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Kernel.J / warns of false vacua

MICHAEL FREEDMAN

J H C Whitehead defined a map Jr W �r .SO/! �s
r from the homotopy of the special

orthogonal group to the stable homotopy of spheres. Within a toy model we show how
the known computation for kernel.J / leads to nonlinear � –models with spherical
source (space) and spherical target which admit false vacua separated from the true
vacuum by an energy barrier. In this construction, the dimension of space must be at
least 8 and the dimension of the � –model target at least 5 .

55Q50; 19L20, 81P99

1 Introduction

Homotopy theory and, in particular, K–theory have recently played a prominent role
in both condensed matter (CM) and high energy physics (Kane and Mele [7], Kitaev
[8], Ryu, Schnyder, Furusaki and Ludwig [12], Horava [6], and Minasian and Moore
[10]). In CM applications, the discussion can often be reduced to the study of nonlinear
� –models with symmetric space targets (Ludwig, Moore and Ryu [9]). In physical
applications (Freedman et al [2]), there may be a potential function V on the target
symmetric space which can lead to distinct phases separated by an energy barrier. The
purpose of this paper is to raise the possibility that even when there is no potential on
the target symmetric space X , and the physical space B is as simple as possible —
say a sphere or Euclidean space — the energy landscape on (smooth) maps M.B;X /,
maps f from the physical space B to X , may have local minima, effectively creating
sectors of false vacua. Similarly, the space-time action of any field F W B � Œ0; 1�!X

interpolating between distinct vacua may be large compared to fields F 0 remaining
within a single vacuum sector. Such an F is a novel kind of instanton protected by the
intrinsic inefficiency of any homotopy between distinct vacua. This may be contrasted
with conventional instantons, for example in Yang–Mills theory, where the instanton
results from a willfully inefficient null homotopy:

F W S3
� Œ0; 1�! S4

ŠHP1
�HP1;

where F.S3 � 0/D F.S3 � 1/D �, is chosen to have nonzero degree.
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I will explain why no such minima are expected to arise when dim B , dim X � 2.
After this, as the dimension increases, little is known until we meet the example, f0 ,
defined after equation (3). The focus of this paper is the surprisingly complex geometry
necessarily associated to any null homotopy of f0W B ! X , where B D S8 and
X D S5 , and where f0 is a specific field on an 8–dimensional spherical space taking
values in the 5–dimensional sphere. Of course, there is the question of what energy
functional to use for a general f W S8! S5 . Something like

E.f /Dm.n�9/
„

Z
S3

d8x
p

g jrf jn; 8� n<1;

where we have chosen units with c D 1 and m a constant with units of length, is a
candidate (note that for n< 8, rescaling f toward a point x 2 S8 by precomposing
with a conformal transformation with x a repelling fixed point makes E approach zero).
Another possibility related to the choice nD1 is to let E be the Lipschitz constant
of f (times a unit of energy). These choices entail serious analytical difficulties which
are circumvented here by choosing a surrogate energy

(1) Etop D max
x2S5

7X
iD0

bi

�
f �1.x/

�
;

f is presumed to be a smooth (C1 ) function and bi the i th Betti number, bi D

rank LH�.X IR/ (I have now dropped coupling constants and reference to units). We
use the Čech cohomology LH i because it is appropriate for the nonregular point inverse
images, which may be arbitrary closed subsets of B .

Similarly, define the action Stop of a field F on space-time F WD ft W S
8� Œ0; 1�! S5

by

(2) Stop.F /D max
x2S5

7X
iD0

bi

�
F�1.x/

�
:

Both Etop and Stop are nonlocal — that is not integrated up from a locally defined
quantity — but nevertheless seem to capture an essential feature of more physical
Hamiltonians and Lagrangians, respectively: maps of high energy (action) are generally
those with complicated point preimages (see Figure 1). With this definition, f0 has
Etop.f0/ D 2 and can be deformed to the consant map f1 , that is the true vacuum,
with Etop.f1/D 1, but during the deformation we find that Etop.ft0

/ > 2 for some
t0 2 .0; 1/. Thus Etop.ft0

/ is an energy barrier between a false vacuum f0 and the
true vacuum. Similarly, the action must be large for any F interpolating between
f0 and f1 : Stop.F / � 23 whereas for paths staying within a vacua, for example
Stop

�
.F.y; t// WD f0.y/

�
D 2 and Stop

�
.F.y; t// WD f1.y/

�
D 1, the action can be
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much smaller. I should emphasize that although topology is used to define Etop and
Stop , these quantities are not homotopy invariants: as f0 is deformed, there will be
times when Etop.ft / jumps; similarly for Stop.F / if F were also deformed. What
Etop and Stop do depend on is the topological complexity of the inverse images of
points x 2 S5 , and these can jump whenever x is (transiently) a singular value.

So one may understand (Figure 1) how preimage complexity roughly encodes energy.
The surprise is that it may be necessary to increase the energy en route to decreasing
it. It would be as if in passing from Figure 1(a) to Figure 1(c) we had to go through
Figure 1(b).

(a) high energy (b) very high energy (c) low energy

Stop D 13 Stop D 3

Figure 1

If we distance ourselves from energy functionals, the basic idea of needing to “pass
over a saddle” on the way to lowering complexity can easily be illustrated using
immersions. The path components of immersions I.S1;R2/ are known to be indexed
by the winding number in Z. It is easy (Figure 2) to find two immersions ˛0 and ˛1

with equal winding where the “complexity” as measured by the number of multiple
points, must increase during any regular homotopy ˛t , t 2 Œ0; 1�, beyond the initial or
final values.

˛0 ˛1=4 ˛1=2 ˛3=4 ˛1

Figure 2

Unlike Etop , the complexity in this example seems, in spirit, opposite to conventional
energy functionals: for example, a constant map, though not an immersion, would have
infinite multiplicity and hence high, not low, energy.
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It is hoped that some insight can be gained even from the “toy functionals” Etop and
Stop . The key to the high dimensional example is the noninjectivity of Whitehead’s
J –homomorphism from homotopy theory.

In summary, this paper is a message from topology to physics that fields might become
trapped in local minima for the energy of a nonlinear � –model, even when the space-
time and the target space are as homogeneous as possible: both spheres. In our
example, the dimensions are a bit high (except for string theorists) and the action is a
toy. The challenge for the reader is to determine if this same phenomenon can occur,
or contrarywise is excluded, in more conventional and perhaps lower dimensional,
physical situations.

2 The Example

In homotopy theory, the J –homomorphism is the map Jr W �r .SO/! �s
r from the

homotopy of the special orthogonal group to the r th stable stem �s
r .WD �rCd .S

d /

for d > r C 1). We can interpret ˛ 2 �r .SO/ as a (stable) normal framing of the
r –sphere Sr and ˇ 2 �s

r can, by the Pontrjagin–Thom construction, be encoded as
a normally framed r –manifold M r . The Pontrjagin–Thom construction associates
to ˇW SrCd ! Sd , the preimage of a regular value � 2 Sd , M r WD ˇ�1.�/. The
normal bundle of M r in SrCd is framed by pulling back the normal framing of
� in Sd . For d > r C 1, the stable normal cobordism class of M r is equivalent
to the homotopy class of ˇ . In these terms, the J –homomorphism simply includes
spheres (with framed normal bundle) into manifolds (with framed normal bundle).
It is known that Jr is injective unless r D 4n � 1, n � 1 and is the epimorphism
Jr W Z! Z4n=B2n

, where B2n is the 2nth Bernoulli denominator. The first relevant
images of J are ImJ3 D Z24 , ImJ7 D Z240 and ImJ9 D Z504 . The discussion
requires only that Jr have a kernel, so there are examples of exotic local minima for
the obvious dimensional extension1 of Etop (and Stop after crossing the source with
Œ0; 1�) to maps S2.4n�1/C2Ci ! S .4n�1/C2Ci for all n> 0 and i � 0. Increasing n

means going to a higher stable stem and increasing i merely means suspending maps
within that stable stem. I analyze the case n D 1 and i D 0. Nothing changes as i

increases, however with increasing n the characteristic class computations are slightly
different and more significantly a refinement coming from Seiberg–Witten theory is
not present. In all cases, however, there is a similar energy barrier.

1Extend the definition of Etop and Stop given in equations (1) and (2) by extending the range of the
summations to .spatial dimension/� 1 .
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The homotopy group �3.SO/Š Z is generated by the composition

(3) gW S3
Š SU.2/

double cover
�������! SO.3/ ,! SO:

24g is obtained by precomposing g with .�; �1I �2/ 7! .24�; �1I �2/ in spherical
coordinates. The map we study f0W S

8!S5 may be defined by writing S8DS3^S4 ,
where the join sumbol ^ indicates the space of line segments “joining” the two factors:
P^Q WDP�Q�Œ0; 1�=.p; q; 0/D .p; q0; 0/ and .p; q; 1/� .p0; q; 1/, for all p;p02P

and all q; q0 2 Q. In these coordinates, f0.S
3/ D C and f0.S

4/ D �, C.�/ the
north (south) pole of S5 . The normal direction to S3 in the join consists of a unit
5–disk D5

s at every point s 2 S3 and f0 wraps this D5
s degree = one over S5 by

exponentiation. The only ambiguity is that we have not yet said how D5
s is identified

with the unit disk in the target space TC.S
5/ as a function of s . When sD�2S3 , the

base point, say the identity of SU.2/, the identification is an arbitrary isometry. For
general s , precompose this arbitrary identification with 24g as defined above, where
SO acts on R5 through the intermediate SO.5/, SO.3/� SO.5/� SO.

By inspecton, every point preimage of f0 is a 3–sphere except the preimage of the
south pole, which is a 4–sphere. Since

rank LH i.Sn
IR/D

�
1 for i D 0 or n,
0 otherwise;

we see that Stop.f0/D 2.

Since it is known that J.24g/' f0 is homotopically trivial, f0 is homotopic to f1 ,
the constant map S8! S5 , taking each point of S8 to the south pole � of S5 . The
only nonempty preimage of f1 is f �1

1
.�/ D S8 , so Etop.f1/ D

P7
iD0 bi D 1. We

now state:

Theorem 1 If ft is a smooth family, F WD ft W S
8 � Œ0; 1�! S5 with f1 constant,

then Stop.F /� 23.

Proof By Sard’s theorem, the regular values on S5 are an open dense set of full
Lebesgue measure; let � 2 S5 n .�/ be one. By the Inverse Function Theorem,
F�1.x/ is a smooth, normally framed 4-dimensional manifold M � S8 � Œ0; 1�, with
@M D S3 � S8�0. Cap M off with a 4–disk to obtain a smooth, closed 4–manifold
OM . Since OM has a normal framing away from a point, the normal characteristic classes
w1.� OM /D w2.� OM /D 0. By the Whitney sum formula those tangential classes also
vanish w1.� OM / D w2.� OM / D 0, so OM is spin. The first obstruction to trivializing
the normal frame bundle over OM is 24
 2 H 4. OM I�3.SO// Š Z, where 
 is a
generator, 
 D˙1 2 Z. The first Pontrjagin class p1.� OM / is twice this obstruction,
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p1.� OM /D˙48
 . On the other hand, in dimension 4 the Hirzebruch L–genus reduces
to:

(4) signature of cup-product on H2. OM IZ/=torsionDW �. OM /D
p1. OM /

3
;

so �. OM /D˙16. The jsignaturej is a lower bound on the second Betti number b2. OM /.
But, by excision, b2.M /D b2. OM /. Putting this together we find

(5) b2.M /� 16

since b0.M /� 1. We may conclude that

(6)
7X

iD0

bi.M /� 17:

Since Stop is defined as the maximal such sum over point preimages, Stop.F /� 17.

Because OM is smooth, spin and 4–dimensional (since we are considering kernel J3 ),
there is more refined information on the lower bound to b2 available from the Seiberg–
Witten equations. It is known that OM must have b2 as large as that of the K3 surface,
b2. OM /� 22. This follows from Furuta’s “10=8–theorem” [5] and also from previous
unpublished work of Peter Kronheimer. The estimate b2. OM / � 22 is Donaldson’s
“Theorem C” in the special case �1. OM /D 0. This estimate implies Stop.F /� 23.

This is the Lagrangian result. The corresponding energy barrier is identified by the
next theorem.

Theorem 2 If ft is a smooth family F WD ft W S
8 � Œ0; 1�! S5 with f0 as defined

and f1 constant, then there exists a t 2 .0; 1/ where Etop.ft /� 3. Recall Etop.f0/D 2

and Etop.f1/D 1.

Proof Begin with the same .M; @M /, @M D S3 , as in the proof of Theorem 1,
except now restrict M to be only the connected component containing @M . Let
hW M ! Œ0; 1� be the inclusion M � S8 � Œ0; 1� followed by projection to the second
factor. Intuitively, we may think of h as a Morse function, but this cannot in fact be
assumed. All we really know is h�1.0/D @M Š S3 , h�1.1/D∅ and h is smooth.
A lower bound to

b WD max
t2Œ0;1�

7X
iD1

bi.h
�1.t//

is the lower bound to the barrier maxt2Œ0;1� Etop.ft / obtained by restricting attention
to preimages of � 2 S5 . We show b � 3 by assuming for a contradiction that b D 2.
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Let x0 2 Œ0; 1� be the maximum value for which h�1.x/¤∅. Since we assumed M

connected, for all x 2 Œ0;x0� we have h�1.x/¤ ∅. Let x1 2 .0;x0/ be any regular
value for h. h�1.x1/ is a smooth, closed 3–manifold so by the assumption b D 2,
h�1.x1/ must be a real (equivalent rational) homology 3–sphere (otherwise its first
and second Betti numbers would contribute to the sum).

A key property of Čech cohomology is that it commutes with inverse limits. This will
now be used twice.

Lemma 1 For all x1;x2 h–regular values in Œ0;x0�, h�1Œx1;x2� must have the real
Čech cohomology of S3 .

Proof Suppose this fails for some Œx1;x2� pick an h–regular x3 2 .x1;x2/ near
.x1Cx2/=2 and write

h�1Œx1;x2�D h�1Œx1;x3�
[

h�1.x3/

h�1Œx3;x2�:

Since h�1.x3/ is normally collared (x3 is an h–regular value) we may use the usual
Mayer–Vietoris sequence to conclude that either h�1Œx1;x3� or h�1Œx3;x2� fails to
have the real Čech cohomology of S3 and the additional homology LH i.h�1Œx1;x3�IR/,
i D 1; 2 restricts from LH i.h�1Œx1;x2�IR/ (for notational simplicity, write h�1Œx1;x3�

where h�1Œx3;x2� could instead occur).

Picking a regular x4 2 .x1;x3/ and near .x1Cx3/=2, we may conclude similarly that
one of the pieces, say h�1Œx1;x4�, is not a real Čech cohomology S3 . Proceeding in
this way, find a sequence of nested intervals Ij each no more than, say, 60% the length
of the previous with the cohomology of h�1.Ij / containing a nontrivial subspace
which restricts from LH i.h�1Œx1;x2�IR/, i D 1; 2. Taking inverse limits by letting
z D

T1
jD1 Ij , we find LH i.h�1.z/IR/, i D 1; 2, also contains a nontrivial subspace

restricting from LH i.h�1Œx1;x2�/, contradicting b D 2.

From the lemma, and once again applying the Mayer–Vietoris sequence to decomposi-
tions inverse to h–regular values, we conclude:

Lemma 2 For every regular value x1 2 Œ0;x0�, the natural map

LH�.M IR/! LH�.h�1Œx1;x0�IR/

is an isomorphism.
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Proof Write
M D h�1Œx1;x0�

[
h�1.x1/

h�1Œ0;x1�

and use Lemma 3 to recognize the second piece as a cohomology collar. Apply Mayer–
Vietoris along h�1.x1/.

The proof of Theorem 2 is now completed by a second passage to inverse limits. Write

h�1.x0/D
\

h�regular x1i

h�1Œx1i
;x0�:

By Lemma 4, the cohomology of each h�1Œx1i
;x0� is given isomorphically by re-

striction from LH�.M IR/, so passing to limits, LH�.h�1.x0/IR/ Š LH
�.M IR/ via

inc� . But since b2.M / � 22, this implies b2.h
�1.x0// � 16. Thus 2 D b �

b2.h
�1.x0//C b0.h

�1.x0//� 22C 1D 23, a contradiction.

3 Low Dimensions

The spaces of maps M.S1;S1/, M.S2;S1/ and M.S2;S2/ probably do not hold
any surprises though in the last case there are some subtleties.

When the target is S1 , “circular” Morse theory can be used to steadily simplify maps
until they are constant or in the S1! S1 case, possibly a covering map. If we try to
proceed to the case of maps S3! S1 , M.S3;S1/, unknown issues are encountered.
We may lift each f W S3! S1 to Qf W S3!R. If Qf happens to be a “self-indexing”
(critical values of higher index are larger) a theorem of Waldhausen [14] shows that
Qf can be monotonely simplified to the standard height function. But the existence

of such monotone simplifications appears to be open if Qf is not self-indexing. If no
simplifying path from Qf is monotone, then the passage between a local minimum Qf

and global minimum would be analogous to the instanton we produced between the
vacua on S8 .

M.S2;S2/ is quite interesting. I would conjecture that there are no energy barriers:
that for reasonable choices of energy topological or otherwise, energy may be mono-
tonically reduced until a cyclic branch cover is reached. This appears to be true for
Etop , unsigned area and harmonic map energy,Z

S2

d2x jrf j2:

In fact, work of Topping [13] on harmonic map flow might be used in verifying such
conjectures. The essential point is that because the target S2 is positively curved,
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the local energy density jduj2 is not bounded by the usual Eells–Sampson maximal
principle but instead may exhibit a specific singularity called “bubbling” under harmonic
map flow. Intuitively, according to Topping, one should be able to run harmonic map
flow until just before a singularity and then pause to do a � –twist to prevent the flow
from being caught on the singularity and then resume the flow. The phenomenon of
bubbling and the flow catching on a singularity are certainly intrinsic since the Hopf
map S3! S2 can be regarded as an “essential loop of degree zero maps S2! S2 ”;
only the flow catching the singularity prevents the loop from being contracted.

Proceeding by dimension, the techniques of Freedman and Berger [3], and DeTurk,
Gluck and Storm [1] might be useful in bounding the height of energy barriers within
M.S3;S2/ if they in fact exist, but so far nothing is known.

For M.S1;S3/ (and, more generally, M.Sm;SmC2/ where m�1), the phenomenon
of knotting implies the existence of Etop energy barriers. Furthermore, there is a physi-
cally interesting conformally invariant energy associated to M.S1;S3/ (Freedman,
He and Wang [4]) but it is unknown if it has local (but not global) minima within a
given knot type. The gradient flow of this functional has been studied as a potential
“unknotting” algorithm.

4 Energy Barriers from Mathematical Logic

One surprising geometric output of mathematical logic is the existence of enormous
energy barriers related to recognition problems. It was shown in the 1950s by Boone
and Novikov that the triviality problem for finitely presented groups is undecideable.
However the Tietze theorem tells us that any two finite group presentations of the same
group are joined by a finite string of four simple moves on presentations. The only way
these two statements can be compatible is:

Fact 1 The minimal number of Tietze moves required to reduce a presentation of the
trivial group of total size n to the empty presentation must be a function f .n/ which
grows more rapidly than any recursive function.

This fact finds an even more geometric echo in work of Nabutovsky and Weinberger
[11]. An example is:

Fact 2 If one considers flat piecewise linear imbedding eW S5 ,! R6 (or one may
take Sd �RdC1 , for and d � 5) consisting of n top dimensional simplices, then the
degree of refinement f .n/, which might be required before there is a piecewise linear
isotopy to a convex imbedding econvexW S

5 ,!R6 , also grows faster than any recursive
function.
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The point is that any recursive growth rate would lead to an algorithm for recognizing
5–spheres, which is impossible. In attempting to recognize S5 , the chief difficulty is
determining the triviality of the fundamental group.

5 Summary

We have shown in a toy model that even for nonlinear � –models whose range and
domains are round spheres, false vacua and energy barriers can arise in the space of
maps. The tool is J H C Whitehead’s J –homomorphism, Jr W �r .SO/! �s

r , from the
homotopy of the special orthogonal group to the stable homotopy of spheres. Energy
barriers and the instantons which cross them have diverse mathematical origins. Here
the kernel of J has been used to describe a new class of barrier and instanton.
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