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Cohomotopy sets of 4–manifolds
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Elementary geometric arguments are used to compute the group of homotopy classes
of maps from a 4–manifold X to the 3–sphere, and to enumerate the homotopy
classes of maps from X to the 2–sphere. The former completes a project initiated by
Steenrod in the 1940s, and the latter provides geometric arguments for and extensions
of recent homotopy theoretic results of Larry Taylor. These two results complete the
computation of all the cohomotopy sets of closed oriented 4–manifolds and provide
a framework for the study of Morse 2–functions on 4–manifolds, a subject that has
garnered considerable recent attention.

57N13; 55Q55

Fix a smooth, closed, connected, oriented 4–manifold X . For each positive integer
n, consider the cohomotopy set �n.X /D ŒX;Sn� of free homotopy classes of maps
X ! Sn . The Pontrjagin–Thom construction gives a refinement of Poincaré duality

�n.X /
Š
����! F4�n.X /

hn

??y ??yh4�n

H n.X /
Š
����! H4�n.X /

where Fk.X / is the set of closed k –dimensional submanifolds of X with a framing
on their normal bundle, up to normally framed bordism in X � Œ0; 1�. The maps hn

pull back the cohomology fundamental class of Sn whereas the “forgetful” maps hk

use the normal framing to orient the submanifold and then push forward its homology
fundamental class.

The purpose of this note is to compute �n.X / for all n. In fact the only “interesting”
cases are �3.X /Š F1.X / (framed links in X ) and �2.X /Š F2.X / (framed surfaces
in X ), computed in Theorems and below; in all other cases hn is an isomorphism, by
classical arguments recalled in Section 0. The set �3.X / also has a group structure,
inherited from the target group S3 , and �2.X / has an action of this group, induced

Published: 14 October 2012 DOI: 10.2140/gtm.2012.18.161



162 Robion Kirby, Paul Melvin and Peter Teichner

by the action of S3 on S2 D S3=S1 . We will compute both structures geometri-
cally, the group structure (corresponding to disjoint union in F1.X /) and the action
(corresponding to framed link translation in F2.X /, defined in Section 2).

Recall that the 4–manifold X is odd if it contains at least one closed oriented surface
of odd self-intersection, and otherwise it is even. It is spin if every surface in X ,
orientable or not, has even self-intersection, or equivalently the second Stiefel–Whitney
class w2.X /D 0.

Theorem 1 If X is odd, then the forgetful map h1W F1.X /!H1.X / is an isomor-
phism. If X is even, then there is an extension of abelian groups

(e) 0 �! Z2 �! F1.X /
h1
�!H1.X / �! 0;

classified by the unique element of Ext.H1.X /;Z2/ that maps to w2.X / in the univer-
sal coefficient sequence

0 �! Ext.H1.X /;Z2/ �!H 2.X IZ2/ �! Hom.H2.X /;Z2/ �! 0:

In particular (e) splits, or equivalently F1.X /ŠH1.X /˚Z2; if and only if X is spin.

Remark As stated, Theorem 1 is also true for non-compact 4–manifolds X . The
proof given in Section 1 easily adapts to this case. In fact, as noted by the referee, the
smoothness assumption can be dropped as well since topological 4–manifolds can be
smoothed away from a point (in the closed case).

The set �3.X / was first investigated by Steenrod [17], building on work of Pontrjagin
[15] and Eilenberg [4], in the more general context of the study of maps from an arbitrary
finite complex to a sphere of codimension one. Steenrod succeeded in enumerating the
elements of �3.X /, but did not address the question of its group structure. Recently,
this group structure was analyzed by Larry Taylor [19] from a homotopy theoretic point
of view, building on work of Larmore and Thomas [12]. We discuss in Remark 1.4
below how Taylor’s Theorem 6.2 can be interpreted in a way that implies our Theorem 1.

Theorem 2 The set �2.X /Š F2.X / is a “sheaf of torsors” over the discrete space
H ı

2
.X / of classes in H2.X / of self-intersection zero. More precisely, the forgetful

map h2W F2.X /!H2.X / has image equal to H ı
2
.X /. The fiber F˛

2
WD h�1

2
.˛/ over

any ˛ 2H ı
2
.X / has a transitive F1.X /–action by framed link translation (defined in

Section 2 below), with stabilizer equal to the image of the map �˛W F3.X /! F1.X /

that records twice the intersection with any framed surface representing an element in
F˛

2
. Thus F˛

2
is an F˛

1
–torsor, where F˛

1
WD coker.�˛/.
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This computation of �2.X / provides a framework for the study of Morse 2–functions
on 4–manifolds, a subject that has garnered considerable recent attention (see for
example Akbulut and Karakurt [1], Auroux, Donaldson and Katzarkov [2], Baykur
[3], Gay and Kirby [7; 8; 9; 10], Lekili [13], and Williams [22; 23]) and that was the
original motivation for our work.|

It should be noted that Theorem 2 can be deduced from Taylor’s Theorem 6.6 in [19],
which applies to a general 4–complex, although the two proofs are completely different.
Our differential topological approach gives a more geometric perspective, and also
provides an answer to a question that was left open in [19, Remark 6.8] regarding the
existence of 4–manifolds of type III1 ; see the end of Section 0 and Example 2.5.

In fact, there is a homotopy theoretic version of Theorem 2 that applies to a general
CW–complex. It is the special case .G;T /D .S3;S1/ of the following theorem, which
in turn follows from the existence of the fiber bundle G=T !BT !BG constructed
at the beginning of Section 3 (where we also explain the necessary translations).

Theorem 3 Let G be a topological group and T be a closed abelian subgroup of G .
For any CW–complex X there is an “exact sequence”

ŒX;T �
�u
�! ŒX;G� �! ŒX;G=T �

h
�! ŒX;BT � �! ŒX;BG�

in the following sense: A map X ! BT lifts to a map X ! G=T if and only if
it becomes null homotopic when composed with the map BT ! BG induced by
the inclusion T ,! G . Moreover, the natural action of the group ŒX;G� on the set
ŒX;G=T � is transitive on the fibers of h and the stabilizer of uW X !G=T equals the
image of the homomorphism

�uW ŒX;T � �! ŒX;G�; v 7�! � ı .u� v/

which is induced by the continuous map �W G=T � T ! G defined by �.gT; t/ D

gtg�1 .

If G is a compact connected Lie group with maximal torus T , we invite the reader
to check that the degree of � equals the order of the corresponding Weyl group. This
gives a satisfying explanation for the factor of 2 in Theorem 2, as the order of the Weyl
group of the Lie group S3 . We suspect that for non-maximal T the map � is null
homotopic; it certainly does factor through a manifold of lower dimension.

|A Morse 2–function on X is a “generic” map X ! S2 . Every smooth, closed, connected, oriented
4–manifold admits such a fibration, in fact, one with no “definite folds” and with connected fibers.
Furthermore, the moves generating homotopic fibrations have been determined. This sets the stage for a
new approach to the study of smooth 4–manifolds.
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0 Preliminaries

The proofs of Theorems– are given in the correspondingly numbered sections below.
In this preliminary section, we first recall the classical arguments that

�n.X /ŠH n.X / for nD 1 or n� 4;

and that all homology classes in X below the top dimension are represented by
embedded submanifolds (recall that X is assumed smooth) – a fact that we will often
appeal to. We then set the context for our proofs of Theorems and, in which �3.X /

and �2.X / are computed, introducing a notion of “twisted” homology classes, and
discussing a partition of 4–manifolds into types I, II, III1 and III2 from properties of
their intersection forms.

Classical computations

The generator vW Sn ! K.Z; n/ is a homotopy equivalence for n D 1, which im-
plies that h1W ŒY;S1� Š ŒY;K.Z; 1/� D H 1.Y / for any CW–complex Y . If Y is an
n–complex then hnW ŒY;Sn�Š ŒY;K.Z; n/�DH n.Y / because v is .nC1/–connected.
Thus for X 4 we have �n.X / D ŒX;Sn� Š H n.X / when n D 1 or n � 4, as stated
above. (Note that the case nD 4 was first proved by Hopf, and the cases n > 4 are
immediate from general position.)

A similar discussion applies to the Thom class uW MSO.n/!K.Z; n/, where MSO.n/
is the Thom-space of the universal bundle over the oriented Grassmannian BSO.n/.
The map u is a homotopy equivalence for n D 1 or 2, and in general is .nC 2/–
connected, Thom [20]. Hence u induces an isomorphism ŒY;MSO.n/� Š H n.Y /

for any .nC 1/–complex Y , and so for X 4 we have ŒX;MSO.n/�ŠH n.X / for all
n> 0. Now the oriented Pontrjagin–Thom construction gives a diagram like the first
of this paper, with Sn replaced by MSO.n/ and normal framings replaced by normal
orientations. It follows that for k < 4, the group Hk.X / is isomorphic to the set
Lk.X / of closed oriented k –dimensional submanifolds of X , up to oriented bordism
in X � Œ0; 1�. Note that the orientation of X allows us to translate normal orientations
on submanifolds into tangential orientations.

Similarly, using the Thom class MO.n/!K.Z2; n/ one can conclude that for k < 4

but k ¤ 2, Hk.X IZ2/ is isomorphic to the set Lk.X;Z2/ of closed k –dimensional
(unoriented) submanifolds of X , up to bordism in X � Œ0; 1�. For k D 2, there is an
exact sequence

0 �! Z �!Lk.X;Z2/ �!H2.X IZ2/ �! 0
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(see [20] and also Freedman and Kirby [6]) so classes in H2.X IZ2/ are still represented
by submanifolds. In the following, we will frequently use these interpretations of
homology classes in terms of submanifolds in X . In particular, the forgetful maps
hnW Fn.X /!Hn.X / are then just given by only remembering the orientation from a
framing. The reduction mod 2 map Hn.X /!Hn.X IZ2/ forgets the orientation on
the submanifold.

Twisted classes

Our study of the framed bordism sets F1.X / and F2.X / will feature two special
subsets T1.X /�Tor2.H1.X // and T2.X /�H ı

2
.X /, whose elements we call twisted

classes. Here Tor2.H1.X // denotes the subgroup of H1.X / of all elements of order
at most 2, and H ı

2
.X / denotes the subset of H2.X / of all classes of self-intersection

zero.

To define these subsets, first observe that F1.X / is an abelian group with respect to
the operation of disjoint union, and that the forgetful map h1W F1.X /!H1.X / is an
epimorphism. Each � 2 H1.X / is represented by a knot whose normal bundle has
exactly two trivializations (up to homotopy) since �1SO.3/ D Z2 . If the resulting
pair of framed knots are framed bordant, then they represent the unique element in the
preimage h�1

1
.�/, and if not, then they represent the two distinct elements in h�1

1
.�/.

Thus h1 is either an isomorphism or a two-to-one epimorphism (Theorem 1 refines
this statement).

Now consider the image subgroup S1.X / under h1 of the 2–torsion subgroup of
F1.X /, and define T1.X / to be its complement in Tor2.H1.X //:

S1.X /D h1.Tor2.F1.X /// and T1.X /D Tor2.H1.X //�S1.X /:

Evidently h1 splits over S1.X / (that is, there is a homomorphism sW S1.X /! F1.X /

with h1 ı s D id) and so we refer to the elements in S1.X / as split classes. The
elements in T1.X /, which we call twisted classes, are exactly those 2–torsion classes
that generate subgroups over which h1 does not split. In geometric terms, if a twisted
class is represented by a knot K , then K , equipped with either framing, represents an
element of order 4 in F1.X /. Clearly T1.X / is nonempty if and only if h1 does not
split over H1.X /, and in this case it is the nontrivial coset of the index two subgroup
S1.X /� Tor2.H1.X //.

A class in H ı
2
.X / will be called twisted if its intersection with at least one

3–dimensional homology class in X is a twisted 1–dimensional class:

T2.X /D f˛ 2H ı2 .X / j ˛�� 2 T1.X / for some � 2H3.X /g:
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Evidently T2.X / is empty when T1.X / is empty, but as will be seen below, the
converse may fail.

4–manifold types I, II and III

The parity of the 4–manifold X is determined by the self-intersections of the orientable
surfaces in X . If they are all even, then X is said to be even, and otherwise it is odd.
The even ones includes all the spin 4–manifolds – those whose tangential structure
groups lift to Spin(4) – which are characterized by the condition that all surfaces in X ,
orientable or not, have even self-intersections (only defined modulo 2 for non-orientable
surfaces); by the Wu formula, this is equivalent to the condition w2.X / D 0. As is
customary, we say X is of type I, II or III, according to whether it is odd, spin, or even
but not spin.

All 4–manifolds of type III must have 2–torsion in their first homology. In fact by
Theorem 1 (proved in the next section) X is of type III if and only if H1.X / contains
twisted classes, ie T1.X / is nonempty. The simplest such manifold is the unique
nonspin, oriented 4–manifold E that fibers over RP2 with fiber S2 . This manifold
is even since the fiber, which generates H2.EIZ/ D Z2 , has zero self-intersection,
whereas any section has odd self-intersection. A handlebody picture of E , minus the 3

and 4–handle, is shown in Figure 1(a) using the conventions of Kirby [11, Chapter 1].
The generator of H1.E/, represented by the core of the obvious Mobius band bounded
by the (attaching circle of the) 1–framed 2–handle, is a twisted 1–dimensional class.

(a) E DE2;1

1

0

(b) En;k

k

0

Figure 1: The 4–manifolds En;k

Note that E is one of a doubly indexed family of 4–manifolds En;k shown in
Figure 1(b), with H2.En;k/D Zn . Here n is the linking number between the dotted
circle (the 1–handle) and the k –framed 2–handle. Alternatively, these manifolds can
described as the boundaries of S1�B4 with a single 2–handle added. An easy exercise
in link calculus (or even easier 5–dimensional argument) shows that for fixed n, the
diffeomorphism type of En;k depends only on the parity of k when n is even, and
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is independent of k when n is odd. Thus there are really only two such manifolds
En;0 and En;1 when n is even, and only one En;0 when n is odd. The En;0 s are all
of type II, while the En;1 s (for even n) are all of type III. These manifolds will feature
as building blocks for our examples below.

Types III1 and III2

When computing their second framed bordism sets, the 4–manifolds X of type III
will be seen to display the most interesting behavior, suggesting a partition into two
subclasses: X is of type III1 if it contains some twisted 2–dimensional classes, ie
T2.X / is nonempty, and is otherwise of type III2 . Thus the 4–manifolds of type
III1 are exactly those for which some of their twisted 1–dimensional classes (which
they have because they are of type III) arise as intersections of homology classes of
dimensions 2 and 3.

There exist 4–manifolds of both subtypes. In particular, the En;1 s for even n are all of
type III2 since they have vanishing third homology. In Example 2.5, we will construct
a 4–manifold of type III1 , which answers a question raised in [19, Remark 6.8]. It will
be shown in Remark 2.2 that with regard to their cohomotopy theory, the manifolds of
type III1 behave more like odd manifolds, while those of the type III2 behave more
like spin manifolds, which explains the choice of subscripts.

1 Computation of the group F1.X/Š �3.X/

As noted in the introduction, the set F1.X / of framed bordism classes of framed
links in X is an abelian group under the operation of disjoint union. This operation
corresponds to the product in �3.X / inherited from the group structure on the target
3–sphere. Indeed, given two maps f1; f2W X!S3 , one can pull back regular values to
get disjoint framed links L1;L2 in X . Choose disjoint tubular neighborhoods T1;T2

of L1;L2 . Up to homotopy, fi is given by mapping Li to 1, wrapping the disk fibers
in Ti around the 3–sphere using the framing, and mapping X �Ti to �1. It follows
that the product f1f2 has �1 as a regular value, with pre-image equal to the (disjoint)
union L1[L2 . This yields an easy indirect proof that �3.X / is abelian; there is also
a direct proof, well known to homotopy theorists, following from the observation that
S3 can be replaced with the fiber of the map Sq2

W K.Z; 3/!K.Z2; 5/, which is a
homotopy-abelian H –space (cf [19, Section 6.1]).

It is evident that the forgetful map

h1W F1.X / �!H1.X /;
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sending the bordism class of a framed link to the homology class of the underlying
link, is a surjective homomorphism.

Claim 1.1 The kernel of h1 is either trivial or cyclic of order two, according to whether
X is an odd or even 4–manifold.

This fact was known to Steenrod. In his 1947 paper [17] (where he introduced his
squaring operations) he identified the kernel of the map h1W �3.X /!H 3.X / dual to
h1 with the cokernel of the squaring map Sq

2
W H 2.X /!H 4.X IZ2/. Since Sq

2
is

dual to mod 2 self-intersection H2.X /!H0.X IZ2/D Z2 of integral classes, this
cokernel is 0 or Z2 according to whether X is odd or even.

Thus for odd X we have �3.X /ŠH 3.X /, or dually F1.X /ŠH1.X /. For even X

there is an abelian extension

0 �! Z2 �! �3.X /
h1

�!H 3.X / �! 0

(cf [19, Section 6.1]), or dually

(e) 0 �! Z2

u1
�! F1.X /

h1
�!H1.X / �! 0

as asserted in Theorem 1.

For completeness, we provide a geometric proof of Claim 1.1, in terms of framed links,
which also yields a simple description for the map u1 in (e) : Any element in ker.h1/

is represented by an unknot U � X with one of its two possible framings. Exactly
one of these framings extends over any given proper 2–disk D in X � I bounded by
U . Let U0 denote the resulting 0–framed unknot (this may depend on the choice of
D ) and U1 denote U with the other framing. Then clearly ŒU0�D 0 in F1.X /, while
ŒU1� generates ker.h1/ and is of order at most two. The claim is that ŒU0�D ŒU1� if
and only if X is odd. But if ŒU0�D ŒU1�, then capping off the boundary of a framed
bordism in X �I from U0 to U1 and projecting to X produces a (singular) surface of
odd self-intersection, so X is odd. Conversely, if X is odd, then removing two disks
from an embedded oriented surface in X of odd self-intersection and then “tilting” this
surface in X � I gives a framed bordism between U0 and U1 . This proves the claim,
and shows that in the even case, the map u1 in (e) sends the generator of Z2 to ŒU1�.

To complete the proof of Theorem 1, it remains to show that the element eX in
Ext.H1.X /;Z2/ defined by the extension (e) maps to the Stiefel–Whitney class w2.X /

under the monomorphism

ıW Ext.H1.X /;Z2/ �!H 2.X IZ2/
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in the universal coefficient sequence for X .

To see this, first recall the definition of ı . View Ext.H1.X /;Z2/ as coker.i�/, where
i W B1 ! Z1 is the inclusion of singular 1–boundaries to 1–cycles in X . Then ı
maps the equivalence class of a functional �W B1! Z2 to the cohomology class of
the cocycle �@, where @W C2 ! B1 is the boundary map on chains in X , that is,
ıŒ��D Œ�@�.

Alternatively, ı can be viewed as the dual of the Bockstein homomorphism

ˇW H2.X IZ2/ �! Tor2.H1.X //

for the coefficient sequence 0! Z
�2
! Z! Z2! 0. To explain this, we appeal to:

Remark 1.2 There is a classical method for describing extensions by 2–torsion groups
T due to Eilenberg and MacLane [5, Theorem 26.5]. Let A and B be abelian groups
fitting into an extension

0 �! T
u
�!A

h
�! B �! 0:

Given any b 2Tor2.B/, choose a2A with h.a/D b . Then there exists t 2T such that
u.t/D2a, and it is easy to check that t is uniquely determined by b because T consists
of 2–torsion only. In fact, this leads to a homomorphism of groups Tor2.B/! T ,
inducing an isomorphism Ext.B;T /Š Hom.Tor2.B/;T /.

For the case at hand we have Ext.H1.X /;Z2/Š Tor2.H1.X //
� , mapping Œ�� to the

functional Œz� 7! �.2z/, where z is any integral cycle representing a 2–torsion element
in H1.X /. From this one can easily check that the diagram

Ext.H1.X /;Z2/
ı

����! H 2.X IZ2/

Š

??y ??yŠ
Tor2.H1.X //

� ����!
ˇ�

H2.X IZ2/
�

commutes, which is the sense in which ı and ˇ are dual.

Now eX is represented by any functional f W B1! Z2 for which the diagram

0 ����! B1
i

����! Z1 ����! H1.X / ����! 0

f

??y ??yg





0 ����! Z2 ����!

u1

F1.X / ����!
h1

H1.X / ����! 0
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commutes; see for example Spanier [16, Section 5.5.2]. This requires an initial choice
of a map g making the right square commute, and then f is forced. A different choice
of g will only change f by the restriction of a functional on Z1 , and so its equivalence
class eX D Œf � in Ext.H1.X /;Z2/ is well-defined.

Under the identification Ext.H1.X /;Z2/ Š Tor2.H1.X //
� , the element eX corre-

sponds to the “characteristic functional”

wW Tor2.H1.X // �! Z2

whose kernel is subgroup S1.X / of split classes, introduced in Section 0. Thus if K is
a knot of order 2 in H1.X /, then w.K/D 0 or 1 according to whether K (endowed
with either framing) has order 2 or 4 in F1.X /, or equivalently, whether 2K (meaning
two copies of K with the same framing on each) is framed bordant to U0 or to U1 .
Note that up to framed bordism, the framing on 2K does not depend on the choice of
framing on K , since this choice is being doubled.

Thus to prove ı.eX /D w2.X /, we must show that the functional w2 2H2.X IZ2/
�

corresponding to w2.X / is equal to the composition w ıˇ . But ˇ sends the class of a
surface F to the class of any curve C that is characteristic in F , meaning Poincaré
dual to w1.F /,| and w2 reports self-intersections, by the Wu formula, so it remains to
show

(w) w.C /D F �F .mod 2/

for any surface F �X and characteristic curve C in F .

If F is orientable, both sides of equation (w) vanish since C is empty and X is even.
If F is non-orientable, we can choose C to be connected (it is then characterized
up to homology by the orientability of its complement F �C ) with closed tubular
neighborhood N in F . Then N is either an annulus or a Möbius band, according
to whether C is orientation preserving or orientation reversing in F . In either case,
@N is bordant in X to 2C ; the bordism B is trivial when N is an annulus, and a
pair of pants when N is a Möbius band, as indicated in Figure 2 with one suppressed
dimension.

Starting with any framing on C in X , the induced framing on 2C extends across B

(tilted in X �I ) to give a normal framing eD .e1; e2; e3/ on @N . We can assume that
e1 is normal to N along @N , pointing in the suppressed direction in the figure, e2 is
shown there by the thin push-off, and e3 is determined by e1 , e2 and the orientation

|This is well known, and easily verified. Note that C does in fact represent an element in Tor2.H1.X // :
It is null-homologous when F is orientable, and of order 2 in H1.F / otherwise, since F can then be
viewed as an integral 2–chain with boundary 2C .
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2C

C

N

BB

2C

C

N

BB

N D annulus N D Möbius band

Figure 2: The bordism B between 2C and @N

on @N . Then e1 extends to a normal vector field across all of N , and since F �N is
orientable, across the rest of F off of a disk D ; we use this vector field to push F �D

off itself in order to compute F �F . Similarly, there is no obstruction to extending
the framing e on @N across F � .N [D/ (tilted in X � I ) to give a framing on the
unknot U D @D , which we also call e . By construction 2C is framed bordant to Ue .
Now the mod 2 self-intersection F �F is 0 or 1 according to whether the framing e

on U D @D extends over D or not, or equivalently, whether Ue is framed bordant to
U0 or U1 . Thus by definition F �F D w.C /, proving equation (w) and completing
the proof of Theorem 1.

Example 1.3 If H1.X / has no 2–torsion, then it is immediate from the theorem that
F1.X / is isomorphic to H1.X / or to H1.X /˚Z2 , depending upon whether X is
odd or even. In particular for X simply connected, F1.X / is trivial when X is odd,
and isomorphic to Z2 when it is even.

If H1.X / has 2–torsion, then H1.X /Š Z2k1 ˚ � � � ˚Z2kn ˚A for some sequence
1� k1 � � � � � kn of integers, where A has no 2–torsion. For each i D 1; : : : ; n let Ci

be a knot in X representing 2ki�1 times the generator of the i th summand above. Then
C1; : : : ;Cn generate Tor2.H1.X //. Now recall the functional wW Tor2.H1.X //!Z2

from the proof of the theorem, given by w.C / D F �F .mod 2/, where F is any
surface in X in which C is characteristic. If w� 0, or equivalently X is spin, then of
course F1.X /ŠH1.X /˚Z2 . Otherwise choose the smallest i for which w.Ci/D 1,
and rewrite H1.X /ŠZ2ki ˚B , where B incorporates the remaining summands. Then

F1.X /Š Z2kiC1 ˚B:

This is a consequence of the identity wıˇDw2 established in the proof of the theorem.
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From this observation, it is easy to construct 4–manifolds X with H1.X / arbitrary,
and with F1.X / equal to any prescribed Z2 –extension of H1.X /. For example, to
get H1.X /Š Z2k ˚B and F1.X /Š Z2kC1 ˚B , take X to be the connected sum
of the even manifold E2k ;1 with suitable En;0 s (see Figure 1). The special case
F1.E2;1/D Z2 and F1.E2;1/D Z4 was noted in Example 6.4 of Taylor [19].

Remark 1.4 We explain here how Theorem 1 can be deduced from Taylor’s Theorem
6.2 in [19]. As noted below Claim 1.1 above, Steenrod [17, Theorem 28.1] constructed
an extension

0 �! T �! ŒX;S3� �!H 3.X /! 0

for any 4–complex X , where T Dcoker.Sq
2
W H 2.X /!H 4.X IZ2/ /; see Taylor [19,

6.1]. By Remark 1.2, this extension is classified by a homomorphism "X W Tor2.H
3.X //

! T . The Bockstein homomorphism induces an isomorphism

ˇW H 2.X IZ2/=im.H 2.X // �! Tor2.H
3.X //

and the Steenrod square Sq2
W H 2.X IZ2/!H 4.X IZ2/ induces a homomorphism

ŒSq2�W H 2.X IZ2/=im.H 2.X // �! T:

With a little bit of work, the statement of Theorem 6.2 in [19] can be interpreted as
saying that "X D ŒSq2� ı ˇ�1 . Since Sq2.x/ D x [ x , this statement implies our
Theorem 1.

More directly, the dual of Taylor’s Theorem 6.2 for the case nD 3 and k D 1 is exactly
the assertion (w), which is the key step in our proof of Theorem 1.

2 Computation of the set F2.X/Š �2.X/

The forgetful map
h2W F2.X / �!H2.X /

sends the bordism class of a framed surface in X to the homology class of the underlying
oriented surface. The image of h2 is the set H ı

2
.X / of all classes in H2.X / of self-

intersection zero, that is, those represented by surfaces in X with trivial normal bundle.
Thus to compute F2.X /, it suffices for each ˛ 2 H ı

2
.X / to classify up to framed

bordism the framings on surfaces representing ˛ , that is, to enumerate the framed
bordism classes in the fiber

F˛2 D h�1
2 .˛/� F2.X /:
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To accomplish this, fix a surface F representing ˛ and choose a framing � of the
normal bundle of F . Then F� represents one element in F˛

2
, and all others arise as

“framed link translates” of F� , in the following sense:

Let L be an oriented link in X with normal framing e D .e1; e2; e3/. We can assume
that L is disjoint from F , after an isotopy if necessary. Now form a new framed
surface Le �F� , called the Le –translate of F� , by adjoining one new framed torus
T�.e/ for each component K of L, where T is the boundary of a small 3–dimensional
solid torus thickening V of K in X in the direction of e1 and e2 . This is illustrated
schematically in Figure 3.

Le

F� Le �F�

Figure 3: The framed link translate of a framed surface

To describe the framing �.e/ D .�1; �2/ on T precisely, we set up coordinates as
follows. Identify a small tubular neighborhood of K in X with S1 � B3 via the
framing e , with K D S1 � 0. Then set

V D S1
�D and T D @V D S1

� @D

where D is the equatorial disk B3\he1; e2i, as shown in Figure 4(a) at a cross-section
pt�B3 . Now we require � to spin once relative to the “constant” framing .@r ; @z/,
using cylindrical coordinates .r; �; z/ in B3 , so that in particular it does not extend
across the disk fibers of V pushed into X � I . Explicitly �1 D @r cos � C @z sin �
and �2 D�@r sin �C@z cos � at any pt� .1; �; 0/ 2 T , as illustrated in Figure 4(b) by
showing (up to homotopy) the tip of �1 in each frame.

Remark 2.1 The 0–framed unknot U0 acts trivially on any framed surface F� , that
is U0�F� is framed bordant to F� . We leave this as an instructive exercise for the
reader. Of course in general, Le �F� need not be framed bordant to F� . For example,
if F� is a framed 2–sphere in S4 (note that all framings on embedded 2–spheres in
4–manifolds are isotopic since �2SO.2/D 0) then U1�F� is not framed bordant to
F� . Indeed ŒU1�F� � generates F2.S

4/D �2.S4/D �4.S
2/D Z2 , while ŒF� �D 0.
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e1

e2

e3

V
T

K
T �1

(a) Cross-section pt�B3 (b) Framing on T

Figure 4: The framed torus T D @V associated with the framed knot K

There is an another more direct way to modify the framing � using a link L lying on
F . Simply add a full right handed twist in the normal fibers along any transverse arc to
L in F . This results in a new framing on the same surface, which we call the L–twist
of � and, by abuse of notation, denote by �CL.

In fact any framing O� on F can be obtained in this way. Indeed O�D �CL where L is
any embedded representative of the Poincaré dual of the integral cohomology class in
H 1.F / that measures the difference O� � � (meaning that this difference on any given
1–cycle in F is k full right handed twists, where k is the intersection number of the
cycle with L). Thus any two framings on F are related by “link twists”.

It will be seen in the proof of the “action lemma” below that F�CL is framed bordant
to Le �F� , where e is the framing on L given by � together with the normal to L in
F , and so link twisting can be thought of as a special case of framed link translation.

Action Lemma Framed link translation defines an action of the group F1.X / on
the set F2.X /, given by ŒLe �� ŒF� � D ŒLe �F� �. The orbit of ŒF� � under this action
is the set F˛

2
of all classes of framed surfaces that, forgetting the framing, represent

˛ D ŒF � 2H2.X /.

Proof Since addition in F1.X / is disjoint union, it is clear that the operation � in the
lemma defines an action provided it is well-defined. To see that it is in fact well-defined,
assume that Le and OL Oe are bordant via a framed surface E2 � X � I , and that F�
and OF O� are bordant via a framed 3–manifold Y 3 �X �I . We must show that Le �F�
and OL Oe � OF O� are framed bordant.
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To do so, first adjust E and Y to intersect transversally in finitely many points
x1; : : : ;xn . Then “pipe” these intersections to the upper boundary OF of Y in the
usual way: Choose disjoint arcs 
i in Y joining the points xi to points yi in OF , and
thicken these into disjoint solid cylinders 
i �D in Y that meet E and X �1 in disks
Ei D xi �B2 and Di D yi �B2 ; the Di are meridional disks for OF in X � 1. Now
construct a new surface OE , removing the disks Ei from E and replacing them with
the cylinders 
i � @B

2 , and then rounding corners. The framing on E clearly extends
across OE , restricting to the 0–framing on each unknot @Di . Thus OE provides a framed
bordism between Le �F� and . OL OeCL0/� OF O� , where L0 is a 0–framed unlink in X .
But as noted in Remark 2.1 above, L0 acts trivially, and so Le �F� and OL Oe � OF O� are
framed bordant.

To complete the proof of the action lemma, we must show that any framed surface
OF O� belonging to F˛

2
is framed bordant to F� acted on by some framed link Le . We

can assume that F and OF are connected, and by hypothesis, they are bordant. Hence
we can find a bordism Y from F to OF with only 1 and 2–handles. The framing �
extends (not uniquely) over the 1–handles to give a normal framing on the middle level
of Y . Similarly, O� on OF extends to a normal framing on the middle level. Abusing
notation, call the middle level F and the two normal framings � and O� .

Now let L be a link in F representing the Poincaré dual of the cohomology class in
H 1.F / that measures the difference O� � � , and so O� D �CL in the notation above.
Then L acquires a framing e by appending its normal vector field in F onto � , and
we propose to show that F�CL is framed bordant to Le �F� .

To that end, we first “blister” L. That is, we create a 3–dimensional bordism Y 3

obtained from F � I (using the first vector of � ) by removing an open disk bundle
neighborhood of L� 1=2 so that @Y D .F � 0/[ .F � 1/[T where T is the torus
boundary of the disk bundle. Then “tilt” Y into X�I so that Y \.X�0/D .F�0/[T

and Y \ .X � 1/ D F � 1. The framing e on L induces a framing �.e/ on T by
the link translation construction above. Together these give a framing � [ �.e/ on
.F � 0/[T that extends over Y by adding an extra full twist when going past the arc
˛ D Y \ .L� Œ1=2; 1�/, the sign of the twist depending on the orientations of L and
F . By construction, this framing restricts to O� D �CL on F � 1. This is shown in
Figure 5 with two of the five dimensions suppressed, one tangent to F and the other
normal to F in X .

Thus we have constructed a framed bordism Y between F�[T�.e/D .F �0/�[T�.e/
(which is the action of Le on F� ) and F O� D .F � 1/ O� . This completes the proof.
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.F � 0/� [T�.e/

.F � 1/ O�

˛

Y 3

Figure 5: Blistering the link L

By the action lemma, the classes in F˛
2
D h�1

2
.˛/ correspond to the cosets in F1.X /

of the stabilizer F1.X /z̨ of any chosen z̨ D ŒF� � in F˛
2

under the F1.X /–action. We
will show that this stabilizer is exactly twice the image of the framed intersection map

iz̨W F3.X / �! F1.X /

that sends (the class of) an oriented 3–manifold Y in X with normal n to its transverse
intersection with F , framed by .�; n/. Note that n is determined (up to homotopy) by
the orientation on Y , using the convention that .�; n/ should frame TX over Y for any
oriented framing � of T Y , and so iz̨ can be viewed as a map H3.X /! F1.X /. A
straightforward transversality argument shows that iz̨ is a well defined homomorphism.

Since there are only two framings on any 1–dimensional link in X , up to framed
bordism, the map 2iz̨ depends only on ˛ (independent of the choice of z̨ ) and so we
denote it by

�˛ D 2iz̨W F3.X / �! F1.X /:

Thus we claim that F1.X /z̨ D im.�˛/. This will complete the proof of Theorem 2,
restated below. The first part of the theorem is just a summary of the discussion above,
with the action lemma providing the proof that the F1.X /–action on F˛

2
is transitive.

Theorem 2 The forgetful map h2W F2.X / ! H2.X / has image equal to the set
H ı

2
.X / of all classes of self-intersection zero. The fiber F˛

2
D h�1

2
.˛/ over any

˛ 2H ı
2
.X / has a transitive F1.X /–action by framed link translation (defined above)

with stabilizer equal to the image of the map �˛W F3.X /! F1.X / that records twice
the intersection with any framed surface representing an element in F˛

2
. Thus F˛

2
is in

(non-canonical) one-to-one correspondence with the cokernel F˛
1

of �˛ .
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Proof Given a class ˛ 2H ı
2
.X /, fix an oriented surface F in X representing ˛ and a

framing � D .n1; n2/ of its normal bundle. Set z̨ D ŒF� � 2 F˛
2

and let F1.X /z̨ denote
the stabilizer of z̨ under the F1.X /–action on F˛

2
. It remains to prove

F1.X /z̨ D im.2iz̨/:

We first verify the inclusion

im.2iz̨/� F1.X /z̨:

Let Y �X be an oriented 3–manifold transverse to F , and LD Y \F with framing
e D .n1; n2; n/, where n is the oriented normal to Y in X . Thus Le represents a
typical element of im.iz̨/. Now identify X with X � 1=2. Then Y � X � I has a
natural framing .n; t/, where t is tangent to the I –factor, as does F � I , given by
� at all levels. The union Y [ .F � I/ is a framed, immersed submanifold of X � I

which has, using the framing � on F � @I , self-intersection equal to two copies of L.
We propose to replace this with an embedded submanifold, keeping track of how the
framing changes.

This is analogous to the well known case of a 2–sphere S immersed in the 4–sphere
with one positively oriented double point p . The self intersection S �S must be zero
since S can be pushed far off of itself. But S �S is also given by pushing S off
itself using its normal bundle and counting points of intersection; the double point p

provides two plus points, so there must be two other minus points.

An alternative description is an immersed 2–disk with one double point where the same
push off as above leads to a framing on the bounding circle which has two full negative
twists compared to the trivial framing. On the other hand, the double point can be
removed by replacing the two transverse disks by an annulus, obtaining an embedded
torus or punctured torus. The torus has a trivial normal bundle, so the punctured torus
gets the trivial framing on the normal bundle of its bounding circle. Thus, removing
the double point via the annulus changes the framing by two positive full twists.

Similarly, removing the double points using annuli all along the points of

LD Y \ .F � I/

changes the framing on (say) F � 1 by 2L, meaning that the new framing on F � 1

is �C 2L, the “2L–twist of �” in the terminology introduced above. Thus the two
framed surfaces F� and F�C2L are framed bordant by Y [ .F � I/ made into an
embedding by removing the double points, as above. The proof of the action lemma
then shows that F�C2L is framed bordant to 2Le �F� , and so 2Le stabilizes F� .
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For the reverse inclusion

F1.X /z̨ � im.2iz̨/

start with a framed link Le representing an element in F1.X /z̨ . This means there is a
framed bordism W� �X � I from F� to OF O� DLe �F� . As in the proof of the action
lemma, we can assume that F D OF , that L lies in F where it is dual to the class in
H 1.F IZ/ that measures the difference between O� and � , and that the framing e on L

is induced from � . We must find a closed 3–manifold Y �X such that

2iz̨.Y /D 2ŒY \F �D ŒLe � 2 F1.X /:

To construct Y , start with the 3–cycle V DW �.F�I/. Since W and F�I have the
same boundary, this cycle is homologous to an embedded 3–manifold in X DX �1=2,
which can be assumed transverse to F . We let Y be any such 3–manifold, and set
J D Y \F .

It remains to show that 2J is homologous to L in X , or equivalently in X � I .
Working in H1.X � I/, it is clear that V 2 D V �V D 0, since V is homologous to a
submanifold of X � 1=2. But this self-intersection can also be computed in terms of
intersections of the relative cycles W and F � I , as follows:

V 2
D .W � .F � I//2

DW 2
� 2W �.F � I/C .F � I/2

Here it is understood that when computing intersection numbers in X � I , we always
use � and O� to start the push off along the boundary. With this understanding we have
W 2 D 0, and so

2W �.F � I/D .F � I/2:

Now it is clear that the left hand side is represented by 2J , while the right hand side is
represented by L. Hence 2J and L are homologous, and the theorem is proved.

Remark 2.2 The group F˛
1
D coker.�˛/ featured in Theorem 2 can be computed in

terms of the group U˛
1
D coker.2i˛/, where i˛ is the (unframed) intersection map

i˛W H3.X / �!H1.X / ˇ 7�! ˛�ˇ:

For example F˛
1
ŠU˛

1
when X is odd, since the forgetful map h1 is then an isomor-

phism.
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If X is even, then the sequence (e) in Theorem 1 induces a commutative diagram

F3.X /
Š
����! H3.X /

�˛

??yD2iz̨

??y2i˛

0 ����! Z2

u1
����! F1.X /

h1
����! H1.X / ����! 0

Š

??y ??y ??yp

Z2

u˛
1

����! F˛
1

h˛
1

����! U˛
1
����! 0??y ??y

0 0

with exact rows and columns. Note that u˛
1

is zero precisely when u1.1/D ŒU1�2 im.�˛/
(recall that U1 is the 1–framed unknot), or equivalently, when ˛ is a twisted class (see
Section 0). Hence F˛

1
ŠU˛

1
when X is of type III1 and ˛ is twisted.

In all other cases (X of type II or type III2 , when there are no twisted classes, or
of type III1 with ˛ untwisted) the group F˛

1
is a Z2 –extension of U˛

1
, via the exact

sequence

0 �! Z2

u˛
1
�! F˛1

h˛
1
�!U˛

1 �! 0:

By Remark 1.2 this extension is classified by the homomorphism Tor2.U
˛
1
/!Z2 with

kernel p.S1.X //, where S1.X /�H1.X / is the subgroup of split classes. It follows
that if X is of type II, then the extension splits (since T1.X /D¿), so F˛

1
ŠU˛

1
˚Z2 .

This can also be seen directly from the diagram above, since h1 splits by Theorem 1,
and so h˛

1
splits as well. In contrast, if X is of type III and ˛ is untwisted, then the

extension does not split, since im.2i˛/ will then contain some twisted 1–dimensional
classes.

Example 2.3 Let X be simply connected. Then H1.X / and H3.X /D 0.

If (the intersection form on) X is definite, then H ı
2
.X /D f0g, that is, only the trivial

homology class has self-intersection zero. Therefore

F2.X /Š F1.X /D 0 or Z2

according to whether X is odd or even (D spin, since X is simply connected). Here
the symbol Š indicates torsor equivalence, so in the even case there is no a priori
way to distinguish between the two homotopy classes of maps X ! S2 . In this case,
however, it is natural to associate the constant map with 0 2 Z2 (as is the case more
generally for F0

2
D h�1

2
.0/� F2.X /).
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If X is indefinite and odd, then it is homotopy equivalent to pCP2 # qCP
2

for some
p; q> 0. In this case H ı

2
.X / is infinite, but each of its elements has a unique associated

homotopy class of maps X ! S2 since F1.X /D 0. Thus

F2.X /DH ı2 .X /:

The problem of enumerating the classes in H ı
2
.X / is a classical and generally in-

tractable number theoretic problem; these classes correspond to the different ways that
integers can be expressed simultaneously as the sum of p squares and as the sum of q

squares.

There is a similar story in the indefinite and even case, except that now each class
in H ı

2
.X / has exactly two corresponding homotopy classes of maps to the 2–sphere,

since F1.X /D Z2 . Hence

F2.X /ŠH ı2 .X /�Z2

as sheaves of torsors. This means that there is no natural way to distinguish between
the two homotopy classes of maps X ! S2 associated with each nonzero class in
H ı

2
.X /.

Example 2.4 Let X D Y �S1 , where Y is a closed, oriented 3–manifold. By the
Künneth theorem, there is a natural isomorphism

Hk.X /ŠHk.Y /˚Hk�1.Y /

for all k , with integer coefficients understood as always. Elements in the first summand
correspond to k –manifolds in Y �pt, while those in the second correspond to products
of .k � 1/–manifolds in Y with the circle.

In particular, we will identify elements ˛2H2.X / with pairs .ˇ; 
 /2H2.Y /˚H1.Y /.
It follows that X is spin, since H2.X / is generated by elements of the form .ˇ; 0/

and .0; 
 / which have self-intersection zero in X , even allowing Z2 coefficients.

We wish to compute the fiber F˛
2
D h�1

2
.˛/ over an arbitrary element ˛ D .ˇ; 
 / in

H ı
2
.X /D f.ˇ; 
 / j ˇ�
 D 0 in Y g. By Theorem 2, this fiber is an F˛

1
–torsor, where

F˛1 D coker.2i˛/˚Z2

by Remark 2.2, since X is spin. Thus it suffices to compute coker.2i˛/.

Recall that i˛W H3.X /!H1.X / is the map that computes intersection with ˛D .ˇ; 
 /.
Identifying H3.X /ŠH3.Y /˚H2.Y / and H1.X /ŠH1.Y /˚H0.Y / as above, we
have

i˛W Z˚H2.Y / �!H1.Y /˚Z
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sends .1; 0/ to .
; 0/ and .0; ı/ to .ı�ˇ; ı�
 /. Hence coker.2i˛/ is isomorphic to
the quotient of H1.Y /˚Z by the subgroup generated by .2
; 0/ and twice the image
of the map

iˇ˚ i
 W H2.Y / �!H1.Y /˚Z

whose coordinates record intersections in Y with ˇ and 
 . In particular

F .ˇ;0/
2
Š coker.2iˇ/˚Z˚Z2 and F .0;
 /

2
ŠH1.Y /=h2
 i˚coker.2i
 /˚Z2:

Note that coker.2i
 /DZ2d.
 / , where d.
 / is the divisibility of 
 (the largest integer
d for which d � � D 
 has a solution � 2H1.Y /, or zero if 
 is of finite order).

We illustrate these computations with three cases: (a) Y is a lens space, (b) Y DS2�S1 ,
and (c) Y is the 3–torus:

(a) Let X DL.p; q/�S1 . Then H ı
2
.X /DH2.X /Š 0˚H1.L.p; q//Š Zp , and

Fk
2 Š Zgcd.2k;p/˚Z˚Z2:

for any k 2 Zp . This is an instance of the case .0; 
 / above in which i
 D 0.

(b) Let X DS2�T 2D .S2�S1/�S1 . Then H2.X /DZ2 , generated by �D ŒS2�pt�
and � D Œpt�T 2�. The set H ı

2
.X / consists of all integral multiples of � or � , and

Fd�
2 Š Z˚Z˚Z2 and Fd�

2 Š Z2d ˚Z2d ˚Z2

for any integer d (cf Example 6.11 in [19]).

(c) Let X D T 4D T 3�S1 . Then H2.T
4/ŠH2.T

3/˚H1.T
3/ŠZ3˚Z3 , where

the Z3 factors have dual bases ˇ23; ˇ31; ˇ12 (represented by the coordinate tori in
T 3 ) and 
1; 
2; 
3 (represented by the coordinate circles in T 3 ). The matrix B for
the intersection pairing H2.T

3/˝H2.T
3/!H1.T

3/ is given by

B D

0@ 0 
3 �
2

�
3 0 
1


2 �
1 0

1A
with respect to the ordered basis ˇ23; ˇ31; ˇ12 of H2.T

3/. The set H ı
2
.T 4/ consists

of all pairs .ˇ; 
 /2Z3˚Z3 with ˇ�
 D 0, where ˇ and 
 are the coordinate vectors
for elements in H2.T

3/ and H1.T
3/ with respect to the bases above, and � is the

usual dot product. It follows that F.ˇ;
 / Š coker.2A/˚Z2 , where

AD

0BB@
0 b3 �b2 �c1

�b3 0 b1 �c2

b2 �b1 0 �c3

c1 c2 c3 0

1CCA ;

Geometry & Topology Monographs, Volume 18 (2012)



182 Robion Kirby, Paul Melvin and Peter Teichner

for any .ˇ; 
 /D ..b1; b2; b3/; .c1; c2; c3// in H ı
2
.T 4/.

To compute coker.2A/, we reduce A to its Smith Normal Form. Note that A is skew-
symmetric and of determinant zero, since ˇ�
 D 0. Thus either AD 0 or rk.A/D 2.
In the first case set d D 0, and in the second set d equal to the greatest common
divisor of all the entries in A. Then by a change of basis of the form PT AP , where
P is a unimodular integral matrix, we can assume b3 D d . A further reduction shows
that the Smith Normal Form of A is the diagonal matrix with entries d; d; 0; 0. Thus
coker.A/D Z2

d
˚Z2 , and so

F˛2 Š Z2d ˚Z2d ˚Z˚Z˚Z2

for all ˛ in H ı
2
.T 4/, where d is the divisibility of ˛ in H2.T

4/.

Example 2.5 To conclude, we describe a 4–manifold of type III1 , that is, an even
non-spin 4–manifold X that has at least one twisted 2–dimensional homology class
˛ (see Section 0). By Remark 2.2, the associated fiber F˛ D h�1

2
.˛/ is in one-to-one

correspondence with the cokernel of 2i˛W H3.X /!H1.X /. This shows that the last
case discussed in Remark 6.8 in Taylor [19] is indeed realized by a 4–manifold.

We construct X by surgering the connected sum E2;1 # .T 2 �S2/ along the curve
C # J , where C generates H1.E2;1/D Z2 and J is an essential curve in T 2 � pt. A
handlebody for X , minus the 3 and 4–handles, is shown in Figure 6, where C can be
taken to be the core of the obvious Möbius band M bounded by the attaching circle of
the 1–framed 2–handle (on the left).

1

0
0

0

0

0

Figure 6: A 4–manifold of type III1

A straightforward computation gives

(1) H1.X /D Z2˚Z, with generators �1 D ŒC � and �2 D ŒK� where K is a dual
curve to J in T 2 � pt.
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(2) H2.X /D Z2˚Z˚Z, with generators ˛1 , represented by an S2 –fiber of the
bundle E2;1 , ˛2 D ŒT

2 � pt� and ˛3 D Œpt�S2� (in T 2 �S2 ).

(3) H3.X /D Z, with generator � D ŒJ �S2�.

The intersection pairing on H2.X / vanishes except for ˛2�˛3 D 1, and so

H ı2 .X /D f.a; b; c/ 2 Z2˚Z˚Z j bc D 0g:

The intersection pairing between H2.X / and H3.X / vanishes except that ˛2�� D �1 ,
since .T 2�pt/\ .J �S2/D J which is isotopic to C via the surgery. Since 2�1D 0,
the map 2i˛ is zero for all ˛ 2 H2.X /, and so coker.2i˛/D H1.X /D Z2˚Z for
all ˛ .

Now observe that �1 D ŒC � is twisted. Indeed C is characteristic in an RP2 –section
of the bundle E2;1 (the union of M and the core of the 1–framed 2–handle in the
picture) and this section has odd self-intersection. Hence w.C /D 1 by equation (w) in
the proof of Theorem 1, where w is the characteristic functional, and so �1 is twisted.

It follows that X has (infinitely many) 2–dimensional twisted classes, namely all
classes ˛ D .a; b; c/ in H2.X / with b odd and c D 0. For each of these, F˛

2
Š

coker.2i˛/D Z2˚Z. For all other classes ˛ in H ı
2
.X / we have F˛

2
Š Z4˚Z, the

nonsplit Z2 –extension of H1.X /.

3 Proof of Theorem 3

For a topological group G , Milnor [14] constructed a space BG , together with a
principal G –bundle EG! BG such that the homotopy groups of EG vanish. This
implies by obstruction theory that isomorphism classes of G –principal bundles over a
CW–complex X are in 1–1 correspondence with ŒX;BG�.

Given a closed subgroup T <G , we can form the associated bundle

EG �G G=T �!EG=G

with fiber G=T . The total space is homeomorphic to EG=T and since T is closed,
the projection EG!EG=T is a principal T –bundle. By the weak contractibility of
EG , the space BT WD EG=T is a classifying space for principal T –bundles (over
CW–complexes).

Summarizing, we have a fiber bundle

G=T �! BT
�
�! BG
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as claimed in the introduction. Since fiber bundles are Serre fibrations, the usual
homotopy lifting theory gives an “exact sequence” for any CW–complex X :

ŒX;LBT � Nu
L� ı�
����! ŒX;LBG�b ����! ŒX;G=T �

h
����! ŒX;BT � ����! ŒX;BG�

Here we fix a map uW X !G=T and consider its image NuW X ! BT , whose further
image under � is a constant b 2BG . Exactness means that the group ŒX;LBG�b acts
transitively on the fiber h�1. Nu/ with stabilizer of u the image of the map induced by
L� . Here LBT is the free loop space of BT and the subscript Nu indicates that the
maps start and end at Nu, and similarly for LBG .

Encouraged by the referee, we add a short proof of this “exact sequence” for any Serre
fibration � W E!B (in place of BT ! BG ).

Proof Given a Serre fibration E
�
! B with fibre F over b 2 B , there is an “exact

sequence”

�1.E; e/
��
�! �1.B; b/ �! �0.F /

h
�! �0.E/ �! �0.B/

in the following sense: For a fixed e 2 E with �.e/ D b , the group �1.B; b/ acts
transitively on h�1.e/, with stabilizer of e equal to the image of �1.E; e/ under �� .
This follows from the lifting properties of Serre fibrations, applied to intervals and
squares.

We next recall a useful tool, namely Steenrod’s convenient category CG of compactly
generated Hausdorff spaces [18]. A topological space is compactly generated if a subset
is closed provided its intersection with any compact set is closed.

It is even more convenient to use Rainer Vogt’s (full) subcategory HG� TOP which
contains CG. He shows in [21, 1.4] that the inclusion has a right adjoint kW TOP!HG

where k.X / is a finer topology on the underlying set of a topological space X . In fact,
k.X / is the finest topology such that any continuous map K! X from a compact
Hausdorff space K factors through the identity k.X /!X .

These categories are convenient for various reasons, one being that [21, 3.6] the
canonical adjunction maps are homeomorphisms whenever X;Y 2 HG:

BX˝Y
Š .BX /Y

Here ˝ denotes the categorical product in HG and BX is the set of all continuous maps
X ! B , equipped with the topology given by applying the functor k to the compact
open topology. It is important to recall from [21, 3.11] that for (locally) compact spaces
Y , the categorical product X ˝Y is actually just the cartesian product X �Y .
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We note that any CW–complex X is Hausdorff and compactly generated and therefore
X 2 CG� HG. Take our Serre fibration � W E! B and consider the induced map

�X
W EX

�! BX

The crucial claim is that this is again a Serre fibration: By the above adjunctions, lifting
maps from a finite CW–complex D! BX over EX is the same as lifting maps from
D�X !B over E . Since D�X is again a CW–complex, our crucial claim follows
from the facts that

� crossing with X preserves acyclic cofibrations, and

� it suffices to check the lifting conditions for Serre fibrations on finite
CW–complexes.

Now we apply our baby version of the “exact sequence” (for �1 and �0 ) to this new
Serre fibration �X W EX ! BX and get our desired sequence:

ŒX;LE� Nu
L� ı�
����! ŒX;LB�b ����! ŒX;F �

h
����! ŒX;E� ����! ŒX;B�

The only thing to check are the following translations:

�0.B
X /D BX ='D ŒX;B�

because a path I!BX translates via our adjunction to a homotopy X �I!B (since
I is compact Hausdorff). Moreover, if bW X ! B denotes the constant map at b 2 B

then

�1.B
X ; b/D .BX ; b/.S

1;s/='D .B; b/.S
1�X ;s�X /='D ŒX;LB�b

where the right hand side denotes maps X ! LB that start and end at b . It would be
natural to use the topology on LB which is given by applying the functor k to the
compact open topology on the space of maps S1!B . Note however, that the identity
k.Y /! Y is always a weak equivalence and because X is a CW–complex, the set
ŒX;LB� does not see the difference between these two topologies.

Going through the above arguments, we see that the action of ŒX;LBG�b on h�1. Nu/ is
given by first lifting a homotopy H W X � Œ0; 1�! BG that starts and ends at b ,| with
prescribed lift Nu at time 0. Then one evaluates the lift at time 1 to get a second map
X ! BT lying over the constant b which can be identified with a map X !G=T .

|By adjunction, elements in ŒX;LBG�b are represented by such homotopies, which are stacked to
obtain the group structure, and similarly for ŒX;LBT � Nu .
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Let �b denote the space of loops based at b and Pb the space of paths that start at b .
There is a commutative diagram of fibrations with contractible total spaces:

�bBG ����! PbBG ����! BG??y' ??y' 



G ����! EG ����! BG

The homotopy equivalence on the left gives a universal holonomy map, which induces
the isomorphism

ŒX;LBG�b D ŒX; �bBG�Š ŒX;G�:

This translates the homotopy lifting action into the pointwise action of ŒX;G� on
ŒX;G=T �.

We thus only need to identify the stabilizer from the general theory with the one claimed
in Theorem 3. For this purpose, recall the homotopy equivalence of LBG with the
associated bundle with respect to the conjugation action of G on itself:

LBG 'EG �.G;conj/G

This is compatible with the projection map to BG DEG=G and follows from playing
with the commutative diagram above. Applying the same discussion to BT , we see
that the relevant map L� W LBT ! LBG can be replaced by a map

EG �.T;conj/ T �!EG �.G;conj/G:

Since � D Bi W BT ! BG is induced from the inclusion i W T ,! G , the map in
question is simply ŒidEG � i �, where the square bracket stands for the identifications
from the group actions. Finally, since T is abelian, the conjugation action is trivial
and we have

EG �.T;conj/ T ŠEG=T �T D BT �T:

It follows that ŒX;LBT � NuŠ ŒX;BT �T � NuŠ ŒX;T �. Recall that uW X!G=T induces
NuW X !EG=T D BT via Nu.x/D e � u.x/ where e 2EG lies over b 2 BG . (And
vice versa, knowing e and Nu, we can recover u.) For vW X ! T we can now compute
in EG �.G;conj/G ' LBG :

L� ı . Nu� v/.x/D ŒidEG � i � ı . Nu� v/.x/D ŒidEG � i �.e �u.x/; v.x//

D Œe �eu.x/; v.x/�D Œe;eu.x/v.x/eu.x/�1�

D Œe;u.x/v.x/u.x/�1�

Here eu.x/ 2G is a momentary lift of u.x/ 2G=T , needed to do the above manipu-
lations. However, the element u.x/v.x/u.x/�1 2G makes sense again without this

Geometry & Topology Monographs, Volume 18 (2012)



Cohomotopy sets of 4–manifolds 187

choice because T is abelian. This leads to the formula in Theorem 3 for the stabilizer
of the ŒX;G�–action and hence completes our proof.

Proving Theorem 2 from Theorem 3

We conclude by indicating how the special case .G;T / D .S3;S1/ of Theorem 3
yields an alternative proof of Theorem 2.

If we identify S3=S1 Š S2 Š CP1 , BS1 ' CP1 and BS3 ' HP1 , then the
fibration S3=S1! BS1! BS3 that arises in the proof of Theorem 3 becomes the
familiar bundle

CP1 ,�!CP1
�
�!HP1

where � is induced by the inclusion C ,!H .

Since CP1 is a K.Z; 2/, and HP1 is a 5–dimensional approximation to a K.Z; 4/,
we have ŒX;CP1�ŠH 2.X / and ŒX;HP1�ŠH 4.X / for any 4–complex X , and
in this case it is also known that � induces the cup square SqW H 2.X /! H 4.X /.
With these identifications, the map h in Theorem 3 is the pull back map h2W �2.X /!

H 2.X /, defined in the introduction. Thus for any uW X!S2 (representing an element)
in �2.X /, Theorem 3 gives an associated “exact sequence”

�1.X /
�u
�! �3.X / �! �2.X /

h2

�!H 2.X /
Sq
�!H 4.X /:

Here �u.v/D � ı .u� v/, where �W S2�S1! S3 is conjugation .gS1; t/ 7! gtg�1 .
The action of �3.X / on �2.X / simply comes from the standard action of S3 on
S2 D S3=S1 by left translation.

Now for X as in Theorem 2 – a smooth, closed, oriented and connected 4–manifold –
the Pontrjagin–Thom construction yields for any z̨ 2 F2.X / a dual sequence

F3.X /
�z̨
�! F1.X / �! F2.X /

h2
�!H2.X /

sq
�!H0.X /D Z

where � z̨ D deg.�/ iz̨ (here iz̨ is the framed intersection map from Section 2)| and sq

is the self-intersection map. The exactness at H2.X / shows that im.h2/DH ı
2
.X /,

|This follows from the general principle that “suspension” in ��.X / corresponds to transverse “framed
intersections” in F�.X / for any n–manifold X . That is, for any p; q there is a commutative diagram

�p.X /��q.X /
�

�����! �pCq.X /??y ??y
Fn�p.X /�Fn�q.X /

i
�����! Fn�.pCq/.X /

where � is the suspension map, induced by any degree one map Sp �Sq ! SpCq , and i is the framed
intersection map.
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which establishes the first statement in Theorem 2, and a simple geometric argument
shows that deg.�/D 2, establishing the last statement. The group structure on F1.X /,
given by disjoint union, corresponds to the group structure on �3.X / inherited from
S3 , as shown at the beginning of Section 1.

It remains to prove that the action of F1.X / on F2.X /, coming from the standard
action of S3 on S2 , corresponds to our framed link translation. To accomplish this,
view S3 as the unit quaternions and S2 as S3=S1 , where S1 is the unit circle in
C �H . Using stereographic projection, we can then visualize S3 as R3[1, with 1

at the origin, �1 at 1, and i; j ; k at the tips of the standard basis vectors. The points
in S2 correspond to Hopf circles in R3[1. In particular, we will use the antipodal
points P D S1 (the i –axis) and QD jS1 (the unit circle in the j k –plane) in S2 to
analyze the standard action.

Consider a framed knot Ke and a framed surface F� representing arbitrary elements
in F1.X / and F2.X /. Choose maps f W X ! S3 and gW X ! S2 with regular values
�1 2 S3 and Q 2 S2 such that K D f �1.�1/ and F D g�1.Q/. We can assume
that K and F have disjoint tubular neighborhoods NK and NF such that f � 1 off
NK and g � P off NF . Then f �g is equal to g off NK , and takes value f .x/ �P
for any x 2NK .

It follows that Q is a regular value for f �g , and that

.f �g/�1.Q/D F [T

where T is the 2–torus f �1.Q/\NK (now viewing Q�S3 ). Furthermore, the fram-
ing on T given by the Pontrjagin construction is specified by any pushoff f �1.C /\NK ,
where C is a Hopf circle in S3 other than P or Q. But this is the same framed
peripheral torus T�.e/ for K that arises in defining the action of Ke on F� (see
Figure 4). Since f �gD g near F , the framing on F is identical in both constructions.
This completes the proof.
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