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Homological algebra of knots and BPS states

SERGEI GUKOV

MARKO STOŠIĆ

It is known that knot homologies admit a physical description as spaces of open BPS
states. We study operators and algebras acting on these spaces. This leads to a very
rich story, which involves wall-crossing phenomena, algebras of closed BPS states
acting on spaces of open BPS states and deformations of Landau–Ginzburg models.

An important application to knot homologies is the existence of “colored differentials”
that relate homological invariants of knots colored by different representations. Based
on this structure, we formulate a list of properties of the colored HOMFLY homology
that categorifies the colored HOMFLY polynomial. By calculating the colored
HOMFLY homology for symmetric and antisymmetric representations, we find a
remarkable “mirror symmetry” between these triply graded theories.

57M25; 81T30

1 Setting the stage

Quantum knot invariants were introduced in the 1980s by Reshetikhin and Turaev [56]
and Witten [61]: for every representation R of a Lie algebra g, one can define a
polynomial invariant xP g;R.K/ of a knot K . Its reduced version is

(1-1) P g;R.K/D
xP g;R.K/

xP g;R. /
;

where denotes the unknot.

A categorification of the polynomial P g;R.K/ (or its unreduced version xP g;R.K/)
is a doubly graded homology theory1 Hg;R.K/ whose graded Euler characteristic is
equal to P g;R.K/. In other words, if Pg;R.K/.q; t/ denotes the Poincaré polynomial
of Hg;R.K/, then we have

P g;R.K/.q/D Pg;R.K/.q; t D�1/:

Categorification of quantum knot invariants was started by Khovanov’s seminal paper
[33], where a categorification of the Jones polynomial was defined. This corresponds

1All homologies in this paper are defined over Q .
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to the fundamental representation of Lie algebra g D sl.2/. The extension for the
fundamental representations of gD sl.N /, for any positive integer N , was defined by
Khovanov and Rasmussen [37].

Unlike P g;R.K/, the explicit combinatorial definition of Hg;R.K/ exists for very few
choices of g and R. However, physical insights based on BPS state counting and
Landau–Ginzburg theories predict various properties and a very rigid structure of these
homology theories.

One of the first results was obtained by Dunfield, Gukov and Rasmussen [14] for
gD sl.N / and its fundamental representation RD . This work builds on a physical
realization of knot homologies as spaces of BPS states (see the first author alone [23]
and with Schwarz and Vafa [21]):

(1-2) Hknot DHBPS:

Among other things, this relation predicts the existence of a polynomial knot invariant
P .K/.a; q; t/, sometimes called the superpolynomial, such that for all sufficiently
large N one has

(1-3) Psl.N /; .K/.q; t/D P .K/.aD qN ; q; t/:

Moreover, the polynomial P .K/.a; q; t/ has nonnegative coefficients and is equal to
the Poincaré polynomial of a triply graded homology theory H .K/ that categorifies
the reduced two variable HOMFLY polynomial P .K/.a; q/, and similarly for the
unreduced invariants. This triply graded theory comes equipped with a collection of
differentials fdN g, such that the homology of H .K/ with respect to dN is isomorphic
to Hsl.N /; .K/.

There are only two triply graded knot homologies that have been studied in the literature
up to now. Besides the above-mentioned HOMFLY homology, the second triply graded
theory, proposed by the first author and Walcher [24], similarly unifies homological
knot invariants for the N –dimensional vector representation R D V of g D so.N /

and g D sp.N /. This triply graded theory HKauff.K/ comes with a collection of
differentials fdN g, such that the homology with respect to dN for N > 1 is isomorphic
to Hso.N /;V .K/, while the homology with respect to dN for even N < 0 is isomorphic
to Hsp.�N /;V .K/. Since the graded Euler characteristic of HKauff.K/ is equal to the
(reduced) Kauffman polynomial of K , HKauff.K/ is called the Kauffman homology
of a knot K .

One way to discover differentials acting on all of these knot homology theories is by
studying deformations of the potentials and matrix factorizations in the corresponding
Landau–Ginzburg theories (see Section 3 for details). In particular, in the case of the

Geometry & Topology Monographs, Volume 18 (2012)



Homological algebra of knots and BPS states 311

Kauffman homology one finds a peculiar deformation that leads to a “universal” differen-
tial d! and its conjugate d , such that the homology with respect to these differentials
is, in both cases, isomorphic to the triply graded HOMFLY homology H .K/.

A careful reader may notice that most of the existent results reviewed here deal with
the fundamental or vector representations of classical Lie algebras (of Cartan type
A, B , C or D ). In this paper, we do roughly the opposite: we focus mainly on
gD sl.N / but vary the representation R. In particular, we propose infinitely many triply
graded homology theories associated with arbitrary symmetric (Sr ) and antisymmetric
(ƒr ) representation of sl.N /. Moreover, these colored HOMFLY homology theories
come equipped with differentials, such that the homology, say, with respect to dSr

N
is

isomorphic to Hsl.N /;Sr

.K/, and similarly for RDƒr .

Remarkably, in addition to the differentials labeled by N (for a given r ) we also find
colored differentials that allow to pass from one triply graded theory to another, thus
relating homological knot invariants associated with different representations!

Specifically, for each pair of positive integers .r;m/ with r >m, we find a differential
dr!m , such that the homology of HSr

.K/ with respect to dr!m is isomorphic to
HSm

.K/. Similarly, in the case of antisymmetric representations, we find an infinite
sequence of triply graded knot homologies Hƒr

.K/, one for every positive integer
r , equipped with colored differentials that allow to pass between two triply graded
theories with different values of r .

The colored differentials are a part of a larger algebraic structure that becomes manifest
in a physical realization of knot homologies as spaces of BPS states. As it often happens
in physics, the same physical system may admit several mathematical descriptions;
a prominent example is the relation between Donaldson–Witten and Seiberg–Witten
invariants of 4–manifolds that follows from the physics of supersymmetric gauge
theories in four dimensions; see Witten [62]. Similarly, the space of BPS states in (1-2)
admits several (equivalent) descriptions depending on how one looks at the system
of five-branes in eleven-dimensional M–theory (see the first author, Schwarz and
Vafa [23]) relevant to this problem.

Specifically, for knots in a 3–sphere S 3 the relevant system is a certain configuration
of five-branes in M–theory on R�M4 �X , where M4 ŠR4 is a 4–manifold with
isometry group U.1/P �U.1/F and X is a noncompact toric Calabi–Yau 3–fold (both
of which will be discussed below in more detail). And, if one looks at this M–theory
setup from the vantage point of the Calabi–Yau space X , one finds a description of
BPS states via the enumerative geometry of X . Furthermore, for simple knots and links
that preserve toric symmetry of the Calabi–Yau 3–fold X the study of enumerative
invariants reduces to a combinatorial problem of counting certain 3–dimensional
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partitions (= fixed points of the 3–torus action; see Okounkov, Reshetikhin and Vafa
[53]), hence, providing a combinatorial formulation of knot homologies in terms of
3–dimensional partitions; see the first author, Iqbal, Kozçaz and Vafa [22] and Iqbal
and Kozçaz [28].

On the other hand, if one looks at this M–theory setup from the vantage point of the
4–manifold M4 , one can express the counting of BPS invariants in terms of equivariant
instanton counting on M4 . In this approach (see eg the first author, Dimofte and
Hollands [12]), the “quantum” q–grading and the homological t –grading on the space
(1-2) originate from the equivariant action of U.1/P �U.1/F on M4 .

A closely related viewpoint, that will be very useful to us in what follows, is based
on the five-brane world-volume theory; see Witten [64]. Let us briefly review the
basic ingredients of this approach that will make the relation to the setup of [23] more
apparent. In both cases, knot homology is realized as the space of BPS states and, as
we shall see momentarily, the physical realization of the triply graded knot homology
proposed in [23] is essentially the large N dual of the system realizing the doubly
graded knot homology in [64]. This is very typical for systems with SU.N / gauge
symmetry2 which often admit a dual “holographic” description that comprises all N in
the same package and leads to useful computational techniques; see Aharony, Gubser,
Maldacena, Ooguri and Oz [2].

In the case of sl.N / homological knot invariants, the five-brane configuration described
in [64, Section 6] is the following:

space-time: R�T �W �M4;

N M5–branes: R�W �D;(1-4)

M5–brane: R�LK �D:

Here, W is a 3–manifold and DŠR2 is the “cigar” in the Taub-NUT space M4ŠR4 .
The Lagrangian submanifold LK � T �W is the conormal bundle to the knot K �W ;
in particular,

(1-5) LK \W DK:

In all our applications, we consider W D S 3 (or, a closely related case of W DR3 ).
Similarly, the setup of [23] can be summarized as

(1-6)
space-time: R�X �M4;

M5–brane: R�LK �D;

2The same is true for other classical groups.
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where X is the resolved conifold, ie the total space of the O.�1/˚O.�1/–bundle over
CP 1 . From the way we summarized (1-4) and (1-6), it is clear that they have many
identical elements. The only difference is that (1-4) has extra M5–branes supported on
R�W �D , whereas (1-6) has a different space-time (with a 2–cycle in the Calabi–Yau
3–fold X ), which is exactly what one expects from a holographic duality or large N

transition; see Gopakumar and Vafa [18] and Ooguri and Vafa [54]

Indeed, what is important for the purpose of studying the space of BPS states, HBPS ,
is that both (1-4) and (1-6) preserve the same amount of supersymmetry and have the
same symmetries:

Time translations: Both systems have a translation symmetry along the time direction
(denoted by the R factor in (1-4) and (1-6)). Therefore, in both cases, one can ask for
a space of BPS–states — on multiple M5–branes in (1-4), and on a single M5–brane
in (1-6) — which is precisely what was proposed as a candidate for the sl.N / knot
homology (respectively HOMFLY homology).

Rotation symmetries:

(1-7) U.1/P �U.1/F :

Here, the two U.1/ factors correspond, respectively, to the rotation symmetry of the
tangent and normal bundle of D Š R2 in a 4–manifold M4 Š R4 . In particular, in
both frameworks (1-4) and (1-6), the former is responsible for the q–grading of HBPS ,
which corresponds to the conserved angular momentum derived from the rotation
symmetry of D .

A well-known feature of the large N duality is that the rank of the gauge group turns
into a geometric parameter of the dual system (cf [2] or [18]). In the present case, it is
the Kähler modulus of the Calabi–Yau 3–fold X DOCP1.�1/˚OCP1.�1/:

(1-8) N � log.a/D Vol.CP 1/:

The reason we denote the Kähler parameter by log.a/ rather than a is that with
this convention aD qN is the standard variable of the HOMFLY polynomial / knot
homology.

Another feature familiar to the practitioners of the refined / motivic Donaldson–Thomas
theory is that HBPS can jump as one varies stability conditions; see Behrend, Bryan
and Szendrői [4], Cecotti and Vafa [7] Denef and Moore [10], the first author and
Dimofte [11], the first author, Dimofte and Soibelman [13] and Kontsevich and Soibel-
man [40]. Thus, in a closely related type IIA superstring compactification on a Calabi–
Yau 3–fold X , the stability parameters are the Kähler moduli of X , and in the present
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Figure 1: For the conifold X , the space of stability conditions is one-
dimensional. It is parametrized by the Kähler parameter N � log.a/ D
Vol.CP 1/ . This space is divided by walls of marginal stability into a set of
chambers, which can be identified with the set of integers Z .

case there is only one Kähler modulus (1-8) given by the volume of the CP 1 –cycle in
X . Therefore, we conclude that the space (1-2) can jump as one changes the stability
parameter N � Vol.CP 1/.

Luckily, in the case where X is the total space of the O.�1/˚O.�1/–bundle over
CP 1 relevant to our applications, the wall-crossing behavior of the refined BPS
invariants has been studied in the literature; see the first author and Dimofte [11],
Jafferis and Moore [29] and Nagao and Nakajima [52]. The one-dimensional space of
stability conditions is divided into a set of chambers illustrated in Figure 1. In each
chamber, HBPS is constant and the jumps of closed BPS states occur at the walls W˙1

n

characterized by different types of “fragments”:

(1-9)

W1
n W D2=D0 fragments,

W�1
n W D2=D0 fragments,

W0
n W D0 fragments.

Notice, the set of chambers in this model can be identified with Z, the set of integer
numbers. As we explain in the next section, this is not a coincidence. Namely, as we
shall see, every fragment corresponds to a differential acting on the space in (1-2), so
that in the present example one finds a set of differentials fdN g labeled by N 2 Z.

The differentials fdN g are part of the homological algebra of knots / BPS states,
depending on whether one prefers to focus on the left or right side of the relation
(1-2). For larger representations, in addition to the differentials fdN g one finds colored
differentials that allow to pass between homology theories associated with different
R. Even though a combinatorial definition of the majority of such theories, with all
the differentials, is still missing, their structure (deduced from physics) is so rigid that
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enables computation of the homology groups for many knots and passes a large number
of consistency checks.

In particular, by computing the triply graded homologies HSr

.K/ and Hƒr

.K/ for
various knots, we find the following surprising symmetry between the two theories:

(1-10) Hƒr

i;j ;�.K/ŠHSr

i;�j ;�.K/:

One of the implications is that HSr

.K/ and Hƒr

.K/ can be combined into a single
homology theory!

Conjecture 1.1 For every positive integer r , there exists a triply graded theory Hr .K/

together with a collection of differentials fdr
N
g, with N 2 Z, such that the homology

of Hr .K/ with respect to dr
N

, for N > 0, is isomorphic to Hsl.N /;Sr

.K/, while the
homology of Hr .K/ with respect to dr

N
, for N < 0, is isomorphic (up to a simple

regrading) to Hsl.�N /;ƒr

.K/.

Moreover, it is tempting to speculate that the symmetry (1-10) extends to all represen-
tations:

(1-11) “mirror symmetry”: H�.K/ŠH�t

.K/;

where � and �t are a pair of Young tableaux related by transposition (mirror reflection
across the diagonal), eg:

�D  ! �t
D

The symmetry (1-11) has not been discussed in physical or mathematical literature
before.

While we offer its interpretation in Section 5.3, we believe the mirror symmetry for
colored knot homology (1-11) deserves a more careful study, both in physics as well as in
mathematics. In particular, its deeper understanding should lead to the “categorification
of level-rank duality” in Chern–Simons theory, which is the origin of the simpler,
decategorified version of (1-11),

(1-12) P�.K/.a; q/D P�t

.K/.a; q�1/;

for colored HOMFLY polynomials (see Labastida, Mariño and Vafa [43], Liu and
Peng [46], Mlawer, Naculich, Riggs and Schnitzer [49], Naculich and Schnitzer [51]
and Naculich, Riggs and Schnitzer [50]), and extends the familiar symmetry q$q�1 of
the ordinary HOMFLY polynomial. We plan to pursue the categorification of level-rank
duality and to study the new, homological symmetry (1-11) in the future work.
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Organization of the paper

We start by explaining in Section 2 that, in general, the space of open BPS states forms
a representation of the algebra of closed BPS states. Then, in Section 3 we review
elements of the connection between string realizations (1-4)–(1-6) of knot homologies
and Landau–Ginzburg models that play an important role in mathematical formulations
of certain knot homologies based on a Lie algebra g and its representation R. In
particular, we illustrate in simple examples how the corresponding potentials Wg;R can
be derived from the physical setup (1-4)–(1-6) and how deformations of these potentials
lead to various differentials acting on Hg;R.K/. This gives another way to look at
the algebra acting on (1-2). Based on these predictions, in Section 4 we summarize
the mathematical structure of the triply graded homology HSr

.K/, together with its
computation for small knots. Section 5 lists the analogous properties of the homology
associated with antisymmetric representations, and explains the explicit form of the
“mirror symmetry” (1-10) between symmetric and antisymmetric triply graded theories.
Unreduced triply graded theory for symmetric and antisymmetric representations is
briefly discussed in Section 6. In Appendix A we collect the list of our notations,
whereas in Appendix B we present the computations of the S2 , ƒ2 and Kauffman
triply graded homology for knots 819 and 942 . These particular examples of “thick”
knots provide highly nontrivial tests of all the properties of the homologies presented
in the paper. Appendix C contains the computation of the S3 and ƒ3 homology of
the figure-eight knot 41 . Finally, Appendix D collects some notations and calculations
relevant to the unreduced colored HOMFLY polynomial of the unknot discussed in
Section 6.

2 Algebra of BPS states and its representations

Differentials in knot homology form a part of a larger algebraic structure that has an
elegant interpretation in the geometric / physical framework. Because this algebraic
structure has analogs in more general string / M–theory compactifications, in this
section we shall consider aspects of such structure for an arbitrary Calabi–Yau 3–fold
X with extra branes supported on a general Lagrangian submanifold L�X , eg

(2-1)
space-time: R�X �M4;

M5–brane: R�L�D:

For applications to knot homologies, one should take X to be the total space of
the O.�1/˚O.�1/–bundle over CP 1 and LK to be the Lagrangian submanifold
determined by a knot K ; see Koshkin [42], Ooguri and Vafa [54] and Taubes [58].
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Then, (2-1) becomes precisely the setup (1-6), in which homological knot invariants
are realized as spaces of refined BPS states; cf (1-2).

In fact, there are two spaces of BPS states relevant to this particular problem and its
variants based on a more general 3–fold X . One is the space of refined closed BPS
states, denoted as Hclosed

BPS , and the other is called the space of refined open BPS states,
Hopen

BPS . The difference is that, while the latter contains BPS particles in the presence of
defects,3 the former comprises only those BPS states which are still present in a theory
when all defects are removed. In the description [12] via equivariant instanton counting
on a 4–manifold M4 , the defect (M5–brane) corresponds to a particular ramification
along the divisor D �M4 , the so-called surface operator.

On the other hand, if one looks at the general setup (2-1) from the vantage point
of the Calabi–Yau space X , then Hclosed

BPS and Hopen
BPS can be formulated in terms of

enumerative invariants of X and .X;L/ that “count”, respectively, closed holomorphic
curves embedded in X and bordered holomorphic Riemann surfaces .†; @†/ ,! .X;L/

with boundary on the Lagrangian submanifold L. As a way to remember this, it is
convenient to keep in mind that:

� Hclosed
BPS depends only on the Calabi–Yau space X .

� Hopen
BPS depends on both the Calabi–Yau space X and the Lagrangian submanifold

L�X .

In applications to knots, open (respectively closed) BPS states are represented by open
(respectively closed) membranes in the M–theory setup (1-6) or by bound states of D0–
and D2–branes in its reduction to type IIA string theory. It is the space of open BPS
states that depends on the choice of the knot K and, therefore, provides a candidate
for homological knot invariant in (1-2).

In general, the space of BPS states is �˚Z–graded, where � is the “charge lattice”
and the extra Z–grading comes from the (half-integer) spin of BPS states, such that
2j3 2 Z. For example, in the case of closed BPS states, the charge lattice is usually
just the cohomology lattice of the corresponding Calabi–Yau 3–fold X ,

(2-2) � DH even.X IZ/:

In the case of open BPS states, � also depends on the choice of the Lagrangian
submanifold L�X .

When X is the total space of the O.�1/˚O.�1/–bundle over CP 1 and LD LK ,
as in application to knot homologies, the lattice � is two-dimensional for both open

3 M5–branes in the M–theory setup (2-1).
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and closed BPS states. As a result, both Hclosed
BPS and Hopen

BPS are Z˚Z˚Z–graded.
In particular, the space of open BPS states is graded by spin 2j3 2 Z and by charge
 D .n; ˇ/ 2 � , where the degree ˇ 2H2.X;LK /ŠZ is sometimes called the “D2–
brane charge” and n 2 Z is the “D0–brane charge.” In relation to knot homologies
(1-2), these become the three gradings of the theory categorifying the colored HOMFLY
polynomial:

(2-3)

“a–grading”D ˇ 2H2.X;LK /Š Z;

“q–grading”D n 2 Z;

“t–grading”D 2j3 2 Z:

Now, let us discuss the algebraic structure that will help us understand the origin of
differentials acting on the triply graded vector space Hknot D Hopen

BPS . The fact that
Hclosed

BPS forms an algebra is well appreciated in physics [26] as well as in math literature
[41]. Less appreciated, however, is the fact that Hopen

BPS forms a representation of the
algebra Hclosed

BPS :

(2-4)
refined open BPS states W Hopen

BPS
	

refined closed BPS states W Hclosed
BPS

Indeed, two closed BPS states, B1 and B2 , of charge 1; 2 2 � can form a bound
state, B12 of charge 1C 2 , as a sort of “extension” of B1 and B2 ,

(2-5) 0 �! B2 �! B12 �! B1 �! 0;

thereby defining a product on Hclosed
BPS :

(2-6)

Hclosed
BPS ˝Hclosed

BPS �!Hclosed
BPS

.B1;B2/ 7�! B12

� D

Similarly, a bound state of a closed BPS state Bclosed
1

2Hclosed
BPS with an open BPS state

Bopen
2
2Hopen

BPS is another open BPS state Bopen
12
2Hopen

BPS :

(2-7)
.Bclosed

1 ;Bopen
2

/ 7�! Bopen
12

� D

This defines an action of the algebra of closed BPS states on the space of open BPS
states.

The process of formation or fragmentation of a bound state in (2-6) and (2-7) takes
place when the binding energy vanishes. Since the energy of a BPS state is given by
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the absolute value of the central charge4 function ZW � ! C this condition can be
written as

(2-8) jZ.1C 2/j � jZ.1/j � jZ.2/j D 0

for a process that involves either B12! B1CB2 or its inverse B1CB2! B12 . A
particular instance of the relation (2-8) is when the central charge of the fragment
vanishes:

(2-9) Z.fragment/D 0:

Then, a fragment becomes massless and can potentially bind to any other BPS state of
charge  . When combined with (2-4), it implies that closed BPS states of zero mass
correspond to operators acting on the space of open BPS states Hopen

BPS . The degree of
the operator is determined by the spin and charge of the corresponding BPS state, as
in (2-3).

For example, when X is the total space of the O.�1/˚O.�1/–bundle over CP 1 , as
in application to knot homologies, we have

(2-10) exp.Z/D aˇqn;

where we used the relation (1-8) between a and Vol.CP 1/. Therefore, for special
values of a and q we have the following massless fragments; cf (1-9):

(2-11)
aD q�N : D2=D0 fragments,
aD qN : D2=D0 fragments,
q D 1: D0 fragments.

Moreover, the D2/D0–fragments obey the Fermi–Dirac statistics (see eg [11] and
[29]) and, therefore, lead to anticommuting operators (ie differentials) on Hopen

BPS .

To summarize, we conclude that various specializations of the parameters (stability
conditions) are accompanied by the action of commuting and anticommuting operators
on Hopen

BPS . The algebra of these operators is precisely the algebra of closed BPS states
Hclosed

BPS . Mathematical candidates for the algebra of closed BPS states include variants
of the Hall algebra [57], which by definition encodes the structure of the space of
extensions (2-5):

(2-12) ŒB1� � ŒB2�D
X
B12

ˇ̌
0! B2! B12! B1! 0

ˇ̌
ŒB12�:

4The central charge function is a linear function in the sense that Z.1C 2/DZ.1/CZ.2/ , ie it
defines a homomorphism Z 2 Hom.�;C/ .
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In the present case, the relevant algebras include the motivic Hall algebra [40], the
cohomological Hall algebra [41], and its various ramifications, eg cluster algebras.
Therefore, the problem can be approached by studying representations of these algebras,
as will be described elsewhere.

3 B–model and matrix factorizations

Let us denote by Hg;R a homology theory of knots and links colored by a representation
R of the Lie algebra g. Many such homology theories can be constructed using
categories of matrix factorizations; see Khovanov [34], Khovanov and Rozansky [35;
36; 37; 38], the second author, Mackaay and Vaz [48], Wu [65] and Yonezawa [66].
In this approach, one of the main ingredients is a polynomial function Wg;R called
the potential, associated to every segment of a link (or, more generally, of a tangle)
away from crossings. For example, for the fundamental representation of gD sl.N /

the potential is a function of a single variable,

(3-1) Wsl.N /; .x/D xNC1:

In physics, matrix factorizations are known (see Brunner, Herbst, Lerche and Sche-
uner [5], Brunner and Roggenkamp [6], Hori and Walcher [27], Kapustin and Li [30]
and Orlov [55]) to describe D–branes and topological defects in Landau–Ginzburg
models which, in the present context, are realized on the two-dimensional part of the
five-brane world-volume in (1-4) or (1-6). More precisely, it was advocated in [24]
that reduction of the M–theory configuration (1-4) on one of the directions in D and a
T–duality along the time direction gives a configuration of intersecting D3–branes in
type IIB string theory, such that the effective two-dimensional theory on their common
world-volume provides a physical realization of the Landau–Ginzburg model that
appears in the mathematical constructions.

In particular, this interpretation was used to deduce potentials Wg;R associated to many
Lie algebras and representations. Indeed, since away from crossings every segment of
the knot K is supposed to be described by a Landau–Ginzburg theory with potential
Wg;R , we can approximate this local problem by taking W DR3 and K DR in (1-4).
Then, we also have LK DR3 and the reduction (plus T–duality) of (1-4) gives type
IIB theory in flat space-time with two sets of D3–branes supported on 4–dimensional
hyperplanes in R10 : one set supported on R�W , and another supported on R�LK .
The space of open strings between these two groups of D3–branes contains information
about the potential Wg;R .

For example, in the case of the fundamental representation of sl.N /, the first stack
consists of N D3–branes and the second only contains a single D3–brane. The
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Figure 2: The physics of open strings between two stacks of Lagrangian
branes is described by the Landau–Ginzburg model with potential Wg;R .

open strings between these two stacks of D3–branes transform in the bifundamental
representation .N ;C1/ under the gauge symmetry U.N /�U.1/ on the D3–branes.
The Higgs branch of this two-dimensional theory is the Kähler quotient of the vector
space CN parametrized by the bifundamental chiral multiplets, modulo U.1/ gauge
symmetry of a single D3–brane supported on R�LK :

(3-2) CN ==U.1/ŠCP N�1:

The chiral ring of this theory on the intersection of D3–branes is precisely the Jacobi
ring of the potential (3-1).

Following similar arguments one can find potentials associated to many other Lie
algebras and representations [24], such that

(3-3) Hg;R. /D J .Wg;R/:

For example, the arguments that lead to (3-1) can be easily generalized to RD ƒr ,
the r th antisymmetric representation of sl.N /. The only difference is that, in this case,
the corresponding brane systems (1-4) and (1-6) contain r coincident M5–branes
supported on R � LK � D . Following the same arguments as in the case of the
fundamental representation (r D 1) and zooming in closely on the local geometry of
the brane intersection, after all the dualities we end up with a system of intersecting
D3–branes in flat ten-dimensional space-time,

(3-4)
N D3–branes: R�W;

r D30–branes: R�LK ;

where, as in the previous discussion, for the purpose of deriving Wg;R we can ap-
proximate W ' R3 and LK ' R3 , so that W \LK D R. Now, the open strings
between two sets of D3–branes in (3-4) transform in the bifundamental representation
.N ; r/ under the gauge symmetry U.N /�U.r/ on the D3–branes. Here, if we want
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to “integrate out” open strings ending on the D30–branes, only the second gauge factor
should be considered dynamical, while U.N / should be treated as a global symmetry
of the two-dimensional U.r/ gauge theory on the brane intersection. In the infrared
this theory flows to a sigma-model based on the Grassmannian manifold:

(3-5) Gr.r;N /D
U.N /

U.r/�U.N � r/
:

The potential of the corresponding Landau–Ginzburg model [63] is a homogeneous
polynomial of degree N C 1,

(3-6) Wsl.N /;ƒr .z1; : : : ; zr /D xNC1
1

C � � �CxNC1
r ;

where the right-hand side should be viewed as a function of the variables zi of degree
deg.zi/D i , i D 1; : : : ; r , which are the elementary symmetric polynomials in the xj ,

zi D

X
j1<j2<���<ji

xj1
xj2
� � �xji

:

We shall return to the discussion of the potential Wsl.N /;ƒr later in this section. In the
case of more general representations, one needs to consider various sectors of the U.r/

gauge theory on R�LK labeled by nontrivial flat connections (Wilson lines) around
the codimension-2 locus where D30–branes meet D3–branes; cf [25] and [54].

In this paper we are mostly interested in knots colored by symmetric and antisymmetric
representations of g D sl.N /, even though much of the present discussion can be
easily generalized to other Lie algebras and representations. Thus, for a symmetric
representation R D Sr of g D sl.N / one finds that the corresponding potential
Wsl.N /;Sr .z1; : : : ; zr / is a homogeneous polynomial of degree N C r in variables zi

of degree i D 1; : : : ; r , much like (3-6). Moreover, the explicit form of such potentials
can be conveniently expressed through a generating function [24]:

(3-7)
X
N

.�1/N tNCr Wsl.N /;Sr .z1; : : : ; zr /D

�
1C

rX
iD1

t izi

�
log
�

1C

rX
iD1

t izi

�
;

which in the basic case N D r D 2 gives

(3-8) Wsl.2/; D z4
1 � 6z2

1z2C 6z2
2 :

Instead of going through the derivation of this formula we can use a simple trick based
on the well-known isomorphism sl.2/Š so.3/ under which a vector representation of
so.3/ is identified with the adjoint representation of sl.2/. Indeed, it implies that (3-8)
should be identical to the well-known potential

(3-9) Wso.3/;V D x2
Cxy2
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in the so.3/ homology theory; cf [24] and [36]. It is easy to verify that the potentials
(3-8) and (3-9) are indeed related by a simple change of variables.5

Moreover, the fact that the adjoint representation of sl.2/ is identical to the vector
representation of so.3/ implies that

(3-10) Hsl.2/; .K/ŠHso.3/;V .K/

should hold for every knot K . In particular, it should hold for the unknot. And, since
Hso.3/;V . / is 3–dimensional, it follows that

(3-11) dimHsl.2/; . /D dimHso.3/;V . /D 3:

This is indeed what one finds in physical realizations of knot homologies reviewed
in Section 1. In the framework of [23] the colored homology Hsl.2/; of the unknot
was computed in [22] using localization with respect to the toric symmetry of the
Calabi–Yau space X . Similarly, in the gauge theory framework [64] the moduli space
of solutions on R2 with a single defect operator in the adjoint representation of the
gauge group G D SU.2/ is the weighted projective space W CP 2

.1;1;2/
(= the space

of Hecke modifications [31]; see also [17]). In this approach, the colored homology
Hsl.2/; . / is given by the L2 –cohomology of the moduli space W CP 2

.1;1;2/
which

is 3–dimensional, in agreement with (3-11).

3.1 Colored differentials

One of the reasons why we carefully reviewed the properties of the potentials Wg;R

is that they hold a key to understanding the colored differentials. Namely, in doubly
graded knot homologies constructed from matrix factorizations differentials that relate
different theories are in one-to-one correspondence with deformations of the potentials;
see Bar-Natan [3], Gornik [19], the first author and Walcher [24], Khovanov [32],
Lee [44] and Turner [59]:

(3-12) differentials on Hg;R
” deformations of Wg;R:

For example, deformations of the potential (3-1) of the form �W D ˇxMC1 with
M <N , correspond to differentials dM that relate sl.N / and sl.M / knot homologies
(with RD ).

More generally, one can consider deformations �W of the potential Wg;R such that
deg�W < deg Wg;R and

(3-13) Wg;RC�W 'Wg0;R0

5The change of variables that relates (3-8) and (3-9) is xD�1
2
.
p

2C
p

6/z2
1
C
p

6z2 and yD 21=4z1 .
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for some Lie algebra g0 and its representation R0 . Here, the symbol “'” means
that the critical point(s) of the deformed potential is locally described by the new
potential Wg0;R0 . A deformation of this form leads to a spectral sequence that relates
knot homologies Hg;R and Hg0;R0 . With the additional assumption that the spectral
sequence converges after the first page one arrives at (3-12). Moreover, the difference

(3-14) deg Wg;R � deg�W

gives the q–grading of the corresponding differential. Notice that the condition
deg�W < deg Wg;R implies that this q–grading is positive.

For example, among deformations of the degree 4 potential (3-8) one finds �W D z3
1

,
which leads to a differential of q–degree 1 that relates Hsl.2/; and Hsl.2/; . This
deformation has an obvious analog for higher rank S2 –colored homology; it deforms
the homogeneous polynomial Wsl.N /; .z1; z2/ of degree N C2 in such a way that the
deformed potential has a critical point described by the potential Wg0;R0DWsl.N /; .z1/

of degree N C 1. Therefore, it leads to a colored differential of q–degree 1, such that

(3-15)
�
Hsl.N /; ; dcolored

�
ŠHsl.N /; :

In Section 4 we present further evidence for the existence of a differential with such
properties not only in the doubly graded sl.N /–theory but also in the triply graded
knot homology that categorifies the colored HOMFLY polynomial.

Similar colored differentials exist in other knot homologies associated with more
general Lie algebras and representations. Basically, a knot homology associated to a
representation R of the Lie algebra g comes equipped with a set of colored differentials
that, when acting on Hg;R , lead to homological invariants associated with smaller
representations (and, possibly, Lie algebras),

(3-16) dim R0 < dim R:

While it would be interesting to perform a systematic classification of such colored
differentials using the general principle (3-12), in this paper we limit ourselves only to
symmetric and antisymmetric representations of gD sl.N /.

As we already discussed earlier, when RDƒr is the r th antisymmetric representation
of sl.N / the corresponding Landau–Ginzburg potential (3-6) is a homogeneous poly-
nomial of degree N C 1. Equivalently, the potentials with a fixed value of r can be
organized into a generating function, analogous to (3-7):

(3-17)
X
N

.�1/N tNC1Wsl.N /;ƒr .z1; : : : ; zr /D log
�

1C

rX
iD1

t izi

�
:
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For example, in the case of rD2, which is the first nontrivial one, there are only two vari-
ables, z1D x1Cx2 and z2D x1x2 . For N D 2 one finds a “trivial” potential Wsl.2/;

of degree 3, which corresponds to that the antisymmetric representation RDƒ2 (also
denoted RD ) is trivial in sl.2/. For N D 3, the existence of the antisymmetric tensor
�ijk identifies the second antisymmetric representation RD with the fundamental
representation of sl.3/. The next case in this sequence, N D 4, is the first example
where the second antisymmetric representation is not related to any other representation
of sl.4/. According to (3-6) and (3-17), the corresponding potential is a homogeneous
polynomial of degree 5,

(3-18) Wsl.4/; D
1

5
z5

1 � z3
1z2C z1z2

2 :

Before studying deformations of this potential, we note that by a simple change of
variables it is related to the potential

(3-19) Wso.6/;V D x5
Cxy2

associated to a vector representation of so.6/. This is a manifestation of the well-
known isomorphism sl.4/ Š so.6/ under which the six-dimensional antisymmetric
representation RD of sl.4/ is identified with the vector representation of so.6/. This
isomorphism can help us understand deformations of the potential Wsl.4/; DWso.6/;V .
Indeed, the deformations of Wso.N /;V were already studied in [24]; they include several
deformations which lead to canceling differentials and a deformation by �W D y2

that leads to a universal differential Hso.N /;V  Hsl.N�2/; .

In view of the relation Wsl.4/; .z1; z2/ D Wso.6/;V .x;y/, these deformations (and
the corresponding differentials) should be present in the sl.4/–theory as well. In
particular, there are deformations of Wsl.4/; that lead to canceling differentials and,
more importantly, there is a deformation by �W D y2 that leads to the universal
differential which relates Hso.6/;V ŠHsl.4/; and Hsl.4/; . Note, from the viewpoint
of the sl.4/ knot homology, this is exactly the colored differential dcolored that does
not change the rank of the Lie algebra, but changes the representation. Making use
of (3-17) it is easy to verify that, for all values of N , the potential Wsl.N /; admits a
deformation by terms of degree N that leads to Wsl.N /; and, therefore, to the analog
of (3-15):

(3-20)
�
Hsl.N /; ; dcolored

�
ŠHsl.N /; :

Much like in the case of the symmetric representations, this colored differential as
well as canceling differentials come from the triply graded theory that categorifies the

–colored HOMFLY polynomial (see Section 5 for details).
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4 Colored HOMFLY homology

In this section we propose structural properties of the triply graded theory categorifying
the colored version of the reduced HOMFLY polynomial. The central role in this
intricate network of structural properties belongs to the colored differentials, whose
existence we already motivated in the previous sections.

4.1 Structural properties

Let N and r be positive integers, and let Hsl.N /;Sr

.K/ denote a reduced doubly
graded homology theory categorifying PSr

N
.K/, the polynomial invariant of a knot K

labeled with the r –th symmetric representation of sl.N /. PSr

N
denotes the Poincaré

polynomial of Hsl.N /;Sr

.K/. Motivated by physics, we expect that such theories with
a given value of r have a lot in common.

Conjecture 4.1 For a knot K and a positive integer r , there exists a finite polynomial
PSr

.K/ 2 ZCŒa˙1; q˙1; t˙1� such that

(4-1) PSr

N .K/.q; t/D PSr

.K/.aD qN ; q; t/;

for all sufficiently large N .

Since the left-hand side of (4-1) is a Poincaré polynomial of a homology theory, all
coefficients of PSr

.K/.a; q; t/ must be nonnegative. This suggests that there exists a
triply graded homology theory whose Poincaré polynomial is equal to PSr

.K/.a; q; t/,
and whose Euler characteristic is equal to the normalized Sr –colored two variable
HOMFLY polynomial.

As in the case of ordinary HOMFLY homology [14] (that, in fact, corresponds to r D 1)
and in the case of Kauffman homology [24], this triply graded theory comes with the
additional structure of differentials, that will imply Conjecture 4.1. In particular, for
each positive integer r we have a triply graded homology theory of a knot K . Moreover,
these theories come with additional structure of differentials that, as in (3-16), allow us
to pass from the homology theory with RD Sr to theories with R0 D Sm and m< r .

Thus, we arrive to our main conjecture that describes the structure of the triply graded
homology categorifying the Sr –colored HOMFLY polynomials:

Conjecture 4.2 For every positive integer r there exists a triply graded homology
theory HSr

� DHSr

i;j ;k.K/ that categorifies the reduced two variable Sr –colored HOM-
FLY polynomial of K . It comes with a family of differentials fdSr

N
g, with N 2Z, and
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also with an additional collection of universal colored differentials dr!m , for every
1�m< r , satisfying the following properties:

Categorification: HSr

� categorifies PSr

:

�.HSr

� .K//D PSr

.K/:

Anticommutativity: The differentials fdSr

N
g anticommute:6

dSr

N dSr

M D�dSr

M dSr

N :

Finite support:
dim.HSr

� / <C1:

Specializations: For N > 1, the homology of HSr

� .K/ with respect to dSr

N
is iso-

morphic to Hsl.N /;Sr

.K/:�
HSr

� .K/; d
Sr

N

�
ŠHsl.N /;Sr

.K/:

Canceling differentials: The differentials dSr

1
and dSr

�r are canceling: the homology
of HSr

� .K/ with respect to the differentials dSr

1
and dSr

�r is one-dimensional, with
the gradings of the remaining generators being simple invariants of the knot K .

Vertical colored differentials: The differentials dSr

1�k
, for 1�k� r�1, have a–degree

�1, and the homology of HSr

� .K/ with respect to the differential dSr

1�k
is isomorphic,

after simple regrading that preserves a– and t –gradings, to the k –colored homology
HSk

� .K/.

Universal colored differentials: For any positive integer m, with m < r , the differ-
entials dr!m have a–degree zero, and the homology of HSr

� .K/ with respect to the
colored differential dr!m is isomorphic (after regrading) to the m–colored homology
HSm

� .K/: �
HSr

� .K/; dr!m

�
ŠHSm

� .K/:

A combinatorial definition of a triply graded theory with the structure outlined in
Conjecture 4.2, as well as of the homologies Hsl.N /;Sr

.K/ for r > 1 and N > 2, still
does not exist in the literature.

Even though there is no such combinatorial definition, one can use any combination of
the above axioms as a definition, and the remaining properties as consistency checks.
In particular, one can obtain various consequence of the Conjecture 4.2 and properties
of the triply graded homology HSr

, along with the predictions for the triply graded
homology of simple knots.

6See comments following (2-11).
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In the rest of this section we give a summary of these properties, including some
nontrivial checks.

4.2 A word on grading conventions

So far we summarized the general structural properties of the colored knot homology.
Now we are about to make it concrete and derive explicit predictions for colored homol-
ogy groups of simple knots. This requires committing to specific grading conventions,
as well as other choices that may affect the form of the answer. It is important to
realize, however, that none of these affect the very existence of the structural properties,
which are present with any choices and merely may look different. While some of
these choices will be discussed in Section 6.2, here we focus on:

� choices that associate various formulae to a Young tableaux � versus its trans-
pose �t ;

� choices of grading, eg grading conventions used in this paper (that we sometimes
refer to as “old”) and grading conventions used in most of the existent literature;
see Aganagic and Shakirov [1], Dunfield, Gukov and Rasmussen [14] and Dunin-
Barkowski, Mironov and Morozov [15] (that we sometimes call “new” in view
of the forthcoming work of the authors [20] based on this choice).

The first choice here breaks the symmetry (“mirror symmetry”) between representations
Sr and ƒr . Indeed, since in view of the Conjecture 1.1 the triply graded homologies
associated with these representations are essentially identical and can be packaged in a
single theory Hr , one has a choice whether Sr homologies arise for N > 0 or N < 0.

The second choice listed here starts with different grading assignments, but turns out
to be exactly the same as the first choice. In other words, the “old” gradings and “new”
gradings are related by “mirror symmetry.” Another way to describe this is to note,
that in grading conventions of this paper the Sr –colored superpolynomials are related
(by a simple change of variables) to the ƒr –colored invariants that one would find by
following the same steps in grading conventions of eg Aganagic and Shakirov [1], the
first author, Dunfield and Rasmussen [14] and Dunin-Barkowski, Mironov, Morozov,
Sleptsov and Smirnov [15]:

(4-2) PSr

here D Pƒr

elsewhere:

Note, that the Sr –colored invariant is related to the ƒr –colored invariant, and vice
versa. The explicit change of variables in this transformation is sensitive to even
more elementary redefinitions, such as a! a2 and q! q2 which are ubiquitous in
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knot theory literature. For example, with one of the most popular choices of a– and
q–grading, the transformation of variables / gradings looks like:

(4-3) A 7! at3; q 7!
1

qt2
; t 7!

1

q
:

The moral of the story is that, besides the grading conventions used in the earlier
literature, the present paper offers yet another choice of grading conventions consistent
with all the structural properties. And the relation between the two grading conventions
can be viewed as a manifestation of mirror symmetry (1-10). Keeping these words
of caution in mind, now let us take a closer look at the structure of the colored knot
homology.

4.3 Consequences of Conjecture 4.2

First of all, our main Conjecture 4.2 implies the Conjecture 4.1. Indeed, in order to be
consistent with the specialization aD qN from (4-1), the q–degree of the differential
dSr

N
must be proportional to N . Since HSr

� has finite support, this leads to the
Conjecture 4.1, with PSr

.K/ being the Poincaré polynomial of HSr

� .K/.

More precisely, the differentials dSr

N
, N � 1, are expected to have the following

degrees:

deg.dSr

N /D .�1;N;�1/; N > 0;

which is consistent with the specialization aD qN and the formula (3-14) that deter-
mines the q–grading of the corresponding differential in the doubly graded theory. In
fact, the differential dSr

N
acts on the following bigraded chain complex:

Csl.N /;Sr

p;k
D

M
iNCjDp

HSr

i;j ;k ;

and has q–degree 0, and t –degree �1. The homology of Csl.N /;Sr

with respect to
dSr

N
is isomorphic to Hsl.N /;Sr

.

In general, the degrees of the differentials dSr

N
, for N 2 Z are given by:

deg.dSr

N /D .�1;N;�1/; N > 1� r;

deg.dSr

N /D .�1;N;�3/; �2r <N � 1� r:

We note that for every r � 1, and every N 2 Z, the degree of the differential dSr

N
has

the form deg.dSr

N
/D .�1;N;�/.
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4.3.1 Canceling differentials Canceling differentials appear in all conjectural triply
graded theories, including the ordinary HOMFLY homology and the Kauffman ho-
mology. The defining property of a canceling differential is that the homology of the
triply graded theory with respect to this differential is “trivial”, ie isomorphic to the
homology of the unknot. In reduced theory, this means that the resulting homology
is one-dimensional. Furthermore, the degree of the remaining generator depends in a
particularly simple way on the knot.

In the case of the colored HOMFLY homology HSr

, the canceling differentials are
dSr

1
and dSr

�r . Their degrees are:

deg.dSr

1 /D .�1; 1;�1/;

deg.dSr

�r /D .�1;�r;�3/:

Note that for r D 1 this agrees with the gradings of the canceling differentials in the
ordinary triply graded HOMFLY homology. (Keep in mind, though, the conventions we
are using in this paper; see Remark A.1.) For either of the two canceling differentials,
the degree of the surviving generator depends only on the S –invariant7 of a knot
K , introduced in [14]. In particular, the surviving generators have the following
.a; q; t/–degrees:

(4-4)
deg

�
HSr

� .K/; d
Sr

1

�
D .rS;�rS; 0/;

deg
�
HSr

� .K/; d
Sr

�r

�
D .rS; r2S; 2rS/:

Note, that the remaining generator with respect to dSr

1
has t –degree equal to zero.

4.3.2 Vertical colored differentials Arguably, the most interesting feature of the
colored triply graded theory is the existence of colored differentials. They allow to
pass from the homology theory for a representation RD Sr to the homology theory
for another representation R0 D Sm , with m< r .

The first group of colored differentials are “vertical” colored differentials dSr

1�k
, for

1� k � r � 1. As said before, the degrees of these differentials are

(4-5) deg.dSr

1�k/D .�1; 1� k;�1/; 1� k � r � 1:

The homology of HSr

with respect to the differential dSr

1�k
, for any k D 1; : : : ; r � 1,

is (up to a simple regrading) isomorphic to HSk

.

In particular, up to an overall shift of the a–grading, the a– and t –gradings of
the homologies match. More precisely, the Poincaré polynomial of the homology

7Again, the value that we are using here is half of the value defined in [14].
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.HSr

; dSr

1�k
/ satisfies:

(4-6) .HSr

; dSr

1�k/.a; q D 1; t/D a.r�k/SPSk

.a; q D 1; t/;

where the S –invariant is defined by (4-4). The q–grading is controlled in the following
way: the canceling differentials dSk

1
and dSk

�k
of HSk

correspond to two cancel-
ing differentials of .HSr

; dSr

1�k
/ of degrees .�1; 1C r � k;�1/ and .�1;�r;�3/,

respectively.

In the particular case of the differential dSr

0
that allows passage from Sr –colored

homology to the uncolored S1 –homology, the explicit regrading is particularly simple:

(4-7) .HSr

; dSr

0 /.a; q; t/D a.r�1/SP .a; qr ; t/:

It is interesting to see what the existence of vertical colored differentials implies on the
“decategorified”, polynomial level. However, since the t –grading enters nontrivially in
the regrading formulas for the q–gradings in the respective isomorphisms, in general
it is not possible to obtain relations for the specializations of the colored HOMFLY
polynomials. The only exception is the action of the dSr

0
differentials, where in

the isomorphism (4-7) the change of the q–grading is independent of t . Thus, (4-7)
categorifies the following relation of the colored HOMFLY polynomials:

(4-8) PSr

.K/.aD 1; q/D P .K/.aD 1; qr /D�.K/.qr /;

where �.K/ denotes the Alexander polynomial of a knot K .

4.3.3 Universal colored differentials The universal colored differentials in the triply
graded theory are “universal” analogs of the colored differentials in the doubly graded
theory (3-15):

Hsl.N /;Sr  Hsl.N /;Sr�1

:

As explained in Section 3, these colored differentials come from the deformations of
the Landau–Ginzburg potentials.

Since colored differentials are universal in the triply graded theory — ie they relate
colored triply graded homologies without even specializing to doubly graded sl.N /

theories — they should have zero a–degree. This property distinguishes them clearly
from the vertical colored differentials.

Furthermore, as explained in Section 3, the basic colored differential dr!.r�1/ should
have q–degree equal to 1. Then, it is easy to see that consistency of the theory also
requires this differential to have zero t –grading. Combining all of these facts, we
conclude that the .a; q; t/–degree of the differentials dr!.r�1/ is equal to .0; 1; 0/.
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More generally, we expect that the degree of the differential dr!m depends only
on the difference r �m and the homology of HSr

� .K/ with respect to the colored
differential dr!m is isomorphic (up to regrading) to HSm

� .K/. The explicit form of
the regrading for the colored differential d2!1 is as follows: the Poincaré polynomial
of the homology .H ; d2!1/ is equal to P .a2; q2; t2q/. Put differently,

(4-9) .H .K/; d2!1/2i;kC2j ;2k ŠH
i;j ;k

.K/:

In general, the explicit regrading is very subtle (unlike the case of the vertical colored
differentials).

We point out that, for m<m1 < r , the homology ..HSr

; dr!m1
/; dm1!m/ does not

need to coincide with the homology .HSr

; dr!m/.

4.4 Second symmetric representation

In this subsection we focus on the case r D 2, ie on the homology H .K/. Special-
ization of the above mentioned properties to r D 2 gives:
� Two canceling differentials d

1
and d

�2
that have degrees:

deg.d
1
/D .�1; 1;�1/;

deg.d
�2
/D .�1;�2;�3/:

� The generator that survives the differential d
1

has degree .2S;�2S; 0/.

� The generator that survives the differential d
�2

has degree .2S; 4S; 4S/.

� The vertical colored differential d
0

has degree .�1; 0;�1/.

� The homology .H .K/; d
0
/ has Poincaré polynomial aSP .K/.a; q2; t/.

� The colored differential d2!1 has degree .0; 1; 0/.
� The homology .H .K/; d2!1/ has Poincaré polynomial P .K/.a2; q2; t2q/.

In addition, the homology of H .K/ with respect to the differential d
2

should
be isomorphic (after specialization a D q2 ) to Hsl.2/; .K/. To find the latter ho-
mology one can use the isomorphism (3-10) with Hso.3/;V .K/ which, in turn, can be
obtained from the triply graded Kauffman homology HKauff.K/ studied by Gukov and
Walcher [24]. Indeed, the doubly graded homology Hso.3/;V .K/ is isomorphic to the
homology of HKauff.K/ with respect to the corresponding differential d3 from [24],
after the specialization �D q2 . Usually, that differential d3 acts trivially; in particular,
this is the case for all knots that we analyze below.

The structure of the homology H .K/ with the above differentials allows us to
compute it for various small knots, as we shall illustrate next.
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4.4.1 HS2 and PS2 for small knots The homology H .K/ and the superpoly-
nomial P .K/.a; q; t/ (= the Poincaré polynomial of H .K/) must satisfy the
following properties:
� Specialization to t D�1 gives the reduced –colored HOMFLY polynomial

P .K/.8

� Specialization to aD q2 gives P
2
.K/, the Poincaré polynomial of the homol-

ogy Hsl.2/; .K/. This homology is isomorphic to Hso.3/;V .K/. To find the
latter one, we use the results from [24, Table 3], if available.9

� H .K/ comes equipped with the differentials described in Section 4.4.

These requirements are more than sufficient to determine the colored superpolynomial
for many small knots. As the first example, we consider the trefoil knot:

Example 4.3 (The trefoil knot 31 ) The reduced –colored HOMFLY polynomial
of the trefoil knot is equal to (see eg [43] and [45]):

P .31/D a2q�2
C a2qC a2q2

C a2q4
� a3

� a3q� a3q3
� a3q4

C a4q3:

The homology Hso.3/;V .31/ is computed in [24, Equation (6.14) and Table 3]. Hence
we have:

P
2
.31/D q2

C q5t2
C q6t2

C q6t3
C q7t3

C q8t4
C q9t5

C q10t5
C q11t6:

From these two expressions we immediately deduce the colored superpolynomial of
the trefoil:10

(4-10) P .31/Da2.q�2
Cqt2

Cq2t2
Cq4t4/Ca3.t3

Cqt3
Cq3t5

Cq4t5/Ca4q3t6:

8In order to find the colored HOMFLY polynomial P .K/ one can use eg [43, Equation (3.25)] and
the values for the BPS invariants yN ;g;Q tabulated in [43, Section 6]. The result gives the unreduced
two variable colored HOMFLY polynomial. In order to find the reduced polynomial, one should divide
the unreduced polynomial by:

.a� a�1/.aq� a�1q�1/

.q� q�1/.q2 � q�2/
:

The results from [43] enable us to compute the reduced –colored HOMFLY polynomial for the knots
31 , 41 , 51 and 61 . Another useful source of the colored HOMFLY polynomials and their specializations
to aD q2 and aD q3 is the Knot atlas [39], which the reader may want to consult for many other knots.

9In all examples we have computed, the values i C j for all nontrivial Kauffman homology groups
HKauff

i;j ;k
.K/ have the same parity. Thus the differential d3 on the Kauffman homology, whose degree is

equal to .�1; 2;�1/ , is trivial. Consequently, the Poincaré polynomial Pso.3/;V .K/.q; t/ is equal to the
�Dq2 specialization of the Poincaré superpolynomial of the Kauffman homology PKauff.K/.�Dq2; q; t/

in all our examples.
10As discussed in Section 4.2, there are two different possibilities for grading conventions. Besides the

grading conventions discussed in most of this paper, there are also “new” grading conventions where the a
and q degrees are both twice the value of the corresponding degrees in the conventions that we are using
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Note that its specializations to t D �1 and a D q2 give P .31/ and P
2
.31/,

respectively. Moreover, the corresponding homology H .31/ also enjoys the action
of two canceling differentials and one colored differential. In order to visualize this
homology, we represent each generator by a dot in the .a; q/–plane, with a label
denoting its t –grading. In Figure 3, the canceling differential d

1
is represented

by a blue arrow, the canceling differential d
�2

is represented by a red arrow, the
colored differential d2!1 is represented by a magenta arrow, while the vertical colored
differential d

0
is represented by dashed light blue arrow.

a

q

4

3

2

�3 �2 �1 0 1 2 3 4

0 2 2 4

3 3 5 5

6

Figure 3: The reduced S2 –colored homology of the trefoil knot

The generator that survives d
1

has degree .2;�2; 0/, while the one that survives d
�2

has degree .2; 4; 4/. Both are consistent with the S –invariant of the trefoil S.31/D 1

and the general discussion in Section 4.4. The Poincaré polynomial of the homology
with respect to the colored differential d2!1 is equal to:

a2q�2
C a2q4t4

C a4q3t6;

while the Poincaré polynomial of the homology with respect to the vertical colored
differential d

0
is equal to:

a2q�2
C a2q2t2

C a3t3:

in this paper, while the t –degree change is more subtle. The value of the colored superpolynomial of the
trefoil in the “new” gradings is given by

Pnew grad..31/D a4.q�4
C q2t4

C q4t6
C q8t8/C a6.t5

C q2t7
C q6t9

C q8t11/C a8q6t12:

We note that in these gradings, the answer coincides with [1] and [15].
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A careful reader will notice that the last two expressions are equal to the polynomials
P .31/.a

2; q2; t2q/ and aP .31/.a; q
2; t/, respectively, where P .31/.a; q; t/ is

the ordinary superpolynomial, whose explicit form is written in (A-1).

This computation can be easily extended to many other small knots. We list the results
for all prime knots with up to 6 crossings in Tables 1 and 2. The fact that the structure
described in this section works beautifully for all knots with up to 6 crossings is already
an impressive test of our main Conjecture 4.2. However, to convince even hard-boiled
skeptics, in Appendix B we carry out a much more challenging computation of the
colored HOMFLY homology for “thick” knots 819 and 942 .

We notice that all computations of colored homologies in this paper are done by hand,
only by using the existence and properties of the differentials described in this section.
Moreover, in majority of the cases only a few of the differentials are used to obtain the
result, which than matched perfectly all the remaining properties.

4.5 Differentials for higher symmetric representations

Now let us consider the triply graded homology HSr

of knots and links colored by the
representation RDSr with more general r � 1. Much as in the case r D 2 considered
in the previous subsection, we expect that HSr

comes equipped with the following
differentials:

� Canceling differential dSr

1
of degree .�1; 1;�1/, whose homology is one-

dimensional and consists of a degree .rS;�rS; 0/ generator.

� Canceling differential dSr

�r of degree .�1;�r;�3/, which leaves behind a one-
dimensional homology with a generator of degree .rS; r2S; 2rS/.

� For every 1 � k < r , there exists a vertical colored differential dSr

1�k
of de-

gree .�1; 1� k;�1/, such that the homology of HSr

with respect to dSr

1�k
is

isomorphic to HSk

.

� For every 1�m< r , there exists a universal colored differential dr!m which,
when acting on HSr

, leaves behind the homology HSm

. In particular, the
colored differential dr!.r�1/ has degree .0; 1; 0/.

4.5.1 Colored superpolynomial PS3 for the trefoil It can be computed by requir-
ing that its specialization to t D�1 equals the reduced S3 –colored HOMFLY polyno-
mial and that it enjoys the action of the canceling and the first colored differentials of
appropriate degrees. In particular, according to the general rules (4-4), we require that
the remaining generator with respect to the d

1
–action has degree .3;�3; 0/, while
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Knot P
31 a2.q�2C qt2C q2t2C q4t4/C a3.t3C qt3C q3t5C q4t5/C a4q3t6

41 a�2q�2t�4C .a�1q�3C a�1q�2/t�3

C .q�3C a�1q�1C a�1/t�2

C .q�2C q�1C a�1C a�1q/t�1

C .q�1C 3C q/C .qC q2C aq�1C a/t

C .q3C aC aq/t2C .aq2C aq3/t3C a2q2t4

51 a4q�4C .a4q�1C a4/t2C .a5q�2C a5q�1/t3

C .a4q2C a4q3C a4q4/t4C .a5qC 2a5q2C a5q3/t5

C .a4q5C a4q6C a6q/t6C .a5q4C 2a5q5C a5q6/t7

C .a4q8C a6q4C a6q5/t8C .a5q7C a5q8/t9C a6q7t10

52 a2q�2C .a2q�1C a2/t C .2a2qC a2q2C a3q�2C a3q�1/t2

C .a2q2C a2q3C 2a3C 2a3q/t3

C .a2q4C 2a3qC 3a3q2C a3q3C a4/t4

C .2a3q3C 2a3q4C a4C 2a4qC a4q2/t5

C .a3q4C a3q5C a4q2C 3a4q3C a4q4/t6

C .a4q3C 2a4q4C a4q5C a5q2C a5q3/t7

C .a4q6C a5q3C a5q4/t8C .a5q5C a5q6/t9C a6q5t10

Table 1: Colored superpolynomial for prime knots with up to 5 crossings

the remaining generator with respect to the action of d
�3

has degree .3; 9; 6/. For
the colored differential d3!2 we require that the remaining homology should have
rank 9, just like H .31/. From these, we obtain the following result:

PS3

.31/D a3q�3
C .a3qC a3q2

C a3q3/t2
C .a4

C a4qC a4q2/t3

C .a3q5
C a3q6

C a3q7/t4
C .a4q4

C 2a4q5
C 2a4q6

C a4q7/t5

C .a5q4
C a5q5

C a5q6
C a3q9/t6

C .a4q8
C a4q9

C a4q10/t7

C .a5q8
C a5q9

C a5q10/t8
C a6q9t9:

Note, there exists a differential d3!1 on HS3

.31/ of degree .0; 4; 2/, such that the
homology with respect to this differential is of rank 3, as H .31/.

Also, there exists a differential d
0

of degree .�1; 0;�1/ such that the Poincaré
polynomial of .H .31/; d0

/ is equal to a2P .31/.a; q
3; t/.
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Knot P
61 a�2q�2t�4C .a�1q�3C a�1q�2/t�3

C .a�1q�2C 2a�1q�1C a�1C q�3/t�2

C .q�3C 3q�2C 2q�1C a�1C a�1q/t�1

C .aq�3C aq�2C 2q�1C 5C q/

C .1C 3qC 2q2C aq�2C 3aq�1C 2a/t

C .aq�1C 4aC 4aqC q3C a2q�1C aq2/t2

C .a2q�1C aqC 2a2C 3aq2C 2aq3C a2q/t3

C .a2C 2a2qC aq3C 3a2q2C aq4C a2q3/t4

C .a2q2C 2a2q3C a3qC a3q2C a2q4/t5

C .a3q2C a3q3C a2q5/t6C .a3q4C a3q5/t7C a4q4t8

62 a4q6t8C .a3q6C a3q7/t7C .a4q3C a2q7/t6

C .2a3q3C 2a3q4/t5C .3a2qC a2q2/t2

C .a4C a2q3C 3a2q4C a2q5/t4

C .2a3C 2a3qC aq4C aq5/t3

C .a3q�3C a3q�2C aqC aq2/t

C .a2q�3C 3a2q�2C a2q�1C q2/

C .aq�2C aq�1/t�1C a2q�5t�2

C .aq�5C aq�4/t�3C q�4t�4

C .1C q/.1C a�1qt�1/.1C a�1q�2t�3/

� Œa4q4t7C .a4q3C a3q4/t6C .a4qC a3q3/t5

C .a3q2C a3q/t4C a3t3C .a3q�2C a2/t2�

63 a2q5t6C .aq5C aq6/t5C .a2q2C q6/t4C .2aq2C 2aq3/t3

C .a2q�1C q2C 3q3C q4/t2C .2aq�1C 2aC a�1q3C a�1q4/t

C .q�1C 5C q/C .aq�4C aq�3C 2a�1C 2a�1q/t�1

C .q�4C 3q�3C q�2C a�2q/t�2C .2a�1q�3C 2a�1q�2/t�3

C .q�6C a�2q�2/t�4C .a�1q�6C a�1q�5/t�5C a�2q�5t�6

C .1C q/.1C a�1qt�1/.1C a�1q�2t�3/

�
�
a2q3t5C .a2qC aq3/t4C .a2C aq2C aq/t3

C 3at2C .aq�1C aq�2C 1/t C .aq�3C q�1/C q�3t�1
�

Table 2: Colored superpolynomial for prime knots with 6 crossings
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Finally, there exists a differential d
�1

of degree .�1;�1;�1/ such that the homology
.H .31/; d�1

/ is isomorphic to H .31/.

In Appendix C we compute also the S3 –colored homology of the figure-eight knot 41 .

4.5.2 Size of the homology Computations show that for a knot K , the rank of the
homology HSr

grows exponentially with r . In particular, this makes the computation
of the homologies HSr

.K/ difficult for large r . (In fact, even for r > 2 the size of the
homology is too big to make computations practical.) To be more precise, for all thin
and torus knots studied here we find:

(4-11) rankHSr

.K/D
�
rankHS.K/

�r
:

5 Mirror symmetry for knots

In this section, we observe a remarkable “mirror symmetry” relation (1-11) between two
completely different triply graded homology theories associated with symmetric and
antisymmetric representations of sl.N /, which will allow us to formulate even a bigger
theory that will contain both. As a first step, however, we need to extend the discussion
in Section 4 to the HOMFLY homology colored by antisymmetric representations of
sl.N /.

5.1 Antisymmetric representations

Much as for the symmetric representation Sr , we can repeat the analysis for the
antisymmetric representations ƒr of sl.N /.

In particular, for every positive integer r there exists a triply graded homology theory
Hƒr

.K/, together with the collection of differentials fdƒ
r

N
g, N 2 Z, such that the

homology with respect to dƒ
r

N
is isomorphic to the group Hsl.N /;ƒr

.K/. Moreover,
it comes equipped with the collection of “universal” colored differentials, like in the
case of the symmetric representations. The homologies Hƒr

.K/, together with all the
differentials, satisfy the same properties as HSr

.K/ from Conjecture 4.2.

Again, we have two canceling differentials, this time dƒ
r

�1
and dƒ

r

r of .a; q; t/–degrees
.�1;�1;�3/ and .�1; r;�1/, respectively. The fact that the representation ƒr of
sl.r/ is trivial gives rise to a canceling differential dƒ

r

r .

Another basic fact is ƒr Šƒ for gD sl.r C 1/, which leads to the relation

(5-1) Hsl.rC1/;ƒr

.K/ŠHsl.rC1/; .K/:
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For the triply graded theory Hƒr

.K/, this relation implies that the aD qrC1 specializa-
tions of the homologies .Hƒr

.K/; dƒ
r

rC1
/ and .H .K/; d

rC1
/ should be isomorphic.

Like in the case of symmetric representations, all the required properties allow compu-
tation of the antisymmetric homology for various small knots. Below, we provide the
details for the trefoil knot.

Using the isomorphism so.6/Š sl.4/, under which the vector representation of so.6/
is identified with the antisymmetric representation of sl.4/, we conclude

(5-2) Hsl.4/; .K/ŠHso.6/;V .K/:

From this relation11 we immediately find

(5-3) Hsl.4/; .31/Dq4
Cq6t2

Cq7t2
Cq8t3

Cq9t3
Cq10t4

Cq11t5
Cq12t5

Cq13t6:

Also, for gD sl.3/ we have ƒ2 Šƒ, which implies another useful relation

(5-4) Hsl.3/; .K/ŠHsl.3/; .K/:

For the trefoil, this gives:

(5-5) Hsl.3/; .31/D q2
C q4t2

C q6t3:

Combining this data with the colored HOMFLY polynomial

(5-6) P .a; q/D a2.q�4
C q�2

C q�1
C q2/�a3.q�4

C q�3
C q�1

C 1/Ca4q�3

we easily find the antisymmetric version of the superpolynomial for the trefoil knot:

(5-7) P .31/D a2.q�4
C q�2t2

C q�1t2
C q2t4/

C a3.q�4t3
C q�3t3

C q�1t5
C t5/C a4q�3t6:

The homology H .31/ is shown in Figure 4. It has the following differentials:

� Canceling differential d
�1

of .a; q; t/–degree .�1;�1;�3/.

� Canceling differential d
2

of .a; q; t/–degree .�1; 2;�1/ reflects the fact that ƒ2

is trivial in sl.2/–theory.

� Differential d
3

of .a; q; t/–degree .�1; 3;�1/ reflects the fact that ƒ2 Š ƒ in
sl.3/–theory and gives (cf (5-5)):

(5-8) a2q�4t0
C a2q�2t2

C a3q�3t3 aDq3

D Hsl.3/; .31/:

11Here, in comparing the two homology theories we take into account that q –gradings differ by a
factor of 2.
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� Differential d
0

of .a; q; t/–degree .�1; 0;�3/ gives:

(5-9) a2q�2t2
C a2q2t4

C a3q0t5
D at2P .31/.a; q

2; t/:

� Universal differential d
2!1

of .a; q; t/–degree .0; 1; 0/ gives:

(5-10) a2q�4t0
C a2q2t4

C a4q�3t6
D P .a2; q4; q�1t2/:

a

q

4

3

2

�5 �4 �3 �2 �1 0 1 2

0 2 2 4

3 3 5 5

6

Figure 4: The reduced ƒ2 –colored homology of the trefoil

5.2 Mirror symmetry for knot homology

By computing the triply graded homologies HSr

.K/ and Hƒr

.K/ for various small
knots, we discover the following remarkable symmetry between these two classes of
theories, labeled by RD Sr and RDƒr :

(5-11) Hƒr

i;j ;�.K/ŠHSr

i;�j ;�.K/:

Furthermore, this symmetry extends to the differentials as well. More precisely, let

(5-12) �W HSr

.K/ �!Hƒr

.K/;

be the isomorphisms from (5-11). Then

(5-13) �dSr

N D dƒ
r

�N�; N 2 Z:

As the first illustration of the mirror symmetry, let us compare the second symmetric
and antisymmetric homology for the trefoil knot. From Figures 3 and 4 it is clear that
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“mirror symmetry” is manifest both for the homology (5-11) and for the differentials
(5-13). The explicit t –grading change in (5-11) in this case is given by

(5-14) H
i;j ;k

.31/ŠH
i;�j ;4i�k�4

.31/

for the trefoil knot.

The first implication of the mirror symmetry is that one can combine HSr

.K/ and
Hƒr

.K/ into a single homology theory. By setting Hr.K/ to be HSr

.K/, we obtain
the Conjecture 1.1. More precisely, we conjecture the following:

Conjecture 5.1 For every positive integer r there exists a triply graded homology
theory Hr

�.K/ D HSr

i;j ;k.K/, that comes with a family of differentials fdr
N
g, with

N 2Z, and also with an additional collection of universal colored differentials dr!m ,
for every 1�m< r , satisfying the following properties:

Mirror symmetry:
Hr

i;j ;�.K/ŠHSr

i;j ;�.K/ŠHƒr

i;�j ;�.K/:

Categorification: Hr
� categorifies PSr

and Pƒr

:

�.Hr
�.K//D PSr

.K/.a; q/D Pƒr

.K/.a; q�1/:

Anticommutativity: The differentials fdSr

N
g anticommute:12

dr
N dr

M D�dr
M dr

N :

Finite support:
dim.Hr

�/ <C1:

Specializations: For N >1, the homology of Hr
�.K/ with respect to dr

N
is isomorphic

to Hsl.N /;Sr

.K/:
.Hr
�.K/; d

r
N /ŠHsl.N /;Sr

.K/:

For N ��2r , the homology of the complex Hr
�.K/ with respect to dr

N
is isomorphic

to Hsl.�N /;ƒr

.K/:
.Hr
�.K/; d

r
N /ŠHsl.�N /;ƒr

.K/:

Canceling differentials: The differentials dr
1

and dr
�r are canceling: the homology of

Hr
�.K/ with respect to the differentials dr

1
and dr

�r is one-dimensional. This reflects
the fact that Sr representation of sl.1/ and ƒr representation of sl.r/ are trivial.

12See comments following (2-11).
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sl.N /–colored differentials: For every 1� k � r � 1, the homology of Hr
�.K/ with

respect to the differential dr
�r�k

is isomorphic to the homology of Hk
�.K/ with respect

to dk
�r�k

,

.Hr
�.K/; d

r
�r�k/Š .H

k
�.K/; d

k
�r�k/; 1� k � r � 1;

reflecting the fact that ƒr Šƒk for sl.r C k/, where 1� k � r � 1.

Vertical colored differentials: The differentials dr
1�k

, for 1�k� r�1, have a–degree
�1, and the homology of Hr

�.K/ with respect to the differential dr
1�k

is isomorphic
(after simple regrading that preserves a– and t –gradings), to Hk

�.K/:

.Hr
�.K/; d

r
1�k/ŠHk

�.K/; 1� k � r � 1:

Universal colored differentials: For any positive integer m, with m < r , the differ-
entials dr!m have a–degree zero, and the homology of Hr

�.K/ with respect to the
colored differential dr!m is isomorphic (after regrading) to Hm

� .K/:

.Hr
�.K/; dr!m/ŠHm

� .K/:

Example 5.2 (H3 for the trefoil knot) As another example of the symmetry (5-11),
and this time for degree higher than 2, let us consider H3.31/. Besides the two canceling
differentials d3

1
and d3

�3
, we also have the differential d3

�4
of degree .�1;�4;�3/.

The homology with respect to this differential is equal to

(5-15) .H3.31/; d
3
�4/D a3q7t4

C a3q9t6
C a4q8t7:

The explicit t –grading change in (5-11) for the trefoil and r D 3 is given by:

(5-16) H
i;j ;k

.31/ŠH
i;�j ;4i�k�6

.31/:

With this change of gradings, the “mirror image” of (5-15) is equal to the polynomial
a3q�9t0 C a3q�7t2 C a4q�8t3 which, according to the Conjecture 1.1, should be
equal to the homology �

H .31/; d4

�
:

In particular, for aD q4 it implies that the Poincaré polynomial of�
H .31/; d4

�
is equal to q3C q5t2C q8t3 . The latter, in turn, is equal to P .31/.aD q4; q; t/ (see
(A-1)), in agreement with the isomorphism ƒ3 Šƒ for sl.4/.
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In Appendix C we compute H3 of the figure-eight knot and show that it satisfies all of
the properties from Conjecture 5.1.

It is straightforward to check that the triply graded colored HOMFLY homologies of
other knots that we computed in Section 4 satisfy all the required properties of H2.

As for the t –grading change in (5-11) for an arbitrary knot, � sends a generator x

of .a; q; t/–degree .i; j ; k/ to a generator of degree .i;�j ; 4i � kC 2rı0.x//. Here
ı0.x/ is a certain grading of the generator x , generalizing the ı–grading of the ordinary
HOMFLY homology H . In the case of thin knots, ı0–grading of all generators is
equal to the S –invariant of knots.

Now, since the t –gradings of x and �.x/ have the same parity, by decategorifying
(5-11) we get the following simple and beautiful relation between the colored HOMFLY
polynomials:

(5-17) PSr

.K/.a; q/D Pƒr

.K/.a; q�1/:

To the best of our knowledge, this relation has not been observed before. It generalizes
the symmetry q$ q�1 of the (ordinary) HOMFLY polynomial.

Based on the above observations about the mirror symmetry for symmetric and an-
tisymmetric representations, we speculate that this symmetry extends to arbitrary
representations: for a representation R of sl.N / that corresponds to a partition �, we
conjecture:

(5-18) H�.K/ŠH�t

.K/;

where �t is the dual (transpose) partition of �. Here, we also tacitly assume that for
every partition � there exists a triply graded homology theory H�.K/ categorifying
the �–colored HOMFLY polynomial.

Furthermore, decategorifying the isomorphism (5-18) we obtain the following symmetry
of the colored HOMFLY polynomials (see Appendix A for conventions):

(5-19) P�.K/.a; q/D P�t

.K/.a; q�1/:

5.3 Physical interpretation

The only evidence for the mirror symmetry (5-18) and for its polynomial version (5-19)
comes from the physical interpretation of knot homologies / polynomials in terms
of BPS invariants. Indeed, the symmetry (5-19) of the reduced colored HOMFLY
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polynomial is a direct consequence of the corresponding symmetry for the unreduced
colored HOMFLY polynomial:

(5-20) xP�t

.K/.a; q/D .�1/j�j xP�.K/.a; q�1/;

where j�j is the total number of boxes in the partition �. This symmetry, in turn,
follows13 from the explicit form of the colored HOMFLY polynomial [54]:

(5-21) xP�.K/.a; q/D
X
i;j

aiqj

q� q�1
N �

i;j .K/;

written in terms of the ordinary (that is, unrefined) BPS invariants N �
i;j .K/ and from

the property of the integer BPS invariants [43, Equation (2.17)]:

(5-22) N �t

i;j .K/D .�1/j�jC1N �
i;�j .K/:

Indeed, when combined, (5-21) and (5-22) imply that under q$ q�1 the unreduced
colored HOMFLY polynomial of every knot has parity .�1/j�j . In particular, this is
true for the unknot. Hence, the normalized colored HOMFLY polynomial, defined as
the ratio of xP�.K/ and xP�. /, enjoys the symmetry (5-19).

There is a refined / homological version of (5-20) and (5-22) that leads to (5-18).
Much as the colored HOMFLY polynomial can be written in terms of the unrefined
BPS invariants N �

i;j .K/, the unnormalized superpolynomial of every knot K can be
expressed in terms of the refined integer BPS invariants [23]:

(5-23) xP�.K/.a; q; t/D
X
i;j ;k

aiqj tk

q� q�1
D�

i;j ;k.K/:

The refined BPS invariants D�
i;j ;k

.K/ enjoy a symmetry that generalizes (5-22),

(5-24) D�t

i;j ;�.K/DD�
i;�j ;�.K/;

and follows from the CPT symmetry of the five-brane theory in (1-4) or (1-6). The
normalized / reduced version of the symmetry (5-24) is precisely (5-18).

Further details and interpretation of the mirror symmetry (5-18) for the triply graded
knot homology will appear elsewhere.

13Another way to derive (5-20) is to use the properties of the Clebsch–Gordon coefficients for the
symmetric group C��t�t DC��� and the characters S�t .q/D .�1/j�j�1S�.q

�1/ in [47, Equation (2.6)],
which describes the geometric origin of the q –dependence in the colored HOMFLY polynomial.
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6 Unreduced colored HOMFLY homology

Here we compute the unreduced colored superpolynomial and the colored HOMFLY
polynomial of the unknot and the Hopf link by using the refined topological vertex
approach from [22]. The formulas obtained there are partition functions, presented in
the form of the quotient of two infinite series. Below we find the explicit closed form
expressions for the unreduced Sr –colored HOMFLY homology of the unknot and the
Hopf link. More precisely, we evaluate [22, Equation (67)], according to which the
unreduced superpolynomial (= the Poincaré polynomial of the unreduced triply graded
colored homology) of the Hopf link with components colored by partitions � and � is
given by:

(6-1) xP��.Hopf/D .�1/j�jCj�j
�q1

q2

�j�jj�j�
Q�1

r
q1

q2

� j�jCj�j
2
�

Z��

Z∅∅
;

where

Z�� D

X
�

.�Q/j�jq
k�k

2

2
q
k�t k

2

1
zZ�.q1; q2/ zZ�t .q2; q1/s�.q

��
2

q��
t

1 /s�.q
��
2

q��
t

1 /:

The unreduced superpolynomial of the unknot colored by � is obtained by setting
�D∅ in (6-1).

The change of variables from topological strings variables .Q; q1; q2/ to knot theory
variables .a; q; t/ used in this paper is given by:

(6-2)
p

q2 D q;
p

q1 D�tq; QD�ta�2:

In particular, the specialization q1 D q2 corresponds to the specialization t D�1 in
the homological knot invariants.

By expanding the product of the Schur functions as

s�s� D
X
'

c
'

�;�
s' ;

where c
'

�;�
is the Littlewood–Richardson coefficient, we obtain:

Z�� D

X
'

c
'

�;�

X
�

.�Q/j�jq
k�k

2

2
q
k�t k

2

1
zZ�.q1; q2/ zZ�t .q2; q1/s'.q

��
2

q��
t

1 /

D

X
'

c
'

�;�
Z' :
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Replacing this in (6-1) gives

xP��.Hopf/D .�1/j�jCj�j
�q1

q2

�j�jj�j�
Q�1

r
q1

q2

� j�jCj�j
2
�

Z��

Z∅∅

D .�1/j�jCj�j
�q1

q2

�j�jj�j�
Q�1

r
q1

q2

� j�jCj�j
2

X
'

c
'

�;�

Z'

Z∅∅

D

�q1

q2

�j�jj�jX
'

c
'

�;�
.�1/j'j

�
Q�1

r
q1

q2

� j'j
2 Z'

Z∅∅

D

�q1

q2

�j�jj�jX
'

c
'

�;�
xP'. /:

Equivalently, in the knot theory variables .a; q; t/ we found the following simple
formula for the superpolynomial of the Hopf link expressed in terms of that of the
unknot:

(6-3) xP��.Hopf/D t2j�jj�j
X
'

c
'

�;�
xP'. /:

Thus, in order to compute the unreduced superpolynomial of the Hopf link, it suffices
to compute the superpolynomial of the unknot from (6-1).

6.1 Unreduced colored HOMFLYPT polynomial and homology of the un-
knot

Below we give the results for the unknot derived from (6-1). The notations and
computations are summarized in Appendix D.

The quantum sl.N / invariant (that is, aD qN specialization of the colored HOMFLY
polynomial) is given by:

xP�. /.aD qN ; q/D q�2
P

x2� c.x/

�
N

�t

�
D q�2.n.�t /�n.�//

�
N

�t

�
D q��.�/

�
N

�t

�
:

In particular, for the r th symmetric representation Sr we find

(6-4) xPSr

. /.aD qN ; q/D q�r.r�1/

�
N C r � 1

r

�
;
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whereas for the antisymmetric representation RDƒr we have

(6-5) xPƒr

. /.aD qN ; q/D qr.r�1/

�
N

r

�
:

The two variable polynomial xP�. /.a; q/ can be obtained from the above expressions
by replacing qN with a and the q–binomial coefficients by two variable polynomials
in the following way:

(6-6)
�

N

r � j

�
$

.�1/r�j ar�j qr�j

.1� q2/.1� q4/ � � � .1� q2r /

�

rX
lD0

.�1/la�2lql.r�j�1/

�
r � j

l

�
.1� q2.r�jC1// � � � .1� q2r /;

where the left hand side is the aD qN specialization of the right hand side. This last
formula follows from

n�1Y
iD0

.1C q2iz/D

nX
jD0

qj.n�1/

�
n

j

�
zj :

In particular, for the symmetric representation we have:

(6-7) xPSr

. /.a; q/D
.�1/r ar qr

.1� q2/.1� q4/ : : : .1� q2r /
q�2r.r�1/

�

rX
lD0

.�1/la�2lql.r�1/

�
r

l

�
q2.r�l/.r�1/:

Now, the formula for the aD qN specialization of the Sr –colored superpolynomial for
the unknot is obtained by using the following quantum binomial coefficients formula:

(6-8)
�

N C r � 1

r

�
D qr.r�1/

r�1X
jD0

q�j.NCr�1/

�
r � 1

j

��
N

r � j

�
:

Then, the Poincaré polynomial of the Sr –colored sl.N / homology of the unknot is
obtained by adding a factor t�2j in every summand in the above expression for the
quantum binomial coefficient in (6-4):

(6-9) xPsl.N /;Sr

. /.q; t/D xPSr

. /.aD qN ; q; t/

D

r�1X
jD0

q�j.NCr�1/

�
r � 1

j

��
N

r � j

�
t�2j :
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Note that the corresponding homology xHsl.N /;Sr

. / is finite-dimensional.

We list some particular instances of (6-9) for small r :

xPsl.N /;S1

. /D ŒN �;(6-10)

xPsl.N /;S2

. /D

�
N

2

�
C q�.NC1/ŒN �t�2;(6-11)

xPsl.N /;S3

. /D

�
N

3

�
C q�.NC2/Œ2�

�
N

2

�
t�2
C q�2.NC2/ŒN �t�4:(6-12)

Specifying further the value of N , one finds the following expressions:

xPsl.2/;S2

. /D 1C q�2t�2
C q�4t�2;

xPsl.3/;S2

. /D q2
C 1C q�2

C q�2t�2
C q�4t�2

C q�6t�2;

xPsl.3/;S3

. /D 1C q�2t�2
C 2q�4t�2

C 2q�6t�2

C q�8t�2
C q�8t�4

C q�10t�4
C q�12t�4;

xPsl.4/;S2

. /D q4
C q2

C 2C q�2
C q�4

C q�2t�2
C q�4t�2

C q�6t�2
C q�8t�2:

The expression for the whole triply graded superpolynomial is obtained from (6-9) by
using (6-6).

In the case of antisymmetric representations, the entire homology of the unknot is
concentrated in the homological degree zero, and thus the ƒr superpolynomial of the
unknot coincides with its ƒr –colored HOMFLY polynomial:

(6-13) xPsl.N /;ƒr

. /D qr.r�1/

�
N

r

�
:

6.2 Comparison with other approaches

Much of the present paper is devoted to exploring the structure — motivated from
physics — of the colored knot homology, namely its reduced version. A combinatorial-
or group-theoretic definition of such a theory is still waiting to be discovered. However,
in the case of the unreduced theory, which we sketched in this section, there have been
several attempts to define the colored knot homology, especially in low rank. Therefore,
we conclude this section with a brief comparison to other approaches.

Unfortunately, the structure of the colored differentials becomes more obscure (alterna-
tively, more interesting!) in the unreduced version of the colored knot homology.14

14This is familiar from the ordinary, noncolored knot homology; see [14] and [24].
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This, in part, is the reason why we kept our discussion here very brief, relegating a
more thorough analysis to future work. Another reason, which will become clear in a
moment, is that even a quick look at the unknot exposes a number of questions that
need to be understood in order to relate and unify different formulations:

� Singularities in moduli spaces (of BPS configurations): dimHBPS <1 versus
dimHBPS D1.

� Framing dependence in the colored knot homology.
� Colored homological invariants versus cabling.
� Analog of wall-crossing phenomena in mathematical formulations of colored

knot homologies.
� The role of the “preferred direction” in the combinatorial formulation based on

3–dimensional partitions.
� Proper interpretation of formal expressions, or

(6-14)
1� q2

1� q2
D .1� q2/.1C q2

C q4
C q6

C � � � / versus
1� q2

1� q2
D 1:

In addition, each formulation typically involves individual choices and subtleties, which
may also affect the form of the answer. In fact, even the total dimension of the colored
homology may depend on some (or, perhaps, all) of these choices.15

While good understanding of these aspects is still lacking, many approaches to colored
knot homology seem to agree on one general feature: the unreduced sl.N /–homology
has finite support only for certain sufficiently small representations. For example, in
[22, Equation (67)] this corresponds to the fact that for general representations there
is no way to clear the denominators. This should be compared with the fundamental
representation of sl.N /, where every existent approach leads to a homology with
finite support. The simplest example that belongs to the “gray territory” is the second
symmetric representation RDS2 of sl.N /. For N D 2, this corresponds to the adjoint
representation of sl.2/ and, as we saw in (3-11), physics realizations (see [23] and
[64]) lead to a 3–dimensional knot homology Hsl.2/; . / categorifying the colored
Jones polynomial of the unknot,

(6-15) xP
2
. /D Œ3�D q�2

C 1C q2:

On the other hand, some mathematical formulations lead to a theory with infinite
support (which can be attributed to several gaps in the present understanding and the

15We hope that at least some of these delicate aspects are washed away when one passes to the reduced
theory, as it happens in the noncolored case. This is one of the reasons why in the present paper we mainly
consider the reduced homology.
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above-listed questions). For example, fixing16 a typo in [60, Proposition 3.4], one finds
the following candidate for the Poincaré polynomial of the colored unknot homology:

(6-16) xP
2
. /D q�2t2

C 1C q2t�2
C

q�2C q�2t

1� t2q�4
:

The structure of the corresponding homology theory is clear: the first three terms
reproduce (upon specializing to t D�1) the colored Jones polynomial (6-15) and the
quotient in the last term corresponds to the infinite-dimensional contribution to the
homology, all of which disappears upon taking the Euler characteristic.

Similar structure emerges in other frameworks, in particular in approaches based on
categorification of the Jones–Wenzl projectors. The Jones–Wenzl projectors appear in
decomposing the finite dimensional representations of the quantum group Uq.sl2/ and,
as such, play a key role in the definition and computation of quantum group invariants
of knots and 3–manifolds. Several ways to categorify the Jones–Wenzl projectors have
been proposed in the literature, eg the topological categorification ([8] and [9]) and the
Lie-theoretic categorification [16] which agree (up to Koszul duality). In particular, the
latter approach leads to a theory that categorifies (6-15) by replacing the middle term
with infinite-dimensional homology whose Poincaré polynomial equals

(6-17) xP
2
. /D q�2

C
1

Œ2� Œ2�
.qC q�1/2C q2;

where Œ2�DqCq�1 and the authors of [16] instruct us to interpret 1=Œ2� as a power series
q�q3Cq5�q7C� � � . This power series is familiar to physicists as a trace (“partition
function”) over the infinite-dimensional Hilbert space HBose DH�.CP1/DCŒx� of
a harmonic oscillator / single boson,

(6-18) PBose D
1

1� q2
D 1C q2

C q4
C q6

C � � � :

Partition function of a single fermion has a similar form, except that fermions contribute
to the numerator instead of the denominator. Indeed, the trace over a two-dimensional
Hilbert space of a single fermion looks like

(6-19) PFermi D 1� q2;

in agreement with a well-known fact that contributions of bosons and fermions cancel
each other; cf (6-14). Therefore, instead of canceling the ratio in the middle term of
(6-17), the authors of [16] instruct us to interpret it as a Hilbert space of two bosons
and two fermions. Note, due to the presence of bosonic states this Hilbert space is

16We thank E Gorsky for pointing this out.
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infinite-dimensional, as opposed to a much smaller, finite-dimensional space that one
might infer by simplifying the ratio. Similarly, (6-16) contains one boson (due to the
factor 1=.1� t2q�4/ in the last term), etc.

If this, however, is the proper interpretation of (6-17), then one immediately runs into
a general question of how to interpret formal expressions like (6-14) and when to clear
denominators. The answer to this question will certainly affect many calculations
of Poincaré polynomials, in particular calculations based on [22, Equation (67)] that
has nontrivial numerators and denominators, as well as similar calculations in other
frameworks.

A novel physical framework that appears to be closely related to knot homology is the
so-called “refined Chern–Simons theory”. Although Lagrangian definition of this theory
is not known at present, its partition function was conjectured [1] to compute topological
invariants of knots and 3–manifolds that preserve an extra rotation symmetry. This
includes torus knots and Seifert 3–manifolds. The rotation symmetry gives rise to
an extra quantum number, so that for torus knots and Seifert 3–manifolds the refined
Chern–Simons theory leads to a striking prediction: the space (1-2) is quadruply graded
rather than triply graded in these cases.

In simple examples, the fourth grading (coming from the extra rotation symmetry of a
3–manifold) is determined by the other three gradings (2-3). It would be interesting to
study under which conditions this happens; when it does, the partition function of the
SU.N / refined Chern–Simons theory computes the specialization of the superpoly-
nomial to a D qN . Assuming this is the case for the unknot colored by the second
symmetric representation, the SU.2/ refined Chern–Simons theory gives:

(6-20) xP
2
. /D�

.q2t C q�2/

.q� q�1/

.q4t2C q�2t�1/

.q3t2� q�1/
:

The corresponding Hilbert space contains at least two “bosons” (due to two factors in
the denominator of (6-20)) and, therefore, leads to a version of colored homology with
infinite support.

In our quick tour through different ways of categorifying the colored Jones polynomial
of the unknot (6-15) we saw theories with finite support as well as theories with infinite
support, in fact, of different kind (with different number of “bosons” / factors in the
denominator). One would hope that all these theories correspond to different choices
(of framing, chamber, regularization, : : : ) and with a proper understanding of the above-
mentioned issues could be unified in a single framework. One piece of evidence that it
might be possible comes from the fact that all physical and geometrical approaches
agree when the corresponding moduli spaces are nonsingular, as eg for minuscule
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representations. Therefore, we hope to see a much bigger story, only small elements of
which have been revealed so far.
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Appendix A: Notation

K denotes a knot. denotes the unknot. We write PSr

.K/ for P

r‚ …„ ƒ
� � � .K/, and

define PSr

N
.K/, xPSr

N
.K/ and HSr

.K/ similarly.

For every positive integer r we have:

� xPSr

N
.K/.q/ denotes the unreduced one variable polynomial quantum invariant of

K , labeled with the r th symmetric representation of sl.N /.

� PSr

N
.K/.q/ denotes the reduced (or normalized) one variable polynomial quantum

invariant of K , labeled by the r th symmetric representation of sl.N /. It is obtained
from the unnormalized polynomial xPSr

N
.K/.q/ by

PSr

N .K/D
xPSr

N
.K/

xPSr

N
. /

;

so that PSr

N
. /D 1.

� PSr

.K/.a; q/ denotes the reduced two variable colored HOMFLY polynomial of
K . The normalization is PSr

. /D 1. In particular

PSr

.K/.aD qN ; q/D PSr

N .K/.q/:

� HSr

.K/ denotes a reduced triply graded homology theory HSr

i;j ;k.K/ that categorifies
the two variable colored HOMFLY polynomial PSr

.K/:

�
�
HSr

.K/
�
D PSr

.K/:
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The homological grading of HSr

i;j ;k.K/ is its third grading, and its (doubly graded)
Euler characteristic is given by:

�
�
HSr

.K/
�
D

X
i;j ;k

.�1/kqi tj
�
dimHSr

i;j ;k.K/
�
:

� PSr

.K/ denotes the Poincaré polynomial of HSr

.K/, ie

PSr

.K/.a; q; t/D
X
i;j ;k

aiqj tk
�
dimHSr

i;j ;k.K/
�
:

Specialization to t D�1 gives PSr

.K/:

PSr

.K/.a; q; t D�1/D PSr

.K/.a; q/:

We also call PSr

.K/ the Sr –colored superpolynomial.

� Hsl.N /;Sr

.K/ denotes the reduced doubly graded homology theory categorifying
PSr

N
.K/.

� PSr

N
.K/ denotes the Poincaré polynomial of Hsl.N /;Sr

.K/. In particular

PSr

N .K/.q; t/D
X
j ;k

qj tk
�
dimHsl.N /;Sr

j ;k
.K/

�
;

PSr

N .K/.q; t D�1/D PSr

N .K/.q/:

� The corresponding polynomials and homologies for the antisymmetric representations
are denoted in the same way with Sr replaced by ƒr .

� Unreduced versions of the homology and polynomials are denoted by putting a bar.

All (tri)degrees are .a; q; t/–degrees.

Remark A.1 Conventions for the superpolynomial in the vector representation: The
case r D 1 corresponds to the (ordinary) HOMFLY polynomial and the Khovanov–
Rozansky homology. The corresponding superpolynomial, together with the structure
of the triply graded homology was studied in [14].

Here we shall use slightly different conventions: in the superpolynomial, we replace a
and q from [14] with a1=2 and q1=2 , respectively. For example, the superpolynomial
of the trefoil knot becomes:

(A-1) P .31/D aq�1
C aqt2

C a2t3:

Also, by S.K/, or just S , we mean half of the value of S.K/ from [14].
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In this way, the degrees of the canceling differentials d1 and d�1 from [14] become
.�1; 1;�1/ and .�1;�1;�3/, respectively. Also, from now on we denote these two
differentials by d

1
and d

�1
, respectively.

Appendix B: Kauffman and S 2 homologies of the knots 819

and 942

In this appendix we compute the S2 and Kauffman homologies of 819 and 942 . Since
both knots are homologically thick knots, these computations give highly nontrivial
examples of our main Conjecture 4.2 (as well as [24, Conjecture 2] for the Kauffman
homology), especially because the size of both homologies is rather large and because
they have to obey a large list of structural properties described in Sections 4 and 5.

Before we start our computations, we point out that knot 942 here is the mirror image
of 942 from [39]. The superpolynomial of 942 is given by (see [14]):17

(B-1) P .942/.a; q; t/D a.q�1t2
C qt4/C .q�2t�1

C 1C 2t C q2t3/

C a�1.q�1t�2
C q/:

In particular, the reduced sl.2/ Khovanov homology of 942 is:

Kh.942/.q; t/D P .942/.aD q2; q; t/

D q�6t�2
C q�4t�1

C q�2
C 1C 2t C q2t2

C q4t3
C q6t4:

The S invariant is S.942/ D 0. Moreover, the ı–grading of a generator x of the
homology H .K/ in our conventions is given by:

ı.x/D t.x/� 2a.x/� q.x/:

All generators of the homology of thin knots have the same value of the ı–grading.
However, for 942 , the generator 1 .D a0q0t0/ has ı–grading 0, while the remaining 8
generators have ı–grading equal to �1.

As for 819 , here it is the mirror image of 819 from the Knot Atlas [39]. This knot is
also known as the positive .3; 4/–torus knot. Its superpolynomial is given by:

P .819/.a; q; t/D a3q�3
C a4q�2t3

C a3q�1t2
C a4t5

C a3qt4

C a4q2t7
C a3q3t6

C a5t8
C a4q�1t5

C a4q1t7
C a3t4:

17Note that the a and q gradings that we are using in this paper are half of those from [14]; see
Remark A.1
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The first seven generators have ı–degree equal to �3, while the remaining four have
ı–grading equal to �2.

Before explaining the result for the S2 –homology, we first consider the Kauffman
homologies.

B.0.1: Kauffman homology of 819 and 942 The Kauffman polynomial of 942 can
be written as:

(B-2) F.942/.a; q/D 1C .1� a�1q/.1C a�1q�1/.1� a�2/

� a2.q�6
� q�4

C q�2
C q2

� q4
C q6/:

The Kauffman homology of 942 that we have computed has 209 generators. We present
its Poincaré polynomial in a structured form:

PKauff.942/.a; q; t/

D 1C .1C a�1qt�1/.1C a�1q�1t�2/.1C a�2t�3/

�
˚
a2.q�6t2

C q�4t3
C q�2t4

C q2t6
C q4t7

C q6t8/

C .1C t/
�
.a3
C at�3/.q�3t4

C q�1t5
C qt6

C q3t7/C 2a2t4
�	
:

The Kauffman polynomial of 819 can be written as:

F.819/.a; q/D .a
6
� a8/.q�6

C q�2
C 1C q2

C q6/C .a7
� a9/.q�5

� q5/C a10:

The Kauffman homology of 819 that we have computed has 89 generators. Its Poincaré
polynomial is given by:

PKauff.819/.a; q; t/

D .a6
C a8t3/.q�6

C q�2t2
C t4
C q2t4

C q6t6/

C .a7
C a9t3/.q�5t2

C q5t7/C a10t10

C .1C t�1/.a7q�1t5
C a7q1t6

C a8t7
C a9q�1t8

C a9q1t9/

C .1C t�1/.1C a�1qt�1/.1C a�2t�3/.1C a�1q�1t�2/

� .a13q�1t14
C a13q1t15

C a11q�3t10
C a11q3t13/:

Both results meet the desired properties of the Kauffman homology (see [24, Section 6]):

� Specialization to t D�1 gives the Kauffman polynomial:

PKauff.a; q; t D�1/D F.a; q/:

� There exist three canceling differentials d2 , d1 and d0 of degrees .�1; 1;�1/,
.�2; 0;�3/ and .�1;�1;�2/, respectively. Indeed, from the way we write PKauff.942/,
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�6 �5 �4 �3 �2 �1 0 1 2 3 4 5 6
Figure 5: The reduced Kauffman homology of the knot T3;4D 819 . To avoid
clutter, we show only canceling differentials d2 , d1 and d0 (represented by
red, green, and blue arrows, respectively).

it is obvious that only 1 D a0q0t0 survives in the homology with respect to any of
these differentials. As for HKauff.819/, the surviving generators for d2 , d1 and d0

respectively have degrees .6;�6; 0/, .12; 0; 12/ and .6; 6; 6/, as expected since the
S –invariant for 819 is S.819/D 6.

� There exist two universal differentials d! and d of degrees .0; 2; 1/ and
.0;�2;�1/, such that the homology with respect to these differentials is isomorphic
(up to regrading) to the triply graded HOMFLY homology. More precisely, they satisfy:

.HKauff; d!/D P .a2q�2; q2; t/;

.HKauff; d /D P .a2q2t2; q2; t/:

Again, it is straightforward to check that such differentials exist in both homologies
HKauff.942/ and HKauff.819/.

� There exists a differential d�2 of degree .�1;�3;�3/, such that the a D q�3

specialization of the homology .HKauff; d�2/ is isomorphic to the homology Hsp.2/;V .
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Moreover, the triply graded version holds: the Poincaré polynomial of the triply graded
homology .HKauff; d�2/ is equal to tSR.a1=2q�1=2; t/, where

R.q; t/D P .aD q2; q; t/:

This is true for 819 , 942 and for all prime knots with up to 6 crossings.

Note that this generalizes and corrects the value predicted in [24]. We also note that
.HKauff; d�2/ is significantly smaller than HKauff: for 819 it has only 11 generators,
and for 942 it has only 9 generators.

� Finally, although not explicitly stated in [24], the Kauffman homology enjoys the
symmetry q$ q�1 :

HKauff
i;j ;� ŠHKauff

i;�j ;�:

In the following subsection, we shall need the values of .so.3/;V /–homology of knots
819 and 942 , where V denotes the fundamental representation of so.3/. This homology
should be obtained as the homology of HKauff with respect to the differential d3 of
.a; q; t/–degree .�1; 2;�1/. However, from the degree reasons for both knots the
differential d3 is trivial, and so for both knots we have:

Pso.3/;V .q; t/D PKauff.aD q2; q; t/:

So, explicitly we have:

Pso.3/;V .942/.a; q; t/

D 1C .1C q�1t�1/.1C q�3t�2/.1C q�4t�3/

�
˚
.q�2t2

C t3
C q2t4

C q6t6
C q8t7

C q10t8/

C .1C t/
�
.q6
C q2t�3/.q�3t4

C q�1t5
C qt6

C q3t7/C 2q4t4
�	

and

Pso.3/;V .819/.a; q; t/D .q
12
C q16t3/.q�6

C q�2t2
C t4
C q2t4

C q6t6/

C .q14
C q18t3/.q�5t2

C q5t7/C q20t10

C .1C t�1/.q13t5
C q15t6

C q16t7
C q17t8

C q19t9/

C .1C t�1/.1C q�1t�1/.1C q�4t�3/.1C q�3t�2/

� .q19t10
C q25t13

C q25t14
C q27t15/:
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B.0.2: S 2 –colored homologies of 819 and 942 In order to present the Poincaré
polynomial of the S2 –colored homology of 942 in a nice form and to show that all
the expected properties are satisfied, we write it in the following structured form:

P .942/.a; q; t/

D
˚
1C.1Ca�1qt�1/.1Ca�1q�2t�3/.1Ca�1q�3t�3/.1Ca�1t�1/.a2q6t8

Ca2t4/
	

C .1C q/.1C a�1qt�1/.1C a�1q�2t�3/.aq�1t2
C aqt4/

C .1C q/.1C a�1qt�1/.1C a�1q�2t�3/.1C a�1q�3t�3/

� .a2q2t6
C aq3t6

C aq3t5
C 2aqt5

C at4
C qt4

C t3/

C .1C q/.1C a�1qt�1/.1C a�1q�2t�3/.1C a�1q�3t�3/.1C t�1/

� .a2q4t8
C aq4t7

C a2qt6
C aq2t5

C q3t5
C at4

C t3/:

Similarly, for 819 we have

P .819/.a; q; t/

D
˚
.1C a�1qt�1/.1C a�1q�2t�3/.1C a�1q�3t�3/.a10q8t16

C a9q8t15/

C .1C a�1qt�1/.1C a�1q�2t�3/.a8q�1t6
C a8q5t10

C a8q11t14/

C a6q�6
C .1C a�1qt�1/

�.a7q�4t3
Ca7q�1t5

Ca7q2t7
Ca7q5t9

Ca7q8t11
Ca7q11t13/

	
C .1C q/.1C a�1qt�1/.1C a�1q�2t�3/

� .a8q2t8
C a8q6t10

C a8q8t12
C a8q9t14/

C .1C q/.1C a�1qt�1/.1C a�1q�2t�3/.1C a�1q�3t�3/

� .a9q3t11
C a9q6t13

C a9q9t15/:

The two homologies from above and their mirror images satisfy a large part of the
properties of the S2 –colored homology from Conjecture 4.2 and of the ƒ2 homology
from Section 5:

� There exist canceling differentials d
1

and d
�2

of degrees .�1; 1;�1/ and
.�1;�2;�3/, respectively. The remaining generator for both differentials is a0q0t0D1

in the case of 942 , whereas for 819 the remaining generators have degrees .6;�6; 0/

and .6; 12; 12/, respectively.

� There exists colored differential d2!1 of degree .0; 1; 0/, such that the homology
with respect to it is equal to P .a2; q2; t2q/.

� P .a; q; t D�1/ is equal to the S2 –colored HOMFLY polynomial.
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� There exists a differential d
�3

of degree .�1;�3;�3/, such that the homology
with respect to it is very small. In the case of 942 it has only 9 generators:

(B-3) .H .942/; d�3
/

D a.q�1t2
C qt4/C .q�2t�1

C 1C 2t C q2t3/C a�1.q�1t�2
C q/;

while in the case of 819 we have

(B-4) .H .819/; d�3
/

D .a6q12t12
C a7q11t13

C a6q10t10
C a7q9t11

C a6q8t8
C a7q7t9

C a6q6t6/

C .a8q10t14
C a7q9t11

C a7q11t13
C a6q10t10/:

Note that from the formulas for P , for both knots, the last two lines have a factor
.1C a�1q�3t�3/ and so the corresponding homology gets canceled automatically by
d
�3

. Thus, it is enough to check the above formulas only for the remaining part, which
is a straightforward computation.

� There exists a differential d
0

of degree .�1; 0;�1/ such that the homology with
respect to it is equal to aSP .a; q2; t/.

� There exists a differential d
2

of degree .�1; 2;�1/ such that the homology with
respect to it, after specializing aD q2 , is isomorphic to Hsl.2/; . The latter one is
isomorphic to Hso.3/;V , where V denotes the vector representation of so.3/, and its
Poincaré polynomials for knots 819 and 942 we obtained in Appendix B.0.1 via the
Kauffman homology. In particular, for both knots we have that

P
2
.q; t/D Pso.3/;V .q; t/D PKauff.aD q2; q; t/:

Now, the “mirror image” of H also behaves quite well. To that end, let H be a
homology obtained from H as in Section 5:

H
i;j ;k
ŠH

i;�j ;k0
:

The transformation k 7! k 0 depends also on ı0–grading.

Since for H of 942 and 819 the properties of the S2 –colored homology listed
above are satisfied, it can be easily seen (by “mirroring” the differentials) that the
mirror homology H obtained in this way satisfies the properties of the antisymmetric
ƒ2 –colored homology:

� There exist canceling differentials d
�1

and d
2

of degrees .�1;�1;�3/ and
.�1; 2;�1/, respectively.
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� There exists colored differential d
2!1

of degree .0; 1; 0/, such that the homology
with respect to it has Poincaré polynomial equal to P .a2; q4; t2q�1/.

� P .a; q; t D�1/ is equal to the ƒ2 –colored HOMFLY polynomial.

� There exists a differential d
3

of degree .�1; 3;�1/ such that the homology of H
with respect to it is isomorphic to H , both specialized to aD q3 .

The last property in fact holds even on the level of triply graded homologies (without
specialization a D q3 ), as can be seen from (B-3) and (B-4). We also note that the
isomorphism of .H ; d3 / and H as triply graded theories, also holds for all prime
knots with up to 6 crossings.

Appendix C: H3–homology of the figure-eight knot

The Poincaré polynomial of the H3 homology of the figure-eight knot 41 is given by:

P3.41/D P .41/

D 1C .1C a�1qt�1/.1C a�1t�1/.1C a�1q�1t�1/

� .1C a�1q�3t�3/.1C a�1q�4t�3/.1C a�1q�5t�3/a3q6t6

C .1C qC q2/.1C a�1qt�1/.1C a�1q�3t�3/at2

C .1C qC q2/.1C a�1qt�1/.1C a�1t�1/

� .1C a�1q�3t�3/.1C a�1q�4t�3/a2q2t4:

This homology categorifies the –colored HOMFLY polynomial of 41 ;

P3.41/.a; q; t D�1/D P .41/.a; q/:

Furthermore, this homology has all of the wanted properties, namely, there exist
following differentials on H3.41/:

� Canceling differential d3
1

of degree .�1; 1;�1/, leaving 1D a0q0t0 as remaining
generator.

� Canceling differential d3
�3

of degree .�1;�3;�3/, also leaving 1 D a0q0t0 as
remaining generator.

� Differential d3
�4

of degree .�1;�4;�3/, such that

.H3.41/; d
3
�4/ŠH1.41/:
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� Differential d3
�5

of degree .�1;�5;�3/, such that

.H3.41/; d
3
�5/ŠH2.41/:

� Vertical colored differential d3
0

of degree .�1; 0;�1/, such that

.H3.41/; d
3
0 /ŠH1.41/:

In particular
.H3.41/; d

3
0 /.a; q; t/D P1.41/.a; q

3; t/:

� Vertical colored differential d3
�1

of degree .�1;�1;�1/, such that

.H3.41/; d
3
�1/ŠH2.41/:

In particular
.H3.41/; d

3
�1/.a; q D 1; t/D P2.41/.a; q D 1; t/:

Appendix D: Computation of the unreduced homology of the
unknot

For a nonnegative integer N we define the quantum dimension ŒN � to be

ŒN �D
qN � q�N

q� q�1
:

Also
ŒN �!D ŒN � ŒN � 1� � � � Œ1�;

and �
N

k

�
D
ŒN � ŒN � 1� � � � ŒN � kC 1�

Œk�!
:

For a partition �D .�1; �2; : : :/, we set:

j�j D
X

i

�i ; k�k
2
D

X
i

�2
i ; n.�/D

X
i

.i � 1/�i ; m.�/D
X

i

i�i :

By �t , we denote the dual (conjugate) partition of �. We have

m.�/D n.�/Cj�j and 2m.�/D k�t
k

2
Cj�j:

We also define
�.�/ WD 2.k�k2�k�t

k
2/D 2.n.�t /� n.�//:
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We identify a partition and its corresponding Young diagram.

For a box x D .i; j / 2 �, we define its content and the hook length by:

c.x/D j � i and h.x/D �i C�
t
j � i � j C 1:

For a partition � and positive integer N , we set:�
N

�

�
WD

Y
x2�

ŒN � c.x/�

Œh.x/�
:

Then we have

(D-1) s�.q
1�N ; q3�N ; : : : ; qN�3; qN�1/D

�
N

�t

�
:

Of course, the following holds

s�.1; q
2; q4; : : : ; q2.N�2/; q2.N�1//D q.N�1/j�js�.q

1�N ; q3�N ; : : : ; qN�3; qN�1/:

D.1: Colored HOMFLY polynomial of the unknot

We compute the specialization of the superpolynomial of the unknot at q1 D q2 (ie
at t D �1) from the Equation (6-1). According to (6-3), this gives the value of the
polynomial of the Hopf link as well. We denote this specialization by xP�. /, ie

xP�. / WD xP�. /jq1Dq2
D xP�. /jtD�1:

We also denote Z0
�
WDZ�jq1Dq2

, and so

xP�. /D .�1/j�j.Q�1/j�j=2 �
Z0
�

Z0∅
;

with

Z0� D
X
�

.�Q/j�j s�.q
��
2
/s�t .q

��
2
/s�.q

����t

2
/:

By using the following identity for the Schur functions,

(D-2) s�.q
����t

2
/s�t .q

��
2
/D q

��.�/=2
2

X
�

s�t=�.q
��
2
/s�t=�.q

��
2
/;
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in the expression for Z0
�

, we get

Z0� D
X
�

.�Q/j�js�.q
��
2
/q
��.�/=2
2

X
�

s�t=�.q
��
2
/s�t=�.q

��
2
/

D q
��.�/=2
2

X
�

s�t=�.q
��
2
/
X
�

.�Q/j�js�.q
��
2
/s�t=�.q

��
2
/

D q
��.�/=2
2

X
�

s�t=�.q
��
2
/
X
�

.�Q/j�js�.q
��
2
/
X
'

c�
t

�;' s'.q
��
2
/

D q
��.�/=2
2

X
�

s�t=�.q
��
2
/
X
'

s'.q
��
2
/
X
�

.�Q/j�jCj'jc�
t

�;'s�.q
��
2
/

D q
��.�/=2
2

X
�

s�t=�.q
��
2
/.�Q/j�j

X
'

.�Q/j'j s'.q
��
2
/s't .q

��
2
/s�t .q

��
2
/

D q
��.�/=2
2

X
�

.�Q/j�j s�t=�.q
��
2
/s�t .q

��
2
/ �Z0∅:

Hence, the value of the colored HOMFLY polynomial invariant of the unknot labeled
by � is given by:

(D-3) xP�. /D q
��.�/=2
2

� .�1/j�j.Q�1/j�j=2
X
�

.�Q/j�j s�t=�.q
��
2
/s�t .q

��
2
/:

In particular, the last formula tells us that (up to an overall factor) P� is a polynomial
in Q of degree j�j. Also, at QD 1 one finds that xP�jQD1 D 0 for �¤ 0.

Written in terms of the knot-theoretical variables .a; q/ the polynomial becomes:

(D-4) xP�. /.a; q/D q��.�/ � .�1/j�ja�
X
�

.�1/j�ja�2j�js�t=�.q
�2�/s�t .q�2�/:

Finally, when a D qN one can show that the above expression without the factor
q��.�/ is equal to

�
N
�t

�
.
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