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Link groups of 4–manifolds

VYACHESLAV KRUSHKAL

The notion of a Bing cell is introduced, and it is used to define invariants, link
groups, of 4–manifolds. Bing cells combine some features of both surfaces and
4–dimensional handlebodies, and the link group �.M / measures certain aspects of
the handle structure of a 4–manifold M . This group is a quotient of the fundamental
group, and examples of manifolds are given with �1.M / ¤ �.M / . The main
construction of the paper is a generalization of the Milnor group, which is used to
formulate an obstruction to embeddability of Bing cells into 4–space. Applications
to the A–B slice problem and to the structure of topological arbiters are discussed.

57N13; 57M25, 57N70, 57M05

1 Introduction

Maps of surfaces and of more general 2–complexes have been classically used to
define invariants of topological spaces, for example the fundamental group and the
first homology group of a space. More generally, one gets the quotients of �1X by
the terms of its lower central series if one considers based loops in a space X modulo
loops bounding maps of certain special 2–complexes, gropes (Freedman and Quinn
[6]). From this perspective gropes interpolate between surfaces (null-homology) and
disks (null-homotopy).

This paper introduces the notion of a Bing cell, which may be viewed as a geometric dual
to a grope. The origin of this construction is in Milnor’s theory of link homotopy [13].
The idea in the definition of a Bing cell is to treat a collection of 2–handles attached to
a homotopically essential link on an equal footing with an actual 4–dimensional 2–
handle D2�D2 , see Section 1.2 for a more detailed outline of the construction. A Bing
cell is not a 2–complex, rather it is a 4–dimensional handlebody with a 2–dimensional
spine where the 4–dimensional thickening plays an important role.

In an analogy with the fundamental group, the link group �.M / of a 4–manifold M is
defined as based loops in M modulo loops bounding Bing cells. The resulting invariant
�.M / reflects certain aspects of the handle structure of a 4–manifold M , and it is not
correlated with the homology group H1.M /. Although their definition makes sense in
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any dimension, the link groups are a non-trivial theory only in dimension 4, and they
are a topological but not in general a homotopy invariant of a 4–manifold.

Since the 2–cell D2 is a trivial example of a Bing cell, the link group �.M / is a
quotient of the fundamental group of M . One can easily find examples of 4–manifolds
with �1.M / ¤ �.M /. Bing cells may be given geometric and algebraic gradings:
height and nilpotent class, leading to a two-parameter collection of link groups �i;j .M /,
where j > i . In this notation, the group �.M / above corresponds to �1;1 . We show
that given a surjection of finitely presented groups � �! �, where � is aspherical,
there are 4–manifolds M with �1.M /Š � , �1;2.M /Š �.

This work is motivated in part by the question of whether there is a “non-abelian”
Alexander duality in dimension 4. This question arises in the analysis of decompositions
of the 4–ball in the A–B slice problem, a reformulation of the 4-dimensional topological
surgery conjecture. An application of link groups in this context is given in Krushkal
[11], and it is summarized in Section 1.3 below. For another recent application of
the theory developed here, to the structure of topological arbiters, see Freedman and
Krushkal [4] and Theorem 1.5 below.

The connection to the A–B slice problem is provided by the following theorem which
is the main result of this paper, showing how Bing cells fit in the framework of Milnor’s
theory of link homotopy:

1.1 Theorem If the components of a link L� S3 D @D4 bound disjoint Bing cells
in D4 then L is homotopically trivial.

This result is based on a generalization of the Milnor group which is developed here in
order to formulate an obstruction to embeddability of a disjoint collection of Bing cells
in 4–space. We will next give a brief outline of the ideas underlying the construction of
Bing cells and of the generalized Milnor group, for more details see Sections 4 and 6.

1.2 Outline of the construction Consider the 4–dimensional 2–handle H DD2 �

D2 , thought of as a 4–dimensional thickening of its core D2�f0g. Remove a small disk
D2
� from the core, and consider the corresponding thickening H� D .D

2 XD2
� /�D2 .

H� has a new part of the boundary, S1
� �D2 , which is the boundary of D2

� �D2

that was removed from the handle H . Attach to H� a pair of zero-framed 2–handles
h1; h2 along the Bing double of the core of the solid torus S1

� �D2 , see Figure 1.

This is the basic operation used in the construction of Bing cells, and it may be roughly
described as “puncturing” a 2–handle and plugging in the puncture with 2–handles
whose attaching curves form an essential link in the boundary of the puncture. Here
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the term “essential” is understood in the context of Milnor’s theory of link homotopy,
see [13] and Section 3.2 in this paper. The most important example (motivating the
term Bing cell) is the Bing double, or more generally an iterated Bing double, of the
core of the solid torus.

˛

h1

h2

0
0

˛

Figure 1: A pair of 2–handles attached to the Bing double

Now a Bing cell of height 1 is obtained from the 2–handle H by performing this
operation in a finite number of distinct locations in the core D2 � f0g. For example,
consider the case of two punctures in more detail. Let P denote the pair of pants
with boundary components 
; ˛1; ˛2 , and let C denote .P �D2/ [ four zero-framed
2–handles h1; : : : ; h4 attached to the Bing doubles of the curves ˛1; ˛2 , Figure 2. The
operation above also may be applied to the handles hi , leading to the construction of
a Bing cell of height 2. Iterating this procedure (a finite number of times) yields an
inductive construction of a general Bing cell. There is a distinguished curve 
 in the
boundary of a Bing cell C which is the attaching curve of the original 2–handle H ,

 D @D2 � f0g, and the term Bing cell will refer to a pair .C; 
 /.




h1

C

h2 h3

h4 0

0 0

0




r r

Figure 2: The handlebody C (a Bing cell of height 1): a schematic picture
and a Kirby diagram
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The defining property in Milnor’s theory of link homotopy [13] is that the link compo-
nents are allowed to move by a homotopy so that different components stay disjoint
from each other. It is natural to consider Bing cells mapped into 4–manifolds, requiring
that the handles attached to different components of the Bing doubles are disjoint in the
image. For example, in the case of the Bing cell C in Figure 2, for a map f W C �!M 4

the requirement is that f .h1/ is disjoint from f .h2/ and similarly f .h3/ is disjoint
from f .h4/.

It is a classical fact (Milnor, Giffen, Goldsmith [13; 7; 8]) that the components of a
homotopically essential link in S3 do not bound disjoint maps of disks in D4 . The
2–handle (a thickening of the disk) may be considered a trivial example of a Bing
cell, and the content of Theorem 1.1 is the more general fact that the components of a
homotopically essential link do not bound disjoint maps of Bing cells into the 4–ball.

One may generalize further and consider surfaces (including those of higher genus) in
4–manifolds with patches replaced by Bing cells. This leads to an interesting theory
that shares some of the features of both homology and homotopy. An important open
question for applications to the A–B slice problem (see Section 1.3) is to what extent
this theory satisfies Alexander duality. This question will be pursued in a subsequent
paper.

We will next summarize the ideas underlying the definition of the generalized Milnor
group and the proof of Theorem 1.1. An outline of the argument here will be given
to prove that the components .
 0; 
 00/ of the Hopf link do not bound disjoint maps
into D4 of two copies C 0;C 00 of the Bing cell shown in Figure 2, where the maps
are assumed to satisfy the disjointness requirements discussed above. This example
exhibits the main features of the general argument; a complete proof of Theorem 1.1 is
given in Section 9.

Suppose to the contrary that there exist C 0;C 00 whose attaching curves 
 0; 
 00 form
the Hopf link in S3 D @D4 . Consider meridians m0i to the 2–handles fh0ig of C 0 and
meridians m00i to the 2–handles fh00i g of C 00 in D4 . By a meridian we mean a based
loop in the complement representing the same homology class as a fiber of the normal
circle bundle over a 2–handle. These meridians normally generate the fundamental
group � WD �1.D

4 X .C 0 [C 00//. Consider the quotient M� of � by the relations
Œ.m0i/

x; .m0j /
y � and Œ.m00i /

x; .m00j /
y �, where fi; j g ¤ f1; 2g; f3; 4g and the conjugating

elements x;y range over all elements of � . These relations arise from the double
points between the various 2–handles in D4 (they are an algebraic manifestation of
the Clifford tori linking the double points, see Section 3.8 for further details). The fact
that the pairs f1; 2g; f3; 4g are excluded reflects the fact that these handles are required
to be disjoint in the 4–ball. The fact that the conjugates of m0i ;m

00
j for any i; j do
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not commute is due to the fact that C 0;C 00 are disjoint. This is a generalization of the
Milnor group M� introduced in [13], which in this context is defined as the quotient
of � by the relations Œ.m0i/

x; .m0i/
y �; Œ.m00i /

x; .m00i /
y �; i D 1; : : : ; 4, corresponding to

self-intersections of the handles. These relations are included among the defining
relations of M� .

Let m0;m00 denote the meridians to the components of the Hopf link in @D4 , formed
by the attaching curves 
 0; 
 00 . The relation Œm0;m00�D 1 holds in �1.S

3X .
 0[
 00//,
therefore it also holds in �1.D

4X .C 0[C 00//. On the other hand, sliding the meridian
along arcs in the pair of pants in Figure 2 it is easy to see that the equalities m0 D

Œm0
1
;m0

2
� D Œm0

3
;m0

4
�;m00 D Œm00

1
;m00

2
� D Œm00

3
;m00

4
� hold in M� . Carefully analyzing

the second homology of the complement D4 X .C 0 [C 00/ one shows that there are
no other relations in M� . Then the Magnus expansion can be used to prove that the
commutator Œm0;m00� is in fact non-trivial in M� : phrased differently, there are “not
enough” relations in �1.D

4 X .C 0 [C 00// to imply the relation Œm0;m00�D 1 which
holds in �1.S

3 X .
 0 [ 
 00//. This contradiction concludes the outline of the proof
that the components of the Hopf link do not bound disjoint Bing cells of height 1 in
D4 . A complete proof of Theorem 1.1 in Section 9 relies on a detailed analysis of
the relations in the generalized Milnor group of the complement of Bing cells (of an
arbitrary height) in D4 , which forms a central technical part of the paper.

1.3 Applications: the A–B slice problem, topological arbiters The ideas intro-
duced in this paper have been used to prove a number of results in 4–manifold topology.
We will now summarize these applications.

The A–B slice problem is a reformulation of the 4–dimensional topological surgery
conjecture, introduced by Freedman [3] and further developed by Freedman and Lin in
[5]. In this problem one considers decompositions of the 4–ball, D4 DA[B , which
extend the standard genus 1 Heegaard decomposition of S3 D @D4 . The attaching
curves ˛ � @A; ˇ � @B form the Hopf link in @D4 . The problem is then to find out
whether there exist decompositions D4 D Ai [Bi and disjoint embeddings of the
submanifolds fAi ;Big into D4 , so that the attaching curves f˛i ; ˇig form a specified
link (and its parallel copy) in S3 . The central example of a link in question is the
Borromean rings, see [3; 5; 11] for more details.

In [5] the authors introduced a family of model decompositions which appear to
approximate, in a certain algebraic sense, an arbitrary decomposition D4 DA[B . In
[11] the author showed how the idea of link groups of 4–manifolds and Theorem 1.1
may be used to formulate an obstruction for the family of model decompositions:
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1.4 Theorem (Krushkal [11]) Let L be the Borromean rings, or more generally any
homotopically essential link in S3 . Then L is not A–B slice where each decomposition
D4 DAi [Bi is a model decomposition.

The proof is based on the observation that given a model decomposition, precisely
one of the following two possibilities hold: either ˛ bounds a Bing cell in A or ˇ
bounds a Bing cell in B . Note that Bing cells of an arbitrary height, not just height 1,
are needed to prove this result. Phrased in terms of link groups, either ˛ D 1 2 �.A/

or ˇ D 1 2 �.B/. The proof then follows as a consequence of Theorem 1.1. This
proof unified and generalized the previously known partial obstructions in the A–B
slice program. The idea based on Bing cells is likely to be central in a solution to this
problem.

The notion of a robust 4–manifold is useful in putting Theorems 1.1, 1.4 in the context
of link homotopy. Let .M; 
 / be a pair (4–manifold, embedded curve in @M ). The pair
.M; 
 / is robust if whenever several copies .Mi ; 
i/ are properly disjointly embedded
in .D4;S3/, the link formed by the curves f
ig in S3 is homotopically trivial, Krushkal
[10]. Therefore from the perspective of link homotopy theory, robust 4–manifolds act
like disks (with self-intersections). It follows from Theorem 1.1 that Bing cells are
robust. Theorem 1.4 may be rephrased as saying that given a model decomposition
D4 DA[B , precisely one of the two parts A, B is robust.

We will now discuss an application of the results of this paper to the structure of
topological arbiters, established in [4]. Given an n–dimensional manifold W , a
topological arbiter associates a value 0 or 1 to codimension zero submanifolds of
W , subject to natural topological and duality axioms. For example, there is a unique
arbiter on RP2 , which reports the location of the essential 1–cycle. The concept of a
topological arbiter is rooted in Poincaré–Lefschetz duality, indeed homology with field
coefficients gives rise to arbiters on projective spaces. A question addressed in [4] is
the existence of arbiters not induced by homology.

1.5 Theorem (Freedman and Krushkal [4]) There exists an uncountable collection
of local topological arbiters in dimension 4.

Theorem 1.1 is an important ingredient in the proof of this result. A local arbiter is a
version of a topological arbiter defined on the ball. It is defined on codimension zero
submanifolds of D4 which meet @D4 in a neighborhood of an unknotted circle, and
duality in this case is modeled on Alexander duality for homology. Note that homology
with various field coefficients can be used to construct only a countable collection of
arbiters (in any dimension). Theorem 1.5 contrasts with the situation in dimension 2

Geometry & Topology Monographs, Volume 18 (2012)



Link groups of 4–manifolds 205

where there is a unique local arbiter, and it is induced by homology. A classification of
topological arbiters (in dimensions other than 2) remains an open problem; the tools
developed in this paper are an important ingredient in analyzing arbiters on D4 .

1.6 Outline of the paper Sections 2 and 3 summarize the relevant background
material on presentations of nilpotent quotients, Milnor’s theory of link homotopy
and related results on surfaces in 4–space. Section 4 introduces Bing cells and link
groups �.M /, and gives examples of 4–manifolds with �1 ¤ �. Sections 5 to 9
concern embeddings of Bing cells in 4–space, .C; 
 / ,! .D4;S3/. More specifically,
the fundamental group of the complement, �1.D

4 X C /, is analyzed in Section 5.
Section 6 develops a generalization of the Milnor group in the context of Bing cells. It
is used, in particular, to define an algebraic grading of Bing cells and link groups �i;j .
Sections 7, 8, 9 define an obstruction to embeddability of a collection of Bing cells in
D4 with a prescribed boundary, given by a link in S3 .

2 A presentation of nilpotent quotients

The purpose of this section is to describe a presentation of the quotients �=�q of a
group � by the terms of its lower central series, in terms of generators of the first and
second homology of � . This technique is well-known (see also Krushkal [9]), and
it will be used often throughout the paper. The lower central series of a group � is
defined inductively by �1 D � , �2 D Œ�; ��; : : : ; �q D Œ�; �q�1�.

To state the lemma, fix a group � and suppose that H1.� IZ/ is generated by g1; : : : ;gn ,
H2.� IZ/ is generated by r1; : : : ; rm , and let q � 2 be an integer. Then the result
of Lemma 2.1 is that, roughly speaking, g1; : : : ;gn and r1; : : : ; rm provide a set of
generators and relations respectively in a presentation of �=�q . To make this precise,
consider the quotient homomorphism ˛W �=�q �!�=Œ�; �� and let ygi 2�=�

q denote
some preimage of gi under ˛ , i D 1; : : : ; n. It is a standard fact in nilpotent group
theory (Warfield [16]) that yg1; : : : ; ygn generate �=�q .

Let W �!K.�; 1/ be a map from the wedge of n circles W , inducing an epimorphism
ˇW �1.W / �! �=�q and mapping the i -th free generator of �1.W / to ygi . Let
fj W †j �! K.�; 1/ be a map of a surface †j , representing the generator rj of
H2.K.�; 1// Š H2.�/, j D 1; : : : ;m. We assume here that each space has a fixed
basepoint, and all maps preserve them. The standard basis of H1.†j / pulls back via
ˇ to some elements in �1.W /; let yrj 2 �1.W / be a lift via ˇ of the attaching map of
the 2–cell of †j . (In particular, if †j is a 2–sphere then the corresponding word yrj
is trivial.)
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2.1 Lemma Suppose H1.� IZ/ is generated by g1; : : : ;gn , and H2.� IZ/ is gener-
ated by r1; : : : ; rm . Then in the notation above,

�=�q
Š hyg1; : : : ; ygn j yr1; : : : ; yrm; .Fyg1;:::;ygn

/qi

where Fyg1;:::;ygn
denotes the free group on generators yg1; : : : ; ygn .

To prove the lemma we need a refinement of Stallings theorem [15] due to Dwyer.
Given a space X , the Dwyer’s subspace �k.X /�H2.X IZ/ is defined as the kernel
of the composition

H2.X / �!H2.K.�1X; 1//DH2.�1X / �!H2.�1.X /=�1.X /
k�1/:

2.2 Theorem (Dwyer [2]) Let k be a positive integer and let f W X �! Y be
a map inducing an isomorphism on H1. : IZ/ and mapping H2.X /=�k.X / onto
H2.Y /=�k.Y /. Then f induces an isomorphism

�1.X /=.�1.X //
k
Š �1.Y /=.�1.Y //

k :

Proof of Lemma 2.1 Let X be the 2–complex obtained from W by attaching m two-
cells along the words yr1; : : : yrm . The composition W �! K.�; 1/ �! K.�=�q; 1/

extends to X , inducing an isomorphism H1.X /ŠH1.�/ŠH1.�=�
q/ and an epi-

morphism on H2=�q . Now an application of Dwyer’s Theorem 2.2 concludes the
proof of Lemma 2.1.

3 The Milnor group: links in S 3 and surfaces in D4

In this section we recall the relevant results on Milnor groups and x�–invariants [13],
[14]. This material is used to set up the definition of Bing cells in Section 4. Sections
5–9 develop a generalization of the Milnor group and of other aspects of the theory in
the context of Bing cells in D4 .

3.1 Links in S3 Let LD .l1; : : : ; ln/ be an oriented link in S3 , and consider merid-
ians m1; : : : ;mn to the components of L. By a meridian mi we mean a path 
i in
S3 XL from a basepoint to the boundary of a regular neighborhood of the component
li , followed by a circle (a fiber of the circle normal bundle over li ) linking li once and
then followed by 
�1

i back to the basepoint. Observe that H1.S
3 XL/ is generated

by m1; : : : ;mn , and a set of generators for H2.S
3 XL/ is provided by n� 1 tori:

the boundary of a regular neighborhood of n� 1 components of L. By Lemma 2.1,
�1.S

3 XL/=.�1.S
3 XL//q has a presentation

(3-1) hm1; : : : ;mn j Œm1; w1�; : : : ; Œmn�1; wn�1�; .Fm1;:::;mn
/qi;
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where Fm1;:::;mn
denotes the free group generated by m1; : : : ;mn , and wj is a word

in m1; : : : ;mn representing the untwisted j -th longitude of the link. The Magnus
expansion homomorphism M W Fm1;:::;mn

�! Zfx1; : : : ;xng into the ring of formal
non-commutative power series in the indeterminates x1; : : : ;xn is defined by

M.mi/D 1Cxi ; M.m�1
i /D 1�xi Cx2

i ˙ � � �

for i D 1; : : : ; n. Let
M.wj /D 1C†�L.I; j /xI

be the expansion of wj , where the summation is taken over all multi-indices I D

.i1; : : : ; ik/ with entries between 1 and n, and xI Dxi1
�� � ��xik

, k>0. This expansion
defines for each such multi-index I the integer �L.I; j /. Let �L.i1; : : : ; ik/ denote
the greatest common divisor of �L.j1; : : : ; js/ where j1; : : : ; js , 2� s � k�1 range
over all sequences obtained by cancelling at least one of the indices i1; : : : ; ik and
permuting the remaining indices cyclically.

Let x�L.I/ denote the residue class of �L.I/ modulo �L.I/. Analyzing the indetermi-
nacy caused by the relations in the presentation (3-1), one sees that for each multi-index
I of length jI j � q the residue class x�L.I/ is an isotopy invariant of the link L,
where x�L.I/ is defined using the quotient �1.S

3 XL/=.�1.S
3 XL//q . In particular,

the first non-vanishing coefficients �L.I/ are well-defined. (By first non-vanishing
coefficients we mean �L.I/ such that �L.J /D 0 for all proper subsets J � I .)

3.2 Link homotopy and Milnor groups Two n–component links L and L0 in
S3 are said to be link-homotopic if they are connected by a 1–parameter family of
immersions such that different components stay disjoint at all times. L is said to be
homotopically trivial if it is link-homotopic to the unlink. L is almost homotopically
trivial if each proper sublink of L is homotopically trivial.

For a group � normally generated by g1; : : : ;gk its Milnor group (with respect to
g1; : : : ;gk ) M� is defined to be the quotient of � by the normal subgroup

(3-2) hh Œgi ;g
h
i � W 1� i � k; h 2 �ii :

M� is nilpotent of class � kC 1, in particular it is a quotient of �=.�/kC1 , and is
generated by the quotient images of g1; : : : ;gk . The Milnor group M.L/ of a link L

is defined to be M�1.S
3 XL/ with respect to its meridians mi .

Milnor showed in [13] that the Magnus expansion induces a well defined injective
homomorphism MM WM.Fm1;:::;mk

/�!R.x1; : : : ;xk/ into the ring R.x1; : : : ;xk/

which is the quotient of Zfx1; : : : ;xkg by the ideal generated by monomials xi1
� � �xir

with some index occurring at least twice. Indeed, every term in the Magnus expansion
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of each defining Milnor relation (3-2) has repeating variables. Let wn 2MFm1;:::;mn�1

be a word representing ln in M�1.S
3 X .l1 [ � � � [ ln�1//. Then x�–invariants of L

with non-repeating coefficients may also be defined by the equation

MM.wn/D 1C†�L.I; n/xI

where summation is over all multi-indices I with non-repeating entries between 1

and n�1, and x�L.I; n/ is the residue class of �L.I; n/ modulo the indeterminacy
�L.I; n/, defined above.

The Milnor group of L is the largest common quotient of the fundamental groups of
all links link-homotopic to L, hence if L and L0 are link homotopic then their Milnor
groups are isomorphic. The next result gives an algebraic criterion for a link to be
null-homotopic.

3.3 Lemma [13; 7; 8] For an n–component link L, the following conditions are
equivalent:

(i) L is homotopically trivial,

(ii) the components of L bound disjoint immersed disks in D4 ,

(iii) M.L/ŠM.Fm1;:::;mn
/ with the isomorphism carrying a meridian to li to the

generator mi of the free group,

(iv) all x�–invariants of L with non-repeating coefficients vanish.

It follows from Lemma 3.3 that L is almost homotopically trivial if and only if all its x�–
invariants with non-repeating coefficients of length less than n vanish. In particular, if
L is almost homotopically trivial then its x�–invariants with non-repeating coefficients
of length n are well-defined integers.

3.4 The link composition lemma We will now recall the link composition lemma
[5] (see also Krushkal and Teichner [12]). The result on Bing cells proved in Section 9
contains this theorem as a special case. Given a link bL D .l1; : : : ; lkC1/ in S3

and a link Q D .q1; : : : ; qm/ in the solid torus S1 � D2 , their “composition” is
obtained by replacing the last component of bL with Q. More precisely, it is defined as
C D .c1; : : : ; ckCm/ WD .l1; : : : ; lk ; �.q1/; : : : ; �.qm//, where �W S1 �D2 ,! S3 is
a 0–framed embedding whose image is a tubular neighborhood of lkC1 . The meridian
f1g � @D2 of the solid torus will be denoted by ^ and we set bQ WDQ[^.

3.5 Theorem If both bL and bQ are homotopically essential in S3 then so is their
composition L[�.Q/.
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3.6 Links in S1 �D2 Let L be a link in S1 � D2 . As above denote by ^ the
meridian fpg�@D2 and set bL DL[^. Consider bL as a link in S3 , using a standard
embedding S1�D2�S3 . Links in the solid torus will be used as attaching regions for
2–handles in the definition of Bing cells (see next section), and we need to specify the
class of links necessary for the definition. Let ^0 denote another meridian fqg � @D2 ,
p ¤ q .

3.7 Definition (Links used in the definition of Bing cells) A link LD .l1; : : : ; ln/�

S1 �D2 is essential and (almost trivial)C if bL is homotopically essential, and for
each i , .LX li/[^[^

0 is homotopically trivial.

An important example is given by LDBing double of the core S1�f0g (see Figure 1),
and more generally by LDiterated Bing double of the core. The fact that the (iterated)
Bing doubles satisfy the conditions in Definition 3.7 follows from a computation of the
x�–invariants of Bing doubles (cf Milnor, Cochran [13; 1]), see the discussion below.
The definition also allows the trivial example: LD core of the solid torus.

The second condition is slightly stronger than just the requirement that bL is almost
homotopically trivial. We include it since it is technically convenient for the proofs of
the properties of Bing cells. We need to reformulate the conditions on L in terms of x�
invariants. Consider the solid torus S1�D2 as the complement in S3 of an unknotted
circle and note that

�1..S
1
�D2/XL/=..�1.S

1
�D2/XL//q Š �1.S

3
X.L[^0//=�1.S

3
X.L[^0//q:

These groups are generated by the meridians m1; : : : ;mn to the components of L and
by the longitude l D S1�fxg of the solid torus (respectively the meridian xm to ^0 for
the second group.) Consider the free group Fm1;:::;mn; xm mapping onto these groups,
and the Magnus expansion

(3-3) M W Fm1;:::;mn; xm �! Zfx1; : : : ;xn;yg; M.mi/D 1Cxi ; M. xm/D 1Cy:

Let W be a word representing ^ in the free group. Assuming that L satisfies the
conditions in the definition above, observe that all terms with non-repeating variables
in the expansion M.W / are either of the form xi1

� � �xin
or they contain all variables

x1; : : : ;xn and y . Since the link bL is homotopically essential, renumbering the
components of L if necessary, one can assume that the term �x1 � � �xn in the Magnus
expansion M.W / has the coefficient �¤ 0. It is important to note that there are no
terms that contain y and just a proper subset of the variables x1; : : : ;xn .
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3.8 Surfaces in D4 Let �D
S
�i be a collection of immersed disks in .D4; @D4/.

By Alexander duality, H1.D
4X�/ is generated by the meridians to the components of

�, and H2.D
4 X�/ is generated by the Clifford tori linking the double points of �.

More precisely, a local model for the surfaces near a double point is given by R2 �

f0g\f0g�R2�R2�R2 . The Clifford torus is the product of the unit circles S1�S1 .
The linking number of classes a 2 H1.�/ and b 2 H2.D

4 X�/ may be computed
as the intersection number of † � b where aD @†�D4 . H1.�/ is generated by the
double point loops (loops in � passing exactly once through a double point). It is clear
from the local model that the double point loops are paired up ıi;j with the Clifford
tori.

Suppose the disks �i are disjoint, so all double points are self-intersections. According
to Lemma 2.1, �1.D

4X�/=.�1.D
4X�//q is generated by the meridians m1; : : : ;mn

to the components of �, and the relations (corresponding to the Clifford tori) are
all of the form Œ.mi/

f ; .mj /
g� D 1 for some f;g . In particular, the Milnor group

M�1.D
4 X�/ (with respect to the meridian generators) is isomorphic to the free

Milnor group MFm1;:::;mn
.

This gives a useful perspective on the relation between (i) and (ii) in Lemma 3.3: if
a link L is homotopically essential then M.L/ is not isomorphic to the free Milnor
group. This implies that the components of L do not bound disjoint maps � of disks in
D4 : otherwise the inclusion map S3XL�!D4X� would induce a homomorphism
M.L/ �!MFm1;:::;mn

, a contradiction.

4 Bing cells and link groups

There are two kinds of Bing cells (b–cells) defined in this section. First we discuss
abstract (“model”) Bing cells, then Definition 4.4 introduces the notion of a Bing cell
in a 4–manifold M which is a map of a model Bing cell into M with only certain
types of allowed singularities.

4.1 Definition A model Bing cell (b–cell) of height 1 is a smooth 4–manifold C with
boundary and with a specified attaching curve 
 � @C , defined as follows. Consider
a planar surface P with kC 1 boundary components 
; ˛1; : : : ; ˛k (k � 0), and set
P D P �D2 . Let L1; : : : ;Lk be a collection of links, Li � ˛i �D2 , i D 1; : : : ; k .
We assume that for each i , bLi is essential and (almost trivial)C , see Definition 3.7.
Then C is obtained from P by attaching zero-framed 2–handles along the components
of L1[ � � � [Lk .
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The surface P (and its thickening P ) will be referred to at the body of C , and the
2–handles are the handles of C .

A model b–cell C of height h, h > 1, is obtained from a b–cell of height h � 1

by replacing its handles with b–cells of height one. The body of C consists of all
(thickenings of) its surface stages, except for the handles.

The most important example of links Li in the definition above is given by (iterated)
Bing doubles of the core ˛i � f0g of the solid torus ˛i �D2 . These are the links that
appear in applications to the A–B slice problem [11] and to topological arbiters [4].
Figure 2 in the introduction gives an example of a b–cell of height 1: a schematic
picture and a precise description in terms of a Kirby diagram. Here P is a pair of pants,
and each link Li is the Bing double of the core of the solid torus ˛i �D2 , i D 1; 2.
The reader is urged to keep this example in mind while reading the paper: the theory
already exhibits many of its interesting features in this case.

Remarks (1) The standard 2–handle H DD2 �D2 with 
 D @D2 � f0g provides
a trivial example of a b–cell (of any height) – corresponding to the case k D 0 in the
definition above. Alternatively, one gets the 2–handle H by considering the links LD

cores of the corresponding solid tori. Similarly, a b–cell of height h also satisfies the
definition of a b–cell of any height > h.

(2) One may assume that no body surface of C above the first stage is an annulus:
suppose an annulus A is present, @A D 
A [ ˛A . Then A may be used to deform
the attaching maps of handles or higher stages from ˛A � D2 to 
A � D2 . This
eliminates A (and increases the number of components of the link one stage below –
note that it is still essential and (almost trivial)C , see link composition Theorem 3.5
and also Section 9). So while technically annuli are allowed by the definition, only
planar surfaces with � 3 boundary components above the first stage contribute to the
“non-trivial” increase of the height of C .

(3) If the links L defining C have at least two components, then C is homotopy
equivalent to the wedge of a collection of circles and of a collection of 2–spheres (one
for each handle of C ). Of course if one considers C up to homotopy then all relevant
information (in Definition 3.7) about the attaching maps of the 2–handles is lost. This
is the reason for the fact that link groups defined further below are a topological but not
in general a homotopy invariant of 4–manifolds. Also note that in non-trivial examples
of Bing cells C , 
 ¤ 0 2H1.C /; the link group �.M / and the first homology group
H1.M / are not correlated.

(4) In the definition above we used zero framed 2–handles. In fact, in light of
Definition 4.4 the framing is not going to be important for applications.

Geometry & Topology Monographs, Volume 18 (2012)



212 Vyacheslav Krushkal

(5) Recall the assumptions on each link L in Definition 4.1: .i/ bL is homotopically
essential, and .i i/ L [ ^ [ ^0 is almost trivial. It is crucial for the applications
of b–cells that the link L[^ is essential – this is made precise using the Magnus
expansion M.^/, see Section 3.6. Therefore the basic requirements on L should
be: bL is homotopically essential and almost trivial. We made a slightly stronger
assumption: L is (almost trivial)C since this makes the proofs of the properties of
b–cells technically easier. It is an interesting question whether this extra condition may
be removed in the proof of Theorem 1.1.

4.2 The associated tree It is helpful to encode the branching of a b–cell C using
an associated tree TC as follows. Define TC inductively: suppose C has height 1.
Then assign to the body surface P (say with kC 1 boundary components) of C the
cone TP on kC 1 points. Consider the vertex corresponding to the attaching circle 

of C as the root of TP , and the other k vertices as the leaves of TP . For each handle
of C attach an edge to the corresponding leaf of TP , see Figure 3. The leaves of the
resulting tree TC are in 1–1 correspondence with the handles of C .

TP TC

h1 h2 h3 h4




Figure 3: The trees TP ;TC corresponding to the Bing cell in Figure 2

Suppose C has height h> 1, then it is obtained from a b–cell C 0 of height h� 1 by
replacing the handles of C 0 with b–cells fCig of height 1. Assuming inductively that
TC 0 is defined, one gets TC by replacing the edges of TC 0 associated to the handles
of C 0 with the trees corresponding to fCig. Figure 4 gives an example of a b–cell of
height 2 and its associated tree.

It is convenient to divide the vertices of TC into two types: the cone points corre-
sponding to body surfaces are unmarked; the rest of the vertices are marked and are
represented in figures by a wider dot. Therefore the valence of an unmarked vertex
equals the number of boundary components of the corresponding body surface. The
marked vertices are in 1–1 correspondence with the links L defining C , and the
valence of a marked vertex is the number of components of L plus 1. It is convenient
to consider the 1–valent vertices of TC (its root and leaves, corresponding to the
handles of C ) as unmarked. This terminology is useful in defining the maps of b–cells
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TC

h1 h2 h3 h4

h5
P

Figure 4: A schematic picture of a Bing cell C of height 2 and the associated
tree. Note that the bottom stage planar surface in C is an annulus, giving rise
to an unmarked 2–valent vertex which is not indicated in the bottom edge in
TC .

into 4–manifolds below. The height of a b–cell C may be read off from TC as the
maximal number of marked vertices along a geodesic joining a leaf of TC to its root.

4.3 Convention Recall from Section 3.6 that for each link L in the definition of a
Bing cell there is an ordering l1; : : : ; ln of its components so that the coefficient of
the monomial x1 � � �xn in the expansion M.^/ is non-trivial. Fix a specific planar
embedding of TC reflecting this order, so that the clockwise ordering of the edges
coincides with the ordering 1; : : : ; n of the link components. This applies to marked
vertices; there is a flexibility in the planar embedding of the tree at its unmarked
vertices.

4.4 Definition A Bing cell in a 4–manifold M is an embedding C �M , where
C is a model Bing cell and C is the result of a finite number of self-plumbings
and plumbings among the handles and body surfaces of C , subject to the following
disjointness requirement:

� Let A;B be either handles or body stages of C , and let a; b denote the correspond-
ing vertices in TC . (For body surfaces this is the corresponding unmarked cone point,
for handles this is the associated leaf.) Consider the geodesic joining a; b in TC , and
look at its vertex c closest to the root of TC . In other words, c is the first common
ancestor of a; b . If c is a marked vertex then no plumbings are allowed between A

and B .

In particular, self-plumbings of any handle and body surface are allowed. In the example
shown in Figure 4, the handle h1 is required to be disjoint from h2 , h3 is disjoint from
h4 ; h1 –h4 and P are disjoint from h5 . Abusing the notation, throughout the paper
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we will denote Bing cells in 4–manifolds by C �M 4 , meaning the embedding of the
plumbed version C into M .

Note that a Bing cell C is a thickening of a 2–dimensional spine, and in particular the
solid tori ˛�D2 which serve as the attaching regions for higher stages are thickenings
of circles. From this perspective, given any map f W C �!M 4 , it may be perturbed
so that all singularities are plumbings (thickenings of double points between handles
and body surfaces), and solid tori ˛ �D2 discussed above are embedded and disjoint
from everything else. The essential restriction in Definition 4.4 is that handles and
higher stages attached to different components of each link Li defining a Bing cell
are disjoint. It is straightforward to see that omitting this restriction (ie allowing
plumbing of arbitrary handles and body surfaces) would yield a trivial theory, since any
homotopically essential link may be unlinked by a suitable homotopy. On the other
hand, there is no disjointness requirement on handles/surfaces attached to different
boundary components of a body surface.

4.5 Definition Let M be a 4–manifold with a basepoint. Given n� 1, the n-th link
group �n.M / is defined as fbased loops in M g=�. The equivalence relation � on
based loops in M is defined as follows: 
 � 
 0 if there is a based homotopy from

 .
 0/�1 to a based loop which bounds a Bing cell of height n in M .

4.6 Proposition The relation 
 � 
 0 in Definition 4.5 is an equivalence relation, and
moreover it is preserved by the product structure on loops.

Proof Consider the first part of the statement, specifically the implication 
1 �


2; 
2 � 
3) 
1 � 
3 . Assume 
1.
2/
�1 is homotopic to a loop bounding a b–cell

C 0 and 
2.
3/
�1 is homotopic to a loop bounding C 00 , then 
1.
3/

�1 is homotopic
to a loop bounding the wedge .C1; ˛1/_p .C2; ˛2/ of two b–cells of height n, where
the identification point p is the base point. Using a boundary connected sum of the
bottom-stage surfaces, C 0 _C 00 is converted into a b–cell of height n. Using isotopy,
the attaching regions of the form ˛�D2 for higher-stage surfaces and handles of C 0 ,
C 00 are made disjoint from each other, since they are thickening of 1–manifolds in
M 4 . The intersections between arbitrary handles and body surfaces of C 0 and those of
C 00 are allowed, since there is no disjointness requirement on handles/surfaces attached
to different boundary components of a body surface in Definition 4.4.

To prove the second part of the proposition, one needs to verify that if 
1 � 

0
1

and

2�


0
2

then 
1
2�

0
1

 0

2
. This follows from the equivalences 
1
2�


0
1

2�


0
1

 0

2
.

Remarks (1) In light of remark 1 following Definition 4.1, it follows that �1.M /

surjects onto �1.M /. Moreover, since a b–cell of height n satisfies the definition of a
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b–cell of height nC 1, �n.M / maps onto �nC1.M /. In Section 6 we introduce an
additional grading on b–cells, leading to a two-parameter family of groups �i;j .M /.

(2) Note that the definition of �n.M / makes sense for a manifold of any dimension
(and in fact for any topological space), but the theory is non-trivial only in dimension
4. If dim M � 5 then the disjointness requirement is satisfied by general position. If
dim M < 4 then one doesn’t expect it to hold due to the dimension count.

It is easy to find examples of 4–manifolds with �1¤ �1 . Consider an example of M 4

with �1M Š Z and �1.M /D 0:

4.7 Example Consider M D .S1 �D2 � I/[L 2–handles where L is the Bing
double of the core of the solid torus S1�D2�f1g, see Figure 1. Clearly �1M ŠZ and
�1.M /D 0. On the other hand, it is not difficult to see that N D S1�D3 provides an
example where �1.N /Š �1.N /Š Z. See Lemma 6.5 for a more detailed discussion.

5 Bing cells in 4–space

We begin the section by showing that any b–cell .C; 
 / has a realization in .D4; @D4/.
The main purpose of the section is to analyze the fundamental group of the complement,
�1.D

4 XC /. In particular, we will use the technique presented in Section 2 to find a
presentation of the nilpotent quotients �1.D

4XC /=.�1.D
4XC //q . These results will

be used in Sections 6–8 to formulate invariants which depend only on the underlying
model b–cell C and not on its particular realization in the 4–ball. To fix the notation,
recall that a model b–cell .C; 
 / of height 1 is determined by the following data:

� the number of boundary components of the body surface P : @P D 
 [˛1[� � �[˛k ,

� a collection of links L1; : : : ;Lk where Li � ˛i �D2 .

5.1 Lemma Let .C; 
 / be a model Bing cell. Then there is a realization of .C; 
 /�
.D4; @D4/.

Strictly speaking, the claim of the lemma is that there is an embedding .C ; 
 / �

.D4; @D4/ as in Definition 4.4. Abusing the notation we refer to the plumbed version
of the Bing cell as C as well.

Proof of Lemma 5.1 The proof is inductive, starting with the base surface of C and
moving up. Start with an unknotted circle 
 in S3 and let 
 �D2 bound a 2–handle
D2�D2 in D4 . Puncture the core of the handle to get an embedding of the first stage
planar surface P . Note that for each i , ˛i �D2 bounds a (just removed) 2–handle
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Hi in the complement of P in D4 . The link Li � ˛i �D2 is homotopically trivial,
so it bounds disjoint immersed disks f�g in Hi . The self-intersections of handles and
of body surfaces are allowed in the definition of b–cells. If the height of C is greater
than 1, repeat the construction. (The disks � are converted into second stage surfaces
by puncturing them in the complement of double points, etc.)

5.2 A presentation of � 1.D4 XC/=.� 1.D4 XC//q For the remainder of this section
fix q � 2. Given .C; 
 / � .D4; @D4/, let m denote a meridian to 
 in S3 . First
assume C has height one and P is a pair of pants, see Figure 2 in the introduction.
Fix the notation:

@P D 
 [˛1[˛2; P D P �D2; C D P [L1[L2
2–handles;

where Li � ˛i �D2 are links satisfying the conditions in Definition 4.1. Let I1 , I2

be the index sets for the components of L1;L2 respectively. ^1;^2 will denote the
meridional curves fpig � @D

2 of the solid tori ˛i �D2 .

H1.D
4 XC / is generated by MD fmig: the meridians to the handles of C (in the

sense of Section 3.8). The index sets I1; I2 also parametrize the handles of C , and to
be specific, divide the set of meridians M into two subsets: MI1

;MI2
. Denote by

FM D FMI1
;MI2

the free group generated by the elements of M, and consider the
Magnus expansion M :

(5-1) �1.D
4
XC /=.�1.D

4
XC //q

p
 � FMDFMI1

;MI2

M
�! ZfX gDZfXI1

;XI2
g

where as in Section 3.1, M.mi/D 1Cxi , i 2 I1[ I2 . We need to fix a specific word
in FM representing the meridian m. Observe that ^1 and m cobound a cylinder in
D4 XC : the circle normal bundle of P in D4 , restricted to a path in P joining two
points in ˛1 and 
 . Therefore m;^1 are conjugate in �1.D

4 X C /. Consider ^1

in �1.˛1 �D2 XL1/ and consider the commutative diagram of Magnus expansions,
induced by the inclusion map i W S1 �D2 XL1 �D4 XC :

(5-2) �1.S
1 �D2 XL1/=.�1.S

1 �D2 XL1//
q

i�
��

FM1[xm
oo

i]

��

M1 // ZfXI1
;yg

��
�1.D

4 XC /=.�1.D
4 XC //q FMoo M // ZfX g

where xm and y are as in Section 3.6 and specifically in (3-3). The homomorphism i]
maps mj to mj for each j 2M1 , and it maps xm to some fixed pullback of i�. xm/ in
FM .

Denote by W1 some word representing ^1 in the free group FM1[xm , then W WD

i].W1/ represents m in FM . Recall (see Section 3.6) that each term with non-repeating
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variable in the expansion M1.W1/ contains all of the variables x1; : : : ;xn , where
I1 D f1; : : : ; ng. According to the commutative diagram above, this is also true for
M.W /. It is important to remember (see last paragraph in Section 3.6) that specifically
M.W / contains the non-trivial term �x1 � � �xn .

Given an element g2�1.D
4XC /=.�1.D

4XC //q , consider a word w representing it in
FM . As in the classical case of Milnor’s invariants of links, discussed in Section 3, the
coefficients of the Magnus expansion M.w/ in general are not well-defined invariants
of g . This is due to the choice of the meridians generating the group, and due to
the fact that the kernel of the surjection from FM is non-trivial. In the present
context, compared to the classical situation, the kernel involves more relations in
�1.D

4 XC /=.�1.D
4 XC //q reflecting the topology of Bing cells.

According to Lemma 2.1, to see the relations in �1.D
4XC /=.�1.D

4XC //q we need
to analyze the generators of H2.D

4 X C /. By Alexander duality, H2.D
4 X C / Š

H1.C; 
 /. Note that H1.C; 
 / is generated .1/ by double point loops corresponding
to the intersections among the handles and body surfaces, subject to the disjointness
requirement in Definition 4.4, and .2/ by H1.P; 
 /. (Here we assume the non-trivial
case: each link Li consists of at least two components, so C is homotopy equivalent
to the wedge of two circles with a collection of 2–spheres, one 2–sphere for each
handle.) We will divide the corresponding dual generators of H2.D

4 XC / into four
types, .R1/–.R4/, and analyze the resulting indeterminacy in the coefficients of the
Magnus expansion (5-1).

.R1 / Clifford tori for the self-intersections of any handle Hi of C , i 2 I1[ I2 .

The corresponding relations are of the form Œ.mi/
f ; .mi/

g�D 1, i 2 I1[ I2 , f;g 2
�1.D

4 XC / (see Section 3.8), and are familiar from the study of link homotopy and
the classical Milnor group (see Section 3.2). Pulling back the relations to FM , consider
the ideal I1 generated by their images in ZfX g. Observe that each term (besides 1)
of any element in the ideal I1 has repeating variables.

More precisely, note that for any a 2 FM the Magnus expansions M.a�1mia/ and
M.a�1.mi/

�1a/ are of the form 1Cterms containing xi (where M.mi/D1Cxi .) The
commutator Œ.mi/

f ; .mi/
g� is a product of .mi/

g conjugated by .mi/
f and .m�1

i /g ,
therefore M.Œ.mi/

f ; .mi/
g�/D 1Cterms containing at least two entries of xi . Hence

the monomials with non-repeating variables are invariant under multiplication by a
conjugate of the relation .R1/.

According to Definition 4.4, any handle attached to L1 can intersect any handle attached
to L2 . The corresponding generators of H2 are
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.R2 / Clifford tori for the intersections between the 2–handles Hi1
and Hi2

,
where i1 2 I1; i2 2 I2 .

These tori give relations Œ.mi1
/f ; .mi2

/g�D 1. Each term of any element in the ideal
generated by the Magnus expansion of these relations has both variables xi1

and xi2
,

where i1 2 I1; i2 2 I2 .

.R3 / Clifford tori for the intersections of any handle Hi with the body surface
P , and Clifford tori for the self-intersections of P .

These generators of H2 impose the relations of the form Œm
f
i ;m

g�, and of the form
Œmf ;mg�. Here mi is a meridian to a handle Hi , i 2 I1[ I2 and m is a meridian to
P . Recall from the discussion at the beginning of Section 5.2 that each term in the
expansion M.m/ contains each of the variables XI1

. If i above is an element of I1

then all terms in the expansion of Œmf
i ;m

g� contain a repeating variable (one of the
XI1

). If i is an element of I2 then each term in the expansion of Œmf
i ;m

g� contains
both variables xi1

and xi2
for some i1 2 I1; i2 2 I2 . In either case, the indeterminacy

has already appeared as a result of relations .R1/; .R2/.

There is another type .R4/ of generators of H2.D
4XC /, Alexander dual to H1.P; @P\

S3/Š Z. Since we assumed each link Li has at least two components, the meridian
^i D fpig � @D

2 of the solid torus ˛i �D2 bounds a surface Si in .˛i �D2/XLi .
(Consider the disk fpig �D2 . Since ^i has the trivial linking number with each
component of Li , the disk may be converted into a surface disjoint from the link.)

A geometric representative for this class of H2.D
4 X C / is given by the surface

S1[ annulus [S2 . Here the annulus is cobounded by ^1 and ^2 , and is the circle
normal bundle of P in D4 , restricted to a path in P joining two points in ˛1; ˛2 . As
above, denote by W1;W2 some words in the free group representing ^1;^2 . Then
the corresponding relation is

.R4 / .W1/
g .W2/

�1 D 1.

Now consider the general height D 1 case: @P D 
 [˛1[ � � � [˛n . The relations are
directly analogous to those described above; in particular there are n� 1 relations of
type .R4/: .W1/

g1.W2/
�1 D 1; : : : ; .Wn�1/

gn�1.Wn/
�1 D 1.

The general case (height � 1) Denote by M the collection of meridians fmig to the
handles of C , and by X a corresponding collection of variables fxig. The double points
of C occur as intersections of handles and body surfaces, subject to the disjointness
assumption in Definition 4.4. More precisely, the general relations of types .R1/–.R3/

are represented by the Clifford tori for self-intersections of each handle and body
surface of C , and for intersections of any two handles and/or body surfaces, such
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that the first common ancestor of the corresponding vertices in TC is an unmarked
vertex. Recall that the generators of H1.D

4 X C /, and also the variables X are in
1–1 correspondence with the handles of C and also with the leaves of TC . The
analysis directly analogous to the above implies that each term of any element in the
ideal generated by the Magnus expansions of the relations .R1/–.R3/ either contains
repeating variables, or it contains variables xi and xj whose first common ancestor in
TC is unmarked.

There is also a collection of relations .R4/ for the body surfaces of C . Each generator
of H1.body of C; 
 / contributes a relation of type .W1/

g.W2/
�1 as above.

6 The generalized Milnor group

Starting with a Bing cell .C; 
 / � .D4; @D4/ we will derive invariants of .C; 
 /
independent of the embedding into D4 . This feature of the invariants is particularly
important for applications to the A–B slice problem [11]. Recall from Lemma 3.3 that if
a link L�S3 is homotopically trivial, its components bound disjoint immersed disks �
in D4 , and the Milnor group M�1.D

4X�/ is isomorphic to the free Milnor group. In
particular (see Section 3.2) the coefficients in the Magnus expansion M�1.D

4X�/�!

RŒX � are well-defined. In our setting M�1.D
4XC / is not the free Milnor group. The

goal is to analyze the indeterminacy and to extract useful invariants.

Recall the notation: we fix a collection M of meridians fmig to the handles of C ,
one for each handle. Then the elements of M generate any nilpotent quotient of
�1.D

4 XC /.

6.1 Definition The generalized Milnor group GM.C / denotes �1.D
4XC / modulo

the normal closure of all elements of the form

(6-1) Œmf ;mg�; and Œmf
1
;m

g
2
�; where f;g 2 �1.D

4
XC /; m;m1;m2 2M; and

the first common ancestor of m1;m2 is unmarked (see Definition 4.4).

In particular, GM.C / is a quotient of the classical Milnor group M�1.D
4XC / defined

using the set M of normal generators. Consequently, GM.C / is nilpotent, and so is
generated by the elements of M.

For example, consider a realization in D4 of the b–cell in Figure 4 in Section 4.
Denoting by mi a meridian to the handle hi , i D 1; : : : ; 5, the relations in the definition
of GM.C / are:

Œm
f
i ;m

g
i �D 1; i D 1; : : : ; 5; Œm

f
1
;m

g
3
�D Œm

f
1
;m

g
4
�D Œm

f
2
;m

g
3
�D Œm

f
2
;m

g
4
�D 1;
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where f;g 2 �1.D
4 XC /. The definition of M.C / incorporates the relations .R1/–

.R3/ in �1.D
4XC /, discussed in the previous section. In the classical Milnor’s theory,

the free Milnor group has a well-defined representation into (the units of) the ring of
polynomials where the terms have non-repeating variables. In the next section we
describe the analogous representation for GM.C /. In the present setup there is also an
additional indeterminacy, due to the relations .R4/, and this is analyzed in Section 8.
It is convenient to define, analogously to the classical case, the free Milnor group:

6.2 Definition The free generalized Milnor group GM.FM/ is defined to be the
free group FM modulo the relations of the form (6-1).

It follows that GM.C / is the quotient of GM.FM/ by the relations .R4/. Analogously
to the classical case, MC.G/ has the following property.

6.3 Proposition Given a model b–cell C , there exists a realization C �D4 of C

such that �1.D
4 XC /ŠGM.C /.

Proof Consider any realization C 0 � D4 of C . GM.C 0/ is nilpotent and finitely
generated, and is therefore finitely presented. That is, MC.G/ is isomorphic to �1.D

4X

C 0/ modulo a finite number of relations (6-1). It is a standard observation that these
relations may be introduced by finger moves yielding plumbings and self-plumbings of
C 0 of the allowed type. This gives C satisfying the proposition.

6.4 Grading of Bing cells Given .C; 
 /� .D4; @D4/, let m denote a meridian to 

in S3 . There is no relation, in general, between the height of C and how deep m is in
the lower central series of �1.D

4XC /, or of GM.C /. For example, let .C1; 
1/ be a
b–cell of height k where each link is the Bing double of the core of the corresponding
solid torus (and the body surfaces are arbitrary – to be specific consider pairs of pants.)
Also consider .C2; 
2/ of height 1 where the body surface is an annulus and the link
is the k –iterated Bing double of the core. Then C1;C2 have different heights, while
for both i D 1; 2, mi is in the 2k -th term of the lower central series of �1.D

4 XCi/.

Define the nilpotency class of C to be the least k such that the k -th term of the lower
central series GM.C /k is trivial. Assuming that each link in the definition of C has
at least two components, it is clear that the nilpotency class of a b–cell of height k

is at least k C 1. Refining Definition 4.5, consider �i;j .M /D fbased loops in M g

modulo loops bounding b–cells of height i and having nilpotency class j . There is a
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commutative diagram of surjections

�1.M / // �1;2.M / // �1;3.M /

��

// �1;4.M /

��

// : : :

�2;3.M / // �2;4.M / //

��

: : :

:::

6.5 Lemma Let �; � be finitely presented groups, where � is aspherical, and suppose
� maps onto �. Then there are 4–manifolds M with �1.M /Š � and �1;2.M /Š �.

Proof Consider an aspherical 2–complex K with �1K Š � . Replacing the cells
of K by 0–, 1– and 2–handles, one gets a 4–manifold N with boundary. Observe
that �1.N / Š �1;2.N /: suppose there is a loop 
 � N trivial in �1.N / but not
in �1.N /. Then 
 is homotopic to a loop 
 0 which bounds a b–cell C of height
1. Denote the body surface of C by P , @P D 
 0 [ ˛1 [ � � � [ ˛n . It follows that
˛i ¤ 1 2 �1.N / for some i . The link Li � ˛i �D2 has two components. Consider
the 2–spheres S1;S2 formed by the cores of the handles H1;H2 of C attached to
the components of Li , capped off by the null-homotopies of the components of L

in ˛i �D2 . Due to the assumptions on the link, and since the handles H1;H2 are
disjoint, the intersection of S1 , S2 is non-trivial in Z�1.N /. This is a contradiction
with the asphericity assumption.

Consider a collection of elements ˛ D f˛1; : : : ; ˛kg in �1K such that the quotient of
�1 by the normal closure of ˛ is isomorphic to �. Represent ˛ by embedded curves
in @N , then the 4–manifold M DN [˛ 2–handles, where the handles are attached to
Bing doubles of the cores of ˛i �D2 � @N , satisfies the proposition.

Examples of 4–manifolds M for which �i;j .M /¤ �i;jC1.M / are considered in [11].
It is an interesting question whether there are manifolds for which vertical maps are
not isomorphisms either.

7 Representations of GM.C /

The purpose of this section is to analyze the indeterminacy of the Magnus expansion
due to the relations in the generalized Milnor group GM.C /. Consider a set MDfmg
of generators of H1.D

4XC / provided by meridians to the handles of C . The elements
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of M are in 1–1 correspondence with the leaves of the associated tree TC , and are
parametrized by multi-indices I D .i1; j1; : : : ; in; jn/ where n is the height of C , the
indices ik correspond to the branching of the planar surface stages, and the indices
jl correspond to the components of the attaching links L. Phrased in terms of the
associated tree, the indices ik (respectively jl ) correspond to branching of the tree TC

at unmarked (respectively marked) vertices.

7.1 Definition Consider the set X Dfxg whose elements are in 1–1 correspondence
with the elements of M. Let RŒC � denote the quotient of the free associative ring
ZfX g generated by X by the ideal generated by the monomials M D xI1

� � �xIk
such

that

� either M contains repeating variables, or

� M contains variables xI , xI 0 whose first common ancestor in TC is unmarked
(compare with Definition 4.4).

The second condition may be rephrased as follows: let I D .i1; : : : ; jn/, I 0 D

.i 0
1
; : : : ; j 0n/ be two multi-indices as above. Consider the first index where these

sequences differ: if it is one of the j ’s then any monomial containing xI , xI 0 is in the
ideal.

7.2 Proposition The Magnus expansion FM�!ZfX g induces a well-defined ho-
momorphism GM.FM/ �!RŒC �, which abusing the notation is also denoted M :

FM //

��

GM.FM/ //

M
��

GM.C /

ZfX g // RŒC �

Proof The kernel of FM �!GM.FM/ is normally generated by the relations (6-1).
Note that every term (besides 1) in the expansion M.Œmf ;mg�/ has a repeating variable,
x , corresponding to m. Similarly, every term in the expansion M.Œm

f
1
;m

g
2
�/ contains

both variables x1;x2 . Therefore the expansion of each relation is in the ideal defining
RŒC �.

7.3 Definition Let v be a vertex of TC . Assign to it an additive subgroup eRv�RŒC �

as follows. Denote by Tv the subtree of TC rooted at v , and let Xv denote all variables
corresponding to the leaves of Tv .

At each unmarked vertex of Tv keep exactly one branch and erase the rest. Denote
the resulting subtrees rooted at v by fT ˛

v g. Then eRv is defined to be the span of the
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monomials read off, clockwise starting at the left-most leaf, from all possible planar
embeddings of T ˛

v , for all ˛ .

Suppose C has height n and without loss of generality assume all branches have uniform
length (insert extra stages = annuli if necessary). Set eRk.C /D

L
v
eRv �RŒC �, where

the direct sum is taken over all vertices v at height k . DenoteeR.C / WD eR0.C /D eR root of TC
:

For example, consider the Bing cell in Figure 4. Then there are two subtrees entering
the definition of eR.C /, shown in Figure 5. There are a total of 8 planar embed-
dings of these subtrees, giving the monomials fx1x2x5; x2x1x5; x5x1x2; x5x2x1 ,
x3x4x5; x4x3x5; x5x3x4; x5x4x3g. Some of the terms, for example x1x5x2 , do not
appear since they do not arise from a subtree.

x1 x2 x3 x4

x5

x1 x2

x5

x3 x4

x5

Figure 5

We will be interested in the subring 1C eR.C / of RŒC �. It follows from definition of
RŒC � and from the assumptions in Definition 3.7 on the links forming the Bing cell C

that all monomials in eR.C / have “maximal length”. That is, if XI is a monomial ineR.C / then for any variable x 2X , inserting x anywhere in XI gives a trivial element
of RŒC �. Observe that the product in 1C eR.C / is given by�

1C
X

I

˛I XI

��
1C

X
I

ˇI XI

�
D 1C

X
I

.˛I CˇI /XI :

7.4 Definition For each vertex v of TC consider the subring

Sv D 1C eRvC higher order terms

of RŒC �. By higher order terms we mean all terms of the form

T D f1 x1 f2 x2 � � � fm xm fmC1
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where the monomial x1 � � �xm (obtained from T by deleting the f ’s) is in eRv , and
at least one of the monomials f1; : : : ; fmC1 2 ZfX g is not equal to 1. Similarly, set
Sk D 1C eRkChigher order terms. Observe that S0.C /D 1C eR.C /: the monomials
in eR.C / already have maximal length, so there are no higher order terms.

TC1

C2

C

C1

TC2

TC

Figure 6: Raising the height: Step 1

7.5 It is useful to note an inductive construction of the representation S0.C / D

1C eR.C /. A Bing cell of height k is assembled from a bottom stage planar surface
P , @P D 
 [˛1[ � � �[˛n , and Bing cells of height k�1 attached to the components
of the links Li , Li � ˛i �D2 . This assembly may be decomposed into two steps.
Step 1 (Figure 6) corresponds to attaching Bing cells of height k�1 to a single link L.
Supposing for simplicity of notation that L consists of just two components, it follows
from Definition 7.3 that in this caseeR.C /Š .eR.C1/˝ eR.C2//˚ .eR.C2/˝ eR.C1//;

with the obvious generalization for links L with more than two components. Here
the map eR.Ci/˝ eR.Cj /�! eR.C / is defined on generators by Xi˝Xj 7�!Xi �Xj ,
the product of monomials. Step 2 (Figure 7) combines the results of Step 1 which are
attached to an arbitrary planar surface. In this case eR.C /Š eR.C1/˚ eR.C2/.

TC1
C2

C

C1 TC2

TC

Figure 7: Raising the height: Step 2
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7.6 Lemma (1) Let m be a meridian to a body surface of C , and let v be the
corresponding vertex in TC . Then there exists a word w 2 FM representing it so that
M.w/ 2 Sv .

(2) In particular, let m0 denote a meridian to the bottom stage of C in D4 (for
example, a meridian to 
 in S3 .) Then there exists a word w0 representing it in FM
such that M.w0/ 2 S0.C /D 1C eR.C /.
Proof The proof is inductive, moving from the handles down. If m is a meridian to
a handle of C then M.v/D 1Cx and the statement is obviously true. Suppose the
statement holds for the meridians to all body surfaces at height kC 1, and let m be
a meridian to a surface P at height k . Note that the statement is independent of a
choice of the meridians: if one of the meridians is replaced by a conjugate, the Magnus
expansion would also satisfy the condition. Denote, as usual, @P D 
 [˛1[ � � � [˛n ;
the surfaces at height kC1 are attached to P �D2 along the links Li , Li � ˛i �D2 .
For each i , the meridian m is conjugate to the curve ^i (connected to the basepoint).
Therefore for the inductive step it suffices to consider only Step 1 of the height raising
discussed above. In other words, one can assume that P is an annulus, and there is
only one link L� ˛�D2 .

Consider the map �1.˛�D2XL/ �! �1.D
4XC /. The map is obtained by pushing

˛ �D2 X .a thickening of L/ slightly into the complement of C in D4 . Let L D

.l1; : : : ; ln/; denote the corresponding Bing cells attached to them by C1; : : : ;Cn , as
in Figure 6. To distinguish them from the meridians to the handles of C , denote the
meridians to the components of L in the solid torus by m0

1
; : : : ;m0n , and let z1; : : : ; zn

be the corresponding variables for the Magnus expansion. Denote the longitude of the
torus, fpg � @D2 , by l , and the corresponding variable by y .

The meridians m0j to the components of L may be viewed as meridians to the bottom
surface stages of Cj . By the inductive assumption, there are preimages wj of i�.m

0
j /

in FM such that the Magnus expansion M.wj /, composed with the projection to
RŒC �, is in Svj

D 1C eRvj
Chigher order terms. In the following diagram, the map

� between the free groups is defined on generators by taking the preimage wj of
i�.m

0
j / in FM . Similarly, �.l/ is defined as a pullback of i�.l/ in FM . Then  .zj /

is defined as M.�.m0j //� 1DM.wj /� 1.

�1.˛�D2 XL/=.�1.˛�D2 XL//q

i�

��

Fm0
1
;:::;m0n;l

oo

�

��

M 0 // Zfz1; : : : ; zn;yg

 

��
�1.D

4 XC /=.�1.D
4 XC //q FMoo M // ZfX g

� // RŒC �
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Recall from the discussion preceding this lemma that

eRv Š

M
ŒeRvi1

˝ � � �˝ eRvin
�

where the direct sum is taken over all permutations of f1; : : : ; ng, and the inclusioneRvi1
˝� � �˝ eRCin

�! eRv is defined on the additive generators by multiplication of the
monomials. Let w be a word representing ^ (the meridian of the torus ˛�D2 ) in the
free group Fm0

1
;:::;m0n;l

. We will use the assumptions Definition 3.7 on the links L in
the definition of Bing cells Definition 4.1. In particular, every term with non-repeating
variables in the expansion M 0.w/ contains each of the variables z1; : : : ; zn (and in
addition it may also contain y ). The expansion M.�.w// is obtained from M 0.w/ by
replacing each zi and y with  .zi/,  .y/. The proof is completed by the observation
that

�

� nY
jD1

 .zij /

�
and �Œ .zi1

/ � � �  .zik
/  .y/  .zikC1

/ � � �  .zin
/�

are elements of Sv , provided that for each j , �. .zij // 2 Svij
. The expansion

M 0.w/ 2 Zfz1; : : : ; zn;yg may contain a proper subset of the variables fz1; : : : ; zng,
provided that at least one of them, say zi , is repeated. However by assumption
 .zi/ 2 Svi

, so according to Definition 7.3 every term of  .zi/ contains all of the
variables associated to a subtree T ˛

vi
. Then to analyze  .zi/ � � � .zi/ consider the

product of any two such terms. Either they correspond to the same tree T ˛ and then
the product contains repeated variables and so is trivial in RŒC �, or they correspond to
different subtrees T ˛ , T ˇ , and then the product is again trivial in RŒC �, by the second
condition in Definition 7.1.

To define invariants of Bing cells in the next section, we need to fix a more specific
subspace of eRv , for each v , containing precisely the monomials with non-trivial
x�–invariants of the links bL in the definition of b–cells (see Definition 4.1 and the
discussion at the end of Section 3.6.) The definition is similar to that of eRv but it
involves only a specific order of the variables X .

7.7 Definition Let v be a vertex of TC . Consider the subtrees T ˛
v of TC whose root

is v , as in Definition 7.3. Then Qv is the additive subgroup of RŒC � spanned by the
monomials read off, clockwise, from the fixed planar embedding, defined in Section 4.3,
of T ˛

v , for all ˛ . (Therefore Qv �
eRv .) Set Qk.C /D

L
v Qv � RŒC �, where the

summation is taken over all vertices v at height k . Also denote Q.C /DQ0.C /DQr

where r is the root of TC .

Geometry & Topology Monographs, Volume 18 (2012)



Link groups of 4–manifolds 227

In the example in Figures 4, 5, Q.C / is spanned by the monomials x1x2x5; x3x4x5 .
(Compare with the computation of eR.C / in this example, following Definition 7.3.)

We will also use an alternative, inductive, description of Q.C /, analogous to that ofeR.C / (see Section 7.5). For each leaf l of TC , the corresponding Ql is the subgroup
(Š Z) of RŒC � spanned by xl . Suppose Qv is defined for vertices of TC at height
> k , and let v be an (unmarked) vertex at height k . Moving down the Bing cell from
height kC1 to height k may be decomposed into steps, illustrated in Figures 6, 7. The
first step (corresponding to P Dannulus) gives QŠQ1˝Q2 . The second step (figure
5) gives QŠQ1˚Q2 . To combine these two steps, denote @P D 
 [˛1[ � � � [˛n ;
surfaces at height k C 1 are attached along the links Li � ˛i �D2 . Let Ii be the
(ordered) index set for the components of Li . Then

(7-1) QD
M

i

O
j2Ii

Qj

Remark The structure of Q.C / may be read off from the tree TC associated to C :
the “generators” correspond to the leaves of TC ; then form a tensor product for each
marked vertex of the tree and a direct sum for each unmarked vertex.

7.8 The ring structure For each v , Sv is a subring of RŒC �. Consider 1C eRv as
the quotient of Sv by the ideal generated by the higher order terms (see Definition 7.4),
and let p1W Sv � 1C eRv denote the projection. Similarly, 1CQv is the quotient of
1C eRv by the ideal generated by all monomials which do not respect the fixed order
of the variables, p2W 1C eRv � 1CQv . The product in 1C eRv , 1CQv is given by�

1C
X

I

˛I XI

��
1C

X
I

ˇI XI

�
D 1C

X
I

.˛I CˇI /XI :

Let m be a meridian to the bottom stage of C , then by Lemma 7.6 there exists a word
w representing it in the free group whose Magnus expansion M.w/ is an element of
S.C /. Consider its image in 1CQ.C /:

(7-2) p2.p1.M.w///D 1C
X

I

˛iXI ;

where the summation is over all subtrees with a prescribed planar embedding, as
discussed above. The coefficients ˛I are well-defined with respect to the relations
.R1/–.R3/ of Section 5. (That is, with respect to multiplying w by a conjugate of
one of the relations .R1/–.R3/.) The next section introduces an invariant well-defined
with respect to .R4/ as well.
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8 An invariant ˆ of Bing cells

The purpose of this section is to prove the following statement. The main content is in
the proof, which will be generalized from knots to the setting of links in Section 9.

8.1 Lemma Let K be a knot in S3 , suppose C is a Bing cell in D4 bounded by
K , and fix q � 2. If g is an element of �1.S

3 XK/ whose image is non-trivial in
H1.S

3 XK/, then i�.g/ ¤ 1 2 �1.D
4 X C /=.�1.D

4 X C //q . Here i� is the map
induced by the inclusion i W S3 XK �D4 XC .

8.2 Notation Given g 2 �1.S
3X
 /=�1.S

3X
 /q , according to Lemma 7.6 there is
a word w representing it in the free group FM whose Magnus expansion M.w/ is an
element of the subring S.C / of RŒC �. Denote by M .w/ the image of M.w/ under
the projection S.C / �! 1CQ.C /, so M .w/ D p2.p1.M.w/// in the notation of
(7-2).

8.3 Definition of ˆ in the height D 1 case First consider the special case when the
first stage planar surface P is a pair of pants, @P D 
 [˛1[˛2 . We will follow the
notation of Section 5.2, and we will use the Magnus expansion (5-1). In particular,
the set X of the variables corresponding to the meridians to the handles of C in D4

is divided into two subsets XI1
;XI2

, where the indices reflect the components of the
links Li � ˛i �D2 that the handles are attached to.

Let Yi be a monomial with non-repeating variables of maximal length in the variables
XIi

, i D 1; 2, respecting the preferred order (see Section 4.3). Note that Q.C / in this
case is 2–dimensional, spanned by the monomials Y1 , Y2 . Denoting by Wi a word
representing the curve ^i in the free group, given by the commutative diagram (5-2),
note that M .Wi/D �i Yi , where �i ¤ 0, i D 1; 2.

8.4 Proposition Given an element g 2 �1.S
3 XL/=�1.S

3 XL/q , let w be a word
representing it as in Section 8.2, and consider its expansion in 1CQ.C /:

M .w/D 1C˛1Y1C˛2Y2

for some ˛1 , ˛2 . Then ˆ.g/WD �2˛1C�1˛2 2 Z is an invariant of g .

Proof The coefficients ˛i are well-defined with respect to the relations .R1/–.R3/, see
the discussion following equation (7-2). The relation .R4/ is given by .W1/

g.W2/
�1

and its expansion is of the form

M ..W1/
g.W2/

�1/D 1C�1Y1��2Y2:

Let w0 be w multiplied by a conjugate of .W1/
g.W2/

�1 , M .w0/D 1C˛0
1
Y1C˛

0
2
Y2 .

Then ˛0
1
D ˛1C�1 , ˛0

2
D ˛2��2: Therefore ˆ.w0/Dˆ.w/.
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Consider the general height 1 case: @P D 
 [ ˛1 [ � � � [ ˛k . As above, let Yj be
the preferred monomial in the variables XIj

, and M .Wj / D 1 C �j Yj , �j ¤ 0,
j D 1; : : : ; k . Define �0j D

Q
i¤j �i . The proof of the following statement is a direct

generalization of the proof in the pair of pants case.

8.5 Proposition Given an element g2�1.S
3XL/=�1.S

3XL/q as in Proposition 8.4
consider the expansion in 1CQ.C /: M .w/D 1C

P
j j̨ Yj . Then ˆ.g/WD

P
j j̨�

0
j

is an invariant of g .

Remark. In fact there is a collection of I1! � � � Ik ! invariants ˆ, parametrized by the
monomials in non-repeating variables XI1

; : : : ;XIk
. We chose a specific ˆ, reflecting

a particular choice of non-trivial x�–invariants of the homotopically essential links bLj .

8.6 Definition of the invariant ˆ in the general case The definition is inductive.
Suppose the homomorphism ˆW .Q.C /;C/�! .Z;C/ is defined for b–cells of height
< h, and let .C; 
 / be a b–cell of height h. C is obtained from P D P �D2 by
attaching b–cells fCj gj2Ii

of height h�1 to the components of links Li , Li�˛i�D2 .
Here Ii is the (ordered) index set for the components of Li . As above, let �i be
the non-trivial x�–invariant of bLi in the expansion of ^i , with the given order of the
components of Li . Let ĵ W Q.Cj / �! Z denote the inductively defined invariant of
Cj . Recall from (7-1) that

Q.C /D
M

i

O
j2Ii

Q.Cj /:

Denoting �0j D
Q

i¤j �i , define

ˆW Q.C / �! Z by ˆD
X

i

�0i. j̋2Ii ĵ /:

8.7 Proposition Given g 2 �1.S
3XK/=.�1.S

3XK//q , let w be a word represent-
ing it in the free group, as in Section 8.2. Then ˆ.M .w// is well-defined, and will be
denoted �.g/.

Proof The proof is inductive. The statement is true for b–cells of height 1 by
Proposition 8.5. Suppose the statement is true for b–cells of height < h, and let C be
a b–cell of height h. Assembling C from b–cells of height h� 1 will be separated
into two steps: Step 1 attaching them to a link in a solid torus, and Step 2 attaching
the results of Step 1 to a (planar surface)�D2 , see Section 7.5 and Figures 6, 7 in
Section 7.

Step 1 Consider a b–cell C of height h such that C D S1 �D2 � I [ .C1 [C2/

where the b–cells Ci have height h� 1 and are attached along the components of a
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link LD .l1; l2/� S1 �D2 � f1g. For simplicity of notation, we assume L has two
components; the proof for a larger number of components is directly analogous. Given
a relation r of type .R4/, let I denote the ideal in RŒC � generated by the Magnus
expansion M.W /� 1, where W is a word representing r . It suffices to prove that
the intersection I \Q.C / is in the kernel of ˆW Q.C / �! Z. The representation
QDQ.C / decomposes as Q1˝Q2 where QiDQ.Ci/, and ˆDˆ1˝ˆ2W Q�!Z,
so

kerˆD .kerˆ1/˝Q2CQ1˝ .kerˆ2/:

Since the bottom stage surface of C is the annulus, there are no relations .R4/ at height
1. Therefore the relation r corresponds to a body surface in either C1 or C2 , say in
C1 .

First we impose an additional assumption that, in the context of Definition 3.7, for
each link L defining the b–cell C there is a word W representing ^ in the free group
such that W involves only the variables m1; : : : ;mn , and not the longitude l of the
solid torus. For example, this assumption is satisfied in the central case LD(iterated)
Bing double. After giving a proof in this restricted setting, we show how the argument
goes through in the general case. The assumption above implies that each relation r of
type .R4/ has a word representing it in the free group, whose Magnus expansion is an
element of either RŒC1� or RŒC2�.

Let r 2RŒC1��RŒC � be a relation, and denote by I1 and I the ideals generated by
r in RŒC1�, RŒC � respectively. Observe that I \Q.C /D I \ .Q.C1/˝Q.C2//D

.I \Q.C1//˝Q.C2/. Since I1 � kerˆ1 , I \Q.C / � kerˆ, and the proof is
complete.

Now consider the general case, ie we remove the extra assumption imposed in the
paragraph above. The difference with that case is that even though r is a relation
corresponding to C1 , one cannot assume that r is an element of the subring RŒC1� of
RŒC �. However (see end of Section 3.6) ^ has a word representing it whose expansion
is of the form 1Cxi1

� � �xin
Chigher order terms. That is, all first non-vanishing terms

with non-repeating variables in its Magnus expansion are elements of RŒC1�. The
proof is completed by the observation that only first non-vanishing terms contribute to
I \Q.C /.

Step 2 (Figure 7) Now C equals .P �D2/[C1[C2 , where P is a planar surface,
the b–cells Ci have height h and whose bottom stage surfaces are annuli. For simplicity
of notation we assume P is a pair of pants; the case of a planar surface with more
boundary components is treated analogously. Denoting @P D 
 [ ˛1 [ ˛2 , Ci is
attached along ˛i �D2 , i D 1; 2. In this case

RŒC �ŠRŒC1�˚RŒC2�; Q.C /ŠQ.C1/˚Q.C2/:

Geometry & Topology Monographs, Volume 18 (2012)



Link groups of 4–manifolds 231

As above, given a relation r of type .R4/, we need to show

I \Q.C /� ker.ˆW Q.C / �! Z/:

We have ˆ D �2ˆ1˚�1ˆ2 . There are two cases to consider: r corresponds to a
surface in C at height > 1, or it is a new relation corresponding to P . In the first case,
one may assume r 2RŒC1�. Denote by I1 , I the ideals generated by r in RŒC1�, RŒC �.
Then since RŒC � is a direct sum of rings RŒC1�˚RŒC2�, I D I1 � RŒC1� � RŒC �.
Clearly then I � ker.ˆ/.

Consider the second case: r is a new relation, corresponding to the bottom stage
surface P of C . Denote the meridians to L1 by m0

1
; : : : ;m0

k
and the meridians to

L2 by m00
1
; : : : ;m00

l
; let fx0ig; fx

00
j g be the corresponding variables. Then the Magnus

expansion of r is of the form

M.r/D 1C�1x01 � � �x
0
k ��2x001 � � �x

00
l C higher order terms:

Consider the image of r in RŒC �. Note that the first term �1x0
1
� � �x0

k
is in RŒC1�,

the second term �2x00
1
� � �x00

l
is in RŒC2�, and in fact all higher order terms vanish in

RŒC �, since the first non-vanishing terms already have maximal length. Any element
of RŒC � of the form �1Y C �2Z , where Y 2 RŒC1�, Z 2 RŒC2�, is in the kernel
of ˆ. Therefore r 2 ker.ˆ/, and any other element in the ideal generated by r is
longer and vanishes in RŒC � (so in fact I D frg � ker.ˆ/.) This concludes the proof
of Proposition 8.7.

Proposition 8.7 constructs a homomorphism �W �1.S
3XK/�!Z. In particular, �.g/

is well-defined with respect to multiplication by elements of the relation subgroup
in FM , so �.g/ ¤ 0 implies g ¤ 1 2 �1.D

4 X C /=.�1.D
4 X C //q . It suffices to

prove Lemma 8.1 for g equal to a meridian m to the knot K in S3 . The fact that
�.m/¤ 0 is proved by inspection: at each surface stage P of C , @P D 
P [i ˛i , the
meridian to P is conjugate to the ^–curve corresponding to the solid torus ˛i �D2 ,
for any given i . Applying the analysis at the end of Section 3.6 inductively to the
meridians to the surface stages of C , moving up from the meridian m to the bottom
stage, one observes that there is a word w representing m in FM such that M .w/ is
a generating monomial for Q.C /. Due to the tensor decompositions of Q.C / and ˆ,
�.m/Dˆ.M .w//¤ 0. This concludes the proof of Lemma 8.1.

9 Applications to link homotopy: Proof of Theorem 1.1

This section shows how the theory of Bing cells fits in the framework of Milnor’s
theory of link homotopy. We generalize the invariant ˆ defined in the previous section
to a collection of Bing cells to prove Theorem 1.1.
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Proof of Theorem 1.1 Let LD .l1; : : : ; ln/ and suppose the components of L bound
disjoint Bing cells C1; : : : ;Cn in D4 . Denote C D

S
i Ci . Suppose L is homotopically

essential, and without loss of generality one may assume L is almost homotopically triv-
ial, so there is a well-defined and non-trivial �–invariant with non-repeating coefficients
of length n. Order the components of L so that �1;:::;n.L/¤ 0.

The results of Sections 5, 6, 7 and 8 generalize from the setting of a single b–cell as
follows. Let Mi denote a set of meridians to the handles of Ci . By Alexander duality
H1.D

4 XC / is generated by MD
F

i Mi . Denote the corresponding variables for
the Magnus expansion by Xi , X D

F
Xi . Again by Alexander duality, the relations in

�1.D
4XC /=.�1.D

4XC //q are all of types .R1/–.R4/ (see Section 5.2), contributed
by the b–cells Ci . Each relation of type .R1/–.R3/ involves only variables in a single
set Mi . The assumptions on the links defining the b–cells in Section 3.6 imply that
all first non-vanishing terms in the Magnus expansion of any relation of type .R4/ also
involve the variables in a single Xi . Variables from other sets Xj may be present, but
only in higher-order terms.

Define GM.C / as the free group FM modulo relations (6-1), where all of the meridians
m;m1;m2 involved in the commutators in (6-1) are elements of the same Mi , for
any given 1� i � n. Define RŒC � as the quotient of ZfX g by the ideal introduced in
Definition 7.1 where the variables xI , xI 0 are elements of Xi for the same i . Consider
the Magnus expansion in the following diagram, analogous to that in Proposition 7.2:

FM //

��

GM.FM/ //

��

GM.C /

ZfX g // RŒC �

Following Definitions 7.3, 7.4, 7.7, introduce eR.C /, S.C / D 1C eR.C /. Define
Q.C / using the order on the components of L reflecting a non-trivial �–invariant (see
above):

Q.C /DQ.C1/˝ � � �˝Q.Cn/:

The proof of Lemma 7.6 goes through, in particular given any element g 2 �1.S
3 X

L/=.�1.S
3XL//q , there is a word w0 representing it in FM such that M.w0/2S.C /.

Denote by M the composition of the Magnus expansion M with the projection
S.C / �! 1CQ.C /. Denoting by ˆi the homomorphism Q.Ci/ �! Z defined in
Section 8.6, consider

ˆD
O

i

ˆi W Q.C /D
O

i

Q.Ci/ �! Z:
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Given g2�1.S
3XL/=.�1.S

3XL//q , ˆ.M .w0// is a well-defined integer. Moreover,
if ˆ.M .g// ¤ 0, then i�.g/ ¤ 1 2 �1.D

4 X C /=.�1.D
4 X C //q . Consider the

commutative diagram

�1.S
3 XL/=.�1.S

3 XL//q
i�
����! �1.D

4 XC /=.�1.D
4 XC //q

p1

x?? p2

x??
Fm1;:::;mn

˛
����! FM D FM1;:::;Mn

M1

??y M

??y
Zfx1; : : : ;xng

ˇ
����! ZfX g D ZfX1; : : : ;Xng

Recall from the proof of Lemma 8.1 at the end of Section 8 that each meridian mi has a
word wi representing it in FM such that M .wi/ is a generating monomial for Q.Ci/,
and ˆi.M .wi//¤ 0. In the diagram above ˛ is defined by setting ˛.mi/Dwi . Then
ˇ is given by ˇ.xj /DM.˛.mj //� 1.

Since L is homotopically essential, there is a relation Œmi ; li � in �1.S
3XL/=.�1.S

3X

L//q such that the Magnus expansion M1 of a word W representing it in Fm1;:::;mn
is

of the form 1C�x1 � � �xnC� � � where �¤ 0. However the projection of ˇ.x1 � � �xn/

onto Q.C / is a product of generating monomials, one for each Q.Ci/, and it follows
from the definition of ˆ that ˆ.˛.W //¤ 0. Since ˆ.M .w0// is an invariant of g 2

�1.S
3XL/=.�1.S

3XL//q , where p1.w0/Dg , p1.W /¤ 12�1.S
3XL/=.�1.S

3X

L//q . But p1.W /D Œmi ; li � is a relation in that group. This contradiction concludes
the proof of Theorem 1.1.
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