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The bosonic birthday paradox

ALEX ARKHIPOV

GREG KUPERBERG

We motivate and prove a version of the birthday paradox for k identical bosons in n

possible modes. If the bosons are in the uniform mixed state, also called the maximally
mixed quantum state, then we need k �

p
n bosons to expect two in the same

state, which is smaller by a factor of
p

2 than in the case of distinguishable objects
(boltzmannons). While the core result is elementary, we generalize the hypothesis
and strengthen the conclusion in several ways. One side result is that boltzmannons
with a randomly chosen multinomial distribution have the same birthday statistics as
bosons. This last result is interesting as a quantum proof of a classical probability
theorem; we also give a classical proof.

60C05; 05A10, 81P99

The traditional birthday paradox says that given a calendar with n days, there is
a significant chance (bounded away from 0) that a room with �.

p
n/ people with

uniformly random birthdays has two with the same birthday. Aaronson and Arkhipov
[1] discuss the same paradox for randomly chosen bosons. Here we present a different
treatment of the same problem. In fact we will present two “paradoxes". The first
result (which Aaronson and Arkhipov derived, in a less general form) is that although
bosons prefer to have the same birthday, they have the same asymptotic behavior in the
birthday problem, up to constant factors, as distinguishable particles (boltzmannons).
The second result is that they have exactly the same behavior, non-asymptotically, as
n i.i.d. boltzmannons whose common distribution is a randomly chosen point in the
simplex of all distributions on n configurations. This leads to an interesting result in
classical probability with a quantum probability proof.

We assume that the Hilbert space for one particle is HDCn . We assume a self-adjoint
birthday operator

BW H!H

with eigenvalues 1; 2; : : : ; n in some basis. The Hilbert space of k bosons is then the
symmetric power

Sk.H/ŠC..
n
k//;
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using the multiset coefficient notation

(1)
��

n

k

��
def
D

�
nC k � 1

k

�
:

In the terminology used for identical particles, the states of a basis of H are called
modes.

In the traditional version of the classical birthday problem, we assume the uniform
distribution on all nk choices of the birthdays of the k people. The uniform distribution
�unif.X / on any finite set X can be characterized in either of two ways: It is the unique
distribution with the most entropy, log jX j; and the unique distribution with the most
symmetry, Sym.X /.

We will consider an analogue of the uniform distribution for a quantum system with a
Hilbert space H: the mixed state �unif.H/ whose density matrix is the scaled identity
on H . Like the classical state �unif , the quantum state �unif.H/ is the unique state on
H with the most entropy, log dimH; and the unique state with the most symmetry,
U.H/. Moreover, �unif.H/ is the unique state that yields the distribution �unif.X / for
any complete measurement that takes values in a set X .

We will use the uniform state �unif D �unif.S
k.H// on the joint Hilbert space of k

bosons. Then, the measurement Sk.B/ of all birthdays of �unif yields the uniform
distribution �unif on configurations of k unlabelled people with n possible birthdays.
(It is also standard to refer to unlabelled balls in labelled boxes, but we will stick to the
birthday metaphor.) Moreover, this particular uniform state can be justified using less
symmetry than the largest available unitary group U.Sk.H//:

Proposition 1 The state �unif on Sk.H/ is the unique state which is invariant under
the unitary group U.H/.

Proof Suppose that � is a U.H/–invariant state on Sk.H/, ie, a U.H/–invariant
density operator. Schur’s Lemma says that if V is an irreducible complex representation
of a group G , then every G–invariant operator on V is proportional to the identity.
Thus it is sufficient (and also necessary, if either V is unitary or G is compact) for V

to be irreducible. It is a standard fact of representation theory, Fulton and Harris [3,
Section 6.1], that Sk.Cn/ is an irreducible representation of GL.n;C/. It is another
standard fact [3, Section 26.1] that GL.n;C/ and U.n/ have the same irreducible
representations, since the former is the complexification of the latter.

This symmetry implies that �unif is the U.H/–average of any state, since such an
average must be invariant with respect to the action of U.H/.
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Corollary 2 Putting k bosons in any state � on Sk.H/, and then applying a Haar-
random unitary matrix in U.H/ yields the state �unif .

Aaronson and Arkhipov consider such an average for a particular choice of � , where
� is the pure state

j i D j1; 2; 3; : : : ; ki

in which the k bosons are in distinct modes (which requires k � n). Another choice
considered below is

j i D j1; 1; 1; : : : ; 1i

in which the bosons are all in the same mode. There are many choices for � , but
Corollary 2 says that they all become the same when they are averaged.

We will now look at the asymptotics of j –fold birthdays in �unif . We will use the
notation f .n/ � g.n/ to mean that f .n/=g.n/ ! 1, or equivalently that f .n/ D
g.n/.1C o.1//.

Theorem 3 Suppose that there are k bosons with n modes, suppose that they are in the
uniform state �unif , and suppose that k � cn.j�1/=j as n!1, for some integer j � 2

and some constant c>0. Then the number of j –fold birthdays converges in distribution
to a Poisson random variable with mean cj , while the number of .j C1/–fold-or-more
birthdays converges to 0.

This is the same asymptotic answer as in the case of boltzmannons, except that the
mean in that case is cj=j !. In fact, our argument in the case of bosons is very similar
to a standard argument in the case of boltzmannons.

Proof Recall that the joint measurement Sk.B/ of all of the birthdays yields the
uniform distribution on k unlabelled people among n calendar days. The probability
that the first birthday has at least j C 1 people is��

n

k � j � 1

�����
n

k

��
�

kjC1

.nC k/jC1

for fixed j and n; k� 1. Taking k DO.n.j�1/=j / and summing over all n days, the
expected number of .j C 1/–fold-or-more birthdays is O.n�1=j /, which vanishes as
n!1.

Meanwhile the probability that the first ` days each have at least j people is��
n

k � j `

�����
n

k

��
D

j`�1Y
aD0

k � a

nC k � a
�

kj`

.nC k/�j`
;
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where the approximation holds for fixed j and ` and n; k � 1. Summing over all�
n
`

�
�

n`

`!
choices of the ` days, we obtain that if X is a random variable representing

the number of j –fold birthdays, then

E

��
X

`

��
�

cj`

`!
:

So in the limit, the `th factorial moment is cj` , which the same answer in the limit
as a Poisson random variable with mean cj . To conclude the argument, the Poisson
distribution is determined by its moments.

The calculation for the narrow question of the probability of at least one repeated
birthday is simpler. The probability that all of the birthdays are distinct is�

n

k

����
n

k

��
D

k�1Y
aD0

1� a
n

1C a
n

� e�k2=n

as long as k D o.n3=4/. The approximation is established by taking the logarithm of
both sides and then applying the Taylor series estimate

ln
1�x

1Cx
D�2xCO.x3/:

Corollary 4 For n modes, we need k �
p

n ln 2 bosons to expect a repeated birthday
with majority probability.

This differs by only a constant factor from the k �
p

2n ln 2 people needed to expect
a repeated birthday in the classical birthday problem with distinguishable people.

Remark We should say something about independent but non-uniform bosons. The
notion of independence for bosons is subtle. One reasonable and widely used notion
is to first choose a distribution � for the birthdays of one boson, and to model it by
a diagonal density matrix in the birthday basis. Then there is a unique distribution
on k bosons such that if k � 1 of the bosons are fixed, the conditional distribution
of the last one is given by �. This distribution is also a thermal state, also known as
a Maxwell–Gibbs state, for non-interacting bosons. It was discovered by Bose and
Einstein that under fairly mild assumptions on �, almost all of the bosons have the
most likely birthday. This paradox is commonly known as Bose–Einstein condensation.

Corollary 2 implies an interesting second model for the joint distribution of birthdays
of k bosons.
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Theorem 5 The joint birthday distribution of k bosons in the uniform state �unif is
identical to the average of k i.i.d. boltzmannons, if their common distribution is given
by a uniformly random point in the simplex of distributions on the n birthdays.

By combining with the induced uniform distribution on the birthday measurement, we
obtain a corollary of Theorem 5 that equates two distributions in classical probability.

Corollary 6 Consider a town in which all families first agree to have children accord-
ing to a common distribution on the days of the year, which itself is chosen uniformly
from the simplex of all distributions. Then the children’s birthdays behave as if the
children were unlabelled, ie, if we make a table that only gives the number of children
born on each day, then all such tables are equally likely.

In other words, the uniform average of all multinomial distributions on multisubsets of
size k in a set of size n, is the uniform distribution on multisubsets.

Proof of Theorem 5 Recall that the Hilbert space of k boltzmannons is H˝k . Con-
sider the state � D .j ih j/˝k , first for some fixed choice of j i 2H . This � yields
independently distributed birthdays for the k boltzmannons, and the distribution of
each one is given by the measurement of one copy of j i. Meanwhile, � is evidently
a pure symmetric state, which means that these boltzmannons are also bosons. By
Corollary 2, the average of all choices of � , with respect to Haar measure on U.H/, is
the bosonic state �unif .

The Haar distribution of j i, or equivalently one column of a matrix in U.n/, is given
by Haar measure on the manifold of pure states CPn�1 . The induced distribution of
the birthday measurement is given by the moment map

mW CPn�1
!�n�1

to the simplex of distributions on n configurations, Cannas de Silva [4, Section 6.4].
This moment map preserves normalized measure [4, Section 6.6]. Thus a random
choice of � amounts to a random distribution on each birthday, drawn uniformly from
the simplex of distributions. This establishes the claim of the theorem.

Theorem 5 yields a quantum proof of a classical probability result, Corollary 6. We
also obtained a classical proof of the same result.

Classical proof of Corollary 6 The argument uses a variation of the stars-and-bars
notation for multisets, Feller [2], that is also used to prove the identity (1). Namely,
we write a star for each of the k children, with n� 1 separating bars between the n
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calendar days. For example, if there are k D 4 children and nD 6 birthdays, then one
possible choice for all of the birthdays is

?? j? jj? jj;

in which two children are born on the first day, one on the second day, one on the
fourth day, and none on the other days. We first choose locations of n � 1 bars
independently and uniformly on the unit interval I D Œ0; 1�. This separates the interval
into n subintervals of length

p1Cp2C � � �Cpn D 1;

and we claim that the lengths of these subintervals are given by a uniformly random
point in the simplex of distributions. (Because, if we first take the bars to be numbered,
they are distributed according to uniform measure on Œ0; 1�n�1 . Then, erasing the
numbers yields the quotient Œ0; 1�n�1=Sn�1 , which is a simplex and also has uniform
measure. Then, taking the differences of successive points to obtain the probabilities
pj is a linear isomorphism, which also preserves uniform measure.) Then, if each
child’s birth is represented by a star which is also at a uniformly random position in
Œ0; 1�, the probability of the j th birthday is exactly pj , the length of the j th interval.

We note that the ordering of the stars and bars determines the number of children with
each birthday. We claim that these multiset choices are all equally likely, as if the
children had been bosons (with no distinguishing state other than the date of birth).
This is made clear if we equivalently choose n�1Ck points independently from I all
at once, and then choose a random subset of n�1 points to be the bars and the other k

points to be the stars. These
��

n
k

��
D
�
n�1Ck

k

�
equally likely choices exactly correspond

to a multiset choice of k unlabelled children distributed among n days, as claimed.

We conclude with a version of the birthday paradox for fermions.

Theorem 7 (Pauli) Given k fermions in any state on the exterior power ƒk.H/,
there is no chance that any two have the same birthday.

We leave the question of an anyonic birthday paradox, including non-abelian anyons,
as a topic for future work.
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