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Lectures on Poisson groupoids

CAMILLE LAURENT-GENGOUX

MATHIEU STIÉNON

PING XU

In these lecture notes, we give a quick account of the theory of Poisson groupoids
and Lie bialgebroids. In particular, we discuss the universal lifting theorem and its
applications including integration of quasi-Lie bialgebroids, integration of Poisson
Nijenhuis structures and Alekseev and Kosmann-Schwarzbach’s theory of D=G –
momentum maps.
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1 Introduction

These are the lecture notes for a mini-course given by the third author at ICTP Trieste
in July 2005. The purpose of the mini-course was to give a quick account of the theory
of Poisson groupoids in Poisson geometry. There are two important particular classes
of Poisson groupoids: Poisson groups are one, the so-called symplectic groupoids are
another. They correspond to two extreme cases.

Poisson groups are Lie groups which admit compatible Poisson structures. Poisson
groups were introduced by Drinfeld [11; 10] as classical counterparts of quantum
groups (see Chari and Pressley [6]) and studied by Semenov-Tian-Shansky [35], Lu–
Weinstein [29] and many others (see [6] for references). These structures have played
an important role in the study of integrable systems [35].

The infinitesimal analogues of Poisson groups are Lie bialgebras. A Lie bialgebra
is a pair of Lie algebras .g; g�/ satisfying the following compatibility condition: the
cobracket ıW g!^2g, that is, the map dual to the Lie bracket on g� , must be a Lie
algebra 1–cocycle. The Jacobi identity on g� is equivalent, through dualization, to
requiring that ı2 D 0. Here we extend the linear operator ıW g!^2g to a degree 1
derivation ^�g!^�C1g in a natural way. Indeed for a Lie algebra g, the Lie bracket
on g extends naturally to a graded Lie bracket on ^�g so that .^�g;^; Œ�; ��/ is a
Gerstenhaber algebra. Using this terminology, a Lie algebra is just a differential
Gerstenhaber algebra .^�g;^; Œ�; ��; ı/ (see Kosmann-Schwarzbach [17]). A drawback
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of this definition is that it does not seem obvious that the roles of g and g� are
symmetric. A simple way to get around this problem is to view this differential
Gerstenhaber algebra as one part of Lecomte–Roger and Kosmann-Schwarzbach’s
big bracket structure [17]. However, a great advantage of the cobracket viewpoint is
that the Drinfeld correspondence between Lie bialgebras and Poisson groups [11; 10]
becomes much more transparent. Namely, at the level of the integrating Lie group G ,
the cobracket differential ıW ^�g!^�C1g integrates to a multiplicative bivector field
� 2X2.G/, and the relation ı2D 0 is equivalent to Œ�; ��D 0. In other words, .G; �/
is a Poisson group.

Two decades ago, motivated by the quantization problem of Poisson manifolds, Kara-
sev [16], Weinstein [39] and later Zakrzewski [46; 47] introduced the notion of sym-
plectic groupoids. Symplectic groupoids are Lie groupoids equipped with compatible
symplectic structures. In a certain sense, they are semi-quantum counterparts of Poisson
structures. If one thinks of Poisson manifolds as non-linear Lie algebras, then symplectic
groupoids serve as analogues of “non-linear Lie groups”. And their corresponding
(convolution) algebras give rise to quantizations of the underlying Poisson structures
(see Weinstein [41]). The precise link between quantization of Poisson manifolds and
symplectic groupoids was clarified only very recently by Cattaneo–Felder [4; 3].

The existence of (local) symplectic groupoids gives an affirmative answer to a classical
question: Does every Poisson manifold admit a symplectic realization? A symplectic
realization of a Poisson manifold .M; �/ consists of a pair .X; ˆ/, where X is a
symplectic manifold and ˆW X!M is a Poisson map which is a surjective submersion.
Hence, a symplectic realization .X; ˆ/ amounts to embedding the Poisson algebra
C1.M / as a Poisson subalgebra of the “symplectic algebra” C1.X /. In other words,
a symplectic realization of a Poisson manifold M desingularizes the Poisson structure.
We refer to Laurent-Gengoux [20] for a detailed study of this topic. Clearly, symplectic
realizations are by no means unique. The question of finding symplectic realizations
of a Poisson manifolds can be traced back to Lie [23], who in fact proved the local
existence of such a realization for regular Poisson structures. The local existence for
general Poisson manifolds was obtained by Weinstein [38] using the splitting theorem.
In 1987, Karasev [16] and Weinstein [39] independently proved the existence of a
global symplectic realization for any Poisson manifold. Strikingly, they discovered that
among all such realizations, there exists a distinguished one which admits automatically
a local groupoid structure compatible, in a certain sense, with the symplectic structure.
The global form of this notion is what is now called a symplectic groupoid. It is thus
natural to explore why groupoid and symplectic structures arise simultaneously in such
a striking manner from a Poisson manifold.
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In 1988, Weinstein introduced the notion of Poisson groupoids, unifying both Poisson
groups and symplectic groupoids under the same umbrella [40]. It was thus tempting
to develop an analogue to Drinfeld’s theory for Poisson groupoids, which in turn
could be used to study symplectic groupoids. In 1994, Mackenzie and the third
author discovered the infinitesimal counterparts of Poisson groupoids, which are called
Lie bialgebroids [30]. They can be simply characterized as differential Gerstenhaber
algebras of the form .�.^�A/;^; Œ�; ��; ı/, where A is a vector bundle (see Xu [43]). The
integrability of Lie bialgebroids was proved by Mackenzie and Xu [32] using highly non-
trivial techniques. Given a Poisson manifold .M; �/, its cotangent bundle T �M carries
a natural Lie algebroid structure and .T �M;TM / is indeed naturally a Lie bialgebroid.
Its corresponding differential Gerstenhaber algebra is .��.M /;^; Œ�; ��; dDR/. If ��
M is the ˛–connected and ˛–simply connected Lie groupoid integrating the Lie
algebroid structure on T �M , then � �M is a Poisson groupoid and the Poisson
structure on � resulting from the integration of dDR turns out to be non-degenerate.
Thus one obtains a symplectic groupoid. We refer the reader to Crainic–Fernandes [8;
9] for integrability criteria for Poisson manifolds. Another proof of the existence of
symplectic groupoids was recently obtained by Cattaneo–Felder [4] using the Poisson
sigma model.

Quasi-Lie bialgebroids are the infinitesimal objects associated to quasi-Poisson group-
oids. They were introduced by Roytenberg [34] as a generalization of Drinfeld’s
quasi-Lie bialgebras [12]. Twisted Poisson structures (see Ševera and Weinstein [36])
are examples of quasi-Lie bialgebroids [34]. It is thus a natural question to ask whether
every quasi-Lie bialgebroid integrates to a quasi-Poisson groupoid. On the other hand,
quasi-Poisson groupoids also arise naturally in the study of generalized momentum
map theory. In [1], Alekseev and Kosmann-Schwarzbach introduced quasi-Poisson
spaces with D=G –momentum maps, which are generalizations of quasi-Hamiltonian
spaces with group valued momentum maps [2] (see also Laurent-Gengoux and Xu [21;
45] from the view point of Hamiltonian � –spaces). It turns out that these quasi-Poisson
spaces are exactly Hamiltonian � –spaces, where � denotes a quasi-Poisson groupoid.
A primordial tool for integrating quasi-Lie bialgebroids is the so called universal lifting
theorem: for an ˛–connected and ˛–simply connected Lie groupoid � there is a
natural isomorphism between the graded Lie algebra of multiplicative multi-vector
fields on � and the the graded Lie algebra of multi-differentials on its Lie algebroid
A – see Section 4.1 for the precise definition of multi-differentials. Many well-known
integration theorems (in particular of Lie bialgebroids and of twisted Poisson manifolds)
are easy consequences of this universal lifting theorem. This is also the viewpoint
we take in these notes. In particular, we discuss the integration problem of Poisson
Nijenhuis structures as an application.
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The notes are organized as follows. In Section 2, we give a quick account of Poisson
group and Lie bialgebra theory. In Section 3, we introduce Poisson groupoids and Lie
bialgebroids. Section 4 is devoted to the universal lifting theorem and its applications
including quasi-Poisson groupoids and integration of Poisson quasi-Nijenhuis structures.

Acknowledgments. We would like to thank the organizers of the ICTP program on
“Poisson geometry” for organizing such a wonderful event.

2 Poisson groups and Lie bialgebras

2.1 From Poisson groups to Lie bialgebras

Let us recall the definition of Poisson groups.

Definition 2.1 (Drinfeld [11; 10]) A Poisson group is a Lie group endowed with a
Poisson structure � 2X2.G/ such that the multiplication mW G �G!G is a Poisson
map, where G �G is equipped with the product Poisson structure.

Example 2.2 The reader may have in mind the following two trivial examples.

(1) For any Lie algebra g, its dual (g�;C) is a Poisson group where (i) the Lie
group structure is given by the addition, and (ii) the Poisson structure is the
linear Poisson structure, that is, the Lie–Poisson structure.

(2) Any Lie group G is a Poisson group with respect to the trivial Poisson bracket.

To impose that mW G �G!G is a Poisson map is equivalent to impose either of the
following two conditions:

(1) for all g; h 2G , m�.�g; �h/D �gh , or

(2) for all g; h 2G , .Rh/��gC .Lg/��h D �gh .

(Here �p 2 ^
2TpG stands for the value of the bivector field at the point p 2G .)

This leads to the following definition:

Definition 2.3 (Lu [27]) A bivector field � on G is said to be multiplicative if

(1) .Rh/��gC .Lg/��h D �gh; for all g; h 2G:

In particular, � 2 X2.G/ endows G with a structure of Poisson group if and only if
(i) the identity Œ�; ��D 0 holds and (ii) � is multiplicative.
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Remark 2.4 Any multiplicative bivector � vanishes in g D 1, where 1 is the unit
element of the group G . This can be seen from equation (1) by letting g D hD 1.

It is sometimes convenient to consider z�.g/D .Rg/
�1
� �g rather that � itself. Note

that z�.g/ is, by construction, a smooth map from G to ^2g (where, implicitly, we
have identified the Lie algebra g with the tangent space at g D 1 of the Lie group G ).
When written with the help of z� , the condition .Rh/��gC .Lg/��h D �gh reads

.Rgh/
�1
� Œ.Rh/��gC .Lg/��h�D .Rgh/

�1
� �gh

z�.g/CAdg z�.h/D z�.gh/:

That is, z� W G ! ^2g is a Lie group 1–cocycle, where G acts on ^2g by adjoint
action.

Now, differentiating a Lie group 1–cocycle at the identity, one gets a Lie algebra 1–
cocycle g!^2g. For example, the 1–cocycle ıW g!^2g associated to the Poisson
structure z� is given by

ı.X /D
d

dt

ˇ̌̌̌
tD0

z�
�

exp.tX /
�
D

d

dt

ˇ̌̌̌
tD0

.Rexp.�tX //��exp.tX /

D .��t /���t .1/ D
�
L �

X
�
�ˇ̌

gD1
;

where X denotes any element of g,
 �
X is the left invariant vector field on G corre-

sponding to X and �t is its flow.

We have therefore determined L �
X
� at g D 1. We now try to compute it at other

points.

For all g 2G , since � is multiplicative, we have, for all X 2 g,

�g exp.tX / D
�
Rexp.tX /

�
�
�gC .Lg/��exp.tX /

.Rexp.�tX //��g exp.tX / D �gC .Rexp.�tX //�.Lg/��exp.tX /

.��t /���t .g/ D �gCLg.��t /���t .1/:

Taking the derivative of the previous identity at t D 0, one obtains�
L �

X
�
�ˇ̌

g
D .Lg/�L �

X
�j1 D .Lg/�ı.X /;

which implies that L �
X
� is left invariant. For all Y 2 ^kg, we denote by

 �
Y (resp.

�!
Y ) the left (resp. right) invariant k –vector field on G equal to Y at g D 1. Then we
obtain the formula

L �
X
� D
 ���
ı.X /
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and, for similar reasons

L�!
X
� D
���!
ı.X /:

We can now extend ıW g!^2g to a derivation of degree C1 of the graded commutative
associative algebra ^�g that we denote by the same symbol ıW ^�g!^�C1g.

Lemma 2.5 (1) ı2 D 0

(2) ıŒX;Y �D ŒıX;Y �C ŒX; ıY �; for all X;Y 2 g

Proof (1) For all X 2 g,� �
X ; Œ�; ��

�
D 2

�� �
X ; �

�
; �
�
D 2

� ���
ı.X /; �

�
D 2
 ����

ı2.X /:

But Œ�; ��D 0, hence ı2.X /D 0.

(2) This follows from the graded Jacobi identity:� ����
ŒX;Y �; �

�
D
�� �

X ;
 �
Y
�
; �
�
D
�� �

X ; �
�
;
 �
Y
�
C
� �
X ;
�
�;
 �
Y
��
:

The infinitesimal object associated to a Poisson–Lie group is therefore as defined below.

Definition 2.6 A Lie bialgebra is a Lie algebra g equipped with a degree 1–derivation
ı of the graded commutative associative algebra ^�g such that

(1) ı.ŒX;Y �/D Œı.X /;Y �C ŒX; ı.Y /� and

(2) ı2 D 0.

Remark 2.7 Recall that a Gerstenhaber algebra AD˚i2NAi is a graded commu-
tative algebra such that AD˚i2NA.i/ (where A.i/ DAiC1 ) is a graded Lie algebra
with the compatibility condition

Œa; bc�D Œa; b�cC .�1/.jajC1/jbjbŒa; c�

for any a 2Ajaj , b 2Ajbj and c 2Ajcj .

A differential Gerstenhaber algebra is a Gerstenhaber algebra equipped with a degree
1 derivation of square zero and compatible with respect to both brackets (see Xu [43]).

The Lie bracket on g can be extended to a graded Lie bracket on ^�g so as to make
.^�g;^; Œ�; ��/ a Gerstenhaber algebra. Using this terminology, a Lie bialgebra is nothing
else than a differential Gerstenhaber algebra .^�g;^; Œ�; ��; ı/.
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Given a Lie bialgebra .g; ı/, let us consider the dual ı�W ^2g�! g� of the derivation
ı .

Let Œ�; ��g� D ı�.� ^ �/ for all �; � 2 g� . The bilinear map .�; �/! Œ�; ��g� is skew-
symmetric and

ı2
D 0 ” Œ�; ��g� satisfies the Jacobi identity

Therefore, the dual g� of a Lie bialgebra .g; ı/ is a Lie algebra again (which justifies
the name). Conversely, a Lie bialgebra can be described again as follows:

Proposition 2.8 (See, for instance, Chari and Pressley [6, Chapter 1]) A Lie bialgebra
is equivalent to a pair of Lie algebras .g; g�/ compatible in the following sense: the
coadjoint action of g on g� is a derivation of the bracket Œ�; ��g� , that is,

ad�X Œ˛; ˇ�g� D Œad�X ˛; ˇ�g� C Œ˛; ad�X ˇ�g� for all X 2 g; ˛; ˇ 2 g� :

Remark 2.9 Note that Lie bialgebras are in duality: namely .g; g�/ is a Lie bialgebra
if and only if .g�; g/ is a Lie bialgebra. This picture can be seen more naturally using
Manin triples, which will be discussed in the next lecture.

2.2 r –matrices

We now turn our attention to a particular class of Lie bialgebras, that is, those coming
from r –matrices.

We start from a Lie algebra g. Assume that we are given an element r 2 ^2g. Then
define ı by ı.X /D Œr;X � for all X 2^�g. As can easily be checked, ı is a derivation
of ^�g. Note that, in terms of (Chevalley–Eilenberg) cohomology, ı is the coboundary
of r 2 ^2g.

The condition ı2.X / D 0 is equivalent to the relation ŒX; Œr; r �� D 0, which itself
holds if, and only if, Œr; r � is ad–invariant. Conversely, any r 2 ^2g such that Œr; r � is
ad–invariant defines a Lie bialgebra. Such an r is called an r –matrix. If moreover
Œr; r �D 0, then this Lie bialgebra is called triangular.

Here are two well-known examples of r –matrices.

Example 2.10 (Drinfeld [11; 10], Semenov-Tian-Shansky [35] and Chari–Pressley [6])

(1) Consider a semi-simple Lie algebra g of rank k over C and a Cartan sub-algebra
h. Let fe˛; f˛ j ˛ 2 �Cg [ fhi j i D 1; : : : ; kg be a Chevalley basis. Then
r D

P
˛2�C

�˛e˛ ^f˛ , where �˛ D 1
.e˛;f˛/

, is an r –matrix.
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(2) Consider now a compact semi-simple Lie algebra k over R. Let fe˛; f˛ j ˛ 2
�Cg[fhi j i D 1; : : : ; kg be a Chevalley basis (over C ) of the complexified Lie
algebra gD kC , that we assume to be constructed so that the family fX˛;Y˛ j ˛2
�Cg[ fti j i D 1; : : : ; kg is a basis of k (over R) where8̂̂<̂

:̂
X˛ D e˛ �f˛ for all ˛ 2�C

Y˛ D
p
�1.e˛Cf˛/ for all ˛ 2�C

ti D
p
�1hi for all i 2 f1; : : : ; kg:

Let
yr D
p
�1 r D

p
�1

X
˛2�C

�˛e˛ ^f˛:

Then yr is, according to the first example above, an r –matrix of gD kC . However,
by a direct computation, one checks that

yr D 1
2

X
˛2�C

�˛X˛ ^Y˛

so that yr is indeed an element of ^2k, and therefore is an r –matrix on k. Hence,
it defines a Lie bialgebra structure on the real Lie algebra k.

2.3 Lie bialgebras and simply-connected Lie groups

We have already explained how to get a Lie bialgebra from a Poisson group. The
inverse is true as well when the Lie group is connected and simply-connected.

Theorem 2.11 (Drinfeld [11]) Assume that G is a connected and simply-connected
Lie group. Then there exists a one-to-one correspondence between Poisson groups
.G; �/ and Lie bialgebras .g; ı/.

Example 2.12 In particular, for a Lie bialgebra coming from an r –matrix r , the
corresponding Poisson structure on G is the bivector field  �r ��!r .

Applying the theorem above to the previous two examples, we are lead to

Proposition 2.13

(1) (Drinfeld [11; 10] and Chari–Pressley [6]) Any complex semi-simple Lie group
admits a natural (complex) Poisson group structure.

(2) (Levendorskiĭ–Soibelman [22], Lu–Weinstein[29]) Any compact semi-simple
Lie group admits a natural Poisson group structure, called the Bruhat–Poisson
structure.
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Remark 2.14 Poisson groups come in pairs in the following sense. Given a Poisson
group .G; �/, let .g; g�/ be its Lie bialgebra, then we know that .g�; g/ is also a Lie
bialgebra which gives rise to a Poisson group denoted .G�; � 0/.

Example 2.15 (Lu–Weinstein [29], Lu [27]) Since any element g of the Lie group
G D SU.2/ is of the form

g D

�
˛ ˇ

� x̌ x̨

�
;

we can define complex coordinate functions ˛ and ˇ on G . Note that these coordinates
are not “free” since j˛j2Cjˇj2 D 1. The Bruhat–Poisson structure is given by

f˛; x̨g D 2
p
�1ˇ x̌ f˛; ˇg D �

p
�1˛ˇ

f˛; x̌g D �
p
�1˛ x̌ fˇ; x̌g D 0:

Example 2.16 Below are two examples of duals of Poisson groups.

(1) For the Poisson group G D SU.2/ equipped with the Bruhat–Poisson structure,
the dual group is (see Lu–Weinstein [29] and Lu [27])

G� D SB.2/'

8<:
�

a bC
p
�1c

0 1
a

�ˇ̌̌̌
b; c 2R; a 2RC

9=;
Using these coordinates, the Poisson structure on G� is given explicitly by

fb; cg D a2
�

1

a2
; fa; bg D ab; fa; cg D ac:

(2) For the Poisson group G D SLC.n/, equipped with the Poisson bracket con-
structed in Example 2.10, the dual group is

G� D BC ?B� '

8<: .A;B/
ˇ̌̌̌
ˇ̌ A upper triangular with determinant 1,

B lower triangular with determinant 1;

such that diag.A/ � diag.B/D 1

9=;
(see Semenov-Tian-Shansky [35]).

2.4 Poisson group actions

Definition 2.17 (Semenov-Tian-Shansky [35]) Let G be a Poisson group. Assume
that G acts on a Poisson manifold X . The action is said to be a Poisson action if the
action map

G �X !X W .g;x/ 7! g �x

is a Poisson map, where G �X is equipped with the product Poisson structure.
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Warning 2.18 Note that in general, this definition does not imply that, for a fixed g

in G , the action x 7! g � x is a Poisson automorphism of X . The reader should not
confuse Poisson actions with actions preserving the Poisson structure! Note, however,
that when the Poisson structure on the Lie group G is the trivial one, then a Poisson
action is an action of G on X which preserves the Poisson structure.

Example 2.19 Any Lie group G acts on itself by left translations. If G is a Poisson
group, then this action is a Poisson action.

Proposition 2.20 (Lu [27]) Let G be a Poisson group with Lie bialgebra .g; ı/.
Assume that G acts on a manifold X and let �W g!X1.X / be the infinitesimal action.
The action of G on X is a Poisson action if and only if the following diagram commutes

g
� //

ı
��

X.X /

Œ�;��
��

^2g �
// X2.X /

In terms of Gerstenhaber algebras, the commutativity of the previous diagram has a
clear meaning: it simply means that �W ^�g! X�.X / is a morphism of differential
Gerstenhaber algebra. In other words, the natural map T �X ! g� induced by the
infinitesimal g–action is a Lie bialgebroid morphism (see Xu [42]).

Example 2.21 For the dual SLC.3/
� D BC ?B� of G D SLC.3/. Consider the

Poisson manifold

X D

��
1 x y
0 1 z
0 0 1

� ˇ̌̌̌
x;y; z 2C

�
equipped with the Poisson bracket

fx;yg D xy � 2z fy; zg D yz� 2x fz;xg D zx� 2y

(see Dubrovin [13]). The Lie group G� D BC ?B� acts on X by

.A;B/ �U 7!AUBT

with .A;B/ 2 BC ?B� ' G� and U 2 X . This action turns to be a Poisson action
(see Xu [44]).
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3 Poisson groupoids and Lie bialgebroids

3.1 Poisson and symplectic groupoids

In this section, we first introduce the notion of Poisson groupoids. The notion of
Poisson groupoids was introduced by Weinstein [40] as a unification of Poisson groups
and symplectic groupoids:

Poisson groupoids

(
Poisson groups

symplectic groupoids

Let � � M be a Lie groupoid. A Poisson groupoid structure on � should be a
multiplicative Poisson structure on � .

To make this more precise, recall that in the group case, the following are equivalent

� is multiplicative

” mW G �G!G is a Poisson map

” f.x;y;xy/jx;y 2Gg �G �G � SG is coisotropic

where SG denotes .G;��/. This motivates the following definition.

Definition 3.1 (Weinstein [40]) A groupoid � endowed with a Poisson structure �
is said to be a Poisson groupoid if the graph of the groupoid multiplication

ƒD f.x;y;xy/j.x;y/ 2 �2 composable pairg � � �� � x�

is coisotropic. Here x� means that � is equipped with the opposite Poisson structure
�� .

Examples 3.2

(1) If P is a Poisson manifold, then P � xP � P is a Poisson groupoid (see
Weinstein [40]).

(2) Let A be the Lie algebroid of a Lie groupoid � and ƒ 2 �.^2A/ be an element
satisfying LX Œƒ;ƒ�D 0, for all X 2�.A/. Then � D

 �
ƒ�
�!
ƒ defines a Poisson

groupoid structure on � (see Liu–Xu [25]).

Definition 3.3 (Coste–Dazord–Weinstein [7]) A symplectic groupoid is a Poisson
groupoid .P �M; �/ such that � is non-degenerate. In other words, the graph ƒ of
the multiplication is a Lagrangian submanifold of � �� � x� .
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Examples 3.4

(1) The groupoid T �M �M with the canonical cotangent symplectic structure is
a symplectic groupoid.

(2) If G is a Lie group, then T �G�g� is a symplectic groupoid (see Coste, Dazord
and Weinstein [7]). Here the symplectic structure on T �G is the canonical
cotangent symplectic structure. The groupoid structure is as follows. Right
translations give an isomorphism between T �G and the transformation groupoid
G � g� where G acts on g� by coadjoint action.

(3) In general, if ��M is a Lie groupoid with Lie algebroid A, then T ���
A� is a symplectic groupoid. Here the groupoid structure can be described
as follows. Let ƒ � � � � � � denote the graph of the multiplication and
N �ƒ � T �� � T �� � T �� its conormal space. One shows that N �ƒ D

f.�; �; ı/j.�; �;�ı/ 2N �ƒg is the graph of a groupoid multiplication on T ��

with corresponding unit space isomorphic to A� ' N �M . This defines a
groupoid structure on T ���A� .

Symplectic groupoids were introduced by Karasev [16], Weinstein [39], and Za-
krzewski [46; 47] in their study of deformation quantization of Poisson manifolds.
Their relevance with the star products was shown by the work of Cattaneo–Felder [4;
3]. On the other hand, the existence of (local) symplectic groupoids solves a classical
question regarding symplectic realizations of Poisson manifolds (see Coste, Dazord and
Weinstein [7]), which can be described as follows. Given a Poisson manifold M , is it
possible to embed the Poisson algebra C1.M / into a Poisson subalgebra of C1.X /,
where X is a symplectic manifold? Note that according to Darboux theorem there exist
local coordinates .p1; : : : ;pk ; q1; : : : ; qk/ in which the Poisson bracket on C1.X /

has the following form: fpi ; qj g D ıij , fpi ;pj g D fqi ; qj g D 0. Hence locally this
amounts to finding independent functions ˆi.p1; : : : ;pk ; q1; : : : ; qk/, i D 1; : : : ; r

such that fˆi ; ĵ g D �ij .ˆ1; : : : ; ˆr /, where the left hand side stands for the Poisson
bracket in R2k with respect to the Darboux coordinates and

P
ij �ij

@
@xi

@
@xj

is the
Poisson tensor on M . This is exactly what Lie first investigated in 1890 under the
name of “Function groups” [23]. Let us give a precise definition below.

Definition 3.5 A symplectic realization of a Poisson manifold .M; �/ consists of a
pair .X; ˆ/, where X is a symplectic manifold and ˆW X !M is a Poisson map
which is a surjective submersion.

This leads to the following natural question.
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Question 3.6 Given a Poisson manifold, does there exist a symplectic realization?
And if so, is it unique?

The local existence of symplectic realizations was proved by Lie in the constant rank
case [23]. For a general Poisson manifold, it was proved by Weinstein [38] in 1983
using the splitting theorem.

It is clear that symplectic realizations of a given Poisson manifold are not unique.
The following Karasev–Weinstein theorem states that there exist a canonical global
symplectic realization for any Poisson manifold.

Theorem 3.7 (Karasev [16], Weinstein [39])

(1) Symplectic realizations exist globally for any Poisson manifold;

(2) Among all symplectic realizations, there exists a distinguished symplectic re-
alization, which admits a compatible local groupoid structure making it into a
symplectic local groupoid.

The original proofs are highly non-trivial. The idea was to use local symplectic
realizations and to patch them together. A different proof was recently obtained by
Cattaneo–Felder using Poisson sigma models [4].

Another approach due to Mackenzie and the third author is to consider integrations
of Lie bialgebroids [30; 32]. An advantage of this approach is that it clarifies why
symplectic and groupoid structures arise in the context of Poisson manifolds in such a
striking manner.

The following theorem gives an equivalent characterization of Poisson groupoids.

Theorem 3.8 (Xu [42]) Let

�
˛
�
ˇ

M

be a Lie groupoid. Let � 2 X2.�/ be a Poisson tensor. Then .�; �/ is a Poisson
groupoid if and only if all the following hold.

(1) For all .x;y/ 2 �2 ,

�.xy/DRY �.x/CLX�.y/�RY LX�.w/;

where w D ˇ.x/ D ˛.y/ and X;Y are (local) bisections through x and y

respectively.

(2) M is a coisotropic submanifold of �
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(3) For all x 2 � , ˛��.x/ and ˇ��.x/ only depend on the base points ˛.x/ and
ˇ.x/ respectively.

(4) For all ˛; ˇ 2 C1.M /, one has f˛�f; ˇ�gg D 0 for all f;g 2 C1.M /.

(5) The vector field Xˇ�f is left invariant for all f 2 C1.M /.

Remark 3.9 If M is a point, then (2) implies that �.1/D 0, which together with (1)
implies the multiplicativity condition. It is easy to see that (3)–(5) are automatically
satisfied. Thus one obtains the characterization of a Poisson group: a Lie group
equipped with a multiplicative Poisson tensor.

3.2 Lie bialgebroids

In order to study the infinitesimal counterparts of Poisson groupoids, we follow the
situation of Poisson groups. As a consequence of Theorem 3.8, we have the following:

Corollary 3.10 Given a Poisson groupoid .��M; �/, we have

(1)
� �
X ; �

�
is a left invariant tensor, for all X 2 �.A/, and

(2) �M WD ˛�� (or �ˇ�� ) is a Poisson tensor on M .

Proof For all X 2 �.A/, take �t D exp.tX / 2 U.�/ (U.�/ being the space of
bisections of � ), ut D .exp tX /.u/ and x 2 � with ˇ.x/D u. In other words, ut is
the integral curve of

 �
X originating from u. Let K be any local bisection through x .

Applying Theorem 3.8(1), one gets

�.xut /DR�t
�.x/CLK�.ut /�LK R�t

�.u/

H) R
�t
�1�.xut /D �.x/CLK R

�t
�1�.ut /�LK�.u/ 2 ^

2Tx�

and, differentiating with respect to t at 0,�
L �

X
�
�
.x/DLK

��
L �

X
�
�
.u/
�
:

This implies that L �
X
� is left invariant.

Now, we can introduce operators ıW �.^iA/! �.^iC1A/.

For i D 0,
C1.M /! �.A/W f 7!Xˇ�f D Œˇ

�f; ��:

For i D 1,
�.A/! �.^2A/W X 7!

 �
ıX D Œ

 �
X ; ��:

The following lemma can be easily verified.
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Lemma 3.11

(1) ı.fg/D gıf Cf ıg for all f;g 2 C1.M /

(2) ı.fX /D ıf ^X Cf ıX for all f 2 C1.M / and X 2 �.A/

(3) ıŒX;Y �D ŒıX;Y �C ŒX; ıY �, for all X;Y 2 �.A/

(4) ı2 D 0

Definition 3.12 A Lie bialgebroid is a Lie algebroid A equipped with a degree 1
derivation ı of the associative algebra .�.^�A/;^/ satisfying conditions (3) and (4)
of the previous lemma.

Exercise 3.13 Show that a Lie bialgebroid structure is equivalently characterized as a
degree 1 derivation ı of the Gerstenhaber algebra .�.^�A/;^; Œ; �/ such that ı2 D 0.
This is also called a differential Gerstenhaber algebra (see Xu [43]).

Remark 3.14 Given a Lie bialgebroid .A; ı/, there is a natural Lie algebroid structure
on A� defined as follows.

(1) The anchor map ��W A�! TM is given by

h���; f i D h�; ıf i for all f 2 C1.M /:

(2) The bracket Œ; � is given by

(2) hŒ�; ��;X i D .ıX /.�; �/C .���/ hX; �i � .���/ hX; �i ;

for all �; � 2 �.A�/ and X 2 �.A/.

Indeed, equivalently, a Lie bialgebroid is a pair of Lie algebroids .A;A�/ such that

ıŒX;Y �D ŒıX;Y �C ŒX; ıY �; 8X;Y 2 �.A/;

where ıW �.A/! �.^2A/ is defined by the above equation (2).

Remark 3.15 If .A;A�/ is a Lie bialgebroid, then .A�;A/ is also a Lie bialgebroid,
called its dual.

Examples 3.16

(1) If � is a Poisson tensor on M , then A D TM with ı D Œ�; ��W X�.M / !

X�C1.M / is a Lie bialgebroid. In this case, A� D T �M is the canonical
cotangent Lie algebroid (see Mackenzie [30]).

Geometry & Topology Monographs, Volume 17 (2011)



488 Camille Laurent-Gengoux, Mathieu Stiénon and Ping Xu

(2) Dual to the previous one: A D T �M , the cotangent Lie algebroid of a Pois-
son manifold .M; �/, together with ı� D dDRW �

�.M / ! ��C1.M / (see
Mackenzie [30]).

(3) Coboundary Lie bialgebroid: Take A a Lie algebroid admitting some ƒ 2
�.^2A/ satisfying

LX Œƒ;ƒ�D 0;8X 2 �.A/:

Let ı D Œƒ; ��W �.^�A/! �.^�C1A/. Then .A; ı/ defines a Lie bialgebroid
(see Liu–Xu [25]).

(4) Dynamical r –matrix: (See Etingof–Varchenko [14] and Liu–Xu [26].) Consider
the Lie algebroid AD T h�˚ g! h� where h is an Abelian subalgebra of g

and the Lie algebroid structure on A is the product Lie algebroid. Choose a map
r W h�!^2g and consider it as a element ƒ of �.^2A/. Then LX Œƒ;ƒ�D 0

if and only if X
hi ^

dr
d�i
C

1
2
Œr; r � 2 .^3g/

g

is a constant function over h� . Here fh1; : : : ; hkg is a basis of h and .�1; : : : ; �k/

are the dual coordinates on h� .
In particular, if g is a simple Lie algebra and h� g is a Cartan subalgebra, one
can take

r.�/D
X
˛2�C

�˛

.˛; �/
e˛ ^f˛ or r.�/D

X
˛2�C

�˛ coth .˛; �/e˛ ^f˛;

where .e˛; f˛; hi/ is a Chevalley basis.

4 Universal lifting theorem and quasi-Poisson groupoids

The inverse procedure, that is, integration of Lie bialgebroids to Poisson groupoids, is
much more tricky than the case of groups. This question was completely solved by
Mackenzie and Xu [32]. In this section, we will investigate the integration problem from
a more general perspective point of view. In particular, we show that the integration
problem indeed follows from a general principle – the “universal lifting theorem” – in
the theory of Lie groupoids, which in turn implies several other integration results.

4.1 k-differentials

Let A!M be a Lie algebroid. Then .˚�.^�A/;^; Œ�; ��/ is a Gerstenhaber algebra.
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Definition 4.1 (Iglesias Ponte, Laurent-Gengoux and Xu [15]) A k-differential
on a Lie algebroid A is a degree k � 1 derivation of the Gerstenhaber algebra
.˚�.^�A/;^; Œ�; ��/. That is, a linear operator

ıW �
�
^
�A
�
! �

�
^
�Ck�1 A

�
satisfying

ı.P ^Q/D .ıP /^QC .�1/p.k�1/P ^ ıQ;

ıJP;QKD JıP;QKC .�1/.p�1/.k�1/JP; ıQK;

for all P 2 �.^pA/ and Q 2 �.^qA/ .

The space of all multi-differentials AD˚k�0Ak becomes a graded Lie algebra under
the graded commutator:

Œı1; ı2�D ı1 ıı2� .�1/.k�1/.l�1/ı2 ıı1;

if ı1 2Ak and ı2 2Al .

The following result can be easily checked directly

Lemma 4.2 A k differential on a Lie algebroid A is equivalent to a pair of linear
maps: ıW C1.M /! �.^k�1A/ and ıW �.A/! �.^kA/ satisfying

(1) ı.fg/D g.ıf /Cf .ıg/, for all f;g 2 C1.M /;

(2) ı.fX /D .ıf /^X Cf ıX , for all f 2 C1.M / and X 2 �.A/;

(3) ıJX;Y KD JıX;Y KC JX; ıY K, for all X;Y 2 �.A/.

Below is a list of basic examples.

Example 4.3 When A is a Lie algebra g, then a k-differential ” ıW g!^kg is a
Lie algebra 1–cocycle with respect to the adjoint action.

Example 4.4 0–differential ” � 2 �.A�/ such that dA� D 0 is a Lie algebroid
1–cocycle.

Example 4.5 1–differential ” infinitesimal of Lie algebroid automorphisms (see
Mackenzie and Xu [31]).

Example 4.6 P 2 �.^kA/, then ad.P /D JP; �K is clearly a k –differential, which is
called the coboundary k –differential associated to P .

Example 4.7 A Lie bialgebroid ” a 2–differential of square 0 on a Lie algebroid
A.
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4.2 Multiplicative k–vector fields on a Lie groupoid �

Let ��M be a Lie groupoid and …2Xk.�/. Define F…2C1.T ����
.k/
� � ���T ��/

by
F….�

1; : : : ; �k/D….�1; : : : ; �k/

Definition 4.8 (Iglesias Ponte, Laurent-Gengoux and Xu [15]) … 2 Xk.�/ is multi-
plicative if and only if F… is a 1–cocycle with respect to the groupoid

T �� ��
.k/
� � � �� T ���A� �M

.k/
� � � �M A�:

Remark 4.9 … is multiplicative ” the graph of multiplication ƒ� � �� �� is
coisotropic with respect to …˚…˚ .�1/k�1….

Example 4.10 If P 2 �.^kA/, then
�!
P �
 �
P is multiplicative.

By Xk
mult.�/ we denote the space of all multiplicative k-vector fields on � . And

Xmult.�/D˚kX
k
mult.�/.

Proposition 4.11 The vector space Xmult.�/ is closed under the Schouten brackets
and therefore is a graded Lie algebra.

The main result of this section is the following

Universal Lifting Theorem (Iglesias Ponte, Laurent-Gengoux and Xu [15]) If � is
˛–connected and ˛–simply connected, then

Xmult.�/ŠA

as graded Lie algebras.

Sketch of proof Given a … 2 Xk
mult.�/. Using the coisotropic condition, one can

prove that for any f 2C1.M / and X 2�.A/, Œˇ�f;…� and
� �
X ;…

�
are left invariant.

Define C1.M /
ı…
�!�.^k�1A/ and �.A/

ı…
�!�.^kA/ by

 ��
ı…f D Œˇ

�f;…�;
 ���
ı…X D Œ

 �
X ;…�

One easily checks that

(1) ı….fg/D g.ı…f /Cf .ı…g/ for all f;g 2 C1.M /.

(2) ı….fX /D .ı…f /^X Cf ı…X for all f 2 C1.M / and X 2 �.A/.

(3) ı…JX;Y KD Jı…X;Y KC JX; ı…Y K for all X;Y 2 �.A/.
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Thus ı… is a k –differential. Moreover the relation

Œı…; ı…0 �D ıŒ…;…0�

implies that ˆW …! ı… is a Lie algebra homomorphism.

It is simple to check that ˆ is injective. This is because

ı… D 0”L�!
X
…D 0 and …jM D 0

”…D 0:

The surjectivity needs more work. The main idea is that when � is ˛–connected and
˛–simply connected

� Š P .A/=�

where P .A/ stands for the space of A–paths and � is an equivalence relation on
A–paths called homotopy, see Crainic–Fernandes [8] for more details. The quotient
space P .A/= � can be considered as the moduli space of flat connections over the
interval Œ0; 1� with the “structure group” being the groupoid � . Then

k-differential on A

H) linear k-vector field on A

H) k-vector field on the space of paths Œ0; 1�!A

H) descends to a well-defined k-vector field on P .A/=�

which completes the sketch proof.

Example 4.12 In the coboundary case, the correspondence between k-differentials
and k-vector fields on � is given by

ı D Œƒ; ��; ƒ 2 �.^�A/  ! …D
 �
ƒ �
�!
ƒ:

4.3 Quasi-Poisson groupoids

Definition 4.13 (Roytenberg [34]) A quasi-Lie bialgebroid consists of a 2–differential
ı on a Lie algebroid A such that ı2 D Œ�; �� for some � 2 �.^3A/ satisfying ı� D 0.

Example 4.14 (Quasi-Lie bialgebroids associated to twisted Poisson structures, see
Ševera–Weinstein [36] and Cattaneo–Xu [5]) Recall that a twisted Poisson manifold
[36] consists of a triple .M; �; !/, where � 2 X2.M / and � 2 �3.M / satisfy the
condition Œ�; ��D .^3�]/� and d� D 0.
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Let T �M be equipped with the following Lie algebroid structure: the bracket on
�1.M / is given by

Œ�; ��D L�]���L�]�� � d�.�; �/C�.�]�; �]�; �/; for all �; � 2�1.M /I

the anchor is �D �] . One easily checks that this is indeed a Lie algebroid, which is
denoted by .T �M /�;� . Define

C1.M /
ı
��!�1.M /

ı
��!�2.M /

by ı.f / D df for all f 2 C1.M / and ı.�/ D d�� �]� � for all � 2 �1.M /.
Then ı is a 2–differential such that ı2 D Œ�; �� Hence

�
.T �M /�;� ; ı; �

�
is a quasi-Lie

bialgebroid.

Assume that � is an ˛–connected and ˛–simply connected Lie groupoid with Lie
algebroid A. Now let’s see what the universal lifting theorem implies. First, note that
ı2 D

1
2
Œı; ı�. Hence we have8̂̂<̂
:̂
ı  � which is a multiplicative bivector field on �

ı2 D Œ�; ��  1
2
Œ�; ��D

 �
� �
�!
�

ı� D 0  Œ�;
 �
� �D 0

This motivates the following.

Definition 4.15 A quasi-Poisson groupoid is a Lie groupoid ��M with a multi-
plicative bivector field … on � and � 2 �.^3A/ satisfying the identities on the right
hand side above.

The universal lifting theorem thus implies the following.

Theorem 4.16 (Iglesias Ponte, Laurent-Gengoux and Xu [15]) If � is ˛–connected
and ˛–simply connected Lie groupoid with Lie algebroid A, then there is a bijection
between quasi-Lie bialgebroids .A; ı; �/ and quasi-Poisson groupoids .��M; �; �/.

Considering various special cases, we are led to a number of corollaries as below. In
particular, we recover the theorem of Mackenzie–Xu regarding the integration of Lie
bialgebroids when � D 0, we have the following.

Corollary 4.17 (Mackenzie and Xu [32]) If � is ˛–connected and ˛–simply con-
nected Lie groupoid with Lie algebroid A, then there is a bijection between Lie
bialgebroids .A; ı/ and Poisson groupoids .��M; �/.
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Another special case is when A is a Lie algebra.

Corollary 4.18 (Kosmann-Schwarzbach [17]) There is a bijection between quasi-Lie
bialgebras and connected and simply connected quasi-Poisson groups.

In particular, we have the following corollary.

Corollary 4.19 (Drinfeld [11]) There is a bijection between Lie bialgebras and
connected and simply connected Poisson groups.

Now let .M; �/ be a Poisson manifold. Then .T �M; d/ is a Lie bialgebroid, which
gives rise to an ˛–connected and ˛–simply connected Poisson groupoid .��M;…/

(assuming that � exists). In this case, M is called integrable; see Crainic–Fernandes [9]
for precise conditions for a Poisson manifold to be integrable. One shows that indeed
… is non-degenerate in this case. Thus one obtains a symplectic groupoid. This leads
to the following.

Corollary 4.20 (Karasev [16], Weinstein [39], Coste–Dazord–Weinstein [7] and
Cattaneo–Felder [4]) There exists a bijection between integrable Poisson manifolds
and ˛–connected and ˛–simply connected symplectic groupoids.

Every Poisson manifold can be realized as the base Poisson manifold of a (local)
symplectic groupoid. In particular, symplectic realizations always exist for any Poisson
manifold.

Finally consider the quasi-Lie bialgebroid ..T �M /�;� ; ı; �/ as in Example 4.14. Let
.��M;…; �/ be its corresponding ˛–connected and ˛–simply connected Poisson
groupoid. One shows that … is non-degenerate. Let ! D…�1 .

Then one easily shows that

(1) ! is a multiplicative 2–form on � , that is, the 2–form .!; !;�!/ vanishes
when restricted to the graph of the multiplication, and

(2) d! D ˛�� �ˇ��

That is, .��M; !; �/ is a twisted symplectic groupoid.

Thus we obtain the following.

Corollary 4.21 (Cattaneo–Xu [5]) There exists a bijection between integrable twisted
Poisson manifolds and ˛–connected and ˛–simply connected twisted symplectic
groupoids.
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4.4 Symplectic quasi-Nijenhuis groupoids

Let M be a smooth manifold, � a Poisson bivector field, and N W TM ! TM a
.1; 1/–tensor.

Definition 4.22 (Kosmann-Schwarzbach and Magri [18; 19]) The bivector field �
and the tensor N are said to be compatible if

N ı�] D �]ıN �

Œ˛; ˇ��N
D ŒN �˛; ˇ�� C Œ˛;N

�ˇ�� �N �Œ˛; ˇ��

where �N is the bivector field on M defined by the relation �]
N
D �] ıN � and

(3) Œ˛; ˇ�� WD L�]˛.ˇ/�L�]ˇ.˛/� d
�
�.˛; ˇ/

�
; for all ˛; ˇ 2�1.M /:

The .1; 1/–tensor N is said to be a Nijenhuis tensor if its Nijenhuis torsion vanishes:

ŒNX;N Y ��N
�
ŒNX;Y �C ŒX;N Y ��N ŒX;Y �

�
D 0 for all X;Y 2 X.M /:

In [33], Magri and Morosi defined a Poisson Nijenhuis manifold as a triple .M; �;N /,
where � is a Poisson bivector field, N is a Nijenhuis tensor and � and N are
compatible.

It is known that any Poisson Nijenhuis manifold .M; �;N / is endowed with a bi-
Hamiltonian structure .�; �N /, that is,

Œ�; ��D 0; Œ�; �N �D 0; Œ�N ; �N �D 0:

Similarly, one can define Poisson quasi-Nijenhuis manifolds.

Let iN be the degree 0 derivation of .��.M /;^/ defined by

.iN˛/.X1; : : : ;Xp/D

pX
iD1

˛.X1; : : : ;NXi ; : : : ;Xp/ for all ˛ 2�p.M /:

Definition 4.23 A Poisson quasi-Nijenhuis manifold is a quadruple .M; �;N; �/,
where � 2 X2.M / is a Poisson bivector field, N W TM ! TM is a .1; 1/–tensor
compatible with � , and � is a closed 3–form on M such that

ŒNX;N Y ��N
�
ŒNX;Y �CŒX;N Y ��N ŒX;Y �

�
D�].iX^Y �/ for all X;Y 2X.M /

and iN� is closed.
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Defining a bracket Œ�; ��N on X.M / by

ŒX;Y �N D ŒNX;Y �C ŒX;N Y ��N ŒX;Y �; 8X;Y 2 X.M /

as in Kosmann-Schwarzbach [18], and considering N W TM ! TM as an anchor map,
we obtain a new Lie algebroid structure on TM , denoted .TM /N . Its Lie algebroid
cohomology differential dN W �

�.M /!��C1.M / is given by [18]:

(4) dN D ŒiN ; d �D iN ıd � d ıiN :

The following extends a result of Kosmann-Schwarzbach [18, Proposition 3.2].

Proposition 4.24 The quadruple .M; �;N; �/ is a Poisson quasi-Nijenhuis manifold
if, and only if,

�
.T �M /� ; dN ; �

�
is a quasi Lie bialgebroid and � is a closed 3–form.

In particular, the triple .M; �;N / is a Poisson Nijenhuis manifold if, and only if,
.T �M /� ; dN / is a Lie bialgebroid.

We now turn our attention to the particular case where the Poisson bivector field � is
non-degenerate.
Proposition 4.25 (1) Let .M; �;N; �/ be a Poisson quasi-Nijenhuis manifold.

Then

Œ�; �N �D 0(5)

and Œ�N ; �N �D 2�].�/:(6)

(2) Conversely, assume that � 2 X2.M / is a non-degenerate Poisson bivector field,
N W TM !TM is a .1; 1/–tensor and � is a closed 3–form. If equations (5)–(6)
are satisfied, then .M; �;N; �/ is a Poisson quasi-Nijenhuis manifold.

The following lemma is useful in characterizing Poisson Nijenhuis structures in terms
of Lie bialgebroids.

Lemma 4.26 Let .M; �/ be a Poisson manifold. A Lie bialgebroid ..T �M /� ; ı/ is
induced by a Poisson Nijenhuis structure if and only if Œı; d �D 0, where d stands for
the de Rham differential.

Given a Poisson Nijenhuis manifold .M; �;N /, then ..T �M /� ; dN / is a Lie bialge-
broid. Assume that .T �M /� is integrable, and .��M; z!/ is its ˛–connected and
˛–simply connected symplectic groupoid. Since d2

N
D 0 and ŒdN ; d �D 0, the universal

lifting theorem implies that dN corresponds to a multiplicative Poisson bivector field
z� zN on � such that Œz� zN ; z��D 0, where z� is the Poisson tensor on � inverse to z! . Let
zN D z� zN

]
ı z![W T� ! T� . Then it is clear that zN is a multiplicative .1; 1/–tensor,

and the triple
�
�; z!; zN

�
forms what is called a symplectic Nijenhuis groupoid.
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Definition 4.27 A symplectic Nijenhuis groupoid is a symplectic groupoid .� �
M; z!/ equipped with a multiplicative .1; 1/–tensor zN W T�!T� such that

�
�; z!; zN

�
is a symplectic Nijenhuis structure.

Thus we have the following:

Theorem 4.28 (Stiénon–Xu [37])

(1) The unit space of a symplectic Nijenhuis groupoid is a Poisson Nijenhuis mani-
fold.

(2) Every integrable Poisson Nijenhuis manifold is the unit space of a unique ˛–
connected, ˛–simply connected symplectic Nijenhuis groupoid.

Here, by an integrable Poisson Nijenhuis manifold, we mean that the corresponding
Poisson structure is integrable, that is, it admits an associated symplectic groupoid.
The above theorem can be generalized to the quasi-setting.

Definition 4.29 A symplectic quasi-Nijenhuis groupoid is a symplectic groupoid
.��M; z!/ equipped with a multiplicative .1; 1/–tensor zN W T�! T� and a closed
3–form � 2�3.M / such that

�
�; z!; zN ; ˇ�� �˛��

�
is a symplectic quasi-Nijenhuis

structure.

The following result is a generalization of Theorem 4.28.

Theorem 4.30 (Stiénon–Xu [37])

(1) The unit space of a symplectic quasi-Nijenhuis groupoid is a Poisson quasi-
Nijenhuis manifold.

(2) Every integrable Poisson quasi-Nijenhuis manifold .M; �;N; �/ is the unit space
of a unique ˛–connected and ˛–simply connected symplectic quasi-Nijenhuis
groupoid

�
��M; z!; zN ; ˇ�� �˛��

�
.

4.5 Quasi-Poisson groupoid associated to Manin quasi-triple

As an example, in this subsection, we discuss an important class of quasi-Poisson
groupoids which are associated to Manin quasi-triples. For details, we refer the reader
to Iglesias Ponte, Laurent-Gengoux and Xu [15].

Recall that a Manin pair .d; g/ (see Drinfeld [12]) consists of an even dimensional
Lie algebra d with an invariant, non-degenerate, symmetric bilinear form of signature
.n; n/, and a Lagrangian subalgebra g. Given a Manin pair .d; g/, let .D;G/ be its
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corresponding group pair (that is, both D and G are connected and simply connected
with Lie algebra d; g respectively). The group D and, in particular G �D , acts on
D=G by left multiplication. This is called the dressing action. One can form the
corresponding transformation groupoid G �D=G� D=G whose Lie algebroid is
g�D=G!D=G .

Assume that h� d is an isotropic complement to g:

dD g˚ h

Then .d; g; h/ is called a Manin quasi-triple. This yields a quasi-Lie bialgebra .g;F; �/.
Here, F W g!^2g and � 2 ^3g.

Let �W T �.D=G/! g�D=G be the dual map of the dressing action

g� �D=G ' h�D=G
dressing
�����! T .D=G/:

Consider AD g�D=G!D=G . Define

ıW C1.D=G/! �.A/D C1.D=G; g/W f 7! �.df /:

and

�.A/
ı // �.^2A/

� 2 C1.D=G; g/ // C1.D=G;^2g/ 3 F.�/

for � a constant function.

Extend ı to �.^�A/ using the Leibniz rule.

Proposition 4.31 ı is a 2–differential on A and ı2 D Œ�; ��. Hence .A; ı; �/ is a
quasi-Lie bialgebroid.

Theorem 4.32 (Iglesias Ponte, Laurent-Gengoux and Xu [15]) Assume that .d; g; h/
is a Manin quasi-triple. Then .G �D=G�D=G; �; �/ is a quasi-Poisson groupoid
where

…
�
.�g; �s/; .�

0
g; �
0
s/
�
D…G

�
�g; �

0
g

�
�…D=G

�
�s; �

0
s

�
C
˝
� 0s;

2.L�g�g/
˛
�
˝
�s; 2.L�g� 0g/

˛
;

with
…D=G.df; dg/D�

X
y�i.f /yei.g/ for all f;g 2 C1.D=G/:

Here fe1; : : : ; eng is a basis of g and f�1; : : : ; �ng the dual basis of h.
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Let g be a Lie algebra endowed with a non-degenerate symmetric bilinear form K .
On the direct sum dD g˚ g one can construct a scalar product .�j�/ by

..u1;u2/j.v1; v2//DK.u1; v1/�K.u2; v2/;

for .u1;u2/; .v1; v2/ 2 d. Then
�
d; �.g/; 1

2
��.g/

�
is a Manin quasi-triple whose

associated � is given by

�.u; v; w/D 1
4
K.u; Œv; w�/:

(As usual, �.v/D .v; v/ is the diagonal map, while ��.v/D .v;�v/). In this case,
D DG �G and D=G ŠG . Through this identification, G acts on G by conjugation.
Thus we have the following

Corollary 4.33 Assume that g is a Lie algebra endowed with a non-degenerate sym-
metric bilinear form K and G is its corresponding connected and simply connected
Lie group. Then the transformation groupoid G �G � G , where G acts on G by
conjugation, together with the multiplicative bivector field … on G �G :

….g; s/D 1
2

nX
iD1

� �e 2
i ^
�!e 2

i �
 �e 2

i ^
 �e 1

i �
�������!
.Adg�1 ei/

2
^
�!e 2

i

�
;

and the bi-invariant 3–form � WD 1
4
K.�; Œ�; ��g/ 2 ^

3g� Š �3.G/G on G , is a quasi-
Poisson groupoid. Here feig is an orthonormal basis of g and the superscripts refer to
the respective G –component.

Example 4.34 Another example is the case when .d; g; h/ is a Manin triple, that is,
�D 0. Then one obtains a Poisson groupoid G�D=G�D=G , which is a symplectic
groupoid integrating the Poisson manifold .D=G; �D=G/. If moreover G is complete,
D=G Š G� as a Poisson manifold. Thus one obtains the symplectic groupoid of
Lu–Weinstein G �G��G� [28].

4.6 Hamiltonian � –spaces

In this subsection, we show that the quasi-Poisson spaces with D=G –valued momentum
maps in the sense of Alekseev and Kosmann-Schwarzbach correspond exactly to
Hamiltonian � –spaces of quasi-Poisson groupoids � .

Let ��M be a Lie groupoid. Recall that a � –space is a smooth manifold X with a
map J W X !M , called the momentum map, and an action

� �M X D f.g;x/ 2 � �X j ˇ.g/D J.x/g !X; .g;x/ 7! g �x

satisfying
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(1) J.g �x/D ˛.g/, for .g;x/ 2 � �M X ;

(2) .gh/ � x D g � .h � x/, for g; h 2 � and x 2 X such that ˇ.g/ D ˛.h/ and
J.x/D ˇ.h/;

(3) �.J.x// �x D x , for x 2X .

Hamiltonian �–spaces for Poisson groupoids were studied by Liu, Weinstein and
Xu [24]. For quasi-Poisson groupoids, one can introduce Hamiltonian � –spaces in a
similar fashion.

Definition 4.35 (Iglesias Ponte, Laurent-Gengoux and Xu [15]) Let .��M;…;�/

be a quasi-Poisson groupoid. A Hamiltonian � –space is a � –space X with momentum
map J W X !M and a bivector field …X 2 X

2.X / such that:

(1) the graph of the action f.g;x;g �x/ j J.x/Dˇ.g/g is a coisotropic submanifold
of .� �X �X;…˚…X ˚�…X /;

(2) 1
2
Œ…X ;…X �D y�, where the hat denotes the map �.^3A/! X3.X /, induced

by the infinitesimal action of the Lie algebroid on X : �.A/!X.X /, Y 7! yY .

Proposition 4.36 Let .��M;…;�/ be a quasi-Poisson groupoid. If .X;…X / is a
Hamiltonian � –space with momentum map J; then J maps …X to …M , where …M

is the bivector field on M as in Corollary 3.10.

Consider the quasi-Poisson groupoid �W G �D=G � D=G associated to a quasi
Manin triple. It is simple to check that .X;…X / is a Hamiltonian � –space iff there is
a G –action on X and a map J W X !D=G satisfying

(1) ˆ�.…G ˚…X /D…X ;

(2) 1
2
Œ…X ;…X � D y�X , where y�X 2 X3.X / is the image of � under the map
^3g! X3.X / induced by the infinitesimal action;

(3) …
]
X
.J��s/ D �.�.�s//X ; for �s 2 T �s S , where G acts on D=G by dressing

action.

It deserves to be noted that the latter is exactly a quasi-Poisson space with D=G–
momentum map in the sense of Alekseev and Kosmann-Schwarzbach [1]. In summary
we have

Theorem 4.37 (Iglesias Ponte, Laurent-Gengoux and Xu [15]) If � is the quasi-
Poisson groupoid �W G �D=G�D=G associated to a Manin quasi-triple, then there
is a bijection between Hamiltonian � –spaces and quasi-Poisson spaces with D=G

-momentum map.
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