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The principal fibration sequence
and the second cohomotopy set

LAURENCE R TAYLOR

Let pW E! B be a principal fibration with classifying map wW B! C . It is well-
known that the group ŒX; �C � acts on ŒX;E� with orbit space the image of p# ,
where p#W ŒX;E�! ŒX;B� . The isotropy subgroup of the map of X to the base
point of E is also well-known to be the image of ŒX; �B� . The isotropy subgroups
for other maps eW X !E can definitely change as e does.

The set of homotopy classes of lifts of f W X ! B to the free loop space on B is a
group. If f has a lift to E , the set p�1

# .f / is identified with the cokernel of a natural
homomorphism from this group of lifts to ŒX; �C � .

As an example, ŒX;S2� is enumerated for X a 4–complex. This is relevant to
questions involving broken Lefschetz fibrations on 4–manifolds. Kirby, Melvin and
Teichner [3] have a different approach to this enumeration.

55Q55; 55Q05

1 Results and discussion

For based spaces X and Y , let ŒX;Y � denote the set of based homotopy classes of
maps from X to Y . The constant map to the base point makes ŒX;Y � into a based set.
If Y is based, the constant path at the base point is a base point for the based loops,
�Y .

A principal fibration pW E! B is a fibration with a classifying map wW B! C such
that E is a pull-back of the path-loop fibration for C along w . Pick a base point
�

E
2 E . Let the base point in B be �

B
D p.�

E
/ and let the base point in C be

�
C
D w.�

B
/, so that w and p become based maps.

It is a result going back to Peterson [7, Lemma 2.1, page 199] and Nomura [6, Corollary
2.1, page 118] that there is an exact sequence of based sets

.1:1/ � � � ! ŒX; �B�! ŒX; �C �! ŒX;E�
p#
���! ŒX;B�

w#
���! ŒX;C �

in the following sense. Each map is a map of based sets and the image of one map is
the inverse image of the base point for the following map.
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236 L R Taylor

One way to derive this sequence is to fix an f W X ! B and consider the set of
based homotopy classes of lifts of f , denoted Liftf� .X E /. There is a forgetful
map Liftf� .X E /! ŒX;E� and properties of fibrations imply that the image is
p�1

# .f /.

Peterson and Thomas [8, Lemma 4.1, page 17] show that there is a left action of the
group ŒX; �C � on the set ŒX;E� which identifies the orbit space with w�1

# .�/ where
� 2 ŒX;C � is the base point. They show that the set Liftf� .X E / is a left ŒX; �C �

torsor and this gives exactness in (1.1) at ŒX; �C �. It further follows that the isotropy
subgroup of the action on the base point of ŒX;E� is the image of ŒX; �B�.

There is another way to proceed. For a space Y , let LY denote the free loop space
and let �W LY ! Y denote the projection. The map � is a fibration. The constant loop
at y 2 Y defines a section sW Y ! LY so the set of lifts has a base point, s ı f . If
�

Y
2 Y is a base point, the space LY has a base point, s.�

Y
/. Let Liftf� .X LY /

denote the set of based homotopy classes of lifts of f W X ! Y .

Addition of loops makes Liftf� .X LY / into a group. A based map wW B ! C

induces a based map LwW LB!LC and, for each f , a group homomorphism

Liftf� .X LB /
Lw#
�����! Liftgıf� .X LC /

Theorem 1.2 The set Liftf� .X E / is a right Liftwıf� .X LC / torsor. To
each element e 2 ŒX;E� lifting f 2 ŒX;B�, there is associated a group isomorphism

Liftwıf� .X LC /
xe
���! ŒX; �C �

The image of the composition

Liftf� .X LB /
Lw#
�����! Liftwıf� .X LC /

xe
���! ŒX; �C �

is the isotropy subgroup of e under the left ŒX; �C � action on ŒX;E�.

Remark 1.3 Theorem 1.2 gives an exact sequence with many of the same properties
as (1.1)

Liftf� .X LB /
L
��! ŒX; �C � ŒX;E�

p#
���! ŒX;B�

w#
���! ŒX;C �

The squiggled arrow denotes a group action. Exactness means the following. Fix
f 2 ŒX;B�. Then f is in the image of p# if and only if w#.f / is the class of the
null homotopic map of X to the base point of C . Two elements e1 , e2 2 ŒX;E�

satisfy p#.e1/ D p#.e2/ if and only if there is an element � 2 ŒX; �C � such that

Geometry & Topology Monographs, Volume 18 (2012)



Principal fibration sequence and second cohomotopy set 237

e1 D e2 � � where � denotes the action. Finally, two elements �1 , �2 2 ŒX; �C �

satisfy e1 � �1 D e1 � �2 if and only if there exists x 2 Liftf� .X LB / such that
�1 D �2 L.x/ in the group structure on ŒX; �C �.

Note that the group Liftf� .X LB / depends on B , f and X instead of just X and
�B as in (1.1), but it is still independent of C and w . The homomorphism between
these two groups can depend on f in addition to just w (see Section 6.3).

An additional observation is that this sequence is natural in both the space X and the
principal fibration.

Remark 1.4 A alternate proof of the above sequence can be given by observing that
EX ! BX ! C X is also a fibration, where Y X is the space of maps of X into Y

(under some mild hypotheses on the spaces involved). The sequence above can be
identified with the �1��0 sequence associated to this fibration.

Remark 1.5 Theorem 1.2 applied to the situation in (1.1) yields a similar sequence.
The group ŒX; �C � is the same for both sequences. Theorem 1.2 determines the
isotropy subgroup of the trivial element to be the group Liftf� .X LB /, which is
isomorphic to ŒX; �B� when f is null homotopic. The map ŒX; �B�! ŒX; �C � is
the map induced by �w . The actions however are on the left, rather than the right.

Remark 1.6 J Rutter [10] has results similar to these if B and C are H–spaces. In
this case the multiplication can be used to naturally identify Liftf� .X LB / with
ŒX; �B�. Rutter uses the H–space structure to describe a homomorphism ŒX; �B�!

ŒX; �C �, depending on f , which presumably is related to the homomorphism given
by Theorem 1.2 whenever B is an H–space. In general this homomorphism can not be
the one induced by �w since the size of the cokernel can vary with f . (See Sections
6.9 and 6.10.)

The author would like to thank the referee for some helpful suggestions on the exposi-
tion.

2 Recall of some basic results

The sequence (1.1) can be derived from standard results about the path-groupoid applied
to function spaces. The needed results are recalled below. To prove Theorem 1.2 requires
an additional technical lemma, Lemma 2.4.
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238 L R Taylor

2.1 Point set topology

As usual all constructions take place in a “convenient category”, K . Vogt [13] is
a good reference. One key point is that the exponential correspondence holds, the
space of maps X � Y to W , is homeomorphic to the space of maps of X to W Y .
Here the product gets the product topology in K and W Y gets the topology given by
starting with the compact-open topology and making it compactly-generated. Also, the
subspace topology on a subset is the one given by taking the usual subspace topology
and then making it compactly-generated.

If W0�W is a subspace, in the category K , then W0
Y with its topology is a subspace

of W Y with its topology.

Given any point w 2W and any space Y , let c
Y!w

2W Y denote the constant map of
Y to w . Anytime W has a base point �

W
2W , the map c

Y!�
W

will be the base point
in W Y . If both Y and W are based, then W Y

� is the subspace of W Y consisting of
all maps f W Y !W which preserve the base points.

A base point is non-degenerate provided the pair .W;�
W
/ is an NDR pair.

If .W;W0/ and .Y;Y0/ are pairs, .W;W0/
.Y;Y0/ denotes the space of all continuous

functions Y !W sending Y0!W0 . It is given the subspace topology in K from
W Y .

Result 2.1 If .W;W0/ is an NDR pair and if Y is compact, then W0
Y is a subspace

of .W;W0/
.Y;Y0/ and the pair is an NDR pair.

Proof Since a subspace of a subspace is a subspace, we deduce that W0
Y is a subspace

of .W;W0/
.Y;Y0/ .

If uW W ! Œ0; 1� is the map which is part of the definition of an NDR pair, then
yuW W Y ! Œ0; 1� defined by yu.f / D supy2Y u.f .y// is continuous. This uses Y

compact. Note yu�1.0/DW0
Y .

If F W W � Œ0; 1�!W is the homotopy which is the other part of the definition of an
NDR pair, then if yF W W Y � Œ0; 1�!W Y is defined by . yF .f; t//.y/ D F.f .y/; t/,
the pair . yF ; yu/ shows the function spaces form an NDR pair.

Remark 2.2 If �
W
2W is non-degenerate then c

Y!�
W

is a non-degenerate point in
both W Y and W Y

� .
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Principal fibration sequence and second cohomotopy set 239

2.2 The path groupoid

Given two points w0 , w1 2W let Ww0;w1
denote the set of homotopy classes of paths

from w0 to w1 where the homotopies are rel end points. The set Ww0;w1
is non-empty

if and only if w0 and w1 are in the same path component of W .

If w0 , w1 and w2 are all in one path component of W , path concatenation defines an
associative pairing

Ww0;w1
�Ww1;w2

!Ww0;w2

Reversing the path defines an involution Ww0;w1

�1

���! Ww1;w0
, and hence a bijection,

such that the image of the composition Ww0;w1
���!
1��1

Ww0;w1
�Ww1;w0

!Ww0;w0

is the constant path at w0 . There is a similar constant map Ww0;w1
!Ww1;w1

.

For any w 2W , Ww;w is a group under path concatenation with �1 being the inverse
map.

If Ww0;w1
is non-empty, the group Ww0;w0

acts on it on the left and the group Ww1;w1

acts on the right. Associativity of path concatenation makes Ww0;w1
into a bi-set.

Result 2.3 If non-empty, the bi-set Ww0;w1
is a torsor for each group action.

Proof To be a torsor means the group action is transitive and the isotropy subgroup of
any point is trivial.

Let �0 , �1 2Ww0;w1
. Then �1 D �0 � .�

�1
0
� �1/ and ��1

0
� �1 2Ww1;w1

. Similarly
�1 D .�1 � �

�1
0
/ � �0 and �1 � �

�1
0
2Ww0;w0

. Hence both actions are transitive.

Now suppose ���D� for some �2Ww0;w0
and some � 2Ww0;w1

. Then .���/���1D

� � ��1 and therefore � is homotopic rel end points to the constant path and so the
isotropy subgroup of � under the left action is trivial. A similar calculation shows the
right action also has trivial isotropy subgroups.

Lemma 2.4 Let �0 , �1 be representatives of elements in Ww0;w1
and let � 2Ww1;w1

.
There exists a homotopy

F W Œ0; 1�� Œ0; 1�!W

with F.t; 0/D�0.t/, F.t; 1/D�1.t/, F.0; s/Dw0D�0.0/D�1.0/ and F.1; s/D�.s/

if and only if �1 D �0 �� .
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240 L R Taylor

Proof Let H be a homotopy rel end points from �0 � � to �1 . Figure 1 is a visual
representation for H and Figure 2 is one for F . Lemma 2.4 is equivalent to constructing
F given H and H given F .

W

w0

�0

�

w1

�1

H

Figure 1

W

w0

�0

�

�1

F

Figure 2

W

w0

�1
�0

�
G

Figure 3

There is an evident map from the squares in Figures 1 and 2 to the triangle in Figure 3.
Either map H or F induces a map G from the triangle to W . Given G , composition
with the map from the appropriate square constructs both F and H .

2.3 Bi-torsors

Suppose T is a left G torsor and a right H torsor as well as a G -H biset. For
x 2 T , define functions x W G ! H and xx W H ! G by g � x D x � x.g/ and
xx.h/ �x D x � h.

Result 2.5 Each x 2 T defines a group isomorphism x W G ! H and an inverse
isomorphism xx W H !G

Proof Note x.eG/DeH and xx.eH /DeG . Also check x�x.g1g2/D .g1g2/�xD

g1 � .g2 � x/ D g1 �
�
x � x.g2/

�
D .g1 � x/ � x.g2/ D x �

�
x.g1/x.g2/

�
so x

is multiplicative. Check x and xx are inverse functions. Hence they are inverse
homomorphisms and the result follows.

Result 2.6 If x1 , x2 2 T , then x1
and x2

are conjugate as are xx1
and xx2

Proof If x1 D x2 � h, x1 � x1
.g/ D g � x1 D g � .x2 � h/ D x2 � .x2

.g/h/ D

.x2 � h/ � .h�1x2
.g/h/ D x1 � .h

�1x2
.g/h/ so x1

.g/ D h�1x2
.g/h. The proof

for the x is similar.
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Principal fibration sequence and second cohomotopy set 241

2.4 Principal Fibrations

A principal fibration is a fibration E
p
�! B which is a pull-back of the path-loop

fibration �C!P C���!
�C C along a map wW B!C . The definition of the space P C

requires a base point in C , say �
C

. Then P C is the space of all maps �W Œ0; 1�! C

such that �.0/D�
C

. Equivalently it is the subspace of C Œ0;1� of paths that start at �
C

,
.C;�

C
/.Œ0;1�;0/ .

Up to fibre homotopy equivalence, a principal fibration has a standard model. The
total space is Ew � B �C Œ0;1� such that .b; �/ 2Ew if and only if w.b/D �.1/ and
�

C
D �.0/. The fibration projection is just projection onto the B factor. If B is given

a base point �
B

such that w.�
B
/D �

C
, then Ew has a base point,

�
�

B
; c

�
where it

should cause no confusion to shorten the notation for the base point in a function space
to c.

For the purposes of this paper it suffices to pick a convenient based map w , and then
work with Ew . Two w which are based homotopic yield Ew which are based fibre
homotopy equivalent and all questions discussed here only depend on the based fibre
homotopy type of the fibration.

The next result describes the set of lifts. There is a map induced by composition with
w , wX W BX ! C X .

Result 2.7 The set of homotopy classes of lifts of f 2 BX is equivalent to the set
Ww0;w1

where W D C X , w0 D c and w1 D w
X .f /. If f is based, then the set of

based homotopy classes of lifts of f is equivalent to the set Ww0;w1
for the same wi

but with W D C X
� .

Proof A map of X to Ew consists of a map f W X ! B and a map ƒW X ! C Œ0;1�

satisfying two conditions: w ıf .x/Dƒ.x; 1/ and ƒ.x; 0/D �
C

.

Consider the map f as a point f 2 BX and the map ƒ as a map ƒW Œ0; 1�! C X

satisfying two conditions: ƒ.0/D c and ƒ.1/DwX .f /. Two lifts of f , ƒ0 and ƒ1 ,
are homotopic as lifts if and only if ƒ0 and ƒ1 are homotopic rel end-points, that is,
they represent the same element in Ww0;w1

.

Result 2.8 Given a map f 2Y X , a lift to the free loop space is a map ˆW Œ0; 1�!Y X

such that ˆ.0/ D ˆ.1/ D f . In other words, the set of homotopy classes of lifts of
f to the free loop space on Y is equivalent to Ww;w with W D Y X and w D f . If
f 2 Y X

� then the based lifts are equivalent to Ww;w with the same w and W D Y X
� .
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242 L R Taylor

3 The proof of Theorem 1.2

Fix a principal fibration pW Ew! B , wW B! C . Fix a base point in B and use its
image to base C . This gives a preferred base point in Ew . Also fix a based space X .

Let W D C X
� . Since C must have a base point to define Ew , let c be the constant

map of X to the base point of C . Fix eW X !E and let f D p ı e .

Remark 3.1 Given f W X ! B , there exist such e ’s if and only if w ı f is null-
homotopic rel base point.

Up to homotopy of lifts, e is determined by f and ƒ 2Wc;wX .f / . The group acting
on the left is Wc;c D ŒX; �C �. The group acting on the right is WwX .f /;wX .f / D

Liftwıf� .X LC /. The isomorphism xe in Theorem 1.2 is the map defined by
Result 2.5.

Two lifts ƒ0 and ƒ1 are homotopic in ŒX;E� if and only if there are homotopies
ˆW Œ0; 1�!BX

� with ˆ.0/Dˆ.1/Df and F W Œ0; 1��Œ0; 1�!C X
� such that F.1; s/D

wX
�
ˆ.s/

�
, F.i; t/Dƒi.t/, i D 0, 1.

Equivalently, ˆ 2 Liftf� .X LB / and, if � D wX .ˆ/ 2 Liftwıf� .X LC /,
Lemma 2.4 completes the proof of Theorem 1.2.

4 Some general remarks on calculations

There are some situations in which the group of lifts calculation can be replaced by
just calculating a set of homotopy classes of maps.

One situation, Corollary 4.2, is a generalization of a result of James and Thomas, [2,
Theorem 2.6, page 493]

Theorem 4.1 Let Y be a based space and let f W X ! Y be a based map. Then

G D Liftf� .X LY /
�
��! ŒX;LY �

�#
���! ŒX;Y �

is exact in that the image of � is ��1
# .f /. The image of � is also the set of conjugacy

classes of elements of G .

Proof A lift is a map X !LY D Y S1

. By the exponential correspondence a lift is
also a map S1! Y X . The lift property is equivalent to the additional condition that
the base point of S1 goes to f 2 Y X . Hence G D �1.Y

X If /.
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Principal fibration sequence and second cohomotopy set 243

An element ŒX;LY � is equal to an element in ŒS1;Y X � with no condition on the base
points except that the base point of S1 lands in the path component of f . There is
always a homotopy which takes the base point of S1 to f 2 Y X so the image of � is
��1

# .f /.

It is always true that the relation between �1.Y
X If / and the free homotopy classes is

that the set of free homotopy classes is the set of conjugacy classes.

Corollary 4.2 (James and Thomas [2]) The group Liftf� .X LY / is abelian if
and only if � is injective.

Given a map wW B! C , there is an induced map LwW LB!LC and

Liftf� .X LB/
�1 //

Lw#
��

ŒX;LB�
�1

# //

Lw#

��

ŒX;B�

w#

��
Liftwıf� .X LB/

�2 // ŒX;LC �
�2

# // ŒX;C �

commutes. Hence, if the group Liftwıf� .X LC / is abelian the cokernel of Lw#

can be worked out from knowledge of just the right-hand square. Specifically

Corollary 4.3 With notation as above, suppose Liftwıf� .X LC / is abelian. The
set C D .�2

# /
�1.w ıf /� ŒX;LC � is a group. The set Lw#

�
.�1

# /
�1.f /

�
is a subgroup

of C and there is a bijection between the coset space of this inclusion and the cokernel
of Lw# .

5 Some results on H–spaces

To go further with the analysis in the last section requires some hypotheses. Let B

and C be H–spaces which have the homotopy type of CW complexes. Do not assume
that the classifying map wW B! C is an H–map. Theorem 1.2 under these additional
assumptions was obtained by J W Rutter [10, Theorem 1.3.1, page 382] and there is
considerable overlap between his Section 1.4 and the material here.

If Y has the homotopy type of a CW complex, so do LY and �Y ; see Milnor [5,
Theorem 3, page 276]. If Y is an H–space, the section map sW Y ! LY and the
inclusion map iW �Y ! LY can be multiplied using the H–space product to give
homotopy equivalences, �W �Y �Y !LY ; see James and Thomas, [2, Theorem 2.7,
page 494], or Zabrodsky, [14, 1.3.6 Proposition, page 24]. It follows that for any
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hW X ! Y , Lifth�.X LY / is isomorphic as a group to ŒX; �Y �. Since Y is an H–
space, ŒX; �Y � is abelian and Lifth�.X LY /D ŒX; �Y ��h� ŒX; �Y �� ŒX;Y �D

ŒX;LY �.

Hence it suffices to understand Lw# for wW B! C . If ˛ 2 ŒX; �B� and ˇ 2 ŒX;B�
write ˛ � ˇ for �B

�
.iB/#.˛/; .sB/#.ˇ/

�
. Hence, to understand Lw# it suffices to

understand Lw#.˛�ˇ/ where ˛2 ŒX; �B� and ˇ2 ŒX;B�. Zabrodsky [14, Section 1.4,
page 25] discusses the deviation from a map being an H–map. In this case, the deviation
is a map DW LB^LB!LC which depends on w and is null-homotopic if and only
if w is an H–map.

With ˛ 2 ŒX; �B� and ˇ 2 ŒX;B� define W .˛; ˇ/ as the composition

X
�
��! X ^X

˛^ˇ
����! �B ^B

iB^sB
�����! LB ^LB

D
��! LC

Then �C

�
W .˛; ˇ/;Lw#.˛�ˇ/

�
D .�w/#.˛/�w#.ˇ/.

Assume further that C is homotopy-associative so that LC is also homotopy-
associative. Then ŒX;LC � is a group and so

Lw#.˛�ˇ/
�
D �C

�
W .˛; ˇ/�1; .�w/#.˛/�w#.ˇ/

�
:

To continue, Zabrodsky [14, 1.4.2 Proposition, page 25] shows that

LB ^LB
D //

�1^�1

��

LC

�2

��
B ^B

D // C

commutes. Hence it follows that the composition �B^B
iB^sB
�����! LB^LB

D
��! LC

lifts to a map �B^B!�C . This is a map into �C so it has a multiplicative inverse
DW �B ^B!�C . Further, for ˛ 2 ŒX;B� and ˇ 2 ŒX; �B� define ˛ ^w ˇ as the

composition X
�
��! X ^X

˛^ˇ
����! �B ^B

D
��! �C . Note ˛ ^w ˇ is bilinear in

both ˛ and ˇ .

Plugging this into the formula above shows

Lw#.˛�ˇ/
�
D �C

�
.iB/#.˛^w ˇ/; .�w/#.˛/�w#.ˇ/

�
:

Let ��C W �C ��C ! �C be the usual H–space multiplication and since �C is
homotopy-associative the next formula has been proved:

.5:1/ Lw#.˛�ˇ/
�
D ��C

�
.˛^w ˇ/; .�w/#.˛/

�
�w#.ˇ/
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Formula (5.1), Corollary 4.3 and Theorem 1.2 prove

Theorem 5.2 Let B and C be H–spaces with C homotopy-associative. Let wW B!
C be any map. Let E be the homotopy fibre of w , so �C !E �!

p
B is a principal

fibration. Let ˇ 2 ŒX;B� be such that w#.ˇ/ D 0. Then .p#/
�1.ˇ/ � ŒX;E� is

non-empty and there is a bijection between .p#/
�1.ˇ/ and the cokernel of the homo-

morphism  W ŒX; �B�! ŒX; �C � defined by  .˛/ D ��C
�
.˛ ^w ˇ/; .�w/#.˛/

�
for each ˛ 2 ŒX; �C �.

Remark 5.3 Continuing in this vein, let e 2 ŒX;E� be some element with p#.e/D ˇ .
Let

D0W �B ^E
1�B^ p
�������! �B ^B

D
��! �C

and define ˛^0w e as the composition X
�
��! X ^X

˛^e
����! �B ^E

D0

��! �C . Cer-
tainly ��C

�
.˛ ^w ˇ/; .�w/#.˛/

�
and ��C

�
.˛ ^0w e/; .�w/#.˛/

�
have the same

image and sometimes D0 is easier to compute than D.

Further information on D can be obtained by applying (5.1) to the identity map which
yields the next result.

Theorem 5.4 The composition �B � B ��! LB
Lw
����! LC is homotopic to the

following composition.

�B�B
s�1
���! .�B^B/�.�B�B/

D��w�w
��������!�C��C�C ��!�C�C ��!LC

where sW �B �B!�B ^B is the usual map.

Corollary 5.5 Suppose a 2 Hr1
.�BIZ/ and b 2 Hr2

.EIZ/ are primitive classes,
ri > 0. Then D0�.a� b/ 2Hr1Cr2

.�C IZ/ maps to Lw�.a� b/ 2Hr1Cr2
.LC IZ/.

Proof Since both a and b are primitive, the composition

�B �E
�
��! .�B �E/� .�B �E/! .�B ^E/� .�B �E/

on a� b is .a^ b/� .1� 1/C 1� .a� b/. By Theorem 5.4 the result follows since
w�.b/D 0.
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Remark 5.6 If C is not an H–space but is highly connected, then replace C by �†C

and consider the composition B! C
�
��! �†C where � is the canonical inclusion.

There is a commutative ladder

�C //

��
��

E //

��

B
w //

��

C

�

��
�2†C // yE // B // �†C

If �i.C /D 0 for i < n, then for any complex X of dimension 6 2n� 2, ŒX;C �!
ŒX; �†C � is an isomorphism as are the other induced vertical maps. The results
above can be applied to the yE principal fibration to yield results about the E principal
fibration.

6 Some examples

6.1 Steenrod’s problem

Steenrod [12] solved the problem of enumerating the homotopy classes of maps ŒX;Sn�

where n > 3 and X is a CW complex of dimension at most nC 1. Theorem 1.2 is
not needed for the calculations in this subsection, but the results are needed below. A
modern approach to this problem goes as follows.

For n> 1, let SEn be the fibre of the map K.Z; n/
Sq2

���! K.Z=2Z; nC 2/. There is a
map Sn! SEn and the induced map ŒX;Sn�! ŒX;SEn� is an isomorphism if n> 3

and the dimension of X is at most nC 1. In other words, SEn is the first two stages
of a Postnikov decomposition for Sn . The needed calculations are due to Serre [11].

For n > 3, SEn D �SEnC1 so SEn is a homotopy-abelian H–space, ŒX;SEn� is an
abelian group, and the fibration de-loops. Write coker

�
Sq

2�
for the Z=2Z vector space

H nC1.X IZ=2Z/=Sq2
�
H n�1.X IZ/

�
. Steenrod’s main theorem [12, Theorem 28.1,

page 318] follows:

.6:1/ 0! coker
�
Sq

2�
! ŒX;Sn�!H n.X IZ/! 0

is an exact sequence of abelian groups.

Historically of course this approach is backwards. Steenrod invented Sq2 to solve
this problem and then worked out the Steenrod algebra which led to Serre’s work.
One could make a case for this being one of the all-time most important problems in
algebraic topology.
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Larmore and Thomas [4, Section 5] give a procedure to determine the extension in (6.1).
In this case their procedure reduces to determining how the kernel of the multiplication
by 2k on H n.X IZ/ maps into ŒX;Sn�. To analyze this, consider the 2k power maps
on SEn , sk , k > 1. For each k there is a commutative ladder of fibrations

K.Z=2Z; nC 1/

K.Z=2Z; nC 1/

�0

SEn

SEn

sk

K.Z; n/

K.Z; n/

�2k

K.Z=2Z; nC 2/

K.Z=2Z; nC 2/

�0

Sq2

Sq2

 0
k

Since the rows are fibrations (up to homotopy) there exists a map  0
k

as indicated in
the diagram making the lower triangle commute. Since H nC1

�
K.Z; n/IZ=2kZ

�
D 0,

the map  0 is unique. It follows from the Serre spectral sequence for the fibration that
H nC1

�
SEnIZ=2kZ

�
D 0 so the upper triangle involving  0

k
also commutes.

Next check that the following diagram commutes.

K.Z; n/ SEn

 0
k

K.Z; n/ K.Z; n/
�1

K.Z=2kZ; n/ K.Z=2Z; nC 2/
Sq2

�2k

Sq2

It follows that there is an induced map on the fibres which is the loops of Sq2 and is
therefore again Sq2 . Hence

K.Z=2kZ; n� 1/ K.Z=2Z; nC 1/
Sq2

K.Z; n/ SEn

 0
k

K.Z; n/ K.Z; n/
�1

ık

2k

commutes, where ık is the evident Bockstein. The next result summarizes the above
discussion.
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Theorem 6.2 Let X be a finite complex of dimension 6nC1. Fix  2H n.X IZ/ and
suppose there is a k>1 such that 2k D0. Pick  02H n�1.X IZ=2kZ/ with ık. 0/D
 and then compute Sq2. 0/ 2H nC1.X IZ=2Z/=Sq2

�
H n�1.X IZ/

�
� ŒX;Sn�. For

any x 2 ŒX;Sn� which maps to  , 2k x D  0
k
. /D Sq2. 0/.

Example 6.3 Suppose X is a complex of dimension 6 nC 1 and suppose that

Sq2
W H n�1.X IZ/!H nC1.X IZ=2Z/

Sq2
W H n�1.X IZ=2Z/!H nC1.X IZ=2Z/and

have the same image. Then ŒX;Sn�D coker
�
Sq

2�
˚H n.X IZ/.

Example 6.4 If X 4 is Habegger’s manifold [1] or an Enrique’s surface, then

Sq2
W H 2.X IZ/!H 4.X IZ=2Z/

Sq2
W H 2.X IZ=2Z/!H 4.X IZ=2Z/is zero but

is onto. Since H 3.X IZ/D Z=2Z it follows that ŒX;S3�Š Z=4Z.

6.2 Pontrjagin’s problem

Pontrjagin [9] solved the problem of enumerating ŒX;S2� for X a 3–complex before
Steenrod did his work. From the point of view taken here, S2! BS1! BS3 is a
fibration so S2 is the total space of a principal fibration, S3! S2! BS1 . Since S1

is an abelian group, BS1 D CP1 is an H–space. However, S3 is not abelian and
BS3 DHP1 is not an H–space.

However, �i.BS3/D 0 for i < 4 so Remark 5.6 says that as long as the dimension of
X is 6 2 � 4� 2D 6, the theorems in Section 5 apply. The next subsection computes
the answer for all complexes of dimension 6 4 and includes a statement and proof of
Pontrjagin’s result as Corollary 6.9.

6.3 The second cohomotopy set of a 4–complex

Let X have the homotopy type of a CW–complex of dimension 6 4. The first step is to
compute the map ŒX;BS1�! ŒX;BS3�. The map BS3!K.Z; 4/ giving a generator
of H 4.BS3IZ/Š Z is 5–connected, so ŒX;BS3�! ŒX;K.Z; 4/�DH 4.X IZ/ is an
isomorphism. Since the map BS1!BS3 is the standard inclusion of CP1 in HP1 ,
the map ŒX;BS1�DH 2.X IZ/! ŒX;BS3�DH 4.X IZ/ is just the cup product square.
Hence ŒX;S2�! H 2.X IZ/ is onto the subset of classes ˇ 2 H 2.X IZ/ such that
ˇ[ˇ D 0 2H 4.X IZ/.
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Since BS3 is not an H–space, use Remark 5.6 and work with �†BS3 .

In Section 6.1, the group ŒX;S3�D ŒX; �2†BS3� was computed for any 4–complex.

For a fixed map eW X ! S2 , the next step is to understand the homomorphism
 eW H

1.X IZ/! ŒX; �†BS3�. Since ˛ 2 H 1.X IZ/ is equivalent to a homotopy
class of based maps ˛W X ! S1 , and since D0W S1 ^S2!�2†BS3 , it follows that
D0 factors through the degree ce –map S3! S3 . Hence there is a homomorphism
x W H 1.X IZ/! ŒX;S3� such that  e is the composition

H 1.X IZ/
x 
��! ŒX;S3�

.ce/#
����! ŒX;S3�

where .ce/# is the map induced by the degree ce map on S3 . Since ŒX;S3� is an
abelian group, .ce/# is just multiplication by ce .

By definition, the composition H 1.X IZ/
x 
��! ŒX;S3� ! H 3.X IZ/ just sends ˛

to ˛ [ ˇ where ˇ 2 H 2.X IZ/ is given by pulling back the fundamental class in
H 2.S2IZ/ via eW X ! S2 . It follows from Lemma 6.5 below that ce D ˙2. The
sign will not be determined here.

Lemma 6.5 The map H3.LBS1IZ/!H3.LBS3IZ/ is multiplication by ˙2.

Proof For m D 1 or 3, the Serre spectral sequence for Sm ! LBSm ! BSm

collapses and H�.LBSmIZ/ D E.em/ ˝ ZŒxmC1� where em 2 Hm.LBSmIZ/
is the image of Hm.S

mIZ/; xmC1 2 HmC1.LBSmIZ/ maps to a generator of
HmC1.BSmIZ/; E.em/ is an exterior algebra and ZŒxmC1� is a polynomial algebra.

Now H2.LS2IZ/Š Z˚Z=2Z, say by Ziller, [15, page 21]. It follows that in the
Serre spectral sequence for the fibration LS2! LBS1! LBS3 there is a single
differential from H3.LBS3IZ/ onto Z=2Z so H3.LBS1IZ/! H3.LBS3IZ/ is
multiplication by ˙2.

It follows that the homomorphism  eW H
1.X IZ/! ŒX;S3� factors as

H 1.X IZ/
. /[ˇ
�������! H 3.X IZ/

 0
1

����! ŒX;S3�

and so  e only depends on ˇ and hereafter will be written  ˇ

Theorem 6.6 Let X be a complex of dimension 64 and let p#W ŒX;S
2�!H 2.X IZ/

be the map pulling back a fixed generator of H 2.S2IZ/.

If ˇ 2 H 2.X IZ/ is given, then p�1
# .ˇ/ is non-empty if and only if ˇ [ ˇ D 0.

Furthermore, if p�1
# .ˇ/ is non-empty, then there is a bijection between it and the

cokernel of  ˇW H 1.X IZ/! ŒX;S3�.

Geometry & Topology Monographs, Volume 18 (2012)



250 L R Taylor

Remark 6.7 Let Pˇ be the cokernel of H 1.X IZ/
2. /[ˇ
��������! H 3.X IZ/. Then

there is an exact sequence

coker
�
Sq

2� q
���! coker

�
 ˇ

�
! Pˇ! 0

The kernel of q is the set of all elements of the form Sq2.a/ for some a2H 2.X IZ=2Z/
such that there exists ˛ 2H 1.X IZ/ such that ı1.a/D ˛[ˇ 2H 3.X IZ/.

Remark 6.8 There are three types of connected, closed, compact 4–manifolds: (1)
there exists an x 2H 2.X IZ/ with odd square; (2) for all x 2H 2.X IZ=2Z/ x[xD0;
(3) X is not of type (2) but for all x 2H 2.X IZ/ x [ x is even. If X has type (1),
coker

�
 ˇ

�
! Pˇ is an isomorphism. If X has type (2) 0! Z=2Z! coker

�
 ˇ

�
!

Pˇ ! 0 is split exact. If X has type (3) Z=2Z! coker
�
 ˇ

�
! Pˇ ! 0 is exact

and Theorem 6.2 can be used to determine the group. If X has type (3) and if
coker

�
 ˇ

�
! Pˇ is not an isomorphism, then the sequence is not split. The manifold

CP2 has type (1), any Spin manifold has type (2) and the Habegger manifold [1] is an
example a type (3) manifold for which the extension is not split. The author did not
know an example of a type (3) manifold for which coker

�
 ˇ

�
!Pˇ is an isomorphism.

Such an example is constructed in Example 7 of [3].

Corollary 6.9 (Pontrjagin [9]) If X is a 3–dimensional complex then ŒX;S2�!

H 2.X IZ/ is onto and there is a bijection between p�1
# .ˇ/ and Pˇ .

Example 6.10 Let X D S2 � S1 . Then H 2.X IZ/ Š Z: let  be a generator. If
ˇ D c then there are maps X ! S2 such that ˇ is the image of a generator of
H 2.S2IZ/ and there is a bijection between p�1

# .ˇ/ and Z if c D 0 and Z=2cZ
otherwise.

Example 6.11 Let X DS2�S1�S1 . Let fa1; a2g �H 1.X IZ/ŠZ˚Z be a basis
and let faDa1[a2; bg�H 2.X IZ/ be a basis. It follows that fb[a1; b[a2g is a basis
for H 3.X IZ/. Then ˇD aaCbb has square 0 if and only if a �bD 0. If bD 0, then
coker

�
 ˇ

�
DH 3.X IZ/˚Z=2ZŠ Z2˚Z=2Z. If aD 0, then the image of  ˇ is

spanned by .2b/ b[a1 and .2b/ b[a2 and so coker
�
 ˇ

�
ŠZ=2bZ˚Z=2bZ˚Z=2Z.
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