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Solutions to generalized Yang–Baxter equations
via ribbon fusion categories

ALEXEI KITAEV

ZHENGHAN WANG

Inspired by quantum information theory, we look for representations of the braid
groups Bn on V ˝.nCm�2/ for some fixed vector space V such that each braid
generator �i , i D 1; : : : ; n� 1 , acts on m consecutive tensor factors from i through
iCm�1 . The braid relation for mD 2 is essentially the Yang–Baxter equation, and
the cases for m> 2 are called generalized Yang–Baxter equations. We observe that
certain objects in ribbon fusion categories naturally give rise to such representations
for the case mD 3 . Examples are given from the Ising theory (or the closely related
SU.2/2 ), SO.N /2 for N odd, and SU.3/3 . The solution from the Jones–Kauffman
theory at a 6th root of unity, which is closely related to SO.3/2 or SU.2/4 , is explicitly
described in the end.
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1 Introduction

A constant Yang–Baxter operator is an invertible linear operator RW V ˝V �! V ˝V

which satisfies the braided version of the Yang–Baxter equation (YBE):

(YBE) .R˝ IV /.IV ˝R/.R˝ IV /D .IV ˝R/.R˝ IV /.IV ˝R/

Any Yang–Baxter operator leads to a representation of the braid group Bn by attaching
V to a braid strand, ie, assigning I˝.i�1/˝R˝ I˝.n�i�1/ to the braid generator �i ,
i D 1; : : : ; n� 1. Inspired by quantum information theory, R is recently interpreted
as an entangling operator of V ˝ V . Thinking along these lines, we could equally
consider operators RW V ˝m �! V ˝m for any m � 3 that satisfy some generalized
version of the YBE. Such a generalization is proposed by Rowell, Zhang, Wu and Ge
in [4]. There are deep theories that lead to solutions of the YBE. A natural question
is how to find solutions to some generalized Yang–Baxter equations (gYBEs). There
are essentially four new solutions (Rowell et al [4] and Chen [1]) that are not derived

Published: 14 October 2012 DOI: 10.2140/gtm.2012.18.191



192 Alexei Kitaev and Zhenghan Wang

from solutions to the YBE. Though solutions to the YBE always lead to braid group
representations for all n, this is not the case for general solutions to gYBEs because far
commutativity is not automatically satisfied (See Section 4:1 of [1]). However, the four
known solutions do satisfy far commutativity. In this note, we point out a connection
between the gYBE and the ribbon fusion category theory. By finding a suitable object
in a ribbon fusion category, we provide a solution to the gYBE for m D 3 (or the
.d; 3; 1/–gYBE in the terminology of [1]) which automatically leads to a braid group
representation.

2 Generalized Yang–Baxter–Equation object

We follow the terminology in Section 2 of [1] for the gYBE and in Chapter 4 of Wang
[5] for ribbon fusion categories. By far commutativity for the gYBE, we mean the
condition in Definition 4:1 of [1] as adapted in Definition 2.2 below.

2.1 Definition Let V be a complex vector space of dimension d . The .d;m; 1/–
gYBE is an equation for an invertible operator RW V ˝m! V ˝m such that

(gYBE) .R˝ IV /.IV ˝R/.R˝ IV /D .IV ˝R/.R˝ IV /.IV ˝R/;

where m is a natural number and IV is the identity operator on V .

Any matrix solution to the .d;m; 1/–gYBE is called a .d;m; 1/–R–matrix.

Note that the form of the .d;m; 1/–gYBE is exactly the same as the YBE, though the
YBE is the .d; 2; 1/–gYBE in this language.

If R is a solution to a .d;m; 1/–gYBE, for the braid generator �i 2 Bn , set

R�i
D I˝.i�1/

˝R˝ I˝.n�i�1/:

Again this is exactly the same assignment as in the YBE case, but Bn acts on the vector
space V ˝.nCm�2/ . The braid relation holds because R satisfies the gYBE. But far
commutativity is not necessarily satisfied when ji � j j> 1.

2.2 Definition Suppose R is a .d;m; 1/–R–matrix. Then R satisfies far commuta-
tivity if for each j such that 2< j <mC 1,

R�1
R�j DR�jR�1

in End.V ˝.j�1Cm// for the braid generator �j 2 BjC1 .
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If a .d;m; 1/–R–matrix satisfies far commutativity, then it yields a representation of
each n–strand braid group Bn on V ˝.nCm�2/ .

There is a family of solutions to the .2; 3; 1/–gYBE that comes from the ribbon fusion
category theory. The solutions and representations can be conveniently described by
the tree bases of morphism spaces. There are constraints on the labels for the labeled
trees to become a basis of general morphism spaces. Therefore, the representation
spaces are not necessarily tensor products. But in certain categories we can form
invariant subspaces which have tensor product structures and are the desired braid
representations. Some choices are formalized by the following definition.

2.3 Definition An object X in a ribbon fusion category C is called a .d; 3; 1/–gYBE
object with respect to a set of objects S D fXigi2I of C if the objects fXigi2I are d

simple objects of distinct types of C such that for each i 2 I , X ˝Xi Š
L

j2I Xj .

2.4 Example Note that in the definition of a .d; 3; 1/–gYBE object, X is not nec-
essarily a simple object. An example of a non-simple .2; 3; 1/–gYBE is 1˚ with
respect to f1;  g in the Ising theory. Actually, the .2; 3; 1/–gYBE object 1˚ leads
to the following .2; 3; 1/–R–matrix:0BBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 �1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 �1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

1CCCCCCCCCCCA
Suppose X is a gYBE object with respect to a set of objects S D fXigi2I . Then
there is a representation VXi ;X˝n;Xj

of the braid group Bn obtained by considering
the .nC 1/–punctured disk D2

Xi ;X˝n;Xj
, where the .nC 1/–punctures are labeled by

one Xi and n X ’s together with the boundary labeled by Xj . In anyonic language,
there are .nC 1/ anyons—one Xi and n X ’s—in the disk with total charge Xj . A
convenient orthonormal basis of VXi ;X˝n;Xj

is given, in graphical notation, by all
admissible labelings of the tree illustrated in Figure 1, where i1; : : : ; in�1 2 I . Note
that when X is a .d; 3; 1/–gYBE object with respect to a set of objects S D fXigi2I ,
then every simple object Xi ; i 2 I is an admissible label for any internal slant edge
of the tree above. Since all morphism spaces Hom.Xi ;X ˝Xj / are 1–dimensional,
there are no vertex labelings.
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i X X X X

: : :

: : :

j

i1

in�1

Figure 1

The representation of a braid � on VXi ;X˝n;Xj
is simply given by the stacking of the

braid onto the n–strands labeled by X .

2.5 Theorem (1) Any .d; 3; 1/–gYBE object X leads to a solution of the .d; 3; 1/–
gYBE which satisfies far commutativity.

(2) Let LD fYkg be a representative set of all isomorphism classes of simple objects
of C . Then the number of distinct eigenvalues of each braid generator is less or equal
to l , where l D

P
Yk2L dim.Hom.Yk ;X ˝X //. Note that the resulting braid group

representation is always a direct sum over i; j 2 I and therefore reducible.

(3) The quantum dimension of a gYBE object is always an integer. Actually, dim.X /D
d , where d is also the cardinality of the index set I .

Proof (1) Using the graphical notation above, the .d; 3; 1/–gYBE solution is given by
the braiding matrix RD

L
i;j2I M

Xi XX
Xj

W
L

i;j2I VXi ;X˝2;Xj
!
L

i;j2I VXi ;X˝2;Xj
,

where M
Xi XX

Xj
consists of the braidings RXX

Yk
below in .2/ conjugated by the

F –matrix F
Xi XX
Xj

. Because R leads to a representation of Bn for each n, it follows
that R satisfies far commutativity.

(2) Using graphical calculus, we find that the eigenvalues of a .d; 3; 1/–R–matrix
given in .1/ consist of the eigenvalues of the braidings fRXX

Yk
;Yk 2Lg for all Yk such

that the fusion coefficients N
Yk

XX
¤ 0 and N

Yk

Xi Xj
¤ 0. This follows from the fact that

the representation matrix for a braid generator on VXi ;X
˝2;Xj is the conjugation of the

braiding matrix by the F –matrix F
Xi XX
Xj

.

(3) From X ˝Xi Š
L

j2I Xj , we have dX dXi
D
P

j2I dXj . Thus, the quantum
dimension dXi

is independent of i . It follows that dX dXi
D ddXi

and therefore that
dX D d .

To provide examples of .d; 3; 1/–gYBE objects, we consider the unitary modular
category SO.N /2 described in Section 3:1 of Naidu and Rowell [2]. When N D 2rC
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1; r � 1, SO.N /2 is of rank rC4 with simple objects denoted as fX0;X2�1
;X
 i ; 1�

i � r;X�;X�0g in [2]. We will denote X0 as 1, X2�1
as Z , and X
 i as Xi below. All

fusion rules follow from the following:
(1) X�˝X� Š 1˚

LiDr
iD1 Xi

(2) X�˝Xi ŠX�˚X�0 ; 1� i � r

(3) X�˝X�0 ŠZ˚
LiDr

iD1 Xi

(4) Z˝X� DX�0

(5) Z˝Z D 1

(6) Z˝Xi DXi ; 1� i � r

(7) Xi ˝Xi D 1˚Z˚Xminf2i;2rC1�2ig; 1� i � r

(8) Xi ˝Xj DXj�i ˚XminfiCj ;2rC1�i�jg; i < j

By examining the fusion rules, we observe:

2.6 Theorem The simple objects Xi ; 1 � i � r , are .2; 3; 1/–gYBE objects with
respect to the set S D fX�;X�0g.

2.7 Remark In order to write down a .d; 3; 1/–R–matrix as an explicit matrix, we
need conventions for ordering bases and tensoring matrices. For tensoring matrices, we
will use the Kronecker product, which means bases will be ordered lexicographically.

For an explicit example, we compute the gYBE solution given by the Jones–Kauffman
theory at a 6th root of unity, closely related to SO.3/2 . Let the Kauffman variable
AD ie�

�i
12 , then the label set consists of LDf0; 1; 2; 3; 4g (Wang [5]). In the notation

above, X0 D 0;X� D 1;X�0 D 3;X1 D 2;Z D 4. Thus, the object 2 is a .2; 3; 1/–
gYBE object with respect to simple objects f1; 3g. The .2; 3; 1/–gYBE–R–matrix is
the braiding matrix for the braid generator �2 with respect to the tree basis illustrated
in Figure 2, where i 2 f1; 3g. The internal edge can be labeled by either 1 or 3, just
like the other two slant edges. The qubit space C2 is spanned by the two labels f1; 3g
with a basis denoted as fei ; i D 1; 3g. Therefore, the representation space for �2 has
a basis feijk D ei ˝ ej ˝ ekg for i; j ; k 2 f1; 3g, which can be identified as .C2/˝3 .
For matrix tensor products, we use the Kronecker product. Then the basis is ordered
lexicographically as

fe111; e113; e131; e133; e311; e313; e331; e333g;

It follows that the .2; 3; 1/–R–matrix is the 8�8 matrix given in the form RDP�1BP ,
where B DM 122

1
˚M 322

1
˚M 122

3
˚M 322

3
is a braid matrix and P is a permutation

matrix. The natural order to compute the braid matrix B is

fe111; e131; e113; e133; e311; e331; e313; e333g:
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1 or 3 2 2

i

1 or 3

Figure 2

Furthermore, we need to order the bases for the braidings fR22
i ; i D 0; 2; 4g. Our

orderings are fi D 0; i D 2g and fi D 4; i D 2g. Under this ordering of the bases, each
2� 2 matrix M abc

d
is the conjugation of an R–matrix by the F –matrix Fabc

d
, where

the R matrix is diagonal. Explicitly as an 8� 8 matrix, the braid matrix B is0BBBBBBBBBBBBBB@

H

 
e

2�i
3 0

0 e
4�i

3

!
H 0 0 0

0 H

 
e

5�i
3 0

0 e
4�i

3

!
H 0 0

0 0 H

 
e

5�i
3 0

0 e
4�i

3

!
H 0

0 0 0 H

 
e

2�i
3 0

0 e
4�i

3

!
H

1CCCCCCCCCCCCCCA
where H is the Hadamard matrix H D 1p

2

�
1 1
1 �1

�
. The permutation matrix results from

the order changing of the two bases, so it is the block sum P D 1˚�x˚1˚1˚�x˚1,
where �x is the Pauli matrix �x D

�
0 1
1 0

�
. Note that P DP�1 . Computing everything,

we find the .2; 3; 1/–R–matrix to be:0BBBBBBBBBBBBBB@

�
1
2

0
p

3
2

i 0 0 0 0 0

0 �

p
3

2
i 0 1

2
0 0 0 0

p
3

2
i 0 �

1
2

0 0 0 0 0

0 1
2

0 �

p
3

2
i 0 0 0 0

0 0 0 0 �

p
3

2
i 0 1

2
0

0 0 0 0 0 �
1
2

0
p

3
2

i

0 0 0 0 1
2

0 �

p
3

2
i 0

0 0 0 0 0
p

3
2

i 0 �
1
2

1CCCCCCCCCCCCCCA
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Since the distinct eigenvalues of the .2; 3; 1/–R–matrix R are fe
2�i

3 ; e
4�i

3 ; e
5�i

3 g, this
solution is different from the four known solutions in [4] and [1].

The referee pointed out a .3; 3; 1/–gYBE simple object in SU.3/3 . The unitary modular
category SU.3/3 is of rank 10. Using the notation of Rowell [3], the simple object
Y of dimension 3 is a .3; 3; 1/–gYBE object with respect to fX1;X2

�;X3g (see the
Bratelli diagram in Figure 1 of [3] for the fusion rules).

Finally, we make the following conjecture.

2.8 Conjecture Images of resulting braid group representations from .d; 3; 1/–gYBE
objects in unitary ribbon fusion categories are always finite groups.
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