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Surgery on nullhomologous tori

RONALD FINTUSHEL

RONALD STERN

By studying the example of smooth structures on CP2 # 3CP2 we illustrate how
surgery on a single embedded nullhomologous torus can be utilized to change the
symplectic structure, the Seiberg–Witten invariant, and hence the smooth structure on
a 4–manifold.

57R55; 57R57, 14J26, 53D05

1 Introduction

Around 2007 a major breakthrough occurred in smooth 4–manifold theory when several
authors (Akmedov and Park [1], and Baldridge and Kirk [3]) produced what was then
the smallest known simply connected 4–manifold, CP2 # 3CP2 , with more than one
smooth structure. The idea of reverse engineering, as we developed and presented it
in [4], is to find a symplectic model which should have the same Euler characteristic
and signature as the manifold to be constructed, and should contain enough disjoint
Lagrangian tori so that surgeries on them kill �1 . In particular, for CP2 # 3CP2 , we
showed in 2006 that an appropriate model is Sym2.†3/, the symplectic square of a
Riemann surface of genus 3, but we never thought that the result of our surgeries could
ever be simply connected. However, it turns out that the manifolds produced in [1] and
[3] can equivalently be obtained from reverse engineering starting with Sym2.†3/,
and, from our vantage point, proving simple connectivity was a major contribution.

Pushing this further, as we pointed out in [4] and [6], this procedure can be reinterpreted
to show that surgery on nullhomologous tori is the underlying operation that is used to
change the smooth structure of a 4–manifold. In this paper we hope to motivate and
enhance this idea by proving the following theorem.

Theorem 1 There is a nullhomologous torus T embedded in CP2 # 3CP2 such
that surgeries on T result in an infinite family of smooth 4–manifolds which are all
homeomorphic to CP2 # 3CP2 but which are pairwise nondiffeomorphic.
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62 Ronald Fintushel and Ronald Stern

This theorem is true more generally for CP2 # kCP2 , 2� k � 7, following the ideas
below and the constructions of [6].

Given a general smooth 4–manifold, it is not known whether it is possible to find such
tori, and even if it is, they are difficult to find. We give a hint at their detection by showing
below that in the case of symplectic manifolds with bC D 1 these nullhomologous tori
are constrained by their relationship with the canonical class.

2 Nullhomologous tori

An effective procedure for altering the smooth structure of a given 4–manifold X relies
on the ability to find a suitably embedded torus T with trivial normal bundle NT that
represents a nontrivial homology class and to perform surgeries on this torus. If the
torus T is the fiber of an elliptic fibration, this surgery is also known as ‘log transform’.
If both X and X XNT are simply connected, and if the Seiberg–Witten invariant of
X is nontrivial, then another effective surgery on T , the knot surgery we introduced
in [5], will also change the smooth structure of X . In each of these cases, the new
smooth manifold also contains an essential torus of self-intersection 0. However, not all
4–manifolds contain such suitably embedded tori. In particular, the following lemma
shows that in the situation which is of particular interest to us, we can find no tori with
trivial normal bundle representing a nontrivial homology class.

Lemma 1 Let X be a smooth simply connected 4–manifold with bCD 1, b�� 8 and
with a nontrivial Seiberg–Witten invariant. Then there are no homologically essential
embedded tori of square 0 in X .

Proof Let k 2H2.X IZ/ be a basic class, ie, k is the Poincaré dual of c1.s/ where
s is a spinc –structure for which the Seiberg–Witten invariant is nonzero. (When
bC D 1 and b� � 9 there is a unique well-defined small-perturbation Seiberg–Witten
invariant. This is the invariant we use throughout this paper.) Let fh; e1; : : : ; ebg be an
orthogonal basis for H2.X IZ/ where h2 D 1 and e2

i D�1. Write T D ah�
P

biei

and k D ˛h�
P
ˇiei . Then T 2 D 0, and since the dimension of the Seiberg–Witten

moduli space corresponding to k is nonnegative, we also have k2 � .3 signC2 e/.X /,
and this is > 0 because of our hypothesis on X . Hence

a2
D

X
b2

i ; ˛2 >
X

ˇ2
i

It follows directly from the adjunction inequality that k �T D 0; hence a˛ D
P

biˇi .
Thus Cauchy–Schwartz implies

a˛ >

rX
b2

i

rX
ˇ2

i �

ˇ̌̌X
biˇi

ˇ̌̌
D ja˛j
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This contradiction proves the lemma.

In summary, for some manifolds, in particular the manifolds of the important class
above, there are no essential tori upon which surgery can be used to change the smooth
structure. Thus we are led to search for interesting nullhomologous tori in these
manifolds.

3 Surgery on tori

Suppose that T is a torus of self-intersection 0 in a 4–manifold X with tubular
neighborhood NT . For simplicity, we assume that H1.X IZ/ is torsion free. Let a and
b be generators of �1.T

2/ and let S1
a and S1

b
be loops in T 3 D @NT homologous in

NT to a and b respectively, and let �T denote a meridional circle to T lying on T 3 .
By p=q–surgery on T with respect to b we mean

XT;b.p=q/D .X XNT /[' .S
1
�S1

�D2/;

'W S1
�S1

� @D2
! @.X XNT /

(1)

where the gluing map satisfies '�.Œ@D2�/ D qŒS1
b
�C pŒ�T � in H1.@.X XNT /IZ/.

When T and b are understood, we simply write Xp=q .

Note that we have framed NT using S1
a and S1

b
so that pushoffs of a and b in this

framing are S1
a and S1

b
. When the curve S1

b
is nullhomologous in X XNT , then

H1.XT;b.1=q/IZ/DH1.X IZ/. As long as �T generates an infinite cyclic summand
of H1.X XNT IZ/, the framing S1

b
is the unique “nullhomologous framing” of b . If in

addition, T itself is nullhomologous, then H1.XT;b.p=q/IZ/DH1.X IZ/˚Z=pZ.

Let T 0 be a homologically primitive torus of self-intersection 0 in a 4–manifold X 0

with tubular neighborhood NT 0 , and suppose that b0 is a nonseparating loop on T 0 .
Because T 0 is primitive, there is an oriented surface which intersects T 0 once. Thus
the meridian �T 0 bounds a surface in X 0XNT 0 . Fix a framing of T 0 and suppose that
the pushoff S1

b0
represents a nontrivial element of H1.X

0 XNT 0 IR/.

Now perform C1–surgery on T 0 with respect to b0 and the framing that was chosen
above. (The situation is the same for �1 surgery on T 0 .) The manifold X which
results from this surgery contains a torus T of self-intersection 0, the core torus
S1�S1�f0g in the formula above. The meridional loop �T to this torus is homologous
to S1

b0
C�T 0 , which is in turn homologous to S1

b0
, since �T 0 is homologically trivial

in X 0 XNT 0 DX XNT . Thus �T represents a nonzero class in H1.X XNT IR/; so
T must be nullhomologous since H1.X IZ/ is torsion free. The gluing (1) takes �T 0
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to a loop S1
b

on @NT which is homotopic in NT to a loop b on T . We see that the
pushoff S1

b
is nullhomologous in X XNT . Conversely if we perform 0–surgery on T

with respect to b and the framing given by S1
b
D �T 0 , the resultant manifold is X 0 .

The situation is summarized in diagram (2).

(2)

X 0
C1 surgery -

�
0 surgery

X

T 0 primitive
b0 essential in complement

T nullhomologous
b nullhomologous in complement

bC.X 0/D bC.X /C 1

There is a useful formula of Morgan, Mrowka, and Szabó which determines Seiberg–
Witten invariants in this situation. Suppose we are given a manifold X upon which
we would like to do 1=n surgery with respect to a torus T and a loop b as above.
The Morgan–Mrowka–Szabó formula determines the Seiberg–Witten invariants of the
surgered manifold X1=n in terms of those of X itself and of 0–surgery X0 as above.
We write T0 for the core torus of the surgery in X0 . (This is the torus denoted T 0 in
the paragraph above.) Similarly T1=n is the core torus in X1=n .

Let k0 2 H2.X0IZ/ be a basic class. The adjunction inequality implies that k0 is
orthogonal to T0 . Thus, there are (unique, because T (resp. T1=n ) are nullhomolo-
gous) corresponding homology classes k1=n and k in H2.X1=nIZ/ and H2.X IZ/,
respectively, where k agrees with the restriction of k0 in H2.X XNT ; @IZ/ in the
diagram:

H2.X IZ/ �! H2.X;NT IZ/??yŠ
H2.X XNT ; @IZ/x??Š

H2.X0IZ/ �! H2.X0;NT0
IZ/

and similarly for k1=n .

It follows from Morgan, Mrowka and Szabó [8] that

(3) SWX1=n
.k1=n/D SWX .k/C n

X
i

SWX0
.k0C i ŒT0�/

and that these comprise all the basic classes of X1=n .

If there is a torus Td of self-intersection 0 in X0 such that Td �T0D 1, then adjunction
inequality arguments show that the sum on the right of the above formula has at most
one nonzero term. We will often be in the situation where each of the manifolds X ,
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X1=n , and X0 has a unique basic class up to sign. In either of these cases we can
unambiguously write SWX1=n

D SWX Cn SWX0
. We see that if SWX0

¤ 0, we obtain
an infinite family of distinct smooth manifolds (determined by their Seiberg–Witten
invariants) all with the same homology groups as X .

4 Reverse engineering

We begin by discussing how one ensures that the term SWX0
of (3) is nonzero. If

X is a symplectic manifold and T is any Lagrangian torus, then there is a canonical
framing, called the Lagrangian framing, of NT . This framing is uniquely determined
by the property that pushoffs of T in this framing remain Lagrangian. If one performs
1=n surgeries with respect to the pushoff in this framing of any curve on T , then the
result is also a symplectic manifold. We refer the reader to Auroux, Donaldson and
Katzarkov [2] for a full discussion of this phenomena, which is referred to as Luttinger
surgery. However, one must be careful that it is often the case that the pushoff of a curve
using the Lagrangian framing may not be nullhomologous, so that a 1=n (Luttinger)
surgery may in fact may change H1 . This will be the case when performing reverse
engineering.

It is important to note that surgery on tori changes neither the signature, sign.X / nor
the Euler characteristic, e.X /, of a 4–manifold X . Also, as mentioned above, if
H1.X IZ/D 0 and T is a nullhomologous torus with a nonseparating loop b whose
framing S1

b
is nullhomologous in H1.X XNT IZ/ŠZ, then a 1=n surgery on T with

respect to the nullhomologous framing of b leaves H1.X IZ/ unchanged. Furthermore,
if X is simply connected, SWX0

¤ 0, and if it can also be seen that the manifolds
X1=n are simply connected, then we obtain an infinite family of distinct manifolds all
homeomorphic to X . This is the key idea of “reverse engineering”. The method is as
follows:

Suppose that we wish to construct manifolds which are homeomorphic to a given simply
connected 4–manifold R with bC

R
� 1 but which are pairwise nondiffeomorphic. Here

is a recipe: First seek out a symplectic manifold M which

(1) has the same Euler characteristic and signature as R;

(2) has nD b1.M / pairwise disjoint primitive Lagrangian tori, Ti , each containing
a nonseparating loop bi , such that the collection of bi represents a basis for
H1.M IR/.

Now perform ˙1 Luttinger surgeries consecutively on the Lagrangian tori Ti , obtaining
symplectic manifolds Mi with b1.Mi/D b1.M /� i , bC.Mi/D bC.M /� i , and in
particular, b1.Mn/D 0D b1.R/ and bC.Mn/D bC.R/.
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Denote the symplectic manifold Mn by X . Referring to diagram (2) we see that there
is a distinguished nullhomologous torus T in X containing a loop b which has a
pushoff which is nullhomologous in the complement of T . Performing 0–surgery
with respect to this framing yields Mn�1 as in (2). Because Mn�1 is symplectic and
bC.Mn�1/D bC.R/C 1� 2, it follows that SWX0

D SWMn�1
¤ 0.

The Seiberg–Witten invariant of X1=n , the result of 1=n surgery on T with respect to
the nullhomologus framing of b , is calculated via (3). For example, if we are in one
of the situations where the sum on the right of (3) reduces to a single term, then it is
clear that the manifolds X1=n are pairwise nondiffeomorphic. In any case, infinitely
many of the X1=n are pairwise nondiffeomorphic (see [4]). If, furthermore, each of the
manifolds X1=n is simply connected, then they are all homeomorphic to R. However, it
is often difficult to verify that any of the manifolds X1=n are indeed simply connected.

As we have already mentioned, this process is called “reverse engineering”. The
manifold M is called a “model manifold” for R.

5 CP2 # 3CP2

The reverse engineering process follows easily when RDCP2#3CP2 . As we showed in
[4], M DSym2.†3/ may be taken as a model manifold in that case. Then �1.M /DZ6

and one can find six Lagrangian tori upon which Luttinger surgeries kill �1 . We are
then left with a symplectic manifold X which is homeomorphic to CP2 # 3CP2 and
a nullhomologous torus T in X containing a nullhomologous loop b so that 1=n

surgeries with respect to the nullhomologous framing of b give an infinite family of
homeomorphic but pairwise nondiffeomorphic 4–manifolds. Of these manifolds X1=n ,
only X itself is symplectic.

In fact, X is not diffeomorphic to CP2 # 3CP2 . That one is creating an exotic smooth
structure follows almost directly from [2]. Since Sym2.†3/ is a complex surface
of general type, its canonical class pairs positively with its Kahler form. Surgering
Lagrangian tori does not change this phenomenon (see [4, page 2112]); so we obtain a
symplectic 4–manifold .X; !X / which is homeomorphic to CP2 #3CP2 but for which
KX � !X > 0. According to Li and Liu [7], however, each symplectic structure on
CP2 #3CP2 satisfies K �! < 0; so X cannot be diffeomorphic to CP2 #3CP2 . In fact,
in [4] it is shown by using adjunction inequality arguments that the Seiberg–Witten
invariant of X is t � t�1 where t 2 ZH2.X IZ/ corresponds to the canonical class,
whereas the Seiberg–Witten invariant of CP2#3CP2 vanishes since CP2#3CP2 admits
a positive scalar curvature metric.
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Our goal now is to enhance this procedure to show that there is a single nullhomologous
torus T in CP2 # 3CP2 upon which the sequence of 1=n surgeries gives our infinite
family of manifolds. To do this we need to answer two questions:

(1) How does one go about finding nullhomologous tori in a manifold?

(2) What criteria do they need to satisfy in order to be useful for changing the smooth
structure?

We are not able to answer these questions generally, but we can give satisfying answers
in the case of CP2 # 3CP2 and more generally for CP2 # kCP2 , 2� k � 7.

To address the first of the questions, suppose that we have a smooth 4–manifold R

which contains an embedded smooth torus T of self-intersection 0. Choose local
coordinates in which a tubular neighborhood T �D2 of T is S1 � .S1 �D2/. The
Bing double BT of T consists of the pair of tori S1� (Bing double of the core circle
S1�f0g). The solid torus S1�D2 is shown in Figure 1(a). This description (including

(a) Bing double (b) Whitehead double

Figure 1

the splitting of T 2 into the product S1�S1 and a fixed framing, ie a fixed trivialization
of the normal bundle of T ) determines this pair of tori up to isotopy. The component
tori in BT are nullhomologous in T �D2 . If one does ˙1 surgery to one of the two
tori of BT , it turns the other into the Whitehead double of T in T �D2 . Often, surgery
on the other torus will then change the smooth structure of the ambient manifold. For
example, if T is an elliptic fiber in the rational elliptic surface E.1/, a 1=n surgery
on the second torus (with respect to an appropriate framing) will give the result of knot
surgery using an n–twist knot [5].

As we have seen in Lemma 1, one can not count on finding tori such as T . Instead, we
seek a manifold smaller than T 2 �D2 which still contains the Bing tori BT . If we
view BT � S1� .S1�D2/, and write the first S1 as I1[I2 (I1\I2Š S0 ), and the
second S1 as J1 [ J2 and consider T0 D S1 �S1 X .I2 � J2/ (see Figure 2), then
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J2

J1

Figure 2

BT \ .T0 �D2/ consists of a pair of punctured tori, and @.BT \ .T0 �D2// is a link
in @.T0 �D2/Š S1�S2 # S1�S2 .

The intersection of BT with .I2�J2/�D2 is a pair of disks I2� (intersection of the
Bing double link with J2 �D2 ). Its boundary is the double of the intersection of the
Bing double link with J2�D2 ; ie the (1–dimensional) Bing double of @.I2�J2�f0g/.
In @.T0�D2/ŠS1�S2#S1�S2 this boundary is shown in Figure 3(a) or equivalently,
Figure 3(b).

(a) (b)
Figure 3

Performing 0–framed surgeries on these boundary circles (with respect to the null-
homologous framing of these circles in Figure 3), we obtain a manifold, shown in
Figure 4(a) which contains a pair of self-intersection 0 tori. We call this manifold A.
It is given equivalently by Figure 4(b). Figure 4(b) points out that A is obtained from
the 4–ball by attaching a pair of 2–handles and then carving out a pair of 2–handles.
The Euler characteristic of A is e D 1 and its betti numbers are b1.A/D 2D b2.A/.

Our above discussion shows that A embeds in T 2 �D2 and contains the Bing double
BT of the core torus. We continue to refer to the pair of tori in A as BT , even though,
in general, they do not constitute a Bing double of some other torus.
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0 0

(a)
0 0

0

(b)

Figure 4: The manifold A

Lemma 2 The manifold A embeds in T 2 � S2 as the complement of a pair of
transversely intersecting tori of self-intersection 0.

Proof Write T 2 �S2 as .S1 � .S1 �D2//[ .S1 � .S1 �D2//. We know that A

embeds in, say, the second T 2 �D2 . In Figure 4(a), if we remove the two 2–handles,
we obtain T0�D2 . The two 2–handles are attached along the Bing double of the circle
ˇD @T0�f0g. If instead, we attach a 0–framed 2–handle along ˇ we obtain T 2�D2 .
This implies that .T 2�D2/XA is the complement in the 2–handle, D2�D2 , of the
core disks of the 2–handles attached to obtain A. This complement is thus the result
of attaching two 1–handles to the 4–ball. This is precisely the boundary connected
sum of two copies of S1 �B3 , ie T0 �D2 . Using the notation in Figure 2 and above,
.T 2 �D2/X .T0 �D2/D I2 �J2 �D2 . The complement of the two 2–handles dug
out of this is a neighborhood of fptg� the shaded punctured torus in Figure 6(b).

Thus the two tori referred to in the lemma are illustrated in Figure 6. One of these tori,
T , is S1 times the core circle in Figure 6(a), and the second torus, ST DDT [T 0

0
,

where DT is fptg times the shaded meridional disk in Figure 6(a), and T 0
0

is fptg
times the shaded punctured torus in Figure 6(b). Note that ST represents the homology
class of fptg �S2 .

From a Kirby calculus point of view, a depiction of a neighborhood N of these two
tori is shown in Figure 5. Take its union with A as seen in Figure 4(b). The Borromean
triple on the left side of Figure 4(b) cancels with the corresponding triple in Figure 5).
We are left with the double of T 2 �D2 , ie T 2 �S2 .

Corollary 1 The manifold A is the complement of the punctured torus ST XD2 D

fptg �T 0
0

in S1 �S1 �D2 .
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0 0

Figure 5

D2
T

(a)

T 0
0

(b)
Figure 6

In Figure 7 we again see A, and using this figure, we can describe the tori in BT .
It shows the Borromean 2–handles whose cocores have boundary circles x and y .
Denote disks which comprise the cores of these handles by Dx and Dy . Figure 7 also
shows the circles a and b which go over the Borromean 1–handles of A. Let b�

1
and

b�
2

be the components of the Bing double of b . Let T.1/ and T.2/ be the component
tori of BT . Then we have:

Lemma 3 The torus T.i/ can be decomposed in the standard way into a union of a
0–cell, two 1–cells, and a 2–cell, where the union of the 0 and 1–cells deformation
retracts to a wedge of circles C1_C2 where C1 is isotopic in A to a and C2 is isotopic
to b�i . The 2–cell of T.i/ is Dx .i D 1/ or Dy .i D 2/.

It is also useful to interpret Corollary 1 in light of Figure 4(b). In that figure, the
large 2–handle together with the Bing double 1–handles give a handle description
of T 2 �D2 . If we remove a D2 –fiber (thus obtaining T0 �D2 ) we add the large
1–handle as in Figure 4(b). However, this is not what we have done — instead we
have removed a punctured torus. This means that we have removed a Bing double
pair of 1–handles which is the same as attaching the Bing double pair of 2–handles in
Figure 4(b).
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h1 h2

0

x a

0
0 y

b

Figure 7

Note that we see BT � S1� (the solid torus in Figure 6(b)) D T 2 �D2 � T 2 �S2 .
View S1 � S2 as 0–framed surgery on an unknot in S3 . The Bing double of the
core circle in Figure 6(b) is the Bing double of the meridian to the 0–framed unknot.
Performing 0–framed surgery on the two components of this Bing double gives us
f0; 0; 0g–surgery on the Borromean rings, viz. T 3 . Thus performing S1 times these
surgeries gives:

Proposition 1 One can perform surgery on the tori BT �A� T 2 �S2 to obtain the
4–torus, T 4 .

Later we will be interested in other surgeries on BT . We call the surgeries of
Proposition 1 the standard surgeries on BT . Conversely, standard surgeries on the
corresponding pair of tori eB T � T 4 yields T 2 �S2 . Furthermore, eB T is a pair of
disjoint Lagrangian tori in T 4 , S1 times two of the generating circles of T 3 . The pair
of tori of Lemma 2 can also be identified in T 4 after the surgeries. The first torus, S1

times the core circle in Figure 6(a) becomes S1 times the third generating circle of
T 3 . Call this torus TT . The other torus intersects TT once and is disjoint from BT .
We call it TS . It is the dual generating torus of T 4 . The complement of these tori in
T 4 is T0 �T0 . We thus have:

Proposition 2 The standard surgeries on the pair of Lagrangian tori eB T in T0 �T0

give rise to A, and conversely, the standard surgeries on BT �A yield T0�T0 .

Thus the result of the standard surgeries on T 2 � S2 is to transform A into the
complement of a transverse pair of generating tori TT DT 2�fptg and TS Dfptg�T 2

in T 4 . The reason for this notation is that TS is the torus in T 4 which is sent to ST

in T 2 �S2 after standard surgeries on eB T , and TT is the torus that is sent to T .

These surgeries also transform the Bing tori in BT into the Lagrangian tori ƒ1 D

S1
1
�S1

3
and ƒ2DS1

1
�S1

4
in T 4DT 2�T 2D .S1

1
�S1

2
/�.S1

3
�S1

4
/. The surgeries
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on ƒ1 and ƒ2 are not Lagrangian surgeries in the sense of [2], and so one does not
get an induced symplectic structure. Indeed, T0�T0 is the complement of transversely
intersecting symplectic tori in T 4 , but after surgery, in T 2 �S2 , the complement of
A is the regular neighborhood of a pair of tori, one of which is not minimal genus and
so cannot be symplectically embedded.

6 The canonical class

We now begin to address question 2 from the previous section. What constraints are
placed on a nullhomologous torus (or collection of nullhomologous tori) if they are to
be useful for changing the smooth structure? We limit our discussion to the case of
rational surfaces RD CP2 # kCP2 , k � 8. As mentioned above, for these manifolds
Li and Liu have shown that the symplectic form is unique up to deformation and
diffeomorphism, and hence for any symplectic form !R , the corresponding canonical
class KR must satisfy KR � !R < 0 (as is true for the standard Kahler form) [7].
Thus our goal should be to find nullhomologous tori in R such that surgeries on them
produce a symplectic manifold .X; !X / homeomorphic to R with KX �!X > 0. Then
X cannot be diffeomorphic to R. One important constraint can be derived from the
genus of a surface representing KX .

Since KR is a negative class (ie it intersects !R negatively) KR is not represented by
a symplectic surface. Rather, it is �KR D 3h�

P
ei that is. The adjunction formula

then applies to �KR and states that for g the genus of ˙KR ,

2g� 2D .�KR/ � .�KR/C .�KR/ �KR

so g D 1, as we know. If we can find a symplectic structure !X as above, then KX is
positive and will be represented by a symplectic surface (cf Taubes [10], and Li and
Liu [7]). Thus we can apply the adjunction formula to KX :

2g� 2DKX �KX CKX �KX

and we see that KX is represented by symplectic surface of genus

g DK2
X C 1D c2

1.X /C 1D 10� k

In particular, for RD CP2 # 3CP2 , k D 3 and g D 7. Thus if we have a collection of
nullhomologous tori such that surgery on them changes R to X they must serve to
increase the genus of the canonical class by 6. Notice that this is precisely the number
of surgeries needed to go from the model Sym2.†3/ to X !
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7 Pinwheels

We next address the question of how one can go about finding nullhomologous tori
in CP2 # 3CP2 which will serve to raise the genus of the canonical class from 1 to
7. As a warmup, referring to Figure 6(b), note that surgery on one of the Bing tori
intersecting a disk fptg � fptg �D2 � S1 �S1 �D2 will not embed after the surgery,
however there is an obvious punctured torus, T 0

0
which will. Thus, surgery will force

the genus of this disk to go up by one. The technique presented in [6] will be useful
for embedding nullhomologous tori so that surgery on them accomplishes this. Rather
than repeating what was already presented in that paper, we will illustrate the idea of a
pinwheel structure in the case of CP2 and CP2 # 3CP2 and refer the reader to [6] for
specifics and generalizations.

Toward this end consider a linear T 2 –action on CP2 . Its orbit space is a polygon
as shown in Figure 8(a). The vertices are images of fixed points, while an edge
labeled .p; q/ has isotropy group the circle group described in polar coordinates by
G.p; q/Df.'; #/ jp'Cq#D 0; gcd.p; q/D 1g, and the interior points are the images
of principal orbits. We have divided this figure into three quadrilaterals; each is the
image of a standard 4–ball coordinate neighborhood of one of the three fixed points of
this torus action. In Figure 8(a) we have also noted the self-intersection numbers (all
C1) of the 2–spheres described by the edges.

(a) CP2 (b) CP2 with pinwheel structure

Figure 8

Geometry & Topology Monographs, Volume 18 (2012)



74 Ronald Fintushel and Ronald Stern

Let F1 be the rational ruled surface with a negative section S� of square �1. It
is useful to view each of these 4–balls as the complement in F1 of S� and a fiber
F . Figure 8(b) indicates how these complements are glued together. (This example
was originally described in a slightly different fashion by Symington [9].) The extra
labelings in this figure give the isotropy types and self-intersection numbers for the
spheres S� and F in a T 2 action on F1 . Note that we have glued the boundary
of a tubular neighborhood of the negative section of one 4–ball to the neighborhood
of a fiber in the next. Of course, strictly this cannot be done, but since in F1 the
section S� and a fiber meet in a point, we need only glue together the boundaries of
normal S1 –bundles restricted over punctured surfaces (genus 0 in this case), and these
restricted bundles are all trivial. Think of the boundary of our 4–ball in F1 as

@B4
D .D2

�S1/[ .T 2
� I/[ .D2

�S1/

where we are gluing together the pieces D2�S1 , one 4–ball to the next. This process
is illustrated in Figure 9. In that figure, the wedge-shaped regions in the center denote
neighborhoods of the intersection of S� and F after the section and fiber have been
deleted.

.S�X D2/�S1 .F X D2/�S1

.F X D2/�S1

T 2 � I

.S�X D2/�S1

T 2 � I T 2 � I

.F X D2/�S1

.S�X D2/�S1

Figure 9

After gluing all three components this way, we obtain a manifold whose boundary is a
T 2 bundle over a circle. If the total space of this bundle is T 3 , then we can fill in the
boundary with T 2 �D2 to obtain a closed manifold. Of course this is what happens
in our example of CP2 . More generally, when there are three pieces, if the sum of
the two Euler numbers of the normal bundles removed at each interface is �1 (as in
Figure 8(b)), then the boundary will be T 3 . See [6] for more general criteria. The
spheres S� and F are referred to as ‘interface surfaces’.
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Each of the three 4–ball components comprising the pinwheel structure of CP2 has
the handlebody decomposition of Figure 10(a). Removing the negative section S�
from F1 leaves a D2 bundle over S2 with Euler number 1 — this gives the 2–handle,
and removing the fiber F adds the 1–handle. Figure 10(b) shows normal circles �S�

and �F to the negative section and fiber of F1 .

1

(a)

�F 1

�S�

(b)
Figure 10

The components of the pinwheel are glued together so that �F in one component
is identified with �S� in the next. Thus, �F bounds a disk D (the cocore of the
C1–framed 2–handle) in an adjacent pinwheel component. It also follows that the
Bing double of �F bounds disjoint disks inside a small neighborhood of D . We can
ambiently add 2–handles to the Bing double of �F in the first pinwheel component
while subtracting these 2–handles from the second component. Since subtracting a
2–handle is equivalent to attaching a 1–handle, this handle-trading process, when done
in each pinwheel component, turns each 4–ball of Figure 10(a) into the manifold shown
in Figure 11.

1

00
Figure 11

The result of this handle-trading is to create a new pinwheel structure for CP2 where the
interface surfaces are now tori rather than spheres. This process is shown schematically
in Figure 12.

Unfortunately, these new pinwheel components do not contain copies of our manifold
A. (Compare Figures 11 and 4(b).) However, if we blow up each pinwheel component,
we get pinwheel components Ci , i D 0; 1; 2, as illustrated in Figure 13, where all the
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1

1

1

1

1

1

0 0

0

0

0 0

Figure 12: Handle-trading in CP2

handles are labeled. The new components Ci clearly contain A. Blowing up three
times accomplishes this for each pinwheel component. Thus CP2 # 3CP2 contains
three copies of A, hence three copies of BT — all together six nullhomologous tori.

We need to see that surgery on these tori produces a symplectic manifold X home-
omorphic to CP2 # 3CP2 with KX �!X > 0. According to Proposition 2, standard
surgeries on BT change A into T0 � T0 . So if we perform these surgeries in each
pinwheel component, they become

.T0 �T0/ # CP2
D .T 2

�T 2/ # CP2
X .T 2

� fptg[ fptg �T 2/

Three of these get glued together in a pinwheel which is obtained from CP2 # 3CP2

via six standard surgeries. Since each component is obtained by removing a a pair of
transversely intersecting symplectic surfaces from a symplectic manifold, it follows
from a theorem of Symington [9] that it gives a pinwheel structure for a symplectic
manifold Q. In [9] this is called a 3–fold sum of symplectic manifolds. (Surely, Q is
Sym2.†3/, but this is as yet unproved.) Furthermore, the tori T and ST of Lemma 2
become Lagrangian in Q as in Proposition 2.

Thus we have six Lagrangian tori in Q upon which we can perform Luttinger surgeries
to kill the first betti number of Q. In [6] we showed that the result X of these
surgeries is simply connected. (One should not underestimate the importance of this
calculation. Many mistakes in the literature have been made at this point.) Hence, X is
the symplectic manifold that we have sought. Let L1;i and L2;i denote the Lagrangian
tori in Q obtained from the tori T.1/;i and T.2/;i of the i th copy of BT (i D 1; 2; 3)
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0

�1

0 0

Figure 13

after the standard surgeries on CP2 # 3CP2 . Hence

CP2 # 3CP2
X

3[
iD1

.T1;i [T2;i/DQX

3[
iD1

.L1;i [L2;i/DZ;

say. This means that X is the union of Z with six copies of T 2 �D2 . That is to
say, X is the result of six surgeries on the nullhomologous tori T.1/;i and T.2/;i in
CP2 # 3CP2 . Combining this with our discussion from Section 4 gives:

Theorem 2 [6] There are six nullhomologous tori embedded in CP2 # 3CP2 upon
which surgery gives rise to an infinite family of mutually nondiffeomorphic 4–manifolds
homeomorphic to CP2 # 3CP2 .

8 Reducing the number of tori

The goal of this section is to prove Theorem 1, ie that we can find a single nullho-
mologous torus in CP2 # 3CP2 upon which surgery gives rise to an infinite family
of mutually nondiffeomorphic 4–manifolds homeomorphic to CP2 # 3CP2 . To do
so, we will show that surgery on less than all six of the nullhomologous tori Ti;j in
CP2 # 3CP2 gives back CP2 # 3CP2 again; so its effect is to re-embed the remaining
tori. In particular, surgery on any five of these tori will re-embed the remaining torus in
CP2 # 3CP2 , and surgery on this torus will give rise to the distinct smooth structures
on CP2 # 3CP2 .

The key tool is the following simple lemma. To describe the situation, let T be a
self-intersection 0 torus in a 4–manifold X , and let b be a loop on T . Let S1

b
be a loop

on the boundary @NT Š T 3 of the tubular neighborhood of T which is homologous
to b in NT . The choice of the loop S1

b
trivializes the normal bundle of T restricted

over b , and this together with a trivialization of the normal bundle of b in T gives
us a trivialization of the normal bundle of S1

b
in @NT . Write this trivialized normal

bundle as S1
b
�D2 � @NT .
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If S1
b

bounds an embedded disk �� X X Int.NT / with a neighborhood ��D2 �

X X Int.NT / such that .��D2/\ @NT D S1
b
�D2 (with the framings agreeing on

the boundary), we say that b has a 0–vanishing cycle, and we call � a 0–framed disk
for b . Figure 14 gives a handlebody picture of the neighborhood of a self-intersection
0 torus with a 0–vanishing cycle.

0

0

Figure 14

Lemma 4 Let T be a self-intersection 0 torus in a 4–manifold X , and let b be a
loop on T which has a 0–vanishing cycle. If n is a nonzero integer, the result of 1=n

surgery on T with respect to b is again X .

Proof Let W D NT [� .��D2/. The gluing �W S1
b
�D2! @��D2 is given by

the 0–framing of S1
b

on T and the normal framing of T given by the fact that T

has self-intersection 0 in X . Thus �.t; z/D .t; z/. It is not difficult to see that W is
diffeomorphic to D2 �S2 # S1 �D3 . The result of 1=n–surgery on T with respect
to b and its framing S1

b
is

(4) T 2
�D2

[' S1
a �S1

b � @D
2
� I [� .��D2/

where S1
a is some framing circle for a, a complementary circle to b on T , where

@D2 � I is a collar on @D2 , and where

'W @.T 2
�D2/D S1

a �S1
b � @D

2
! S1

a �S1
b � @D

2
� f0g

is '.s; t; z/D .s; tzn; z/. Thus (4) becomes T 2�D2[# .��D2/ where # W S1
b
�D2!

@��D2 is given by #.t; z/D .tzn; z/. Hence

T 2 �D2 [� .��D2/

# Id #‚

T 2 �D2 [# .��D2/
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where ‚.w; z/D.wzn; z/. We need to be able to extend via the identity on the rest of X ,
and this can be done because ‚ is isotopic to the identity on @W \.��D2/D��@D2 .

�1

0

0 0

0

�1

0

0

0

0
�10

C0

C1 C2

Figure 15

Label the pinwheel components of CP2 # 3CP2 counterclockwise as Ci (i D 0; 1; 2)
as in Figure 15; so each Ci has the handlebody description of Figure 7. We will use
the notation from that figure with the obvious modification that the cocores of the
Borromean 2–handles of Ci are xi and yi , etc., and the Bing double circles for bi

are b�
i;1

and b�
i;2

.

Suppose that we plan to surger the Bing tori BT;1 in C1 and BT;2 in C2 . The loops a2

and b2 , of C2 are identified with the cocores of the Bing doubled 2–handles, x1 and
y1 , in C1 ; so these loops bound 0–framed disks in C1 . Therefore, the Bing doubles
b�

2;1
and b�

2;2
of b2 bound disjoint 0–framed disks D�

2;i
(in a neighborhood of the

0–framed disk bounded by b2 ).

This means that the Bing tori BT;2 satisfy the hypothesis of Lemma 4 with respect to
˙1 surgeries on the b�

2;i
. Thus there is a diffeomorphism ‚2 from CP2 # 3CP2 to

the result of these two surgeries, and ‚2 has support in the union C2[D�
2;1
[D�

2;2
.

Notice that the disks D�
2;1

and D�
2;2

intersect the Bing tori in C1 since they intersect
Dx;1[Dy;1 . (See Lemma 3.)
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Nonetheless, ‚2.BT;1/ is a pair of Bing tori in ‚2.CP2 # 3CP2/ Š CP2 # 3CP2 .
The loops a1 and b1 do not lie in the support of ‚2 , and their normal circles bound
disks in C0 analogously to the argument above. Thus the tori of ‚2.BT;1/ satisfy
the hypothesis of Lemma 4 with respect to ˙1 surgeries on the b�1;i , and there is a
diffeomorphism ‚1 from ‚2.CP2 # 3CP2/ to the result of these two surgeries on
BT;1 .

We are left with the Bing tori ‚1‚2.BT;0/D‚1.BT;0/. Doing ˙1 surgery on one of
these tori as before re-embeds the other into a Whitehead double torus in CP2 # 3CP2 .
Thus after five surgeries, we still have CP2 # 3CP2 , and this proves Theorem 1.

Notice that the loops a0 and b0 are not in the support of the diffeomorphism ‚1‚2 , and
that their Bing doubles b�0;1 and b�0;2 again bound disjoint 0–framed disks ‚1‚2.D

�
0;i/

in ‚1‚2.CP2 # 3CP2/Š CP2 # 3CP2 . One can ask why this does not mean that the
Bing tori ‚1‚2.BT;0/ satisfy the hypothesis of Lemma 4. The answer is that ‚1‚2

has moved these disks all the way around Figure 15, and in fact they must intersect
‚1‚2.BT;0/D‚1.BT;0/.

We note that although we have proved the existence of our single nullhomologous torus
T in CP2 # 3CP2 , we do not identify it explicitly. It would be interesting to do so (but
it is not clear that it would be useful).

Finally, consider the complement W of a tubular neighborhood of our torus T in
CP2 # 3CP2 as a symplectic manifold with boundary. This manifold admits two very
different symplectic structures. The first, with ‘negative canonical class’, extends
over CP2 # 3CP2 , the other, with ‘positive canonical class’, extends over the exotic
symplectic manifold X .
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