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On Wigner’s theorem

DANIEL S FREED

Wigner’s theorem asserts that any symmetry of a quantum system is unitary or
antiunitary. In this short note we give two proofs based on the geometry of the
Fubini-Study metric.

81R99; 81Q70, 82B03, 82D25, 19L50

For Mike Freedman, on the occasion of his 60™ birthday

The space of pure states of a quantum mechanical system is the projective space P 3
of lines in a separable complex Hilbert space (%, (—, —)), which may be finite or
infinite dimensional. It carries a symmetric function p: P# x P# — [0, 1] whose
value p(L1, L,) on states L, L, € P¥ is the transition probability: if ¥; € L; is a
unit norm vector in the line L;, then

p(L1. Ly) = [{¥1, ¥2)|%

Let Autym (P¥) denote the group of symmetries of (P, p), the group of quantum
symmetries. A fundamental theorem of Wigner1 [12, Sections 20A and 26] (see also
Bargmann [2] and Weinberg [11, Section 2A]) expresses Autqm(PJ) as a quotient
of linear and antilinear symmetries of 7. This note began with the rediscovery of a
formula which relates the quantum geometry of (P, p) to a more familiar structure
in differential geometry: the Fubini—Study Kiahler metric on P#. It leads to two proofs
of Wigner’s theorem, Theorem 8 of this note, based on the differential geometry of
projective space.

The proofs here use more geometry than the elementary proofs [2], [11, Section 2A].
We take this opportunity to draw attention to Wigner’s theorem and to the connection
between quantum mechanics and projective geometry. It is a fitting link for a small
tribute to Mike Freedman, whose dual careers in topology and condensed matter physics
continue to inspire.

Let d: P% x P% — R=° be the distance function associated to the Fubini—Study
metric.

T As 1 learned in Bonolis [3, page 74], this theorem was first asserted in a 1928 joint paper [10, page
207] of von Neumann and Wigner, though with only a brief justification. A more complete account
appeared in Wigner’s book (in the original German) in 1931.
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1 Theorem The functions p and d are related by

2) cos(d)=2p—1.

As a gateway into the literature on ‘geometric quantum mechanics’, where (2) can be
found,? see Brody and Hughston [4] and the references therein.

3 Corollary Autyy,(P3) is the group of isometries of PJ with the Fubini—Study
distance function.

4 Remark If ¥ is infinite dimensional, then P is an infinite dimensional smooth
manifold modeled on a Hilbert space. Basic notions of calculus and differential
geometry carry over to Hilbert manifolds (Lang [8]). The Myers—Steenrod theorem
asserts that a distance-preserving map between two Riemannian manifolds is smooth and
preserves the Riemannian metric. That theorem is also true on Riemannian manifolds
modeled on Hilbert manifolds (Garrido, Jaramillo and Rangel [6]).3 So in the sequel
we use that a distance-preserving map ¢: PH — P is smooth and is an isometry in
the sense of Riemannian geometry.

The tangent space to P¥ at a line L C 9 is canonically 7, P% = Homc (L, LY,
where L1 C % is the orthogonal complement to L, a closed subspace and therefore
itself a Hilbert space. If fi, f»: L — L=, then the Fubini—Study hermitian metric is
defined by

©)) (/1. 2) =Te(f7" /)

The adjoint f* is computed using the inner products on L and L+ . The composi-

tion f{* f, is an endomorphism of L, hence multiplication by a complex number which
we identify as the trace of the endomorphism. If £ € L has unit norm, then the map

Homc (L, LY) — L+
f =7
is a linear isometry for the induced metric on L+ C %. The underlying Riemannian

metric is the real part of the hermitian metric (5); it only depends on the real part of
the inner product on €.

(6)

ZNotice that (2) is equivalent to p = cos?(d/2).

3The proof depends on the existence of geodesic convex neighborhoods, proved in [8, Section VIIL5].
For the Fubini-Study metric on P such neighborhoods may easily be constructed explicitly. I thank
Karl-Hermann Neeb for his inquiry about the Myers—Steenrod theorem in infinite dimensions.
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Proof of Theorem 1 Equation (2) is obvious on the diagonal in P x P, as well
as if dim¥ = 1. Henceforth we rule out both possibilities. Fix L; # L, € P¥
and let V' be the 2—dimensional space L| + L, C 3. The unitary automorphism of
%=V @ VL whichis +1 on V and —1 on V- induces an isometry of P% which
has PV as a component of its fixed point set. It follows that PV is totally geodesic.
Therefore, to compute d(L;, L,) we are reduced to the case of the complex projective
line with its Fubini—Study metric: the round 2—sphere.

Let e; € L have unit norm and choose e, € V to fill out a unitary basis {e{, e;}.
Then Ae; + e, € L, foraunique A € C. If A = 0 then it is easy to check that d = 7
and p = 0, consistent with (2), so we now assume A 7 0. Identify PV \ {C-e,} &~ C
by C - (eq + ney) <> . Use stereographic projection from the north pole (1,0) in
Euclidean 3—space R x C to identify {0} x C ~ S?\ {(1,0)}, where S> C R x C is
the unit sphere. Under these identifications we have

Ly« (-1, 0)

( A2—1  2|A)? 1)
L, - , -
AZ4+17 A2+1 A

from which cos(d) = (|]A|*> — 1)/(JA|> + 1) can be computed as the inner product
of vectors in the 3—dimensional vector space R @ C. Since p = |A|2/(|A]? + 1),
equation (2) is satisfied. O

A real linear map S: # — € is antiunitary if it is conjugate linear and

(SY1,8V2) = (Y1, ¥2)  forall ¥y, ¢y €.

Let G(#) denote the group consisting of all unitary and antiunitary operators on .
In the norm topology it is a Banach Lie group (Milnor [9]) with two contractible
components; the same is true in the compact—open topology (Freed and Moore [5,
Appendix D]). The identity component is the group U(#) of unitary transformations.
Any S € G(#) maps complex lines to complex lines, so induces a diffeomorphism
of P¥, and since S preserves the real part of (—, —) the induced diffeomorphism is an
isometry. The unit norm scalars T C G(%) act trivially on P%, so there is an exact*
sequence of Lie groups

@ 1 — T — G(#) — Autgm(P¥).

Note that T is not central since antiunitary maps conjugate scalars.

4We assume dim ¢ > 1.
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8 Theorem (Wigner [12]) The homomorphism G(J() — Autym(PF) is surjective:
every quantum symmetry of P lifts to a unitary or antiunitary operator on ¥.

By Corollary 3 the same is true for isometries of the Fubini—Study metric, and indeed
we prove Wigner’s Theorem by computing the group of isometries.

9 Remark If p: G — Autym(IPF) is any group of quantum symmetries, then the
surjectivity of G(%) — Autgy, (P%) implies the extension (7) pulls back to a twisted
central extension of G. The twist is the homomorphism G — Z/27 which tells
whether a symmetry lifts to be unitary or antiunitary. The isomorphism class of this
twisted central extension is then an invariant of p. This is the starting point for joint
work with Greg Moore [5] about quantum symmetry classes and topological phases in
condensed matter physics.

10 Example P(C?) = CP' with the Fubini-Study metric is the round 2—sphere
of unit radius. Its isometry group is the group O(3) of orthogonal transformations
of SO(3). The identity component SO(3) is the image of the group U(2) of unitary
transformations of C2. The other component of O(3) consists of orientation-reversing
orthogonal transformations, such as reflections, and they lift to antiunitary symmetries
of C2. In this case the group G (%) is also known as Pin(3); see Atiyah, Bott and
Shapiro [1].

We present two proofs of Theorem 8. The first is based on the following standard fact
in Riemannian geometry.

11 Lemma Let M be a Riemannian manifold, p € M , and ¢: M — M an isometry
with ¢ (p) = p. Suppose B, C T, M is the open ball of radius r centered at the origin
and assume the Riemannian exponential map exp,, maps B, diffeomorphically into M .
Then in exponential coordinates ¢} B, equals the restriction of the linear isometry d¢p,
to B,.

Proof If & € B,, then exp,(§) = yg(1), where yg: [0, 1] — M is the unique geodesic
which satisfies y¢(0) = p, y£(0) =§. Since ¢ maps geodesics to geodesics, poexp, =
exp, od¢p on By, as desired. |

If p: [0,7") — [0, r) is a diffecomorphism for some r’ > 0, then

12) & —> exp, (p(1E)E)

maps B,/ diffeomorphically into M, and ¢ in this coordinate system is also linear.
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First Proof of Theorem 8 Let ¢: P# — PJ be an isometry. Composing with
an isometry in G(¥) we may assume ¢ (L) = L for some L € P¥. The tangent
space Ty P9 is canonically Homc (L, L1), and also f € Homc (L, L1) determines
FrePi by 'y CH= L @ L+ is the graph of f. We claim f "¢ has the form
(12) for some p: [0, 00) — [0, 7). It suffices to show that for any f € Homc (L, LT) of
unit norm, the map 7 — I'; ¢ traces out a (reparametrized) geodesic in a parametrization
independent of f'. As in the proof of Theorem 1 this reduces to dim # = 2 and so to
an obvious statement about the round 2—sphere. It follows from Lemma 11 that ¢ is a
real isometry S € Endgr (Hom(c (L, LJ-)). It remains to prove that .S is complex linear
or antilinear; then we extend .S by the identity on L to obtain a unitary or antiunitary
operatoron % = L & L+.

If dim # = 2 then Theorem 8 can be verified (see Example 10), so assume dim 7 > 2.
Identify Homc (L, L) ~ L+ as in (6). Since S € Endr (L) maps complex lines
in L1 to complex lines, there is a function o: L+\{0} — C such that S(i§) = a(§)S(§)
for all nonzero £ € L. Fix £ # 0 and choose n € L+ which is linearly independent.
Then

S(iE+m) =alE+n[SE) +Sm]
=a(§)SE) +a(mSh)

from which «(§) = a(n). Applied to i&, n we learn @ (§) = a(i£). On the other hand,
—S(&) = S(=§) = a(£)S(i§) = a(i®)a(§)S(&).

whence «(£)? = —1. By continuity either « =i or @ = —i, which proves that S is

linear or § is antilinear. |

The second proof leans on complex geometry.

13 Lemma An isometry ¢: P#H — P is either holomorphic or antiholomorphic.

Proof Let I: TP# — TP¥ be the (almost) complex structure. Then [ is parallel
with respect to the Levi—Civita covariant derivative, since P is Kéhler, and so therefore
is ¢*I. We claim any parallel almost complex structure J equals +7; the lemma
follows immediately.

If J is parallel, then it commutes with the Riemann curvature tensor R. Compute
at L € P¥ and identify Ty P% ~ L+, as in (6). Then if £, 7€ L+ and (£,7) = 0,
since P(L @ C-& @ C-n) C P is totally geodesic and has constant holomorphic
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sectional curvature one (Kobayashi and Nomizu [7, Section IX.7]), we compute

R 16)6 = ¢ &
RGE 160 =& T

It follows that J preserves every complex line K = C-£ C L+ and commutes with I
on K. Therefore, J = 41 on K. By continuity, the sign is independent of K and L.
O

Second Proof of Theorem 8 First, recall that if U is finite dimensional, then every
holomorphic symmetry of PU is linear. The proof is as follows. Let £ — PU be the
canonical holomorphic line bundle whose fiber at L € PU is L. A holomorphic line
bundle on PU is determined by its Chern class, so ¢*£ =~ £. Fix an isomorphism; it
is unique up to scale. There is an induced linear map on the space HO(PU; L*) = U*
of global holomorphic sections:

(14) ¢*: HO(PU; L*) — H°(PU; ¢p*L*) =~ H(PU; ).
The transpose qAS of (14) is the desired linear lift of ¢.

Let ¢: P#H — P¥ be an isometry. After composition with an element of G (%) we
may, by Lemma 13, assume ¢ is holomorphic and fixes some L € P%. Let U C ¥
be a finite dimensional subspace containing L. Then the pullback of Ly — P¥ to
d)*ﬁ;;g‘]P,U — PU has degree one, so is isomorphic to Ly — PU, and there is a
unique isomorphism which is the identity on the fiber over L. A functional o € #*
restricts to a holomorphic section of ¢*£;‘€|PU — PU, so by composition with the
isomorphism ¢*£;€|PU = L7, to an element of U*. The resulting map #* — U*
is linear, and its transpose ¢: U — € is the identity on L. Let U run over all finite
dimensional subspaces of # to define q;: 3¢ — . The uniqueness of the isomorphism
¢*£%‘]P)U =~ Ly implies that ¢; is well-defined and a linear lift of ¢. It is unitary since
¢ is an isometry. a
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