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Universal quadratic forms and
Whitney tower intersection invariants
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A general algebraic theory of quadratic forms is developed and then specialized from
the non-commutative to the commutative to, finally, the symmetric settings. In each
of these contexts we construct universal quadratic forms. We then show that the
intersection invariant for twisted Whitney towers in the 4–ball is such a universal
symmetric refinement of the framed intersection invariant. As a corollary, we obtain
a short exact sequence, Theorem 11, that has been essential in a sequence of papers
by the authors on the classification of Whitney towers in the 4–ball.
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Dedicated to Mike Freedman, on the occasion of his 60th birthday

1 Introduction

This paper is about an algebraic theory of quadratic forms. For example, we construct
various universal quadratic refinements of a given hermitian form as in Theorem 21.
This kind of algebra became necessary to formalize our intersection theory of Whitney
towers in 4–manifolds, see our survey [4]. Another important new result here is
Theorem 11 which has already been used in our main paper [5] on the subject.

We begin the paper by explaining the first appearance of these higher-order intersection
invariants. This is not directly relevant for the rest of the paper but serves as a motivation
and a homage to Mike Freedman’s work.

Let M be a closed oriented simply connected 4–manifold, not necessarily smooth. The
intersection form �M can be defined on H 2.M / using cup-products or on H2.M /

using geometric intersections: Any class in H2.M / can be represented by a (topo-
logically generic) immersed sphere S W S2#M . This means that S looks locally
like R2 � 0�R4 , except for finitely many double points around which S looks like
R2 � 0[ 0�R2 �R4 . Similarly, any two classes in H2.M / can be represented by a
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36 J Conant, R Schneiderman and P Teichner

pair S;S 0W S2#M which intersect generically in the same sense and �M .S;S 0/2Z
just counts their (oriented) intersection points.

Given S W S2#M , one can add local self-intersection points to S until their algebraic
sum is zero. This operation is a sequence of cusp homotopies, not changing the
homotopy (hence homology) class ŒS � 2H2.M / but changing the Euler number of
the normal bundle of S to become equal to �M .S;S/. Pick a pairing of the f˙1g

self-intersection points of S and choose Whitney disks Wi as in Figure 1, one for each
such pair of self-intersections. The Whitney disks are (topologically generic) immersed
disks Wi W D

2#M whose boundary consists of two arcs, each going between the
two intersection points but on different sheets of S .

S

S

S

Wi

Figure 1: A (framed) Whitney disk and a Whitney move

We obtain an intersection invariant �1.S;Wi/ 2 Z2 , computed by summing the (topo-
logically generic) intersections between S and (the interiors of) framed Whitney disks
Wi :

�1.S;Wi/ WD
X

i

#fS tWig mod 2

Remark 1 Figure 1 shows a framed Whitney disk Wi in the sense that there are two
disjoint parallel copies of Wi , as needed for the Whitney move on the right hand side. In
general, a Whitney disk comes with a framing of its boundary and hence admits a well
defined Euler number in Z, its twist. The operation of boundary twisting (Freedman
and Quinn [9]) allows us to assume that all Whitney disks are framed, ie have twist
zero. Moreover, we can also assume that the Wi are (disjointly) embedded disks, by
pushing all (self)-intersections off the boundary.

If ŒS � 2 H2.M / is represented by an embedding then obviously �1.S;Wi/ D 0 for
some choices of S;Wi . In fact, one can either say that no Whitney disks Wi are
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needed or that they are embedded with interiors disjoint from S and hence a sequence
of Whitney moves leads to an embedding. As a consequence, the following result
implies that �1 is an obstruction to representing characteristic elements ŒS � 2H2.M /

by embeddings. We will explain in Lemma 6 how to relate this to the original approach
in Freedman and Kirby [8].

Theorem 2 (Freedman–Kirby) Let c 2H2.M / be characteristic in the sense that

�M .c;x/� �M .x;x/ mod 2 8x 2H2.M / :

Then �M .c/ WD �1.S;Wi/2Z2 does not depend on the choices S;Wi discussed above.
Moreover, the following generalization of Rokhlin’s theorem holds:

KS.M /� �M .c/C
�M .c; c/� signature.�M /

8
mod 2

Here KS.M / is the Kirby–Siebenmann invariant of the simply connected 4–manifold
M .

Rokhlin’s original theorem is the case where M is smooth and c D 0 (implying
that �M .c/D 0D KS.M / and hence that signature.�M / is divisible by 16). In [9],
the invariant �M .c/ was called the Kervaire–Milnor invariant because these authors
[10] first generalized Rokhlin’s formula to the case where M is smooth and c is
represented by an embedded sphere (implying that �M .c/D 0D KS.M / but possibly
with �M .c; c/¤ 0).

The set C.�M / of characteristic elements is a H2.M /-torsor via the action .c;x/ 7!
cC2x . Rokhlin’s theorem above implies that �M W C.�/!Z2 is a quadratic refinement
of �M in the sense that:

�M .cC 2x/� �M .c/C
�M .c;x/��M .x;x/

2
mod 2

This formula implies that �M is completely determined by one of its values, knowing
�M modulo 4. One should think of the pair .�M ; �M / as the basic quadratic form of
M which is a purely algebraic invariant characterized by the above condition.

A beautiful consequence of Mike Freedman’s disk embedding theorem is the existence
of non-smoothable 4–manifolds. In the simply connected setting, we can use the
discussion above to formulate it as follows:

Theorem 3 (Freedman) Any odd unimodular symmetric form �W Zm˝Zm ! Z
is realized as the intersection form of exactly two closed simply connected oriented
4–manifolds (up to homeomorphism). These 4–manifolds are homotopy equivalent
and are distinguished by the following (equivalent) criteria: Exactly one of the two
manifolds M with �M Š � . . .
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38 J Conant, R Schneiderman and P Teichner

(i) . . . is smoothable after crossing with R.

(ii) . . . is smoothable after connected sum with finitely many copies of S2 �S2 .

(iii) . . . has a linear reduction of its normal micro bundle.

(iv) . . . has vanishing Kirby–Siebenmann invariant KS.M / 2 Z2 .

(v) . . . exhibits the following formula for its quadratic refinement �M of �M :

�M .c/�
�M .c; c/� signature.�M /

8
mod 2 8 characteristic elements c:

From our current point of view, the beauty of the invariant �M is that it has a simple
geometric definition and at the same time carries deep information about (stable)
smoothability of M and its normal micro bundle. It follows from the above theorem
that �M is not invariant under homotopy equivalences (even though �M is). As a
consequence, the quadratic refinement of � cannot be defined for Poincaré complexes.

Remark 4 For every even unimodular symmetric form �, Freedman showed that there
is a unique closed simply connected topological 4–manifold realizing it. A particular
case is the Poincaré conjecture.

Remark 5 By Donaldson’s Theorem A [6], exactly the diagonalizable odd forms � are
realized by closed smooth 4–manifolds. Diagonal forms are realized by connected sums
of complex projective planes (with varying orientations); in fact, most such forms are
now known to admit infinitely many smooth representatives (all being homeomorphic
by the above theorem), see eg Fintushel, Park and Stern [7].

To connect with our theory of Whitney towers in [4; 5], we recall that the 2–complex
W WD S [Wi in M is referred to as a Whitney tower of order 1 supported by S with
order 1 Whitney disks Wi . The invariant �1.W/D �1.S;Wi/ used above is the order
1 intersection invariant of such Whitney towers, the order zero intersection invariants
being given by the intersection form �M . In a sequence of papers, we generalized this
invariant to higher orders, see for example our survey [4].

The idea is that if �1.W/ vanishes then all intersections between S and Wi can be
paired by order 2 Whitney disks Wi;j and there should be a second order intersection
invariant �2.W;Wi;j / measuring the obstruction for finding order 3 Whitney disks,
and so on.

In [5] we worked out this higher-order intersection theory in detail for Whitney towers
built on immersed disks in the 4–ball bounded by framed links in the 3–sphere. In this
simply connected setting the invariant �n.W/ of an order n (framed) Whitney tower
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Universal quadratic forms and Whitney tower intersection invariants 39

W takes values in an abelian group Tn.m/ generated by trivalent trees (where m is
number of link components), and the vanishing of �n.W/ implies that the link bounds
an order nC 1 Whitney tower. For links bounding twisted Whitney towers there is
an analogous obstruction theory and intersection invariant �n .W/ 2 Tn .m/, and in
the main Section 4 of this paper we develop an algebraic theory of quadratic forms,
leading to a beautiful relation between these framed and twisted obstruction groups,
spelled out in Theorem 11. This result is used in the computation of the Whitney
tower filtration on classical links described in [5]. The groups Tn.m/ and Tn .m/ are
recalled in Section 3, after the introductory exposition of the origins of the first order
intersection theory is completed in Section 2.

Acknowledgments The main part of this paper was written while the first two authors
were visiting the third author at the Max-Planck-Institut für Mathematik in Bonn. They
all thank MPIM for its stimulating research environment and generous support. The
third author was also supported by NSF grants DMS-0806052 and DMS-0757312.

2 A combinatorial approach to the Kirby–Siebenmann in-
variant

Freedman and Kirby proved the generalized Rokhlin formula from Theorem 2 also in
the non-simply connected setting, see Kirby [11, XI, Theorem 2]. They considered a
characteristic surface in an oriented 4–manifold M , ie an embedded oriented surface
†�M together with a spin structure on M X† that does not extend across †. Let
� W S�.†;M /! † be the projection map of the boundary of a normal disk bundle
for †. This 3–manifold inherits a spin structure from that of M X† and so do any
codimension one submanifolds of it. In particular, taking the inverse image torus
��1.a/ for a circle a in † one sees that a comes equipped with a canonical spin
structure (because the fiber circle of � has the non-bounding spin structure). Varying
the circles a gives a canonical spin structure � on †.

Freedman and Kirby define �.M; †/ 2 Z2 to be the spin bordism class of .†; �/
(which is detected by its Arf invariant). They prove the same Rokhlin formula that was
stated in the simply connected setting in Theorem 2 (with �M .c/ replaced by �.M; †/

as explained by Lemma 6). We note that Rokhlin’s formula implies that �.M; †/ does
not depend on the original spin structure on M X†.

Now assume in addition that Œ†�2H2.M / is represented by S W S2#M and that the
self-intersection points of S are paired by Whitney disks W1; : : : ;Wg . As explained
in the introduction, this means that Œ†� is represented by a Whitney tower of order 1.
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It is not hard to see that this condition is equivalent to saying that Œ†� is represented by
a capped surface, see the proof below. Note that a surface †�M admits caps if and
only if the induced map �1.†/! �1.M / is trivial.

These equivalent conditions are always satisfied if M is simply connected as assumed
in the introduction. Exactly as explained there, we can define �1.S;Wi/ 2 Z2 to be
the sum of all intersections between the immersed sphere S and the interiors of the
Whitney disks Wi . We then get the same result as in the simply connected setting:

Lemma 6 If † is a characteristic surface represented by a Whitney tower .S;Wi/ of
order 1 (or equivalently, by a capped surface) then �1.S;Wi/D �.M; †/.

Proof In [8] the following definition of �.M; †/ is used: Assume that the char-
acteristic surface † comes equipped with (immersed, framed) caps. These are (im-
mersed, framed) disks A1; : : : ;Ag;B1; : : : ;Bg in M bounding a hyperbolic basis
a1; : : : ; ag; b1; : : : ; bg of embedded circles in †.

Freedman and Kirby show that the spin structure � 0 on † is equivalent to the quadratic
refinement qW H1.†/! Z2 (of the intersection form on H1.†/) given by q.ai/ D

number of intersections between the interior of the cap Ai and †, and similarly for
q.bi/. By definition of the Arf invariant, one gets that

�.M; †/D

gX
iD1

q.ai/ � q.bi/ :

Assume now that Œ†� is represented by an immersed sphere S whose self-intersection
points are paired by (immersed, framed) Whitney disks W1; : : : ;Wk . We can get into
the capped surface situation as follows: For each pair of self-intersection points of S ,
add a tube Ti on one sheet going from one self-intersection to the other. That turns S

into an embedded surface † with half of the caps Ai given by small normal disks to
† that bound the generating circles on Ti . Moreover, the Whitney disks Wi can serve
as the dual caps Bi , preserving the framing, as illustrated in Figure 2.

By construction, q.ai/D 1 since each normal disk Ai intersects † in a single point.
Therefore, the required formula follows:

�.M; †/D

gX
iD1

q.bi/D �1.S;Wi/

Remark 7 In the simply connected case, it is not hard to see that �1 2 Z2 is well-
defined exactly on characteristic elements. One thing to check is that it does not depend
on the choices of the Whitney disks Wi . Once we fix the boundary, any two such
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Figure 2: Turning an immersed sphere with Whitney disks into a capped surface

choices differ by a connected sum into a sphere Si . If we require the Whitney disks
to be (stably) framed then Si needs to be (stably) framed and hence it intersects a
characteristic sphere in an even number of points, leaving the count �1 unchanged
modulo two.

Similar considerations can be found in Chapter 10 of the book [9] by Freedman and
Quinn and we claim no originality. Unfortunately, the results in [9] don’t hold as
stated for 4–manifolds with fundamental groups that contain 2–torsion elements. The
problem arises from different choices of pairings of intersection points, as pointed out
by Richard Stong in [14]. Taking this into consideration, the last two authors gave a
complete discussion of an enhancement of the invariant �1 which takes values in an
infinitely generated group if �1M is non-trivial [13].

3 Abelian groups generated by trees

This section recalls various algebraic aspects of our intersection theory of Whitney
towers, without explaining the background. We refer the reader to our survey [4] and
our paper [5] for more details.

All trees considered in this paper are unitrivalent, oriented and labelled. This means
that they are equipped with vertex orientations, ie, cyclic orderings of the edges incident
to each trivalent vertex, and the univalent vertices are labeled by elements of the index
set f1; 2; : : : ;mg. (Indices may used more than once as labels on the same tree.) A
rooted tree has a single designated univalent vertex called the root which is usually left
unlabeled. All trees are considered up to label-preserving isomorphism.

The order of a tree is the number of trivalent vertices.

Given rooted trees I and J , the rooted product .I;J / is the rooted tree gotten by
identifying the two roots to a vertex and adjoining a rooted edge to this new vertex,
with the orientation of the new trivalent vertex given by the ordering of I and J in
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I1 I2

J1 J2

I D .I1; I2/

J D .J1;J2/

.I;J /

hI;J i

I2

I1

J1

J2

I2

I1

J1

J2

Figure 3: Rooted and inner products

.I;J /. The inner product hI;J i of two rooted trees I and J is defined to be the
unrooted tree gotten by identifying the two rooted edges to a single edge. We observe
that the two products interact well in the sense of Figure 4.

I J

K I

J K

h.I;J;Ki D � D hI; .J;K/i

Figure 4: Invariance of the inner product

Let L.m/D
L1

nD0 Ln.m/ be the free abelian group generated by (isomorphism classes
of) rooted trees as above. It is graded by order and the rooted product can be extended
linearly to a pairing:

. � ; � /W L.m/˝L.m/ �! L.m/

This is grading preserving on L.m/Œ1�, ie it preserves the grading when shifted up by
one (so order is replaced by the number of univalent non-root vertices). On the other
hand, the inner product

h � ; � iW L.m/˝L.m/ �! T .m/

is grading preserving via order. Here T .m/D
L1

nD0 Tn.m/ is the free abelian group
generated by unrooted trees as above.

Note that rotating the relevant planar trees by 180 respectively 120 degrees shows that the
inner product is both symmetric and invariant: h I;J i D hJ; I i and h . I;J / ;K i D

h I; .J;K / i, see Figure 4 for the proof of invariance.

Definition 8 The graded abelian groups L.m/ respectively T .m/ are defined as
quotients of L.m/ respectively T .m/ by the AS and IHX relations as in Figure 5.
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AS: C D 0

IHX: � C D 0

Figure 5: Local antisymmetry (AS) and Jacobi (IHX) relations in L.m/ and
T .m/ . All trivalent orientations come from an orientation of the plane, and
univalent vertices extend to subtrees which are fixed in each equation.

It is well known that L.m/ is the free (quasi) Lie algebra over Z on m generators
with Lie bracket induced by the rooted product. Here the word quasi refers to the fact
that we only require the antisymmetry relations ŒZ;Y �D �ŒY;Z�. So ŒZ;Z� is not
necessarily zero in these Lie algebras. In our previous papers, we needed to consider
both versions of Lie algebras and used the notation L0nC1.m/ for Ln.m/ (recall that
one gets a graded Lie algebra only when shifting the order by one). In this paper we
will only study one type of Lie algebra and usually omit the adjective ‘quasi’.

Remark 9 The inner product extends uniquely to a bilinear, symmetric, invariant
pairing:

h � ; � iW L.m/�L.m/ �! T .m/
This follows simply from observing that the AS and IHX relations hold on both sides
and are preserved by the inner product. We will show in Lemma 12 that this inner
product is in fact universal.

Definition 10 The group T2n.m/ is gotten from T2n.m/ by including new order n

-trees as additional generators. These are rooted trees of order n as above, except
that the root carries the label . In addition to the IHX– and AS–relations on unrooted
trees in T2n.m/, these –trees are involved in the following symmetry, interior twist
and twisted IHX relations. Here J is a rooted tree and the letters I;H;X stand for
rooted trees differing locally as in Figure 5 above.

J D .�J / 2 �J D hJ;J i I DH CX � hH;X i

As their names suggest, these new relations arose from geometric considerations for
twisted Whitney towers in [5]. They will be explained algebraically in Section 4.8 via
the theory of universal quadratic refinements.
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Roughly speaking, the universal symmetric pairing h � ; � i will be shown to admit
a universal quadratic refinement qW Ln.m/! T2n.m/ defined by q.J / WD J . In
particular, with the right algebraic notion of ‘quadratic refinement’, the group T2n.m/

is completely determined by the pairing h � ; � i. The rest of this paper is devoted to
finding this notion.

As a consequence, we will prove the following exact sequence at the very end of this
paper. It was used substantially in [5] for the classification of Whitney towers in the
4–ball.

Theorem 11 For all m; n, the maps t 7! t respectively J 7! 1˝ J give an exact
sequence:

0 �! T2n.m/ �! T2n.m/ �! Z2˝Ln.m/ �! 0

4 Invariant forms and quadratic refinements

In this section we explain an algebraic framework into which our groups T .m/ and
T .m/ fit naturally. In Lemma 12 we show that the T .m/–valued inner product h � ; � i
on the free Lie algebra is universal. Then a general theory of quadratic refinements is
developed and specialized from the non-commutative to the commutative to, finally, the
symmetric setting. In Corollary 35 we show that T2n.m/ is the home for the universal
quadratic refinement of the T2n.m/–valued inner product h � ; � i.

We work over the ground ring of integers but all our arguments go through for any
commutative ring. We also only discuss the case of finite generating sets f1; : : : ;mg,
even though everything holds in the infinite case.

4.1 A universal invariant form

The following lemma shows that the T .m/–valued inner product h � ; � i is universal
for Lie algebras with m generators.

Lemma 12 Let g be a Lie algebra together with a bilinear, symmetric, invariant pairing
�W g� g!M into some abelian group M . If ˛W L.m/! g is a Lie homomorphism
(given by m arbitrary elements in g) there exists a unique linear map ‰W T .m/!M

such that for all X;Y 2 L.m/

�.˛.X /; ˛.Y //D‰.hX;Y i/ :
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Proof The uniqueness of ‰ is clear since the inner product map is onto. For existence,
we first construct a map  W T .m/!M as follows. Given a tree t 2 T .m/ pick an
edge in t to split t D hX;Y i for rooted trees X;Y 2 L.m/. Then set:

 .t/ WD �.˛.X /; ˛.Y //

If we split t at an adjacent edge, this expression stays unchanged because of the
symmetry and invariance of �. However, one can go from any given edge to any other
by a sequence of adjacent edges, showing that  .t/ does not depend on the choice of
splitting.

It is clear that  can be extended linearly to the free abelian group on T .m/ and since
˛ preserves AS and IHX relations by assumption, this extension factors through a map
‰ as required.

Remark 13 Recall that L.m/Œ1� is actually a graded Lie algebra, ie, the Lie bracket
preserves the grading when shifted up by one (so order is replaced by the number of
univalent non-root vertices). Let’s assume in the above lemma that the groups g;M

are Z–graded, gŒ1� is a graded Lie algebra and that �; ˛ preserve those gradings. Then
the proof shows that the resulting linear map ‰ also preserves the grading.

4.2 Non-commutative quadratic groups

The rest of this section describes a general setting for relating our groups T2n.m/ that
measure the intersection invariant of twisted Whitney towers to a universal (symmetric)
quadratic refinement of the T2n.m/–valued inner product. We first give a couple
of definitions that generalize those introduced by Hans Baues in [1] and [2, Sectin
8], and Andrew Ranicki in [12, page 246]. These will lead to the most general
notion of quadratic refinements for which we construct a universal example. Later we
shall specialize the definitions from non-commutative to commutative and finally, to
symmetric quadratic forms and construct universal examples in all cases.

Definition 14 A (non-commutative) quadratic group

MD .Me
h
!Mee

p
!Me/

consists of two groups Me;Mee and two homomorphisms h;p satisfying

(i) Mee is abelian,

(ii) the image of p lies in the center of Me ,

(iii) hphD 2h.
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M will serve as the range of the (non-commutative) quadratic forms defined below. We
will write both groups additively since in most examples Me turns out to be commuta-
tive. A morphism ˇW M!M0 between quadratic groups is a pair of homomorphisms

ˇeW Me!M 0
e and ˇeeW Mee!M 0

ee

such that both diagrams involving h; h0;p;p0 commute.

Examples 15 The example motivating the notation comes from homotopy theory, see
eg [1]. For m<3n�2, let MeD�m.S

n/, MeeD�m.S
2n�1/, h be the Hopf invariant

and p be given by post-composing with the Whitehead product Œ�n; �n�W S2n�1! Sn .

This quadratic group satisfies phpD2p which is part of the definition used in [1], where
Me is also assumed to be commutative. As we shall see, these additional assumptions
have the disadvantage that they are not satisfied for the universal Example 20.

Another important example comes from an abelian group with involution .M;�/. Then
we let

(M ) Mee WDM; Me WDM=hx�x�i; h.Œx�/ WD xCx�

and p be the natural quotient map. For example, if M is a ring with involution r 7! xr ,
then we get two possible involutions on the abelian group M : r� D˙xr . The choice
of sign determines whether we study symmetric respectively skew-symmetric pairings.

We note that in this example hp � id D � and in the homotopy theoretic example
hp� idD .�1/n . In fact, we have the following lemma:

Lemma 16 Given a quadratic group, the endomorphism hp�id gives an involution on
Mee (which we will denote by �). Moreover, the formula |.x/ WD ph.x/�x defines
an anti-involution on Me . These satisfy

(i) � ı hD h,

(ii) php D pCp ı �,

(iii) p ı � D | ıp .

The proof of this lemma is straightforward and will be left to the reader. To show that
| is an anti-homomorphism one uses that Im.p/ is central and that x 7! �x is an
anti-homomorphism.
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Definition 17 A quadratic group M is a quadratic refinement of an abelian group
with involution .M;�/ if

Mee DM and � D hp� id :

It follows from (i) in Lemma 16 that in this case, the image of h lies in the fixed point
set of the involution: hW Me!M Z2 DH 0.Z2IM /.

The example (M ) above gives one natural choice of a quadratic refinement, however,
there are other canonical (and non-commutative) ones as we shall see in Example 20.

It follows from (ii) in Lemma 16 that the additional condition php D 2p used in [1]
is satisfied if and only if p D p ı �, or equivalently, if p factors through the cofixed
point set of the involution:

pW Mee� .Mee/Z2
DH0.Z2IMee/!Me

It follows that the notion in [12, page 246] is equivalent to that in [1], except that Mee

is assumed to be the ground ring R in the former. In that case, our involution is simply
r� D �xr , where � D˙1 and r 7! xr is the given involution on the ring R.

In this setting, �–symmetric forms in the sense of Ranicki become hermitian forms in
the sense defined below. In particular, Ranicki’s .C1/–symmetric forms are different
from the notion of symmetric form in this paper: We reserve it for the easiest case
where both involutions, � and |, are trivial.

4.3 Non-commutative quadratic forms

Definition 18 A (non-commutative) quadratic form on an abelian group A with values
in a (non-commutative) quadratic group

MD
�
Me

h
�!Mee

p
�!Me

�
is given by a bilinear map �W A�A!Mee and a map �W A!Me satisfying

(i) �.aC a0/D �.a/C�.a0/Cp ı�.a; a0/ and

(ii) h ı�.a/D �.a; a/ 8a; a0 2A.

We say that � is a quadratic refinement of �: Property (i) says that � is quadratic and
property (ii) means that it “refines” �. The notation Me and Mee was designed (by
Baues) to reflect the number of variables (entries) of the maps � and � respectively.
He also writes �D �ee and �D �e , however, we decided not to follow that part of
the notation.
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We write .�; �/W A!M for such quadratic forms and we always assume that the
quadratic group M is part of the data for .�; �/. This means that the morphisms in
the category of quadratic forms are pairs of morphisms

˛W A!A0 and ˇ D .ˇe; ˇee/W M!M0

such that both diagrams involving �; �0; �; �0 commute.

Lemma 19 Let .�; �/W A!M be a quadratic form as above. Then � is hermitian
with respect to the involution � D hp� id on Mee :

�.a0; a/D �.a; a0/�

and � is hermitian with respect to the anti-involution |D ph� id on Me :

�.�a/D �.a/|

Proof As a consequence of conditions (i) and (ii) we get

�.a; a/C�.a0; a0/C�.a0; a/C�.a; a0/D �.aC a0; aC a0/

D h ı�.aC a0/D h.�.a/C�.a0/Cp ı�.a; a0//

D �.a; a/C�.a0; a0/C hp.�.a; a0//

or equivalently, �.a0; a/D .hp� id/�.a; a0/D �.a; a0/� . Similarly,

0D �.0/D �.a� a/D �.a/C�.�a/Cp ı�.a;�a/

D �.a/C�.�a/�p ı h ı�.a/D �.�a/C .id�ph/�.a/

or equivalently, �.�a/D | ı�.a/DW �.a/| .

Starting with a hermitian form � with values in a group with involution .M;�/, the
first step in finding a quadratic refinement for � is to find a quadratic refinement M of
.M;�/ in the sense of Definition 17, motivating our terminology.

4.4 Universal quadratic refinements

Example 20 Given a hermitian form �W A � A ! .M;�/, one gets a quadratic
refinement �� of � as follows. Set Mee WDM and define the universal target Me WD

Mee �� A to be the group consisting of pairs .m; a/ with m 2Mee and a 2 A and
multiplication given by

.m; a/C .m0; a0/ WD .mCm0��.a; a0/; aC a0/ :
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In other words, Me is the central extension

1 // Mee
// Mee ��A // A // 1

determined by the cocycle �, compare Section 4.7. It follows that Me is commutative
if and only if � is symmetric in the naive sense that �.a0; a/D �.a; a0/. Set

p�.m/ WD .m; 0/; h�.m; a/ WDmCm�C�.a; a/ :

We claim that M� WD .Mee

p�
!Me

h�
!Mee/ is a quadratic group as in Definition 14. It is

clear that p� is a homomorphism with image in the center of Me . The homomorphism
property of h� follows from the fact that � is bilinear and hermitian:

h�..m; a/C .m
0; a0//D h�.mCm0��.a; a0/; aC a0/

D .mCm0��.a; a0//C .mCm0��.a; a0//�C�.aC a0; aC a0/

D .mCm�C�.a; a//C .m0Cm0�C�.a0; a0//D h�.m; a/C h�.m
0; a0/

Condition (iii) of a quadratic group is also checked easily:

h�p�h�.m; a/D h�.mCm�C�.a; a/; 0/

D .mCm�C�.a; a//C .mCm�C�.a; a//�

D 2.mCm�C�.a; a//D 2h�.m; a/

We also see that

.h�p�� id/.m/D h�.m; 0/�mD .mCm�/�mDm�

which means that M� “refines” (in the sense of Definition 17) the group with invo-
lution .M;�/. Finally, setting ��.a/ WD .0; a/, we claim that .�; ��/W A!M� is a
quadratic refinement of �. We need to check properties (i) and (ii) of a quadratic form
(Definition 18): (i) is simply h� ı��.a/D h�.0; a/D �.a; a/, and (ii) explains why
we used a sign in front of � in our central extension:

��.a/C��.a
0/Cp� ı�.a; a

0/D .0; a/C .0; a0/C .�.a; a0/; 0/

D .��.a; a0/; aC a0/C .�.a; a0/; 0/D .0; aC a0/D ��.aC a0/

The following result will show that �� is indeed a universal quadratic refinement of
�. This is the content of the first statement in the theorem below. It follows from the
second statement because for any quadratic refinement � of � it shows that forgetting
the quadratic data gives canonical isomorphisms

QF.L ıR.�; �/; .�; �//Š HF.R.�; �/;R.�; �//D HF.�; �/
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where QF respectively HF are (the morphisms in) the categories of quadratic respec-
tively hermitian forms. Since

L ıR.�; �/DL.�/D .�; ��/

and the morphisms in the category QR� of quadratic refinements of � by definition all
lie over the identity of �, the set QR�.��; �/ contains a unique element, namely the
required universal morphism ��! �.

Theorem 21 The quadratic form .�; ��/ is initial in the category of quadratic refine-
ments of �. In fact, the forgetful functor R.�; �/D � from the category of quadratic
forms to the category of hermitian forms has a left adjoint LW HF! QF given by
L.�/ WD .�; ��/.

Proof We have to construct natural isomorphisms

QF..�; ��/; .�0; �0//D QF.L.�/; .�0; �0//Š HF.�;R.�0; �0//D HF.�; �0/

for any quadratic form .�0; �0/ and hermitian form �. Recall that the morphisms in
QF are pairs ˛W A!A0 and ˇD .ˇe; ˇee/W M!M0 such that the relevant diagrams
commute. This implies that forgetting about the quadratic datum ˇe gives a natural
map from the left to the right hand side above.

Given a morphism .˛; ˇee/W �! �0 consisting of homomorphisms ˛W A! A0 and
ˇeeW .Mee;�/! .M 0

ee;�
0/ such that

�0.˛.a1/; ˛.a2//D ˇee ı�.a1; a2/ 2M 0
ee 8ai 2A

we need to show that there is a unique homomorphism ˇeW Me!M 0
e such that the

following 3 diagrams commute:

Me

.1/

h
//

ˇe

��

Mee

ˇee

��

Mee

.2/

p
//

ˇee

��

Me

ˇe

��

A

.3/

��
//

˛

��

Me

ˇe

��

M 0
e

h0
// M 0

ee M 0
ee

p0

// M 0
e A0

�0

// M 0
e

We will now make use of the fact that Me DMee �� A because �� is given as in
Example 20. In this case, diagrams (2) and (3) are equivalent to

ˇe.m; 0/D p0 ıˇee.m/ and ˇe.0; a/D �
0
ı˛.a/

because p.m/D .m; 0/ and ��.a/D .0; a/. This implies directly the uniqueness of
ˇe . For existence, we only have to check that the formula

ˇe.m; a/ WD p0 ıˇee.m/C�
0
ı˛.a/
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gives indeed a group homomorphism Me !M 0
e that makes diagram (1) commute.

Note that the image of p0 is central in M 0
e and hence the order of the summands does

not matter. We have:

ˇe..m; a/C .m
0; a0//ˇe.mCm0��.a; a0/; aC a0/

D p0 ıˇee.mCm0��.a; a0//C�0 ı˛.aC a0/

D p0 ıˇee.m/Cp0 ıˇee.m
0/�p0 ı�0.˛.a/; ˛.a0//C�0 ı˛.aC a0/

D p0 ıˇee.m/Cp0 ıˇee.m
0/C�0 ı˛.a/C�0 ı˛.a0/

D ˇe.m; a/Cˇe.m
0; a0/

To get to the fourth line, we used property (ii) of a quadratic form to cancel the term
p0 ı �0.˛.a/; ˛.a0//. For the commutativity of diagram (1) we use property (i) of a
quadratic form, as well as the fact that ˇee preserves the involution �:

h0 ıˇe.m; a/D h0.p0 ıˇee.m/C�
0
ı˛.a//

D h0p0.ˇee.m//C�
0.˛.a/; ˛.a//

D ˇee.m/
�0

Cˇee.m/Cˇee ı�.a; a/

D ˇee.m
�
CmC�.a; a//D ˇee ı h.m; a/

This finishes the proof of left adjointness of LW HF! QF.

If the bilinear form � happens to be symmetric, or more precisely, if it takes values in a
group Mee with trivial involution �, then the above construction still gives a quadratic
refinement �� . Its target quadratic group M� has the properties that Me is abelian
and h�p�D 2 id. It is not hard to see that our construction above leads to the following
result.

Theorem 22 For any symmetric form � one can functorially construct a quadratic
form .�; ��/ that is initial in the category of quadratic refinements of � with trivial
involution �. In fact, the forgetful functor R.�; �/D � from the category of quadratic
forms with trivial involution � to the category of symmetric forms has a left adjoint
L.�/D .�; ��/.

Remark 23 It follows from the above considerations that a quadratic form .�; �/ is
universal if and only if the homomorphism

Mee ��A!Me given by .m; a/ 7! p.m/C�.a/

is an isomorphism. This in turn is equivalent to
(i) pW Mee!Me is injective and

(ii) �W A!Me= Im.p/ is an isomorphism.
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4.5 Commutative quadratic groups and forms

The case where � is non-trivial but the anti-involution | on Me is trivial is even more
interesting. In this case, � is still hermitian with respect to � but one is only interested
in quadratic refinements � that are symmetric in the sense that �.�a/D �.a/. This
case deserves its own definition:

Definition 24 A commutative quadratic group

MD .Me
h
!Mee

p
!Me/

consists of two abelian groups Me;Mee and two homomorphism h;p satisfying
phD 2 id.

In fact, a commutative quadratic group is the same thing as a non-commutative quadratic
group with trivial anti-involution |. This comes from the fact that the squaring map
x 7! 2x is a homomorphism if and only if Me is commutative. Our universal example
M� is in general not commutative because one gets in this case:

|�.m; a/D p� ı h�.m; a/� .m; a/D p�.mCm�C�.a; a//� .m; a/

D .mCm�C�.a; a/; 0/C .�m��.a; a/;�a/D .m�;�a/

However, we shall see in Theorem 27 that we can just divide by these relations
.m; a/D .m�;�a/ to obtain another universal quadratic refinement of a given hermitian
form � but this time with values in a commutative quadratic group. Before we work
this out, let us mention the essential example from topology.

Example 25 Consider a manifold X of dimension 2n and let M be as in (M ) from
Examples 15 with M D ZŒ�1X �. In particular, we have ph � id D | D id but in
general the involution � is non-trivial. On group elements, it is given by

g� WD .�1/nw1.g/g
�1

with w1 (induced by) the first Stiefel–Whitney class of X . Then the equivariant
intersection form �D �X on �nX is bilinear and hermitian as required. Moreover,
the self-intersection invariant �X defined by Wall [15] gives a quadratic refinement of
�X , at least on the subgroup A of elements represented by immersed nspheres with
vanishing normal Euler number.

As discussed in the introduction, one can change an immersion by (non-regular) cusp
homotopies. Each of these introduces one self-intersection point and changes the normal
Euler number by ˙2. Wall’s �X was originally defined only on regular homotopy
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classes of immersed n–spheres in X . By requiring the normal Euler number to be
zero, one can also define it on the subgroup A of �n.X /. Note that A is the kernel of
the nth Stiefel–Whitney class wnW �n.X /! Z2 .

In our main Theorem 27 below, we shall use the following lemma:

Lemma 26 If .�; �/W A ! M is a commutative quadratic form, then �.n � a/ D
n2 ��.a/ for all integers n 2 Z.

Here we say that a quadratic form .�; �/W A!M is commutative if the target quadratic
group M is commutative, ie if the anti-involution | is trivial (compare Definition 18).

Proof Since the involution | D ph� id is trivial by assumption, we already know
that �.�a/D �.a/ from Lemma 19. Thus it suffices to prove the claim for positive
n> 1 by induction:

�..nC 1/ � a/D �.n � a/C�.a/Cp ı�.n � a; a/

D n2
��.a/C�.a/C n �p ı h ı�.a/

D .n2
C 1/ ��.a/C n � 2 ��.a/D .nC 1/2 ��.a/

Here we again used the fact that p ı hD 2 id.

Theorem 27 Any hermitian bilinear form � has a universal commutative quadratic
refinement. In fact, the forgetful functor R.�; �/ D � from the category CQF of
commutative quadratic forms to the category HF of hermitian forms has a left adjoint
LW HF! CQF;L.�/D .�; �c

�
/.

Proof As hinted to above, we will force the anti-involution | to be trivial in the
universal construction of Theorem 21. This means that we should define the universal
(commutative) group M c

e as the quotient of our previously used group Mee ��A by
the relations:

0D .m�;�a/� .m; a/D .m�;�a/C .�m��.a; a//;�a/

D .m��m� 2�.a; a/;�2a/

By setting a respectively m to zero, these relations imply

.m�; 0/D .m; 0/ and .�2�.a; a/;�2a/D 0 :

Vice versa, these two types of equations imply the general ones and hence we see that
M c

e is the quotient of the centrally extended group

1 // Mee=.m
� Dm/ // Mee=.m

� Dm/��A // A // 1
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by the relations .�2�.a; a/;�2a/D 0. We write elements in M c
e as Œm; a� with the

above relations understood. It then follows that pc
�
.m/ WD Œm; 0� is a homomorphism

Mee ! M c
e (which is in general not any more injective). Moreover, our original

formula leads to a homomorphism hc
�
W M c

e !Mee given by:

hc
�Œm; a� WD h�.m; a/DmCm�C�.a; a/

To see that this is well defined, observe h�.m
�; 0/DmCm� D h�.m; 0/ and

h�.�2�.a; a/;�2a/D�4�.a; a/C�.�2a;�2a/D 0 :

Finally, we set �c
�
.a/ WD Œ0; a� to obtain a commutative quadratic refinement of �

which is proven exactly as in Theorem 21.

To show that �c
�

is universal, or more generally, that L.�/ WD .�c
�
; �/ is a left ad-

joint of the forgetful functor R, we proceed as in the proof of Theorem 21: We are
given a morphism .˛; ˇee/W �! �0 consisting of homomorphisms ˛W A! A0 and
ˇeeW .Mee;�/! .M 0

ee;�
0/ such that

�0.˛.a1/; ˛.a2//D ˇee ı�.a1; a2/ 2M 0
ee 8ai 2A:

We need to show that there is a unique homomorphism ˇeW M
c
e !M 0

e such that the
three diagrams from the proof of Theorem 21 commute. We can use the same formulas
as before, if we check that they vanish on our new relations in M c

e . For this we’ll have
to use that the given quadratic group M0 is commutative. Recall the formula:

ˇe.m; a/D p0 ıˇee.m/C�
0
ı˛.a/

Splitting our relations into two parts as above, it suffices to show that

p0 ıˇee.m
�/D p0 ıˇee.m/ and ˇe.�2�.a; a/;�2a/D 0 :

The first equation follows from part (iii) of Lemma 16 and the fact that we are assuming
that |0 D id:

p0 ıˇee.m
�/D .p0 ı �0/.ˇee.m//D .|

0
ıp0/.ˇee.m//D p0 ıˇee.m/

For the second equation we compute:

ˇe.�2�.a; a/;�2a/D p0 ıˇee.�2�.a; a//C�0 ı˛.�2a/

D�2.p0 ı�0.˛.a/; ˛.a///C�0 ı˛.�2a/

D�2.�0.˛.a/C˛.a//��0.˛.a//��0.˛.a///C�0.�2˛.a//

D�2.4�0.˛.a//� 2�0.˛.a///C 4�0.˛.a//

D�4�0.˛.a//C 4�0.˛.a//D 0
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We used Lemma 26 for nD˙2 and hence the commutativity of M.

4.6 Symmetric quadratic groups and forms

The simplest case of a quadratic group is where both � and | are trivial. Let’s call
such a quadratic group

MD
�
Me

h
�!Mee

p
�!Me

�
symmetric. Equivalently, this means that hp D 2 idD ph (and hence Me is commuta-
tive). Then a quadratic form .�; �/W A!M will automatically be symmetric in the
sense that

�.a; a0/D �.a0; a/ and �.�a/D �.a/ 8 a 2A:

We call � a symmetric quadratic refinement of � and obtain a category of symmetric
quadratic forms with a forgetful functor R to the category of symmetric forms. It is not
hard to show that the construction in Theorem 27 gives a universal symmetric quadratic
refinement �c

�
for any given symmetric bilinear form �. More precisely, we have:

Theorem 28 Any symmetric bilinear form � has a universal symmetric quadratic
refinement. In fact, the forgetful functor R.�; �/ D � from the category SQF of
symmetric quadratic forms to the category SF of symmetric forms has a left adjoint
LW HF! CQF;L.�/D .�; �c

�
/.

Remark 29 We observe that the map pc
�
W Mee !M c

e is a monomorphism in this
easiest, symmetric, case, just like it was in the hardest, non-commutative, case (compare
Remark 23). This can be seen by noting that the first set of relations .m�; 0/D .m; 0/
is redundant if the involution � is trivial. Therefore, if 0Dpc

�
.m/D Œm; 0� then .m; 0/

must lie in the span of the second set of relations, ie, since � is symmetric it must be
of the form

.m; 0/D .�2�.a; a/;�2a/ for some a 2A:

This implies that 2aD 0 and hence �.2a; a/D 0 which in turn means mD 0.

Corollary 30 There is an exact sequence:

1 // Mee

p
// M c

e
// Z2˝A // 1

Examples 31 If Mee DMe then hD id and pD 2 id is a canonical choice for which
� is determined by �. Another canonical choice is p D id and h D 2 id. Then a
quadratic refinement of .Me; h;p/ with this choice exists exactly for even forms, at
least for free groups A. Moreover, if Mee has no 2–torsion then a quadratic refinement
is uniquely determined by the given even form.
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At the other extreme, consider MeeDMeDZ2 . If A is a finite dimensional Z2 –vector
space then non-singular symmetric bilinear forms � are classified by their rank and
their parity, ie whether they are even or odd, or equivalently, whether they admit a
quadratic refinement or not. In the even case, quadratic forms .�; �/ are classified by
rank and Arf invariant. This additional invariant takes values in Z2 and vanishes if and
only if � takes more elements to zero than to one (thus the Arf invariant is sometimes
referred to as the “democratic invariant”).

If � is odd then the following trick of Brown [3] allows one to still define Arf invariants
and it motivates the introduction of Me . Let again A be a finite dimensional Z2 –vector
space, Mee D Z2 and Me D Z4 with the unique nontrivial homomorphisms h;p .
Then any non-singular symmetric bilinear form � has a quadratic refinement � and
quadratic forms .�; �/ are classified by rank and an Arf invariant with values in Z8 . If
� is even, this agrees with the previous Arf invariant via the linear inclusion Z2 � Z8 .

4.7 Presentations for universal quadratic groups

Consider a central group extension

1!M !G
�
!A! 1

and assume that M and A have presentations hmi jnj i respectively hak j b`i. To avoid
confusion, we write groups multiplicatively for a while and switch back to additive
notation when returning to hermitian forms.

It is well known how to get a presentation for G : Pick a section sW A!G with s.1/D1

which is not necessarily multiplicative. Write a relation in A as b` D a0
1
� � � a0r , where

a0i are generators of A or their inverses, then

1D s.1/D s.b`/D s.a01/ � � � s.a
0
r / w`

where w` D w`.mi/ is a word in the generators of M . This equation follows from
the fact that the projection � is a homomorphism and for simplicity we have identified
M with its image in G . We obtain the presentation

G D hmi ; ˛k j nj ; Œmi ; ˛k �; ˇ` w`i

where ˛k WD s.ak/ and ˇ` WD s.a0
1
/ � � � s.a0r / is the same word in the ˛k as b` is in

the ak . The commutators Œmj ; ˛k � arise because we are assuming that the extension is
central, in a more general case one would write out the action of A on M .

It will be useful to rewrite this presentation as follows. Observe that the section s

satisfies
s.a1a2/D s.a1/s.a2/c.a1; a2/
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for a uniquely determined cocycle cW A�A!M . By induction one shows that:

s.a1 � � � ar /D s.a1 � � � ar�1/s.ar /c.a1 � � � ar�1; ar /D � � �

D s.a1/ � � � s.ar /c.a1; a2/c.a1a2; a3/c.a1a2a3; a4/ � � � c.a1 � � � ar�1; ar /

Comparing this expression with the definition of the word w` in the presentation of G ,
it follows that

w` D c.a01; a
0
2/c.a

0
1a02; a

0
3/ � � � c.a

0
1 � � � a

0
r�1; a

0
r / 2M

so that the above presentation of G is entirely expressed in terms of the cocycle c (and
does not depend on the section s any more).

Now assume that �W A�A!M is a hermitian form with respect to an involution �
on M . Then the universal (non-commutative) quadratic group Me from Example 20
is a central extension as above with cocycle c D �. Reverting to additive notation, we
see that

w` D �.a
0
1; a
0
2/C�.a

0
1C a02; a

0
3/C � � �C�.a

0
1C � � �C a0r�1; a

0
r /

D

X
1�i<j�r

�.a0i ; a
0
j /

where the ordering of the summands is irrelevant because M is central in Me . Sum-
marizing the above discussion, we get the following lemma:

Lemma 32 The universal (non-commutative) quadratic group Me corresponding to
the hermitian form � has a presentation

Me D

�
mi ; ˛k

ˇ̌̌̌
nj ; Œmi ; ˛k �; ˇ`C

X
1�i<j�r

�.a0i ; a
0
j /

�
where the generators mi ; ˛k and words nj ; ˇ` are defined as above. Moreover, the
universal quadratic refinement �W A!Me is a (in general non-multiplicative) section
of the central extension and hence ˛k D �.ak/ for the generators ak of A.

As discussed in Theorem 27, we get the universal commutative quadratic group M c
e for

� by adding the relations .m�; 0/D .m; 0/ and .�2�.a; a/;�2a/D 0. The latter can
be rewritten in the form 2.0; a/D .�.a; a/; 0/. In the current notation, where .m; 0/ is
identified with m 2M , we obtain the relations

m� Dm and 2�.a/D �.a; a/ 2M c
e 8m 2M; a 2A:

Recalling that A;M and M c
e are commutative groups, we can write our presentation

in that category to obtain the following:
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Lemma 33 The universal (commutative) quadratic group M c
e corresponding to the

hermitian form �W A�A!M has a presentation

M c
e D

�
mi ; �.ak/

ˇ̌̌̌
nj ; ˇ`C

X
1�i<j�r

�.a0i ; a
0
j /;m

�
Dm; 2 ��.a/D �.a; a/

�
Here hmi j nj i is a presentation of M and ak are generators of A. Moreover, for every
relation b` D

Pr
iD1 a0i in A, we use the word ˇ` WD

Pr
iD1 �.a

0
i/.

4.8 Twisted intersection invariants and a universal quadratic group

If we apply this construction to the universal inner product on order n rooted trees

h � ; � iW Ln.m/�Ln.m/ �! T2n.m/DW T2n.m/ee

we obtain a universal symmetric quadratic refinement:

q WD �c
h � ; � iW Ln.m/! T2n.m/

c
e

Let us compute the presentation from Lemma 33 in this case. Recall that the generators
of Ln.m/ are rooted trees J of order n and the relations are the AS and IHX relations
from Figure 5. Similarly, T2n.m/ is generated by unrooted trees t of order 2n, modulo
the same relations. Putting these together, we see that T2n.m/

c
e is generated by unrooted

trees t of order 2n and elements q.J /, one for each rooted tree J of order n. The
three types of relations from Lemma 33 are:

nj W Relations in M D T2n.m/ are ordinary AS and IHX relations for unrooted trees
t ,

ˇ` W Every relation b` in ADLn.m/ is an AS–relation JC xJ D0 or an IHX–relation
I�HCX D 0. We obtain the following twisted AS– respectively IHX–relations:

0D q.J /C q. xJ /ChJ; xJ i

0D q.I/C q.H /C q.X /� hI;H iC hI;X i � hH;X i

c W 2 � q.J /D hJ;J i

The last relation c builds in the commutativity of the universal group as discussed
above because we are in the easiest, symmetric, setting where the involution � is trivial.
Using relation c , the twisted AS relation simply becomes

q. xJ /D q.�J /D q.J /

which was expected since we are in the symmetric case. This relation means that the
orientation of J is irrelevant when forming q.J / and in fact, with some care one can
see that the twisted IHX–relation makes sense for unoriented trees.
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Lemma 34 This is a presentation for the target group T2n.m/ of twisted Whitney
towers from Definition 10.

Proof The translation comes from setting J D q.J / for rooted trees J (and keeping
unrooted trees unchanged). We need to show that the twisted IHX–relations in the
original definition of T2n.m/ are equivalent to the twisted IHX–relations above, all
other relations were already shown to agree. This is very easy to see in the presence of
the interior-twist relations: Together with the (untwisted) IHX–relations, they imply
that:

0D hI; I �H CX i D hI; Ii � hI;H iC hI;X i D 2 � q.I/� hI;H iC hI;X i

This last expression is exactly the difference between the two versions of the twisted
IHX–relations.

Corollary 35 There is an isomorphism of symmetric quadratic groups

T2n.m/
c
e Š T2n.m/

which is the identity on T2n.m/ and takes q.J / to J for rooted trees J . The quadratic
group structure on T2n.m/ is given by the homomorphisms

T2n.m/
p
�! T2n.m/

h
�! T2n.m/

which are uniquely characterized (for unrooted trees t and rooted trees J ) by

p.t/D t and h.t/D 2 � t; h.J /D hJ;J i :

Note that Theorem 11 is now a direct consequence of Corollary 30.
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