

which is the Lie derivative of the tensor field density a along the vector field u.

Definition 30.5 The Lagrangian of a continuum mechanical system is a function

LW T Diff.D/�V �!R;

which is right invariant relative to the tangent lift of right translation of Diff.D/ on itself
and pull back on the tensor field densities. Invariance of the Lagrangian L induces a
function `W g.D/�V �!R given by

`.u; a/DL.u ı �; ��a/DL.U; a0/;

where u 2 g.D/ and a 2 V � � T.D/˝Den.D/, and where ��a denotes the pull back
of a by the diffeomorphism � and u is the Eulerian velocity. That is,

(173) UD u ı � and a0 D �
�a:

The evolution of a is by right action, given by the equation

(174) PaD�£u aD�au:

The solution of this equation, for the initial condition a0 , is

(175) a.t/D �t�a0 D a0g�1.t/;

where the lower star denotes the push forward operation and �t is the flow of u D
Pgg�1.t/.
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Definition 30.6 Advected Eulerian quantities are defined in continuum mechanics to
be those variables which are Lie transported by the flow of the Eulerian velocity field.
Using this standard terminology, equation (174), or its solution (175) states that the
tensor field density a.t/ (which may include mass density and other Eulerian quantities)
is advected.

Remark 30.7 (Dual tensors) As we mentioned, typically V � � T.D/˝Den.D/ for
continuum mechanics. On a general manifold, tensors of a given type have natural
duals. For example, symmetric covariant tensors are dual to symmetric contravariant
tensor densities, the pairing being given by the integration of the natural contraction
of these tensors. Likewise, k –forms are naturally dual to .n� k/–forms, the pairing
being given by taking the integral of their wedge product.

Definition 30.8 The diamond operation ˘ between elements of V and V � produces
an element of the dual Lie algebra g.D/� and is defined as

(176) hb ˘ a;wi D �
Z
D

b � £w a ;

where b � £w a denotes the contraction, as described above, of elements of V and
elements of V � and w 2 g.D/. (These operations do not depend on a Riemannian
structure.)

For a path �t 2 Diff.D/, let u.x; t/ be its Eulerian velocity and consider the curve
a.t/ with initial condition a0 given by the equation

(177) PaC £uaD 0:

Let the Lagrangian La0
.U/ WD L.U; a0/ be right-invariant under Diff.D/. We can

now state the Euler–Poincaré Theorem for Continua of Holm, Marsden and Ratiu [31].

Theorem 30.9 (Euler–Poincaré Theorem for Continua) Given a path �t in Diff.D/
with Lagrangian velocity U and Eulerian velocity u, the following are equivalent:

(i) Hamilton’s variational principle

(178) ı

Z t2

t1

L .X;Ut .X /; a0.X // dt D 0

holds, for variations ı�t vanishing at the endpoints.

(ii) �t satisfies the Euler–Lagrange equations for La0
on Diff.D/.
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(iii) The constrained variational principle in Eulerian coordinates

(179) ı

Z t2

t1

`.u; a/ dt D 0

holds on g.D/�V � , using variations of the form

(180) ıuD
@w
@t
C Œu;w�D

@w
@t
C ad uw; ıaD�£w a;

where wt D ı�t ı �
�1
t vanishes at the endpoints.

(iv) The Euler–Poincaré equations for continua

(181)
@

@t

ı`

ıu
D� ad�u

ı`

ıu
C
ı`

ıa
˘ aD�£u

ı`

ıu
C
ı`

ıa
˘ a;

hold, with auxiliary equations .@t C £u/aD 0 for each advected quantity a.t/.
The ˘ operation defined in (176) needs to be determined on a case by case
basis, depending on the nature of the tensor a.t/. The variation mD ı`=ıu is
a one–form density and we have used relation (170) in the last step of equation
(181).

We refer to Holm, Marsden and Ratiu [31] for the proof of this theorem in the abstract
setting. We shall see some of the features of this result in the concrete setting of
continuum mechanics shortly.

Discussion of the Euler–Poincaré equations

The following string of equalities shows directly that (iii) is equivalent to (iv):

0D ı

Z t2

t1

l.u; a/dt D

Z t2

t1

�
ıl

ıu
� ıuC

ıl

ıa
� ıa

�
dt

D

Z t2

t1

�
ıl

ıu
�

�
@w
@t
� adu w

�
�
ıl

ıa
� £w a

�
dt

D

Z t2

t1

w �
�
�
@

@t

ıl

ıu
� ad�u

ıl

ıu
C
ıl

ıa
˘ a

�
dt:(182)

The rest of the proof follows essentially the same track as the proof of the pure Euler–
Poincaré theorem, modulo slight changes to accommodate the advected quantities.
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In the absence of dissipation, most Eulerian fluid equations14 can be written in the EP
form in equation (181),

(183)
@

@t

ı`

ıu
C ad�u

ı`

ıu
D
ı`

ıa
˘ a; with

�
@t C £u

�
aD 0:

Equation (183) is Newton’s Law: The Eulerian time derivative of the momentum density
mD ı`=ıu (a one-form density dual to the velocity u) is equal to the force density
.ı`=ıa/˘ a, with the ˘ operation defined in (176). Thus, Newton’s Law is written in
the Eulerian fluid representation as15

(184)
d

dt

ˇ̌̌̌
Lag

m WD
�
@t C £u

�
mD

ı`

ıa
˘ a; with

d

dt

ˇ̌̌̌
Lag

a WD
�
@t C £u

�
aD 0:

� The left side of the EP equation in (184) describes the fluid’s dynamics due to its
kinetic energy. A fluid’s kinetic energy typically defines a norm for the Eulerian
fluid velocity, KE D 1

2
kuk2 . The left side of the EP equation is the geodesic

part of its evolution, with respect to this norm. See Arnold and Khesin [4] for
discussions of this interpretation of ideal incompressible flow and references to
the literature. However, in a gravitational field, for example, there will also be
dynamics due to potential energy. And this dynamics will by governed by the
right side of the EP equation.

� The right side of the EP equation in (184) modifies the geodesic motion. Naturally,
the right side of the EP equation is also a geometrical quantity. The diamond
operation ˘ represents the dual of the Lie algebra action of vectors fields on
the tensor a. Here ı`=ıa is the dual tensor, under the natural pairing (usually,
L2 pairing) h�; � i that is induced by the variational derivative of the Lagrangian
`.u; a/. The diamond operation ˘ is defined in terms of this pairing in (176).
For the L2 pairing, this is integration by parts of (minus) the Lie derivative in
(176).

14Exceptions to this statement are certain multiphase fluids, and complex fluids with active internal
degrees of freedom such as liquid crystals. These require a further extension, not discussed here.

15 In coordinates, a one-form density takes the form m � dx˝ dV and the EP equation (181) is given
mnemonically by

d

dt

ˇ̌̌
Lag

�
m � dx˝ dV

�
D

dm
dt

ˇ̌̌
Lag
� dx˝ dV„ ƒ‚ …

Advection

Cm � du˝ dV„ ƒ‚ …
Stretching

Cm � dx˝ .r �u/dV„ ƒ‚ …
Expansion

D
ı`

ıa
˘ a

with d
dt

ˇ̌
Lagdx WD

�
@t C £u

�
dxD duD u;j dxj , upon using commutation of Lie derivative and exterior

derivative. Compare this formula with the definition of ad�u .m˝ dV / in equation (171).
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� The quantity a is typically a tensor (for example, a density, a scalar, or a
differential form) and we shall sum over the various types of tensors a that
are involved in the fluid description. The second equation in (184) states that
each tensor a is carried along by the Eulerian fluid velocity u. Thus, a is for
fluid “attribute,” and its Eulerian evolution is given by minus its Lie derivative,
�£ua. That is, a stands for the set of fluid attributes that each Lagrangian fluid
parcel carries around (advects), such as its buoyancy, which is determined by its
individual salt, or heat content, in ocean circulation.

� Many examples of how equation (184) arises in the dynamics of continuous
media are given by Holm, Marsden and Ratiu [31]. The EP form of the Eulerian
fluid description in (184) is analogous to the classical dynamics of rigid bodies
(and tops, under gravity) in body coordinates. Rigid bodies and tops are also
governed by Euler–Poincaré equations, as Poincaré showed in a two-page paper
with no references, over a century ago [55]. For modern discussions of the
EP theory, see, for example, Marsden and Ratiu [44], or Holm, Marsden and
Ratiu [31].

Exercise 30.10 For what types of tensors a0 can one recast the EP equations for
continua (181) as geodesic motion, by using a version of the Kaluza–Klein construction?

30.1 Corollary of the EP theorem: the Kelvin–Noether circulation theo-
rem

Corollary 30.11 (Kelvin–Noether Circulation Theorem) Assume u.x; t/ satisfies
the Euler–Poincaré equations for continua:

@

@t

�
ı`

ıu

�
D�£u

�
ı`

ıu

�
C
ı`

ıa
˘ a

and the quantity a satisfies the advection relation

(185)
@a

@t
C £uaD 0:

Let �t be the flow of the Eulerian velocity field u, that is, uD .d�t=dt/ ı ��1
t . Define

the advected fluid loop t WD �t ı 0 and the circulation map I.t/ by

(186) I.t/D

I
t

1

D

ı`

ıu
:

In the circulation map I.t/ the advected mass density Dt satisfies the push forward
relation Dt D ��D0 . This implies the advection relation (185) with aDD , namely,

Geometry & Topology Monographs, Volume 17 (2011)



368 Darryl D Holm

the continuity equation,
@tDC div DuD 0:

Then the map I.t/ satisfies the Kelvin circulation relation,

(187)
d

dt
I.t/D

I
t

1

D

ı`

ıa
˘ a :

Both an abstract proof of the Kelvin–Noether Circulation Theorem and a proof tai-
lored for the case of continuum mechanical systems are given in Holm, Marsden and
Ratiu [31]. We provide a version of the latter below.

Proof First we change variables in the expression for I.t/:

I.t/D

I
t

1

Dt

ıl

ıu
D

I
0

��t

�
1

Dt

ıl

ıu

�
D

I
0

1

D0

��t

�
ıl

ıu

�
:

Next, we use the Lie derivative formula, namely

d

dt

�
��t ˛t

�
D ��t

�
@

@t
˛t C £u˛t

�
;

applied to a one–form density ˛t . This formula gives

d

dt
I.t/D

d

dt

I
0

1

D0

��t

�
ıl

ıu

�
D

I
0

1

D0

d

dt

�
��t

�
ıl

ıu

��
D

I
0

1

D0

��t

�
@

@t

�
ıl

ıu

�
C £u

�
ıl

ıu

��
:

By the Euler–Poincaré equations (181), this becomes

d

dt
I.t/D

I
0

1

D0

��t

�
ıl

ıa
˘ a

�
D

I
t

1

Dt

�
ıl

ıa
˘ a

�
;

again by the change of variables formula.

Corollary 30.12 Since the last expression holds for every loop t , we may write it as

(188)
�
@

@t
C £u

�
1

D

ıl

ıu
D

1

D

ıl

ıa
˘ a:

Remark 30.13 The Kelvin–Noether theorem is called so here because its derivation
relies on the invariance of the Lagrangian L under the particle relabeling symmetry,
and Noether’s theorem is associated with this symmetry. However, the result (187) is
the Kelvin circulation theorem: the circulation integral I.t/ around any fluid loop (t ,
moving with the velocity of the fluid parcels u) is invariant under the fluid motion.
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These two statements are equivalent. We note that two velocities appear in the integrand
I.t/: the fluid velocity u and D�1ı`=ıu. The latter velocity is the momentum
density mD ı`=ıu divided by the mass density D . These two velocities are the basic
ingredients for performing modeling and analysis in any ideal fluid problem. One
simply needs to put these ingredients together in the Euler–Poincaré theorem and its
corollary, the Kelvin–Noether theorem.

31 Euler–Poincaré theorem and GFD (geophysical fluid dy-
namics)

31.1 Variational formulae in three dimensions

We compute explicit formulae for the variations ıa in the cases that the set of tensors
a is drawn from a set of scalar fields and densities on R3 . We shall denote this
symbolically by writing

(189) a 2 fb;D d3xg:

We have seen that invariance of the set a in the Lagrangian picture under the dynamics
of u implies in the Eulerian picture that�

@

@t
C £u

�
aD 0;

where £u denotes Lie derivative with respect to the velocity vector field u. Hence, for
a fluid dynamical Eulerian action SD

R
dt `.uI b;D/, the advected variables b and

D satisfy the following Lie-derivative relations,�
@

@t
C £u

�
b D 0; or

@b

@t
D� u � r b;(190) �

@

@t
C £u

�
D d3x D 0; or

@D

@t
D� r � .Du/:(191)

In fluid dynamical applications, the advected Eulerian variables b and D d3x represent
the buoyancy b (or specific entropy, for the compressible case) and volume element (or
mass density) D d3x , respectively. According to Theorem 30.9, equation (179), the
variations of the tensor functions a at fixed x and t are also given by Lie derivatives,
namely ıaD�£w a, or

ıb D�£w b D�w � r b;

ıD d3x D�£w .D d3x/D�r � .Dw/ d3x:(192)
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Hence, Hamilton’s principle (179) with this dependence yields

0D ı

Z
dt `.uI b;D/

D

Z
dt

�
ı`

ıu
� ıuC

ı`

ıb
ıbC

ı`

ıD
ıD

�
D

Z
dt

�
ı`

ıu
�

�@w
@t
� adu w

�
�
ı`

ıb
w � r b�

ı`

ıD

�
r � .Dw/

��
D

Z
dt w �

�
�
@

@t

ı`

ıu
� ad�u

ı`

ıu
�
ı`

ıb
r bCD r

ı`

ıD

�
D�

Z
dt w �

�� @
@t
C £u

� ı`
ıu
C
ı`

ıb
r b�D r

ı`

ıD

�
;(193)

where we have consistently dropped boundary terms arising from integrations by parts,
by invoking natural boundary conditions. Specifically, we may impose yn �wD 0 on the
boundary, where yn is the boundary’s outward unit normal vector and wD ı�t ı �

�1
t

vanishes at the endpoints.

31.2 Euler–Poincaré framework for GFD

The Euler–Poincaré equations for continua (181) may now be summarized in vector form
for advected Eulerian variables a in the set (189). We adopt the notational convention
of the circulation map I in equations (186) and (187) that a one form density can be
made into a one form (no longer a density) by dividing it by the mass density D and we
use the Lie-derivative relation for the continuity equation .@=@tC£u/Dd3xD 0. Then,
the Euclidean components of the Euler–Poincaré equations for continua in equation
(193) are expressed in Kelvin theorem form (188) with a slight abuse of notation as

(194)
� @
@t
C £u

�� 1

D

ı`

ıu
� dx

�
C

1

D

ı`

ıb
rb � dx �r

� ı`
ıD

�
� dxD 0;

in which the variational derivatives of the Lagrangian ` are to be computed according
to the usual physical conventions, that is, as Fréchet derivatives. Formula (194) is the
Kelvin–Noether form of the equation of motion for ideal continua. Hence, we have the
explicit Kelvin theorem expression, cf. equations (186) and (187),

(195)
d

dt

I
t .u/

1

D

ı`

ıu
� dxD�

I
t .u/

1

D

ı`

ıb
rb � dx ;

where the curve t .u/ moves with the fluid velocity u. Then, by Stokes’ theorem, the
Euler equations generate circulation of v WD .D�1ıl=ıu/ whenever the gradients rb
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and r.D�1ıl=ıb/ are not collinear. The corresponding conservation of potential
vorticity q on fluid parcels is given by

(196)
@q

@t
Cu � rq D 0; where q D

1

D
rb � curl

�
1

D

ı`

ıu

�
:

This is also called PV convection. Equations (194)–(196) embody most of the panoply
of equations for GFD. The vector form of equation (194) is,� @

@t
Cu � r

�� 1

D

ıl

ıu

�
C

1

D

ıl

ıuj
ruj„ ƒ‚ …

Geodesic Nonlinearity: Kinetic energy

Dr
ıl

ıD
�

1

D

ıl

ıb
rb„ ƒ‚ …

Potential energy

(197)

In geophysical applications, the Eulerian variable D represents the frozen-in volume
element and b is the buoyancy. In this case, Kelvin’s theorem is

dI

dt
D

Z Z
S.t/

r

�
1

D

ıl

ıb

�
�rb � dS;

with circulation integral

I D

I
.t/

1

D

ıl

ıu
� dx:

31.3 Euler’s equations for a rotating stratified ideal incompressible fluid

The Lagrangian In the Eulerian velocity representation, we consider Hamilton’s
principle for fluid motion in a three dimensional domain with action functional S DR

l dt and Lagrangian l.u; b;D/ given by

(198) l.u; b;D/D
Z
�0D.1C b/

�
1
2
juj2Cu �R.x/�gz

�
�p.D� 1/ d3x;

where �tot D �0D.1C b/ is the total mass density, �0 is a dimensional constant and
R is a given function of x. This variations at fixed x and t of this Lagrangian are the
following,

1

D

ıl

ıu
D �0.1Cb/.uCR/;

ıl

ıb
D �0D

�
1
2
juj2Cu �R�gz

�
;

ıl

ıD
D �0.1Cb/

�
1
2
juj2Cu �R�gz

�
�p;

ıl

ıp
D�.D�1/:(199)

Hence, from the Euclidean component formula (197) for Hamilton principles of this
type and the fundamental vector identity,

(200) .b � r/aC ajrbj
D� b� .r � a/Cr.b � a/;
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we find the motion equation for an Euler fluid in three dimensions,

(201)
du
dt
�u� curl RCgyzC

1

�0.1C b/
rp D 0;

where curl RD 2�.x/ is the Coriolis parameter (that is, twice the local angular rotation
frequency). In writing this equation, we have used advection of buoyancy,

@b

@t
Cu � rb D 0;

from equation (190). The pressure p is determined by requiring preservation of the
constraint D D 1, for which the continuity equation (191) implies div u D 0. The
Euler motion equation (201) is Newton’s Law for the acceleration of a fluid due to
three forces: Coriolis, gravity and pressure gradient. The dynamic balances among
these three forces produce the many circulatory flows of geophysical fluid dynamics.
The conservation of potential vorticity q on fluid parcels for these Euler GFD flows is
given by

(202)
@q

@t
Cu � rq D 0; where, on using D D 1; q Drb � curl

�
uCR

�
:

Exercise 31.1 (Semidirect-product Lie–Poisson bracket for compressible ideal flu-
ids)

(1) Compute the Legendre transform for the Lagrangian,

l.u; b;D/W X�ƒ0
�ƒ3

7!R

whose advected variables satisfy the auxiliary equations,

@b

@t
D� u � r b;

@D

@t
D� r � .Du/:

(2) Compute the Hamiltonian, assuming the Legendre transform is a linear invertible
operator on the velocity u. For definiteness in computing the Hamiltonian,
assume the Lagrangian is given by

(203) l.u; b;D/D
Z

D
�

1
2
juj2Cu �R.x/� e.D; b/

�
d 3x;

with prescribed function R.x/ and specific internal energy e.D; b/ satisfying
the First Law of Thermodynamics,

de D
p

D2
dDCT db;

where p is pressure, T temperature.
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(3) Find the semidirect-product Lie–Poisson bracket for the Hamiltonian formulation
of these equations.

(4) Does this Lie–Poisson bracket have Casimirs? If so, what are the corresponding
symmetries and momentum maps?

32 Hamilton–Poincaré reduction and Lie–Poisson equations

In the Euler–Poincaré framework one starts with a Lagrangian defined on the tangent
bundle of a Lie group G

LW T G!R

and the dynamics is given by Euler–Lagrange equations arising from the variational
principle

ı

Z t1

t0

L.g; Pg/dt D 0

The Lagrangian L is taken left/right invariant and because of this property one can
reduce the problem obtaining a new system which is defined on the Lie algebra g of G ,
obtaining a new set of equations, the Euler–Poincaré equations, arising from a reduced
variational principle

ı

Z t1

t0

l.�/dt D 0

where l.�/ is the reduced lagrangian and � 2 g.

Problem 32.1 Is there a similar procedure for Hamiltonian systems? More precisely:
given a Hamiltonian function

H W T �G!R

defined on the cotangent bundle T �G , one wants to perform a similar procedure of
reduction and derive the equations of motion on the dual of the Lie algebra g� , provided
the Hamiltonian is again left/right invariant.

Hamilton–Poincaré reduction gives a positive answer to this problem, in the context of
variational principles as it is done in the Euler–Poincaré framework: we are going to
explain how this procedure is performed.

More in general, we will also consider advected quantities belonging to a vector space
V on which G acts, so that the Hamiltonian is written in this case as

H W T �G �V �!R
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(see Holm, Marsden and Ratiu [31; 32]). The space V is regarded here exactly the
same as in the Euler–Poincaré theory.
The equations of motion, that is, Hamilton’s equations, may be derived from the
following variational principle

ı

Z t1

t0

fhp.t/; Pg.t/i �Ha0
.g.t/;p.t//g dt D 0

as it is well know from ordinary classical mechanics ( Pg.t/ has to be considered as the
tangent vector to the curve g.t/, so that Pg.t/ 2 Tg.t/G ).

Problem 32.2 What happens if Ha0
is left/right invariant?

It turns out that in this case the whole function

F.g; Pg;p/D hp; Pgi �Ha0
.g;p/

is also invariant. The proof is straightforward once the action is specified (from now
on we consider only left invariance):

h .g; Pg;p/D .hg;TgLh Pg;T
�
hgLh�1 p/

where TgLhW TgG! ThgG is the tangent of the left translation map Lh g D hg 2G

at the point g and T �
hg

Lh�1 W T �g G!T �
hg

G is the dual of the map ThgLh�1 W ThgG!

TgG .

We now check that

hh p; h Pgi D hT �hgLh�1 p;TgLh Pgi

D hp;ThgLh�1 ıTgLh Pgi

D hp;Tg.Lh�1 ıLh/ Pgi D hp; Pgi

where the chain rule for the tangent map has been used. The same result holds for the
right action.
Due to this invariance property, one can write the variational principle as

ı

Z t1

t0

fh�; �i � h.�; a/g dt D 0

with

�.t/D g�1.t/p.t/ 2 g�; �.t/D g�1.t/ Pg.t/ 2 g; a.t/D g�1.t/ a0 2 V �

In particular a.t/ is the solution of

Pa.t/D��.t/ a0:
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where a Lie algebra action of g on V � is implicitly defined. In order to find the
equations of motion one calculates the variations

ı

Z t1

t0

fh�; �i � h.�; a/g dt D

Z t1

t0

�
hı�; �iC h�; ı�i �

�
ı�;

ıh

ı�

�
�

�
ıa;

ıh

ıa

��
dt

As in the Euler–Poincaré theorem, we use the following expressions for the variations

ı� D P�C Œ�; ��; ıaD��a

and using the definition of the diamond operator we findZ t1

t0

�
hı�; �iC h�; ı�i �

�
ı�;

ıh

ı�

�
�

�
ıa;

ıh

ıa

��
dt

D

Z t1

t0

��
ı�; � �

ıh

ı�

�
Ch�; P�C ad��iC

�
�a;

ıh

ıa

��
dt

D

Z t1

t0

��
ı�; � �

ıh

ı�

�
Ch� P�C ad���; �i �

�
ıh

ıa
˘ a; �

��
dt

so that

� D
ıh

ı�

and the equations of motion are

P�D ad����
ıh

ıa
˘ a

together with

PaD�
ıh

ı�
a:

This equations of motion written on the dual Lie algebra g are called Lie–Poisson
equations. We have now proven the following:

Theorem 32.3 (Hamilton–Poincaré reduction theorem) With the preceding notation,
the following statements are equivalent:

(1) With a0 held fixed, the variational principle

ı

Z t1

t0

fhp.t/; Pg.t/i �Ha0
.g.t/;p.t//g dt D 0

holds, for variations ıg.t/ of g.t/ vanishing at the endpoints.

(2) .g.t/;p.t// satisfies Hamilton’s equations for Ha0
on G.
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(3) The constrained variational principle

ı

Z t1

t0

fh�.t/; �.t/i � h.�.t/; a.t//g dt D 0

holds for g�V � , using variations of � and a of the form

ı� D P�C Œ�; ��; ıaD��a

where �.t/ 2 g vanishes at the endpoints

(4) The Lie–Poisson equations hold on g�V �

. P�; Pa/D

�
ad����

ıh

ıa
˘ a;�

ıh

ı�
a

�
Remark 32.4 More exactly one should start with an invariant Hamiltonian defined on

T �.G �V /D T �G �V �V �

However, as mentioned by Holm, Marsden and Ratiu [31; 32], such an approach turns
out to be equivalent to the treatment presented here.

Remark 32.5 (Legendre transform) Lie–Poisson equations may arise from the Euler–
Poincaré setting by Legendre transform

�D
ıl

ı�
:

If this is a diffeomorphism, then the Hamilton–Poincaré theorem is equivalent to the
Euler–Poincaré theorem.

Remark 32.6 (Lie–Poisson structure) One shows that g��V � is a Poisson manifold:

PF .�; a/D

�
P�;
ıF

ı�

�
C

�
Pa;
ıF

ıa

�
D

�
ad�ıH=ı���

ıH

ıa
˘ a;

ıF

ı�

�
�

�
ıH

ı�
a;
ıF

ıa

�
D

�
�;

�
ıH

ı�
;
ıF

ı�

��
�

�
ıH

ıa
˘ a;

ıF

ı�

�
�

�
ıH

ı�
a;
ıF

ıa

�
D�

�
�;

�
ıF

ı�
;
ıH

ı�

��
�

�
ıH

ıa
˘ a;

�
�

�
ıH

ı�
a;
ıF

ıa

�
D�

�
�;

�
ıF

ı�
;
ıH

ı�

��
�

�
a;
ıF

ı�

ıH

ıa
�
ıH

ı�

ıF

ıa

�
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In fact it can be easily shown that this structure

fF;H g.�; a/D�

�
�;

�
ıF

ı�
;
ıH

ı�

��
�

�
a;
ıF

ı�

ıH

ıa
�
ıH

ı�

ıF

ıa

�
satisfies the definition of a Poisson structure. In particular one finds that any dual Lie
algebra g is a Poisson manifold.

Note this structure has been found during lectures for the simpler case without advected
quantities.

Remark 32.7 (Right invariance) It can be shown that for a right invariant Hamiltonian
one has

fF;H g.�; a/DC

�
�;

�
ıF

ı�
;
ıH

ı�

��
C

�
a;
ıF

ı�

ıH

ıa
�
ıH

ı�

ıF

ıa

�
. P�; Pa/D�

�
ad����

ıh

ıa
˘ a;�

ıh

ı�
a

�
with all signs changed respect to the case of left invariance.

33 Two applications

33.1 The Vlasov equation

In plasma physics a main topic is collisionless particle dynamics, whose main equation,
the Vlasov equation, will be heuristically derived here. In this context a central role is
held by the distribution function on phase space f .q;p; t/, basically expressing the
particle density on phase space. Intended as a density one defines F WDf .q;p; t/ dq dp:
because of the conservation of particles, one writes the continuity equation just as one
does as in the context of fluid dynamics

PF Cr � .u F /D 0

where u is a “velocity” vector field on phase space, which is given by the single particle
motion

uD . Pq; Pp/ 2 X
�
T �RN

�
if we now assume that the generic single particle undergoes a Hamiltonian motion,
the Hamiltonian function h.q;p; t/ can be introduced directly by means of the single
particle Hamilton’s equations

. Pq; Pp/D
�
@h

@p
;�
@h

@q

�
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which shows that u has zero divergence, assuming the Hessian of h is symmetric.
Therefore, the Vlasov equation written in terms of the distribution function f .q;p; t/
is

Pf Cu � rf D 0

Expanding now the Hamiltonian h as the total single particle energy

h.q;p; t/D
1

2m
p2
CV .q;p; t/

one obtains the more common form

@f

@t
C

p
m
�
@f

@q
�
@V

@q
�
@f

@p
D 0

Problem 33.1 Can the Vlasov equation be cast in Lie–Poisson form?

We show here why the answer is yes. First we write the Vlasov equation in terms of a
generic single particle Hamiltonian h as

Pf Cff; hg D 0

where we recall the canonical Poisson bracket

ff; hg D
@f

@q
�
@h

@p
�
@f

@p
�
@h

@q

The main point of this discussion is that the canonical Poisson bracket provides the set
F.T �RN / of the functions on the phase space with a Lie algebra structure

Œk; h�D fk; hg

At this point, in order to look for a Lie–Poisson equation, one calculates the coadjoint
operator such that

hf; fh; kgi D hf; adhki D had�hf; ki D h�fh; f g; ki

where the last equality is justified by the Leibniz property of the Poisson bracket, with
the pairing defined as

hf;gi D

Z
f g dqdp:

In conclusion, the argument above shows that the Vlasov equation can in fact be written
in the Lie–Poisson form

Pf C ad�h f D 0
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33.2 Ideal barotropic compressible fluids

The reduced Lagrangian for ideal compressible fluids is written as

l.u;D/D
Z

D

2
juj2�De.D/ dx

where u2X.M�R3/ is tangential on the boundary @M and D is the advected density,
which satisfies the continuity equation

@tDCLuD D 0:

Moreover, the internal energy satisfies the barotropic First Law of Thermodynamics

de D�p.D/d.D�1/D
p.D/

D2
dD

for the pressure p.D/. The “reduced” Legendre transform on this Lie algebra X.R3/

is given by
mDDu

and the Hamiltonian is then written as

h.m;D/D hm;ui � l.u;D/

that is

h.m;D/D
Z

1

2D
jmj2 CDe.D/ dx

The Lie–Poisson equations in this case are as from the general theory

@t mD�ad�ıh=ım m�
ıh

ıD
˘D

@tD D�Lıh=ım D

Earlier we found that the coadjoint action is given by the Lie derivative. On the other
hand we may calculate the expression of the diamond operation from its definition�

ıh

ıD
;�£�D

�
D

�
ıh

ıD
˘D; �

�
to be �

ıh

ıD
;� div D�

�
D

�
Dr

ıh

ıD
; �

�
Therefore, we have

ıh

ıD
˘D DDr

ıh

ıD
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where

ıh=ıD D�
jmj2

2D2
C

�
eC

p

D

�
Substituting into the momentum equation and using the First Law to find d.eCp=D/D

.1=D/dp yields
@t mD�Lu m�rp

Upon expanding the Lie derivative for the momentum density m and using the continuity
equation for the density, this quickly becomes

@t uD�u�ru �
1

D
rp

which is Euler’s equation for a barotropic fluid.

33.3 Euler’s equations for ideal incompressible fluid motion

The barotropic equations recover Euler’s equations for ideal incompressible fluid motion
when the internal energy in the reduced Lagrangian for ideal compressible fluids is
replaced by the constraint D D 1, as

l.u;D/D
Z

D

2
juj2�p.D� 1/ dx

where again u2X.M�R3/ is tangential on the boundary @M and the advected density
D satisfies the continuity equation,

@tDC div DuD 0:

This equation enforces incompressibility div uD 0 when evaluated on the constraint
D D 1. The pressure p is now a Lagrange multiplier, which is determined by the
condition that incompressibility be preserved by the dynamics.
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