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Smooth structures on Morse trajectory spaces,
featuring finite ends and associative gluing

KATRIN WEHRHEIM

We give elementary constructions of manifold with corner structures and associative
gluing maps on compactifications of spaces of infinite, half infinite and finite Morse
flow lines. In the case of Euclidean metric in Morse coordinates near each critical
point, these are naturally given by evaluations at end points and regular level sets.
For finite ends this requires a blowup construction near trajectories ending at critical
points.

37D15, 57R55

1 Introduction

We begin with a summary of Morse theory in order to fix notation. For more back-
ground see eg Austin and Braam [2], Bott [3], Hutchings [9], Milnor [12], Morse [13],
Schwarz [19], Weber [22] and Witten [23]. Let X be a compact manifold (without
boundary). A Morse function f W X ! R is a smooth function with nondegenerate
critical points. That is, at each point of Crit.f /D fp 2X j df .p/D 0g the Hessian
D2f .p/W TpX �TpX !R is a nondegenerate (symmetric) bilinear form. The dimen-
sion of the negative eigenspaces of D2f .p/ is called the Morse index jpj 2N0 of a
critical point p . By the Morse Lemma (eg [12, Lemma 2.2]) there exist coordinates
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� Bı

�
,�!X

for a neighborhood of each critical point p that bring f into the normal form

.��f /.x1; : : : ;xn/D f .p/�
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:

This normal form shows that the sublevel sets of f provide a decomposition of X in
terms of handle attachments, and hence capture the full (smooth) topology of X . In
order to read off the homology of X from a Morse function, however, it is more useful to
choose an auxiliary Riemannian metric g on X and study the flow lines of the gradient
vector field rf 2�.TX /. More precisely, let ‰W R�X!X , .s;x/ 7!‰s.x/, denote
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370 Katrin Wehrheim

the negative gradient flow given by ‰0.x/D x and d
ds
‰s.x/D�rf .‰s.x//. Then

we can consider the unstable and stable manifold for each critical point p 2 Crit.f /,

W �p D
˚
x 2X

ˇ̌
lim

s!�1
‰s.x/D p

	
; W Cp D

˚
x 2X

ˇ̌
lim

s!1
‰s.x/D p

	
:

These are smooth manifolds of dimension jpj and n�jpj, respectively; see eg Shub [20,
Chapter 5]. The pair .f;g/ is called Morse–Smale if the unstable and stable manifolds
intersect transversely. The Morse complex of a Morse–Smale pair then reproduces the
homology of X . It is generated by the critical points p 2Crit.f /, and the differential @
is defined by the intersection numbers of unstable and stable manifolds, ie the number of
flow lines between critical points of index difference 1. The fact that @2 D 0 is proven
by showing that the space of flow lines between critical points of index difference 2 is
a 1–dimensional manifold, whose ends exactly correspond to the broken flow lines
counted by @2 .

More generally, the spaces of Morse flow lines M.p�;pC/ between critical points
p�;pC 2 Crit.f / have a natural compactification by broken flow lines, and the com-
pactified Morse trajectory spaces M.p�;pC/ (consisting of broken and unbroken flow
lines)1 can be given the structure of a smooth manifold with corners, whose lower strata
are given by products of Morse trajectory spaces; see Section 2.1 for more details. This
is a folk theorem, possibly first stated in Austin and Braam [2], and with various partial
proofs in the literature. A complete proof in the case of index difference 2 is given in
Schwarz [19], but all general treatments run into technical difficulties with the gluing
of broken flow lines to nearby unbroken flow lines, which provides the charts near the
boundary and corners. These can likely be solved by subtle global estimates, but at
this point we also expect a complete proof to arise from casting the Morse trajectory
spaces in the general abstract framework of polyfolds, developed in Hofer, Wysocki and
Zehnder [8] for dealing with moduli spaces of elliptic PDEs with geometric singularity
formation.

The gluing difficulty can also be overcome by more elementary means by restricting
to Morse–Smale pairs of a Euclidean normal form near each critical point, so that
the generalized trajectory spaces cut out smooth submanifolds with corners on the
critical level sets of f . In that case the gluing analysis (working with implicit function
theorems on Banach manifolds) can be replaced by finite-dimensional intersection
theory. We will construct charts geometrically using the same normal form, and extend
the results to general Morse–Smale metrics by topological conjugacy. This approach

1 Throughout, all unbroken flow lines that we refer to will be unparametrized (ie parametrized negative
gradient curves modulo time shift), broken flow lines are finite sequences of unbroken flow lines with
matching limit critical points, and we will summarize unbroken and broken flow lines by the term
generalized trajectory.
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Smooth structures on Morse trajectory spaces 371

was laid out in Burghelea and Haller [4] and Franks [6] and is also followed in Qin [18],
but to the best of our knowledge – though generally considered “known” – present
literature contains neither a rigorous statement for general metrics nor the technical
details of dealing with various issues of noncompactness and interrelated choices in
the intersection theory. The first of three goals of this paper is to fill these gaps by
giving a technically complete geometrically explicit construction of smooth structures
on the Morse trajectory spaces. The following rough version will be stated precisely in
Theorem 2.3.

Theorem 1.1 Let .f;g/ be a Morse–Smale pair and let p�;pC 2 Crit.f /. Then
M.p�;pC/ can be equipped with the structure of a smooth manifold with corners
such that the k th corner stratum is[

p1;:::;pk2Crit.f /

M.p�;p1/�M.p1;p2/� � � � �M.pk ;pC/:

In the case of a Euclidean Morse–Smale pair .f;g/, the smooth structure is naturally
given by requiring the evaluation maps at regular level sets to be smooth

To make the normal form precise we denote open balls by Bk
r WD fx 2Rk j jxj< rg.

Definition 1.2 A Euclidean Morse–Smale pair on a closed manifold X is a pair .f;g/
consisting of a smooth function f 2 C1.X;R/ and a Riemannian metric g on X

satisfying a normal form and transversality condition as follows:

(i) For each critical point p2Crit.f / there is a local chart �pW B
n�jpj

ı
�B
jpj

ı
�!� zU .p/

to a neighborhood zU .p/�X of p D �p.0/ such that

(1)
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n�jpjC1C � � �Cx2
n

�
;

.��p g/D dx1˝ dx1C � � �C dxn˝ dxn:

(ii) For every pair of critical points p; q 2 Crit.f / the intersection of unstable and
stable manifolds is transverse, W �p tW Cq .

Remark 1.3 (i) Given any Morse function and metric, there exist L2 –small pertur-
bations of the metric on annuli around the critical points that yield Morse–Smale
pairs, by Burghelea and Haller [4, Proposition 2]. In particular, given a metric of
normal form (1) near the critical points, such a perturbation yields a Euclidean
Morse–Smale pair.
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372 Katrin Wehrheim

(ii) The flow ‰s of any Morse–Smale pair is topologically conjugate to the flow
‰0

s of a Euclidean Morse–Smale pair. That is, there exists a homeomorphism
hW X ! X such that h ı‰s D ‰

0
s ı h. We review the proof of this classical

result in Remark 3.6.

The Euclidean normal form induces a natural smooth structure on a space of flow
lines near each critical point. Deviating from the approach in [4] we separate this
local smoothness issue from the generally smooth Morse flow on the complement
of the critical points. This setup is explained further below, will be made precise
in Section 4.3, and should also provide a useful framework for constructing smooth
structures in infinite-dimensional Floer-theoretic settings. In fact, a similar setup was
used in Kronheimer and Mrowka [10] to construct gluing maps for Seiberg–Witten
Floer theory.

For general Morse–Smale pairs one does not expect a natural smooth structure since the
evaluation at regular level sets has a singular image. However, any choice of topological
conjugation to a Euclidean Morse–Smale flow induces a smooth structure.

Homotopy-theoretic applications such as Cohen, Jones and Segal [5] require moreover
“associative gluing maps” near the boundary strata, introduced in detail in Section 2.3.
While it is a general fact that manifolds with corners and a certain face structure of
the boundary strata can be equipped with associative gluing maps (see eg Qin [18]),
our second goal is to construct such gluing maps geometrically explicit in order to
identify the gluing parameters as transition times through fixed neighborhoods of critical
points.2 A precise definition and construction is given in Corollary 2.8 by inverting
“global charts” for the Morse trajectory spaces that are constructed in Theorem 2.5. The
following gives a rough first impression.

Theorem 1.4 There exists a collection of gluing maps for every p�;pC 2 Crit.f /,
q D .q1; : : : ; qk/� Crit.f / and a uniform constant t > 0,

�.q/WM.p�; q1/� Œ0; t/�M.q1; q2/� � � � � Œ0; t/�M.qk ;pC/ �!M.p�;pC/:

These are homeomorphism onto their images, restrict to a smooth map on the subset of
positive gluing parameters �1; : : : ; �k 2 .0; 1/, and are given by the canonical map to
k –fold broken trajectories for vanishing gluing parameters �1D� � �D �kD0. Moreover,
the gluing maps are associative in the sense that the following triangles commute:

2 While the pregluing maps that provide basic polyfold charts are evidently associative, it is unclear
whether the polyfold setup can induce associative gluing maps on the Morse trajectory spaces. This is
since the latter are merely cut out by a transverse section from the polyfold.
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M.p�; q1/� � � � �Œ0; t/�M.qj ; q
0
1/� � � � �M.q0`; qjC1/„ ƒ‚ …�Œ0; t/� � � � �M.qk ;pC/

M.p�;pC/

M.p�; q1/� � � � � Œ0; t/�M.qj ; qjC1/� Œ0; t/� � � � �M.qk ;pC/

�.q[ q0/

Id��.q0/� Id

�.q/

The final goal of this paper and main source of technical complications is to extend
Theorems 1.1 and 1.4 to compactifications of spaces of half infinite Morse flow lines
M.X;pC/ and M.p�;X / and to the space of finite Morse flow lines M.X;X /. This
is a natural step in the construction of associative gluing maps sketched below. More
crucially, the smooth structures on theses spaces are required for various foundational
results in symplectic topology, sketched in the following remark.

Remark 1.5 Many foundational structures in symplectic topology, such as Floer
homology and Fukaya’s A1–category, are constructed from moduli spaces of pseudo-
holomorphic curves. In general symplectic manifolds, these constructions must take
“bubbling” into account, which poses analytic and algebraic challenges in the regular-
ization of moduli spaces and their evaluation to chains on Lagrangian submanifolds.
The ideal resolution of the algebraic issues should replace singular chain complexes
by a finitely generated complex that is invariant under pull-push constructions on
pseudoholomorphic curve moduli spaces. The natural candidates are Morse complexes,
for which the pull-push construction amounts to coupling pseudoholomorphic curves
with Morse flow lines whose finite ends are attached to the curves at marked points. This
approach has been used in various applications to the class of “monotone” symplectic
manifolds in which restriction to counting problems allows to work only with the
smooth Morse flows and stable/unstable manifolds. In general symplectic manifolds,
the regularization issues require one to work with compact unregularized moduli spaces,
which can contain highly singular solutions, in particular involving multiply broken
Morse trajectories.

The recent polyfold theory of Hofer, Wysocki and Zehnder [8] provides a new framework
for resolving the analytic challenges of regularization, so a natural idea is to now give
rigorous constructions of moduli spaces of pseudoholomorphic curves coupled with
Morse trajectories. A first example are trees of pseudoholomorphic disks with Morse
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374 Katrin Wehrheim

edges, which will yield finitely generated A1–algebras associated to Lagrangian
submanifolds, once a polyfold description is given in Li and the author’s [11]. A second
example is a polyfold-theoretic proof of the Arnold conjecture by Albers, Fish and the
author [1] based on moduli spaces of punctured spheres with half infinite Morse flow
lines as in Piunikhin, Salamon and Schwarz [17]. In both cases, a polyfold setup can
be obtained as fiber product of SFT polyfolds (the main part of which is constructed
in Hofer, Wysocki and Zehnder [7]) with the compactified Morse trajectory spaces.
This crucially relies on a manifold with corner structure on the Morse trajectory spaces,
with respect to which evaluations at finite ends are smooth maps.

In the application to pseudoholomorphic curve moduli spaces, it is important to isolate
the boundary component given by zero length trajectories from all other boundary
components given by broken trajectories. However, there are broken trajectories with
endpoints near a critical point arbitrarily close in the Hausdorff topology to the zero
length trajectory at the critical point. To separate those boundary components we use
the natural blowup construction of including the length of a trajectory in the Morse
trajectory space, thus introducing a constant trajectory at the critical point for every
length L 2 Œ0;1/, converging to a broken trajectory with domains Œ0;1/; .�1; 0� as
L!1. More generally, we obtain a smooth structure for trajectories starting at or
near a critical point (and potentially breaking there) by a similar blowup construction
given by a natural variation in the definition of transition times near the critical point.

Organization and construction of global charts

The following Section 2 describes in detail the main results of this paper, in particular
the construction of “global charts” in Theorem 2.6 for the Morse trajectory spaces
of a Euclidean Morse–Smale pair. For example, for the space M.q�; qC/ of Morse
trajectories between critical points q˙ 2 Crit.f / we construct one chart for each
tuple of critical points q D .q1; : : : ; qk/ � Crit.f /, covering the open set of Morse
trajectories V.q/�M.q�; qC/ that intersect specific fixed neighborhoods U.qi/ of
each q1; : : : ; qk and don’t break at other critical points.

Section 3 establishes basic topological results for the Morse trajectory spaces and
evaluation maps and deduces Theorem 2.3 from Theorem 2.6. Section 4 prepares the
proof by constructing various restriction maps and equipping the spaces Mq of ”local”
Morse trajectories traversing a fixed neighborhood U.q/ of a critical point in Euclidean
normal form with a smooth structure Mq Š Œ0; t/�SCq �S�q . Here Œ0; t/ encodes the
transition time through U.q/ with 0 corresponding to the trajectory breaking at q , and
S˙q denotes the spheres in the unstable and stable manifolds of q .
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Finally, Section 5 constructs the “global charts” of Theorem 2.6. In the above example
this requires a homeomorphism V.q/' Œ0; t/k �M.q�; q1/� � � � �M.qk ; qC/. For
that purpose we first identify V.q/ with a fibered product�
M.S�q� ;

zSCq1
/�M. zS�q1

; zSCq2
/� � � � �M. zS�qk

;SCqC/
�

Ev�Ev0
�
Mq1

�Mq2
� � � � �Mqk

�
;

where the first tuple of factors are spaces of unbroken “connecting” trajectories with
endpoints on the (un)stable spheres S˙q , respectively the entry and exist sets zSCqi

; zS�qi

of the neighborhoods U.qi/. The fiber product is given by the endpoint evaluations to
zS�q��

zSCq1
� zS�q1

� zSCq2
�� � �� zS�qk

� zSCqC Here the product of connecting trajectory spaces
on the left carries a natural smooth structure induced by the Morse flow. The product of
local trajectory spaces on the right is equipped with the smooth structure with boundary
and corners induced by the factors Mqi

Š Œ0; t/�SCqi
�S�qi

. We will obtain a smooth
structure on V.q/ by proving transversality of the evaluation maps, and we construct the
global chart V.q/! Œ0; t/k�M.q�; q1/�� � ��M.qk ; qC/ by reading off the transition
times in Œ0; t/ from the local trajectory spaces Mqi

and projecting each connecting
trajectory space M. zS�qi

; zSCqiC1
/ to the corresponding Morse trajectories between the

critical points M.qi ; qiC1/, which are embedded into the former by restrictions.

Acknowledgements I would like to thank Alberto Abbondandolo and Jiayong Li for
helpful discussions, the IAS for inspiring writing atmosphere and the NSF for financial
support.

2 Morse trajectory spaces, global charts, associative gluing

2.1 Compactified Morse trajectory spaces

This section introduces the infinite, half infinite and finite length versions of Morse
trajectory spaces for a general Morse–Smale pair .f;g/. For distinct critical points
p�¤pC 2Crit.f / the space of unbroken Morse flow lines is the space of parametrized
gradient flow lines  W R!X modulo shift in the R–variable,

M.p�;pC/ WD
n
 W R!X

ˇ̌̌
P D�rf . /; lim

s!˙1
 .s/D p˙

oı
R

'
�
W �p� \W CpC

�
=R'W �p� \W CpC \f

�1.c/:

It is canonically identified with the intersection of unstable and stable manifold modulo
the R–action given by the flow ‰s , or their intersection with a level set for any
regular value c 2 .f .pC/; f .p�//. In either formulation, they carry canonical smooth
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structures; see eg Schwarz [19, Section 2.4.1]. We will consider the constant trajec-
tories at a critical point as part of a larger trajectory space below, hence here declare
M.p;p/ WD∅. For open subsets U�;UC �X and critical points p�;pC 2 Crit.f /
the spaces of half infinite flow lines

M.U�;pC/ WD
n
 W Œ0;1/!X

ˇ̌̌
P D�rf . /;  .0/ 2 U�; lim

s!1
 .s/D pC

o
'W CpC \U�;

M.p�;UC/ WD
n
 W .�1; 0�!X

ˇ̌̌
P D�rf . /; lim

s!�1
 .s/D p�;  .0/ 2 UC

o
'W �p� \UC;

inherit smooth structures directly from the unstable and stable manifold. Finally, the
space of finite unbroken flow lines

M.U�;UC/ WD
n
 W Œ0;L�!X

ˇ̌̌
L 2 Œ0;1/; P D�rf . /;  .0/ 2 U�;  .L/ 2 UC

o
'

[
L2Œ0;1/

U�\‰
�1
L .UC/D

�
Œ0;1/�U�

�
\‰�1.UC/

can be identified with an open subset of M.X;X /' Œ0;1/�X since the flow map
‰ is continuous. Hence it naturally is a smooth manifold with boundary given by
constant flow lines. These three types of spaces can contain constant trajectories at a
critical point. Note in particular that we do not construct M.X;X / by the images of
finite Morse flow lines, f.x;x0/ 2 X �X j x0 2‰Œ0;1/.x/g, but replace the diagonal
critical points .x;x/ with x 2 Crit.f / in this image space by an interval Œ0;1�� fxg
parametrizing the length (in time) of the trajectory.

From the smooth spaces of unbroken flow lines we obtain topological spaces of broken
flow lines as follows: To unify notation we denote by U˙ �X a set that is either open
U˙ D U˙ or a set consisting of a single critical point U˙ D p˙ . For two such subsets
U˙ �X (of same or different type) we define the set of k –fold broken flow lines (also
called the k –stratum) by

M.U�;UC/k WD
[

.p1:::pk/2Critseq.f;U�;UC/

M.U�;p1/�M.p1;p2/� � � � �M.pk ;UC/;

Here and throughout we use the notation of critical point sequences between U˙ :

Critseq.f;U�;UC/
WD

�
.p1; : : : ;pk/

ˇ̌̌̌
k 2N0;p1; : : : ;pk 2 Crit.f /;
M.U�;p1/;M.p1;p2/; : : : ;M.pk ;UC/¤∅

�
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To simplify notation we will usually identify p2Critseq.f;U�;UC/ with the tuple pD

.U�;p1; : : : ;pk ;UC/, and denote p0 WD U� , pkC1 WD UC . Critical point sequences
form a finite set since they have to decrease in function value. For k D 0 we only have
the empty critical point sequence and hence M.U�;UC/0 DM.U�;UC/. Now the
Morse trajectory space is the space of all generalized trajectories,

M.U�;UC/ WD
[

k2N0

M.U�;UC/k :

In the following we denote broken flow lines by  D .0; 1 : : : ; k/ 2M.U�;UC/k
and also write  D 0 2M.U�;UC/0 for the unbroken flow lines. Note here that, by
slight abuse of notation, we write i instead of Œi � for the unparametrized flow lines
in M.pi ;piC1/. If U� , respectively UC , is a critical point, then 0 , respectively k ,
is an unparametrized flow line as well, otherwise it is defined on a half interval and
hence parametrized. With this notation we can define the evaluation maps at endpoints

(2)

ev�WM.X;pC/ �!X;

evCWM.p�;X / �!X;

ev� � evCWM.X;X / �!X �X;

by ev�.0; : : : ; k/D 0.0/ for any k 2N0 , by evC.0; : : : ; k/D k.0/ for k � 1,
and by evC.0W Œ0;L�!X /D 0.L/ for a single trajectory k D 0.

Next, we define a metric on the Morse trajectory spaces,

dM. ; 
0/ WD dHausdorff

�
im  ; im  0

�
C
ˇ̌
`. /� `. 0/

ˇ̌
for  ;  0 2M.U�;UC/;

by the Hausdorff distance and the renormalized length

(3) `WM.U�;UC/ �! Œ0; 1�;  7�!

�
L=.1CL/  D . W Œ0;L�!X /;

1 otherwise:

Here the image of a generalized trajectory  D .0; : : : ; k/ is the union of the images
in X of all constituting flow lines (which is independent of the parametrization),

im  WD im 0[ � � � [ im k �X:

The closure im  contains in addition the critical points lims!1 j�1 D lims!�1 j
for j D 1; : : : ; k as well as lims!�1 0 , respectively lims!1 k , in case U� , re-
spectively UC , is a single critical point, and hence im  is a compact subset of X . We
use closures since the Hausdorff distance

dHausdorff.V;W /Dmax
n

sup
v2V

inf
w2W

dX .v; w/; sup
w2W

inf
v2V

dX .w; v/
o
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is a metric on the set of nonempty compact subsets of X .

Remark 2.1 (i) The length term in dM vanishes on M.U�;UC/ if at least one of
the sets U˙ is a critical point (and hence all lengths are 1).

(ii) The length term is crucial in the case of open sets U˙ D U˙ containing a critical
point p2Crit.f /\UC\U� in their intersection. In that case it provides the topological
blowup construction at the trajectories whose image is a critical point. More precisely,
it separates trajectories in M.U�;UC/[M.U�;p/�M.p;UC/ that are constant
 � p , respectively .0 � p; 1 � p/, but of different lengths.

(iii) The Hausdorff distance is definite on M.U�;UC/ except for pairs of trajectories
as in (ii) whose image is a critical point. This is since the critical points in im  are
uniquely determined by the flow lines, and flow lines are in one-to-one correspondence
with their images except for constant trajectories (where the length cannot be read off
from the image). Together with (ii) this shows that dM defines a metric.

(iv) The identifications of the spaces of unbroken flow lines as above,

M.p�;pC/'W �p� \W CpC \f
�1.c/; M.X;pC/'W CpC ;

M.p�;X /'W �p� ; M.X;X /' Œ0;1/�X;

are homeomorphisms with respect to the metric dM . This follows from the continuity
of the evaluations maps as in Lemma 3.3 in one direction, and for the inverse from the
continuity of the Morse flow together with the limit conditions.

The renormalized length (3) is continuous by definition, and we will establish continuity
of the evaluation maps in Lemma 3.3. With that, the Morse trajectory spaces for open
sets U˙ �X are open subsets M.U�;pC/D ev�1

� .U�/, M.p�;UC/D ev�1
C .UC/,

M.U�;UC/D ev�1
� .U�/\ev�1

C .UC/ of the Morse trajectory spaces for U˙DX . So
from now on we can restrict our discussion to the Morse trajectory spaces M.U�;UC/
for U˙ D X or U˙ D p˙ 2 Crit.f /. In each case we will prove the following folk
theorem. For reference, we recall the definition of a manifold with corners and its
strata.

Definition 2.2 A smooth manifold with corners of dimension n 2 N0 is a second
countable Hausdorff space M together with a maximal atlas of charts ��W M � U�!

V� � Œ0;1/
n (ie homeomorphisms between open sets such that

S
� U� DM ) whose

transition maps are smooth. For k D 0; : : : ; n the k th stratum Mk is the set of all
x 2M such that for some (and hence every) chart the point ��.x/ 2 Œ0;1/n has k

components equal to 0.
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Theorem 2.3 Let .f;g/ be a Morse–Smale pair and let U� , UC denote X or a critical
point Crit.f /. Then .M.U�;UC/; dM/ is a compact, separable metric space and can
be equipped with the structure of a smooth manifold with corners. Its k –stratum is
M.U�;UC/k , with one additional 1–stratum f0g�X given by the length 0 trajectories
in case U� D UC DX .

Remark 2.4 In the case of a Euclidean Morse–Smale pair the smooth structure (in
the strict sense of a maximal atlas of smoothly compatible charts) on each M.U�;UC/
will be naturally given by the flow time and evaluation maps at ends (2) and regular
level sets, as detailed in Section 4.3. As a consequence, the evaluation maps (2) and
evaluations at regular level sets are smooth maps M.U�;UC/!X , as will be shown
in Remarks 5.3 and 5.5.

This theorem will be deduced from much stronger constructions of global charts for
Euclidean Morse–Smale pairs in the following section. The proof is given at the end of
Section 3, based on Theorem 2.6 and topological conjugacy for general Morse–Smale
pairs.

2.2 Global charts

Assuming .f;g/ to be a Euclidean Morse–Smale pair from now on, we will go beyond
Theorem 2.3 to construct “global charts” on “large open subsets” of the Morse trajectory
spaces. To state these results we fix a Euclidean normal neighborhood

B
jpj
2�
�B

n�jpj
2�

Š zU .p/�X

as in Definition 1.2 for each critical point p 2 Crit.f /, a family of neighborhoods
zUt .p/� zU .p/ for t 2 .0; 1� and a further precompact neighborhood U.p/� zU .p/.

The highly specific choices

zUt .p/D�p

n
.x;y/2B

jpj

.1Ct/�
�B

n�jpj

.1Ct/�

ˇ̌̌
jxjjyj< t�2

o
; U.p/D�p

�
B
jpj
�
�B

n�jpj
�

�
;

are quite important and will be refined in Section 4 such that the neighborhoods
are disjoint for different critical points. Note here that we have precompact nesting
zUt .p/@ zUt 0.p/ for t < t 0 , where we write @ for an inclusion whose closure is compact.
For t ! 0 the sets zUt .p/ converge in the Hausdorff distance to the union of unstable
and stable manifold in U.p/. Moreover, Morse trajectories which intersect zU1.p/

traverse the critical level set f �1.f .p// within U.p/ or have an end within zU .p/.

Now for any t 2 .0; 1� and critical point sequence qD .q1; : : : qk/2Critseq.f;U�;UC/
we define the large open subset

Vt .q/D Vt .U�; q1; : : : ; qk ;UC/�M.U�;UC/
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as the subset of those generalized Morse trajectories that intersect the neighborhoods
zUt .qi/ � X of each of the critical points q1; : : : ; qk and do not intersect any other
critical points (other than U˙ D p˙ in case this denotes a critical point). A more
formal definition of the large open sets Vt .q/ will be given in Section 5, where
we will also choose the zUt .p/ sufficiently small to guarantee that Vt .q/ ¤ ∅ iff
q 2 Critseq.f IU�;UC/. Next, we denote the intersection of the large open subsets
with the strata of M.U�;UC/ by

Vt .q/m WD Vt .q/\M.U�;UC/m:

The large open subset associated to the empty critical point sequence is the space
of unbroken trajectories Vt .U�;UC/ DM.U�;UC/. For general q we know that
Vt .q/0DVt .q/\M.U�;UC/ is the intersection with the space of unbroken trajectories
(hence carries a natural smooth structure). Moreover,

Vt .q/k DM.U�; q1/�M.q1; q2/� � � � �M.qk ;UC/

is the subset of maximally broken trajectories since we do not allow the trajectory to
hit critical points other than p˙ and q1; : : : ; qk , and hence Vt .q/m D∅ is empty for
m> k .

The following theorem provides global charts in the case of infinite Morse trajectories
U˙ D p˙ , that is homeomorphisms between the large subset Vt .q/ and spaces with
a fixed smooth structure (as manifold with boundary and corners). The charts are
moreover compatible in three ways: Firstly, the charts are compatible with the given
smooth structure on the space of unbroken trajectories M.p�;pC/. Secondly, they are
given by the canonical maps on the maximally broken trajectories in Vt .q/k . Finally,
the charts are compatible with each other in the sense that their transition maps are
given by further chart maps on smaller domains. In particular, the transition maps are
smooth, hence this induces an atlas for M.p�;pC/ as a manifold with boundary and
corners. Moreover, it induces an identification of the boundary strata with products
of smaller Morse trajectory spaces and the construction of associative gluing maps in
Corollary 2.8.

Theorem 2.5 There is a uniform constant t > 0 such that for every pair p˙ 2 Crit.f /
there exist homeomorphisms (called global charts)

�.q/W Vt .q/ �!M.p�; q1/� Œ0; t/�M.q1; q2/� � � � � Œ0; t/�M.qk ;pC/

for every critical point sequence .q1; : : : ; qk/ 2 Critseq.f;p�;pC/ satisfying the
following:
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(i) The restriction �.q/jVt .q/0 is a diffeomorphism

Vt .q/0 �!M.p�; q1/� .0; t/�M.q1; q2/� � � � � .0; t/�M.qk ;pC/:

(ii) The restriction �.q/jVt .q/k is the canonical bijection

Vt .q/k �! M.p�; q1/� f0g �M.q1; q2/� � � � � f0g �M.qk ;pC/;

.0; 1; : : : ; k/ 7�! .0; 0; 1; : : : ; 0; k/:

In particular, the global chart for q D .p�;pC/ (with k D 0) is �.p�;pC/D Id on
Vt .p�;pC/0 D Vt .p�;pC/DM.p�;pC/.

(iii) The global charts are compatible as follows: Let q;Q 2 Critseq.f;p�;pC/ be
such that QD . : : : ; qi ; q

0
1
; : : : ; q0

`
; qiC1; : : : / is obtained from q by inserting another

critical point sequence q0D .qi D q0
0
; q0

1
; : : : ; q0

`
; q0
`C1
D qiC1/ 2 Critseq.f; qi ; qiC1/.

Then we have

�.q/.Vt .q/\Vt .Q//�� � ��M.qi�1; qi/�Œ0; t/�Vt .q
0/0�Œ0; t/�M.qiC1; qiC2/�� � �

and
�.Q/jVt .q/\Vt .Q/ D

�
Id��.q0/� Id

�
ı�.q/jVt .q/\Vt .Q/:

That is, the following triangle commutes:

� � � �M.qi�1; qi/� Œ0; t/

�M.qi ; q
0
1/� .0; t/� � � � �M.q0`; qiC1/„ ƒ‚ …� Œ0; t/�M.qiC1; qiC2/� � � �

Vt .q/\Vt .Q/

� � � �M.qi�1; qi/� Œ0; t/�Vt .q
0/0 � Œ0; t/�M.qiC1; qiC2/� � � �

�.Q/

Id��.q0/� Id

�.q/

(iv) The corner parameters are given explicitly by e�Ti 2 Œ0; t/ associated to each
qi 2 Crit.f / encoding the time Ti for which the trajectory is contained in U.qi/. In
particular, e�Ti D 0 corresponds to the trajectory breaking at qi .

For Morse trajectories with one or both ends finite we will obtain very similar charts,
except that the natural construction of a global chart for Vt .X; q1; : : : /�M.X;UC/
using the entry and exit points in @U.q1/ does not match smoothly with the natural
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chart for trajectories with initial point in U.q1/. The latter arises from the normal form
(1) and reflects the blowup construction at trajectories ending at q1 . The analogous
issue arises on Vt . : : : ; qk ;X / �M.U�;X / for trajectories ending in U.qk/. We
could give a less natural smooth construction but would lose the geometric interpretation
of the corner parameters. Instead, we have chosen to cover Vt .X; q1; : : : / as well
as Vt . : : : ; qk ;X / by separate charts with the following domains. Given a nonempty
critical point sequence q D .q1; : : : ; qk/ 2 Critseq.f;U�;UC/ we cover Vt .q/ with
one, two or four open sets of the form

(4) Vt .Q0; q1; : : : ; qk ;QkC1/ WD .ev�1
� � ev�1

C /.Q0 �QkC1/

� Vt .U�; q1; : : : ; qk ;UC/:

For infinite ends at critical points U�Dp� or UCDpC we keep Q0 WDp� , respectively
QkC1 WD pC . For finite ends U� DX , respectively UC DX , we introduce a choice
of open subsets Q0 � X , respectively QkC1 � X , in each case allowing two open
subsets that cover X , namely

Q0 DX nU.q1/ or Q0 D
zU .q1/;

resp. QkC1 DX nU.qk/ or QkC1 D
zU .qk/:

To simplify notation we will also write Vt .q/ for Vt .Q0; q1; : : : ; qk ;QkC1/, viewing
the choice of Q0 and QkC1 as part of the critical point sequence q . The above
observations on the strata Vt .q/m WD Vt .q/\M.U�;UC/m then generalize directly.
In particular, Vt .q/k DM.Q0; q1/�M.q1; q2/� � � � �M.qk ;QkC1/ is the subset
of maximally broken trajectories between Q0 and QkC1 . With this notation we
may state the generalization of Theorem 2.5 to any combination of finite and infinite
ends. We include some more technical details in order to be able to use this exact
statement in the iterative proof. For that purpose we use the normal coordinates to
identify zU .q/ ' zBCq � zB

�
q as product of balls in the stable and unstable manifold

zB˙q WDW ˙q \
zU .q/. Then we pull back the Euclidean norms j � j to zU .q/.

Theorem 2.6 There is a uniform constant 0 < t � 1 such that for every combi-
nation of U˙ D X and U˙ 2 Crit.f / there exist global charts for the open sets
Vt .Q0; q1; : : : qk ;QkC1/�M.U�;UC/ for every critical point sequence .q1; : : : ; qk/

in Critseq.f;U�;UC/ and choice of the open subsets Q0 � U� , QkC1 � UC from 2.2.
Each global chart is a homeomorphism �.q/D �.Q0; q1; : : : ; qk ;QkC1/ of the form

Vt .Q0; q1; : : : qk ;QkC1/

�!� M.Q0; q1/� Œ0; t/�M.q1; q2/� � � � � Œ0; t/�M.qk ;QkC1/;

with the following adjustments for trajectories starting near q1 or ending near qk :
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� In case Q0 D
zU .q1/ the factors M.Q0; q1/� Œ0; t/ are replaced by˚

.;E/ 2M. zU .q1/; q1/� Œ0; 1C t/ jEjev�. /j< t�
	
:

� In case QkC1 D
zU .qk/ the factors Œ0; t/�M.qk ;QkC1/ are replaced by˚

.E;  / 2 Œ0; 1C t/�M.qk ; zU .qk// jEjevC. /j< t�
	
:

� In case k D 1 and Q0 D
zU .q1/DQ2 the image of the chart �. zU .q/; q; zU .q// is�

.0;E;1/

2M. zU .q/; q/� Œ0; 1��M.q; zU .q//

ˇ̌̌̌
Ejev�.0/jjevC.1/j< t�2;

Ejev�.0/j;EjevC.1/j< .1C t/�

�
:

Moreover, the global charts satisfy the following:

(i) The restriction �.q/jVt .q/0 is a diffeomorphism

Vt .q/0 �!M.Q0; q1/� .0; t/�M.q1; q2/� � � � � .0; t/�M.qk ;QkC1/:

In case Q0D
zU .q1/, respectively QkC1D

zU .qk/, this involves replacements as above,
but restricting those domains to E > 0.

(ii) The restriction �.q/jVt .q/k is the canonical bijection

Vt .q/k �! M.Q0; q1/� f0g �M.q1; q2/� � � � � f0g �M.qk ;QkC1/;

.0; 1; : : : k/ 7�! .0; 0; 1; : : : ; 0; k/:

In particular, the global chart for qD .Q0DU�;Q1DUC/ (with kD 0) is the identity
�.U�;UC/D Id on Vt .U�;UC/0 DM.U�;UC/.

(iii) The global charts are compatible as follows:

� Let Q D .Q0; : : : ; qi ; q
0
1
; : : : ; q0

`
; qiC1; : : : ;QkC1/ for 0 < i < k , ` � 1, be

obtained from qD .Q0; : : : ; qi ; qiC1; : : : ;QkC1/ by inserting a critical point sequence
q0 D .qi ; q

0
1
; : : : ; q0

`
; qiC1/. Then we have

�.q/.Vt .q/\Vt .Q//

� � � ��M.qi�1; qi/� Œ0; 2/�Vt .q
0/0� Œ0; 2/�M.qiC1; qiC2/�� � � ;

�.Q/jVt .q/\Vt .Q/ D
�
Id��.q0/� Id

�
ı�.q/jVt .q/\Vt .Q/:
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� Let QD .Q0
0
; q0

1
; : : : ; q0

`
; q1; : : : / be obtained from q D .Q0; q1; : : : / by inserting

`� 1 critical points.3 Then with q0 D .Q0
0
; q0

1
; : : : ; q0

`
; q1/ we have

�.q/.Vt .q/\Vt .Q//� Vt .q
0/0 � Œ0; 1/�M.q1; q2/� � � � ;

�.Q/jVt .q/\Vt .Q/ D
�
�.q0/� Id

�
ı�.q/jVt .q/\Vt .Q/:

� Let Q D . : : : ; qk ; q
0
1
; : : : ; q0

`
;Q0

kC1
/ be obtained from q D . : : : ; qk ;QkC1/ by

inserting `� 1 critical points.4 Then with q0 D .qk ; q
0
1
; : : : ; q0

`
;Q0

kC1
/ we have

�.q/.Vt .q/\Vt .Q//� � � � �M.qk�1; qk/� Œ0; 1/�Vt .q
0/0;

�.Q/jVt .q/\Vt .Q/ D
�
Id��.q0/

�
ı�.q/jVt .q/\Vt .Q/:

(iv) The corner structure, compatibility between charts with different Q0 or QkC1 ,
and explicit form for trajectories ending near critical points is given explicitly as follows:

� For 1 � i � k such that Q0 ¤
zU .q1/ in case i D 1 and QkC1 ¤

zU .qk/ in
case i D k , the parameter e�Ti 2 Œ0; t/ associated to qi 2 Crit.f / encodes the time
Ti > � ln t for which the trajectory is contained in U.qi/. In the limit Ti !1, the
parameter e�Ti D 0 corresponds to the trajectory breaking at qi .

� For Q0D
zU .q1/ and (k>1 or Q2¤

zU .q1/), a parameter e�T1 2 Œ0; 1/ encodes the
length of time T1 > 0 for which the trajectory is defined and contained in ‰R�.U.q1//,
with e�T1 D 0 corresponding to the trajectory breaking at q1 . A parameter e�T1

in Œ1; 2/ with nonpositive time T1 � 0 encodes the fact that the trajectory intersects
‰.�1;T �.U.q1// iff T > �T1 .5 Moreover we have

�.q/. /D
�
pr

W
C

q1

.ev�. //; : : :
�
; �.q/�1.; : : : /� ev�1

�

�
ev�. /� zB�q1

�
:

� Analogously, for QkC1 D
zU .qk/ and (k > 1 or Q0 ¤

zU .q1/), we encode the
time Tk > 0 for which the trajectory is defined and contained in ‰RC.U.qk//, with
e�Tk D 0 corresponding to breaking at qk , respectively the time Tk � 0 for which it
intersects the closure of ‰ŒTk ;1/.U.qk//. Moreover we have

�.q/. /D
�
: : : ; prW �qk

.evC. //
�
; �.q/�1. : : : ;  /� ev�1

C

�
zBCqk
� evC. /

�
:

3 We allow any choice of end point conditions Q0
0
;Q0 depending on q0

1
; q1 . Note that the charts have

nontrivial intersection only for .Q0
0
;Q0/D .q�; q�/ , .X nU.q0

1
/;X nU.q1// or . zU .q0

1
/;X nU.q1// .

4 The intersection is nontrivial for .X nU.q0
`
/;X nU.qk// , . zU .q0`/;X nU.qk// or .Q0

kC1
;QkC1/D

.qC; qC/ .
5 This definition of transition time is the crucial part of the blowup construction near trajectories with

initial point q1 . The extension to negative transition times is technically useful for the proof.
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� In case k D 1 and Q0 D
zU .q1/DQ2 we have

�.q/. /D
�
pr

W
C

q1

.ev�. //; e�T1 ; prW �q1
.evC. //

�
;

where the parameter e�T1 encodes the length of the time interval on which the trajectory
is defined. In particular, e�T1 D 0 corresponds to the trajectory breaking at q1 , and
e�T1 D 1 corresponds to the trajectory having length T1 D 0.

� For any nontrivial critical point sequence .q1; : : : ; qk/ 2 Critseq.f;U�;UC/ and
fixed QkC1 � UC the transition map �.X nU.q1/; q1; : : : /ı�. zU .q1/; q1; : : : /

�1 is a
diffeomorphism between open subsets of

M. zU .q1/ nU.q1/; q1/� Œ0; 2/� � � � �M.qk ;QkC1/

given by the identity on all but the second factor, and the family of linear reparametriza-
tions E 7!Ej ev�. /j=� for  2M. zU .q1/nU.q1/; q1/ in the normal coordinates (1).

For fixed Q0 � U� the transition map �. : : : ; qk ;X nU.qk// ı �. : : : ; qk ; zU .qk//
�1

is analogously given by E 7!Ej evC. /j=� for  2M.q1; zU .q1/ nU.q1//.

Remark 2.7 A direct consequence of concatenating the commuting triangles in
Theorem 2.6(iii) is the following more general compatibility. Let

q D .Q0; q1; : : : ; qk ;QkC1/ and QD .Q00; : : : ;Q
0
kC1/

be two tuples of critical point sequences and end conditions such that Q is obtained
from q by changing the end conditions and inserting critical point sequences

q0
D .Q00; q

0
1 ; : : : ; q

0
`0 ; q1/;

q1
D .q1; q

1
1 ; : : : ; q

1
`1 ; q2/;

: : :

qk
D .qk ; q

k
1 ; : : : ; q

k
`k ;Q0kC1/

with `0C `1C � � �C `k � 1. Then we have

�.Q/jVt .q/\Vt .Q/ D
�
�.q0/� Id��.q1/� � � � � Id��.qk/

�
ı�.q/jVt .q/\Vt .Q/

on

�.q/.Vt .q/\Vt .Q//� Vt .q
0/0 � Œ0; t/�Vt .q

1/0 � � � � � Œ0; t/�Vt .q
k/0:

The proofs of Theorems 2.5 and 2.6 are the main contents of this paper in Section 5.
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2.3 Associative gluing maps

Inversion of the compatible global charts gives rise to associative gluing maps. Here we
restrict ourselves to the case of a Euclidean Morse–Smale pair .f;g/ and the standard
Morse trajectories relevant to Cohen, Jones and Segal [5]. We note the generalization
to Morse trajectories with finite ends and general Morse–Smale pairs in Remarks 2.10
and 2.11.

Corollary 2.8 There is a uniform constant t > 0 such that for every p�;pC 2Crit.f /
and q D .q1; : : : ; qk/ 2 Critseq.f;p�;pC/ there exists a homeomorphism onto its
image (called gluing map)

�.q/WM.p�; q1/� Œ0; t/�M.q1; q2/� � � � � Œ0; t/�M.qk ;pC/ �!M.p�;pC/:

that satisfy the following:

(i) Each �.q/ restricts to a smooth map

M.p�; q1/� .0; t/�M.q1; q2/� � � � � .0; t/�M.qk ;pC/ �!M.p�;pC/:

(ii) Each �.q/ restricts to the canonical map

M.p�; q1/� f0g �M.q1; q2/� � � � � f0g �M.qk ;pC/ �! M.p�;pC/;

.0; 0; 1; : : : ; 0; k/ 7�! .0; 1; : : : ; k/:

(iii) The gluing maps are associative in the following sense:

Let q;Q 2 Critseq.f;p�;pC/ be such that Q D . : : : ; qj ; q
0
1
; : : : ; q0

`
; qjC1; : : : / is

obtained from q by inserting another critical point sequence

q0 D .qj D q00; q
0
1; : : : ; q

0
`; q
0
`C1 D qjC1/ 2 Critseq.f; qj ; qjC1/:

Then we have

�.Q/D �.q/ ı
�
Id��.q0/� Id

�
;

that is the following triangle commutes:
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M.p�; q1/� � � � �Œ0; t/�M.qj ; q
0
1/� � � � �M.q0`; qjC1/„ ƒ‚ …�Œ0; t/� � � � �M.qk ;pC/

M.p�;pC/

M.p�; q1/� � � � � Œ0; t/�M.qj ; qjC1/� Œ0; t/� � � � �M.qk ;pC/

�.Q/

Id��.q0/� Id

�.q/

Remark 2.9 A direct consequence of concatenating the commuting triangles in
Corollary 2.8(iv) is the following general associativity: For any critical point sequences
q D .q1; : : : qk/ and QD q[

Sk
jD0 qj as in Remark 2.7 we have

(5) �.Q/D �.q/ ı
�
�.q0/� Id��.q1/� � � � � Id��.qk/

�
:

Moreover, the canonical form in Corollary 2.8(iii) generalizes as follows: Let L D

f`1; : : : ; `mg � f1; : : : ; kg be an ordered subset. Then the restriction of �.p/ to the
set where L indexes the vanishing gluing parameters,˚

. 0; �1;  1; : : : ; �k ;  k/ 2 dom �.p/ j �` D 0, ` 2L
	
;

takes values in the subset of trajectories breaking at exactly p`1
; : : : ;p`m

,

�.p/
�˚
�` D 0, ` 2L

	�
�M.p�;p`1

/�M.p`1
;p`2

/� � � � �M.p`m
;pC/:

This follows from the canonical form (iii) for �.p`1
; : : : ;p`m

/, expressing �.p/ in
the form of (5) with q D .p`1

; : : : ;p`m
/, and property (ii) for the factors �.qj /.

Remark 2.10 The constructions for Corollary 2.8 also provide further gluing maps
for the compactified moduli spaces of types M.X;pC/, M.p�;X / and M.X;X /,
which together with the gluing maps for the spaces of type M.p�;pC/ satisfy the
general associativity relations. However, there are different gluing maps for the same
critical points but different end conditions. These are related by a reparametrization in
the first or last real valued parameter. For M.X;pC/ the elementary gluing maps are

M.X nU.q1/; q1/� Œ0; t/� � � � � Œ0; t/�M.qk ;pC/ �!M.X nU.q1/;pC/

and˚
.x;E/ 2M. zU .q1/; q1/� Œ0; 1C t/ jEjxj< t�

	
� � � � � Œ0; t/�M.qk ;pC/

�!M. zU .q1/;pC/:
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For M.p�;X / the elementary gluing maps are

M.p�; q1/� Œ0; t/� � � � � Œ0; t/�M.qk ;X nU.qk// �!M.p�;X nU.qk//

and

M.p�; q1/� Œ0; t/� � � � �
˚
.E;y/ 2 Œ0; 1C t/�M.qk ; zU .qk// jEjyj< t�

	
�!M.p�; zU .qk//:

For M.X;X / the elementary gluing maps are

M.X nU.q1/; q1/� Œ0; t/� � � � � Œ0; t/�M.qk ;X nU.qk//

�!M.X nU.q1/;X nU.qk//;

along with˚
.x;E/ jEjxj< t�

	
�M.q2; q3/� Œ0; t/�� � ��M.qk�1; qk/�

˚
.E;y/ jEjyj< t�

	
�!M. zU .q1/; zU .qk//

and

M. zU .q1/; q1/� Œ0; 1��M.q1; zU .q1//�
˚
Ejxjjyj< t�2;Ejxj;Ejyj< .1C t/�

	
�!M. zU .q1/; zU .q1//:

Here we use the evaluations

ev�WM. zU .q/; q/ �!� zU .q/ and evCWM.q; zU .q// �!� zU .q/

to pull back the Euclidean norm j � j on zU .q/ to the stable and unstable manifold
near q .

Remark 2.11 The previous constructions can be pulled back by topological conjugacy
to the Morse trajectory space for any general Morse–Smale pair. More precisely, the
homeomorphism hW X !X intertwining a Morse–Smale flow ‰s with the flow ‰0

s

of a Euclidean Morse–Smale pair induces homeomorphisms h�WM‰.U�;UC/ !
M‰0.U�;UC/ between the corresponding Morse trajectory spaces; see (8). Conju-
gation of the gluing maps � for ‰0 with h� in each component then yields gluing
maps for the trajectory spaces M‰.U�;UC/ which satisfy the standard form (ii) and
associativity (iii), but may not be smooth in the interior. So the associated global charts
for general Morse–Smale pairs may not be compatible with the smooth structure on
the unbroken Morse trajectory spaces induced by evaluations.
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Proof of Corollary 2.8 Recall that each global chart �.q/ has image

im�.q/DM.p�; q1/� Œ0; t/�M.q1; q2/� � � � � Œ0; t/�M.qk ;pC/

which covers the interior (and some boundary strata) of the domain

dom �.q/DM.p�; q1/� Œ0; t/�M.q1; q2/� � � � � Œ0; t/�M.qk ;pC/:

So we can define �.q/jim�.q/ WD �.q/�1 for all critical point sequences and pairs
p�;pC of critical points, and deduce (i) and (ii) from Theorem 2.5(i) and (ii). On
the further boundary strata of their domains, the gluing maps will be determined by
the associativity (iii) and canonical form (ii). For example, the trivial critical point
sequence q D ∅ 2 Critseq.f;p�;pC/ yields im�.p�;pC/ DM.p�;pC/ and we
defined �.p�;pC/jM.p�;pC/ WD IdM.p�;pC/ . This evidently satisfies (i) and (ii) and
has a unique continuous extension to the homeomorphism �.p�;pC/ WD IdM.p�;pC/ .
For general q2Critseq.f;p�;pC/ we also wish to define �.q/ as continuous extension
of �.q/�1 . For that purpose we express the domain as disjoint union

dom �.q/D
G

q0;:::;qk

Vt .q
0/`0
� Œ0; t/�Vt .q

1/`1
� � � � � Œ0; t/�Vt .q

k/`k

over all .k C 1/–tuples of critical point sequences qj D .q
j
1
; : : : ; q

j

j̀
/ contained

in Critseq.f; qj ; qjC1/; allowing trivial sequences and using the notation q0 D p� ,
qkC1 D pC . Here each factor

Vt .q
j /

j̀
DM.qj ; q

j
1
/�M.q

j
1
; q

j
2
/� � � � �M.q

j

j̀
; qjC1/�M.qj ; qjC1/

is the maximally broken stratum of Vt .q
j / �M.qj ; qjC1/. For trivial tuples q0 D

� � � D qk D∅ we have Vt .q
j /DM.qj ; qjC1/ and already defined

�.q/jVt .q0/`0
�Œ0;t/�����Vt .qk/`k

D �.q/�1:

If some of the qj are nontrivial then the corresponding component of the domain
dom �.q/ has a neighborhood Vt .q

0/� Œ0; t/� � � � �Vt .q
k/. On its interior

Vt .q
0/0 � Œ0; t/� � � � �Vt .q

k/0

the compatibility of global charts for Q WD q[
Sk

jD0 qj gives

�.q/�1
D �.Q/�1

ı
�
�.q0/� Id��.q1/� � � � � Id��.qk/

�
:

Here the right-hand side extends continuously to the maximally broken stratum

Vt .q
0/`0
� Œ0; t/� � � � �Vt .q

k/`k
;
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which shows that �.q/D �.q/�1 continuously extends to this component. Taking the
inverse of this identity also shows that �.q/�1 D �.q/ extends continuously. This
defines �.q/ as continuous map on its entire domain. Its inverse is continuous since
we checked the continuous extension of �.q/�1 to each of the disjoint components,
and their images do not overlap since the image of the component corresponding to
tuples q0; : : : ; qk consists exactly of those trajectories that break at all of these critical
points and a subset of q .

Finally, with this definition of the gluing maps, the above identity becomes

�.q/jVt .q0/�Œ0;t/�����Vt .qk/ D �.Q/ ı
�
�.q0/� Id��.q1/� � � � � Id��.qk/

��1
:

The domain of this identity is dense in the image of �.q0/�Id��.q1/�� � ��Id��.qk/,
hence precomposition and continuous extension prove the general associativity (5).

3 Geometry and topology of Morse trajectory spaces

This section reviews various geometric and topological constructions on Morse tra-
jectory spaces. In particular, we introduce evaluations and reparametrizations of
Morse trajectories, compare different metrics on the Morse trajectory spaces, prove the
topological content of Theorem 2.3, and show how the manifold with corner structure
is induced by the global charts in Theorem 2.6 and topological conjugacy. We fix a
Morse–Smale pair .f;g/ and begin by introducing some restricted spaces of Morse
trajectories.

Definition 3.1 Let U˙ �X be open sets or single critical points, and let V1; : : : ;Vk ,
W �X be open subsets. We denote the set of trajectories intersecting all Vi by

M.U�;UCIV1; : : : ;Vk/ WD
˚
 2M.U�;UC/

ˇ̌
im  \Vi ¤∅ 8i D 1; : : : ; k

	
and we denote the set of trajectories additionally contained in W by

M.U�;UCIV1; : : : ;Vk IW / WD
˚
 2M.U�;UCIV1; : : : ;Vk/

ˇ̌
im  �W

	
:

The openness of these subsets follows from the definition of Hausdorff distance.

Lemma 3.2 The subsets M.U�;UCIV1; : : : ;Vk IW /�M.U�;UC/ are open.

Next, we define the evaluation at regular level sets and other local slices to the flow.
Let H �X be a submanifold of codimension 1 whose closure is transverse to rf (ie
rf is nowhere tangent to H ), and such that ‰RC.H /\H D∅, where RCD .0;1/.
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Then ‰R�.H /�X and ‰RC.H /�X are open sets and we can define the evaluation
map

(6) evH WM.U�;UCI‰R�.H /; ‰RC.H // �!H;  7�! im  \H;

for all trajectories that intersect H but don’t end there. Furthermore, we recall the
evaluation maps at endpoints from (2),

(7)

ev�WM.X;pC/!X;

evCWM.p�;X /!X;

ev� � evCWM.X;X /!X �X;

given by ev�.0; : : : ; k/D 0.0/ for any k 2N0 , by evC.0; : : : ; k/D k.0/ for
k � 1 and by evC.0W Œ0;L�! X / D 0.L/ for k D 0. We will show below that
these are continuous, and hence the Morse trajectory spaces M.U�;pC/D ev�1

� .U�/,
M.p�;UC/ D ev�1

C .UC/ and M.U�;UC/ D ev�1
� .U�/ \ ev�1

C .UC/ for open sets
U˙ �X are open subsets of the Morse trajectory spaces for U˙ DX .

Lemma 3.3 The evaluation maps (6) and (7) are continuous with respect to the Haus-
dorff distance. When restricted to the subsets of unbroken trajectories M.p�;pC/,
M.X;pC/, M.p�;X /, respectively M.X;X /, the evaluation maps are smooth. In
fact,

evH WM.p�;pC/� dom.evH / �!H; ev�WM.X;pC/ �!X;

ev� � evCWM.X;X /� �!X �X; evCWM.p�;X / �!X;

are embeddings, where M.X;X /� denotes the nonconstant trajectories.

Proof We show continuity in (7) representatively for evCWM.X;X / ! X at a
fixed  2M.X;X / with evC. /DW e . Note that we drop the length term from the
metric dM and work with the weaker Hausdorff pseudometric dH � dM . Consider
 i 2M.X;X / with dH . i ;  /! 0 and evC. i/DW ei 2X . By assumption we have
dX .ei ; im  /! 0, so there exist gi 2 im  such that dX .ei ;gi/! 0. By uniform
continuity of f (on the compact X ) that also implies jf .ei/� f .gi/j ! 0. On the
other hand, we claim that Fi WD f .ei/! F WD f .e/. Indeed, for those i 2 N with
Fi < F we have

dX

�
f �1.Fi/; f

�1ŒF;1/
�
� dX .ei ; im  /! 0

since f .im  /� ŒF;1/; and similarly for those i 2N with Fi > F we have

dX

�
f �1ŒFi ;1/; f

�1.F /
�
� dX .e; im  i/! 0:
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Since the level sets and the superlevel sets of f are compact, this implies Fi ! F .
Putting things together we have gi 2 im  with f .gi/! f .e/, which implies gi! e

since f is monotone decreasing along the concatenation of flow lines in  . The
previously established dX .ei ;gi/! 0 now implies ei! e , which proves continuity.

The spaces of unbroken trajectories M.X;pC/, respectively M.p�;X /, inherit
their smooth structure from the evaluation maps ev� , respectively evC , making the
restrictions ev� jM.X ;pC/ , evC jM.p�;X / embeddings by definition. The space of
unbroken trajectories M.X;X / inherits its smooth structure from the evaluation map
ev� together with the length,

M.X;X /D
˚
 W Œ0;L�!X

ˇ̌
L 2 Œ0;1/; P D�rf . /

	
�! Œ0;1/�X;

 7�! .L;  .0//:

That is, this map is an embedding by definition. In particular, ev� jM.X ;X / is smooth.
The second evaluation evC jM.X ;X / is smooth since in the above global chart of
M.X;X / it corresponds to the smooth Morse flow Œ0;1/ � X ! X , .L;x0/ 7!

‰L.x0/. The product .ev� � evC/jM.X ;X / is the composition of the above embedding
with the map Œ0;1/�X !X �X , .L;x0/ 7! .x0; ‰L.x0//, which is an embedding
on the complement of Œ0;1/�Crit.f /, corresponding to the constant trajectories in
M.X;X /.

The proof of continuity in (6) is somewhat more technical. We fix a generalized
trajectory  D .0; : : : ; k/ and note that due to the transversality of H and rf , the
intersection point im  \H D evH . /DW x0 cannot be a critical point of f . Moreover,
the gradient flow provides a diffeomorphism

.�ı; ı/�H �!� ‰.�ı;ı/.H /DWNı �X; .s;x/ 7�!‰s.x/;

such that any generalized trajectory  0 2M.U�;UCI‰R�.H /; ‰RC.H // has the
intersection im  0\Nı ' I � fyg for y D evH .

0/ 2H and an interval I � .�ı; ı/

containing 0. Moreover, Nı will contain a neighborhood B�.x0/�X of radius �> 0

Now if  0 has Hausdorff distance dH .
0;  / � ", then it has to pass by x0 within

distance dX .im  0;x0/� ". Since im  0nNı is contained in the complement of the ball
B�.x0/ we can ensure by choosing " <� that dX .im  0\Nı;x0/� dHausdorff.

0;  /.
In the following we will use the product metric dR�H on Nı , which on B�.x0/ is
equivalent to dX with a constant C . Then we obtain continuity

dX .y;x0/� dR�H .im  0\Nı;x0/� CdX .im  0\Nı;x0/� CdHausdorff.
0;  /:

Finally, we need to check the smoothness of the evaluation map evH on unbro-
ken trajectories. When one or both of U˙ � X are open sets, then this domain
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M.U�;UCI‰R�.H /; ‰RC.H //0 is simply an unbroken trajectory space. Let us
denote the restricted open subsets in these cases by UH

˙
WD U˙\‰R˙.H /, then the

evaluation map is given as follows:

evH WM.UH
� ;pC/' UH

� \W CpC �!H; x 7�!‰T .x/I

evH W M.p�;UH
C /' UH

C \W �p� �!H; x 7�!‰T .x/I

evH WM.UH
� ;UH

C /'
�
Œ0;1/�UH

�

�
\‰�1.UH

C / �!H; .L;x/ 7�!‰T .x/I

where in each case T 2R is the solution of ‰.T;x/2H . This is a transverse equation
since rf is transverse to H , hence T 2 R depends smoothly on the parameter x ,
and this proves smoothness of the evaluation map evH .L;x/ D ‰.T;x/ in these
cases (dropping L in the first two cases). In case U˙ D p˙ the domain of unbroken
trajectories inherits its smooth structure6 from the identification

M.p�;pCI‰R�.H /; ‰RC.H //0 'W �p� \W CpC \f
�1.c/\‰R.H /

for any regular value c 2 .f .pC/; f .p�//. Now the evaluation map evH .x/D‰.T;x/

is smooth since it is again given by solving ‰.T;x/ 2H for T 2R, depending on the
parameter x in an open subset of W �p� \W CpC \f

�1.c/. The same argument proves
smoothness of the inverse and hence the embedding property.

With the notion of evaluation maps in place, we can compare the Hausdorff distance to
other natural distance functions on the Morse trajectory spaces.

Remark 3.4 (i) On M.p�;pC/, M.X;pC/ and M.p�;X / the Hausdorff dis-
tance dM is not equivalent to the distance on W �p� \W CpC \f

�1.c/, respec-
tively W CpC , respectively W �p� . (A counterexample for M.S1;pC/ is a Morse
function with one maximum and one minimum at pC . Then consider Morse
trajectories starting near the maximum. These initial points can be arbitrarily
close, but if they lie on different sides of the maximum then the associated Morse
trajectories have large Hausdorff distance.) However, it still induces the same
topology. (This follows from the continuity of the flow in one direction and from
the continuity of the evaluation maps in the other.)

(ii) On M.X;X / the distance dM. W Œ0;L�!X;  0W Œ0;L0�!X / is not equivalent
to the distance dX . .0/; 

0.0//CjL�L0j on Œ0;1/�X , but they still generate
the same topology. (This follows from the continuity of the flow and evaluation
maps as well as the length conversion L 7!L=.1CL/.)

6 The independence of the smooth structure from the choice of c is one case of this smoothness
statement with H D f �1.c0/ for another choice of regular value c0 .
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Lemma 3.5 For .f;g/ Euclidean Morse–Smale, a continuous reparametrization map

M.U�;UC/ �! C0.Œ0; 1�;X /;  7�! � ;

is defined by parametrizing the image im  by a continuous map � W Œ0; 1�! im  �X

given by requiring linear growth of the function value

f .� .s//D .1� s/ �f .ev�. //C s �f .evC. //:

On the complement of the trajectories of zero length, this is in fact a homeomorphism
to its image since dHausdorff.im  ; im  0/� dC0.� ; � 0/.7

Proof The reparametrization map is well-defined since the image of any general-
ized Morse trajectory is a connected finite union of critical points and embedded
submanifolds along which f strictly decreases. Continuity of the inverse of this
map follows from the inequality dHausdorff.im�; im� 0/ � dC0.�; � 0/ for any pair of
maps �; � 0W Œ0; 1�! X . Conversely, we claim that � 0.s0/! � .s0/ for any fixed
s0 2 Œ0; 1� as  0 !  in the Hausdorff metric. (This suffices to prove convergence
of the C0 –distance due to the continuity of the paths � and the compactness of their
domain.)

If � .s0/ 62 Crit.f / then we can pick a coordinate chart diffeomorphic to a product
B1 � .�ı; ı/ near � .s0/ ' .0; 0/ on which the Morse function and flow are linear
f W .z; �/ 7!f .� .s0//C� , ‰t W .z; �/ 7! .z; �Ct/. The metric on X is equivalent with
a constant C to the product metric on B1 � .�ı; ı/, so that for dHausdorff.im  ; im  0/

sufficiently small the trajectory  0 has to take image in fz0g � .�ı; ı/ with z0! 0 as
dHausdorff.im  ; im  0/! 0. Due to the explicit form of the flow,  0 now has to pass
any function values near f .� .s0// within this coordinate chart. In particular, since
evaluation is continuous with respect to the Hausdorff distance, we can ensure that
f .� 0.s0//D .1� s0/f .ev�. 0//C s0f .evC. 0// is sufficiently close to f .� .s0//

to guarantee that � 0.s0/ ' .z
0; � 0

0
/ lies in the coordinate chart. With that we have

f .� 0.s0//D f .� .s0//C �
0
0

and can deduce � 0.s0/' .z
0; � 0

0
/! .0; 0/' � .s0/

from the continuity of the evaluation maps in

j� 00j D
ˇ̌
f .� 0.s0//�f .� .s0//

ˇ̌
� .1� s0/

ˇ̌
f .ev�. 0//�f .ev�. //

ˇ̌
C s0

ˇ̌
f .evC. 0//�f .evC. //

ˇ̌
! 0:

If � .s0/ is a critical point then we can work in a Euclidean coordinate chart B��B�
for f and the metric in which � .s0/' .0; 0/ and

f .x;y/D f
�
� .s0/

�
�

1
2
jxj2C 1

2
jyj2:

7The Hausdorff and C0 metric are in fact equivalent, as can be seen from adding linear estimates in
the following proof.
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As before, Hausdorff convergence  0!  implies convergence of the function value
f .� 0.s0//! f .� .s0//. This implies that � 0.s0/' .x

0;y0/ lies in the coordinate
chart for  0 sufficiently close to  . Indeed, a trajectory passing the function value
f .� .s0// outside of the coordinate chart will never intersect the chart in backward or
forward time, so cannot be closer to  than � in the Hausdorff distance. With that we
have

f
�
� 0.s0/

�
D f

�
� .s0/

�
�

1
2
jx0j2C 1

2
jy0j2

and can deduce jx0j � jy0j ! 0. Moreover,  is part of a trajectory that breaks or ends
at .0; 0/, so im  � B� � f0g [ f0g �B� and hence the distance between .x0;y0/
and im  is bounded below by minfjx0j; jy0jg. On the other hand, this distance is
bounded above by the Hausdorff distance. So its convergence to zero implies that
� 0.s0/' .x

0;y0/! .0; 0/' � .s0/.

Finally, we prove the topological content of Theorem 2.3 and deduce the smooth
structure from Theorem 2.6 and the following topological conjugacy.

Remark 3.6 Let ‰s be the negative gradient flow of a Morse–Smale pair. Then there
exists a homeomorphism hW X !X such that h ı‰s D‰

0
s ıh, where ‰0

s is the flow
of a Euclidean Morse–Smale pair. Let us give a few more details on the proof outlined
in Franks [6].

Near each critical point we can choose coordinates X �U 'B��Rn in which the Hes-
sian Drf .p/'diag.�1; : : : ; �n/ is diagonalized and p'0. Let Ylin.x/ WD

P
�ixi@xi

denote the linearized vector field, and let � 2 C1.Œ0; �/; Œ0; 1�/ be a compactly sup-
ported cutoff function with �jŒ�=2;�/ � 1. Then

Yr .x/ WD .1��.r
�1
jxj//rf .x/C�.r�1

jxj/Ylin.x/

defines vector fields on X that C1 –converge to rf with r ! 0. So by structural
stability (see Palis [15] and Palis and Smale [16]) for some r >0 the flows of rf and Yr

are topologically conjugate, with Yr still satisfying the Smale condition (transversality
of stable and unstable manifolds).

Next we construct a further homeomorphism hW X !X supported in the balls B1
2
�r

near each critical point. In the local coordinates we have �i ¤ 0 by nondegeneracy, so
x 7! .1

2
�r/1�j�j

�1

sign.x/jxjj�j
�1

defines a homeomorphism of Œ�1
2
�r; 1

2
�r �, which

we can extend smoothly to Œ��;�� such that hi.x/Dx near jxjD�. Then hW .xi/ 7!

.hi.xi// extends to a homeomorphism of X that is smooth on the complement of the
critical points and pulls back Yr to a vector field h�Yr that has the standard formP

sign.�i/xi@xi
on a neighborhood of each critical point, and hence smoothly extends

by h�Yr jCrit.f / WD 0. Moreover, this homeomorphism is the identity on the complement
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of neighborhoods of the critical points, and within these neighborhoods leaves the
unstable and stable manifolds of the critical point invariant. Thus the stable and unstable
manifolds of h�Yr agree with those of Yr on the complement of the neighborhoods of
critical points, which suffices to guarantee the Smale condition. (Transversality between
given unstable and stable manifolds can be checked at a single regular level set, since it
is preserved by the flow.) Moreover, in the coordinates near each critical point, h�Yr is
the negative gradient of a standard Morse function 1

2

P
sign.�i/x

2
i with respect to the

Euclidean metric. Now by the classification of gradient dynamical systems [21], there
is a Morse function f 0W X !R which coincides with the given functions near critical
points up to a constant, and for which h�Yr is negative gradient-like, ie df 0.h�Yr /< 0

at noncritical points. Finally, one finds a metric such that h�Yr D �rf
0 and that

equals the Euclidean metric near each critical point. Indeed, starting with any metric zg
equal to the Euclidean near critical points, we have h�Yr D �zrf

0 near the critical
points and zg.h�Yr ;�zrf

0/ < 0 elsewhere. Then it remains to smoothly adjust zg on
span.h�Yr ;�zrf

0/, which is an exercise in linear algebra.

Proof of Theorem 2.3 The metric axioms are easily checked; in particular we dis-
cussed definiteness in Remark 2.1. It follows that the space .M.U�;UC/; dM/ is
Hausdorff. To check separability just note that the space is a finite union of the
sets M.U�;UC/k , which themselves are unions of products of finite-dimensional
submanifolds of X . Note here that due to f being Morse on a compact manifold,
there are only finitely many critical point sequences, ie tuples q1; : : : ; qk 2 Crit.f /
such that f .q1/ > f .q2/ > � � � > f .qk/. Since we are dealing with a metric space,
separability also implies second countability.

Sequential compactness for M.p�;pC/ follows from [4, Proposition 3] and Lemma 3.5.
For sequences . n/n2N in M.X;pC/, M.pC;X / or M.X;X / we use analogous
arguments as follows. Lemma 3.5 provides continuous parametrizations �nW Œ0; 1�!X

of im  n with bounded derivative j d
ds
�n.s/j �C" on the complement of neighborhoods

of the critical points, �n.s/ 2 X n fx 2 X j jrf .x/j < "g. As in [4] this proves
equicontinuity of the �n , hence the Arzelà–Ascoli theorem provides a C0 –convergent
subsequence of .�n/. By Lemma 3.5 this implies Hausdorff convergence of the
corresponding subsequence of . n/. On M.X;X / convergence of the rescaled length
in Œ0; 1� follows by taking another subsequence.

For Euclidean Morse–Smale pairs, the manifold with corner structure is provided
by the global charts in Theorem 2.6 and the canonical manifold structure for each
space of unbroken flow lines, given in Section 2.1. The open subsets Vt .q/ cover
M.U�;UC/ since any generalized trajectory either does not break (hence lies at least
in the subset for q D∅) or breaks at a finite number of critical points q1; : : : ; qk and
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hence lies in Vt .q/ for some choice of end conditions Q0;QkC1 as in 2.2. The smooth
structure on this atlas is given by the natural smooth structure on, firstly, the unbroken
trajectories M.U�;UC/�M.U�;UC/. Secondly, the images of the global charts are
open subsets of

M.X; q1/� Œ0; 2/�M.q1; q2/� � � � � Œ0; 2/�M.qk ;X /;

or in the special case k D 1 and Q0 DQ2 D
zU .q1/ of

M. zU .q1/; q1/� Œ0; 1��M.q1; zU .q1//;

all of which have the natural structure of a manifold with boundary and corners. Using
these charts, the k –stratum M.U�;UC/k naturally is the subset of .k�1/–fold broken
trajectories, except that M.X;X /1 has as additional boundary stratum the trajectories
of length 0. The latter appear in the chart Vt .X;X /DM.X;X /' Œ0;1/�X , where

ev�W @Vt .X;X /' f0g �X �!X

identifies the boundary component, and in the chart V. zU .q/; zU .q//, where ev�
identifies the boundary component �.q/�1.M. zU .q/; q/� f1g �M.q; zU .q/// with
zU .q/�X .

The transition maps between different charts with different critical point sequences can
be read off from Remark 2.7. If q and Q are related by inserting critical points into q

and potentially changing the end conditions, then the transition map for Vt .q/\Vt .Q/ is

�.Q/jVt .q/\Vt .Q/ ı�.q/
�1
D �.q0/� Id��.q1/� � � � � Id��.qk/;

a product of chart maps on Vt .q
0/0 � Œ0; t/�Vt .q

1/0 � � � � � Œ0; t/�Vt .q
k/0 , where

they are diffeomorphisms by Theorem 2.6(i). Generally, if q0 and q00 contain different
critical points and Vt .q

0/\ Vt .q
00/ ¤ ∅, then Q WD q0 [ q00 (with the induced end

conditions) also is a critical point sequence (since Vt .Q/ contains this nonempty
intersection). More precisely, Vt .q

0/\Vt .q
00/� Vt .Q/ is a subset of those trajectories

that break at most at the critical points q0\q00 , hence is contained in both Vt .q
0/\Vt .Q/

and Vt .q
00/\Vt .Q/. Now the transition map is a composition of the corresponding

two transition maps of the previous type and hence is smooth.

The compatibility above also applies to the case of q D .Q0;Q1/ being the trivial
critical point sequence with any end conditions, when �.q/D IdM.Q0;Q1/ . It remains
to consider the transition map on an overlap of domains

Vt .Q0; q1; : : : ; qk ;QkC1/\Vt .Q00; q1; : : : ; qk ;Q0kC1/

for the same critical points but different end conditions. By Theorem 2.6(iv) it is the
reparametrization in the last or first real valued parameter, so it is smooth.
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To show the uniqueness of the maximal atlas induced by these charts, as claimed in
Remark 2.4 for Euclidean Morse–Smale pairs, it remains to check smooth compatibility
of charts arising from different choices of Euclidean normal neighborhoods. This will
be done in Remark 5.4, together with the proof of smoothness for the evaluation maps
in Remarks 5.3 and 5.5 as part of the proof of Theorem 2.6.

For a general Morse–Smale pair, the topological conjugation of Remark 3.6 induces
homeomorphisms between the Morse trajectory spaces

(8) h�WM‰.U�;UC/ �!M‰0.U�;UC/; .Œi �/iD0;:::;k 7�! .Œh ı i �/iD0;:::;k :

Indeed, this is a well-defined map under reparametrizations; it preserves the length (in
time) of trajectories in M.X;X /, and transforms the images by a homeomorphism
im.h ı i/D h.im i/. Hence both h� and its inverse, given by composition with h�1 ,
are continuous in the Hausdorff metric. Now the smooth structure on M‰0.U�;UC/
constructed above can be pulled back with h� to equip M‰.U�;UC/ with a smooth
structure whose corner strata are given by broken trajectories as claimed, since h�

preserves the breaking points.

4 Restrictions to local and connecting trajectory spaces

This section constructs natural charts with boundary for the local trajectory spaces near
the critical points of a Euclidean Morse–Smale pair. These charts, together with the
smooth flow map, will induce the smooth structure on the general Morse trajectory
spaces. For that purpose we construct restriction maps from general Morse trajectory
spaces to the local trajectory spaces as well as to connecting trajectory spaces of
unbroken flow lines between the boundaries of neighborhoods of different critical
points.

4.1 Trajectories near critical points

Let .f;g/ be a Euclidean Morse–Smale pair as in Definition 1.2. Then for some �> 0

and any p 2 Crit.f / we have normal coordinates

Rn�jpj
�Rjpj � B

n�jpj
2�

�B
jpj
2�

�p

�! zU .p/�X

on the product of open balls such that �p.0; 0/D p and

(9)

.��pf /.x;y/D f .p/C
1

2

X
i

x2
i �

1

2

X
j

y2
j ;

.��p g/D
X

i

dxi ˝ dxi C

X
j

dyj ˝ dyj :
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Here we write xD .xi/iD1;:::;n�jpj and will abbreviate jxj2D
P

i x2
i and similarly for

y D .yj /jD1;:::;jpj . These coordinates are unique up to orthogonal diffeomorphisms
O.n� jpj/�O.jpj/ and the choice of � > 0. We choose � > 0 so small that the
closure of the neighborhoods zU .p/ for different critical points p are disjoint.

Remark 4.1 For future purposes we note that by sufficiently small choice of �> 0

we can guarantee that there exists a finite flow line from zU .p�/ to zU .pC/ iff there
exists an unbroken Morse trajectory between p� and pC . That is, we may assume

.ev� � evC/.M.X;X //\
�
zU .p�/� zU .pC/

�
¤∅ ” M.p�;pC/¤∅:

This is possible since, on the one hand, given � > 0, every infinite flow line in
M.p�;pC/ contains a finite part that intersects zU .p�/ and zU .pC/. On the other
hand, suppose that we cannot choose �> 0 sufficiently small for the opposite impli-
cation to hold. Then we find T˙i 2RC and xi 2X in the complement of separating
neighborhoods of p� ¤ pC such that ‰.˙T˙i ;xi/! p˙ . By continuity of the flow
we deduce T˙i !1, and by compactness of X may choose a subsequence of the xi

converging to x 2 X n fp�;pCg, hence ‰.T˙i ;x/! p˙ , proving the assertion by
contradiction.

The analogous assertion ev�.M.X;X //\ zU .p�/¤∅,M.p�;X /¤∅ for half
infinite Morse trajectories holds automatically since by definition M.p�;X / always
contains a constant trajectory; and similarly for M.X;pC/.

The gradient in these coordinates is rf .x;y/ D .x;�y/, so the negative gradient
flow is

‰t .x;y/D .e
�tx; ety/:

In particular, the identification of the trajectory spaces M. zU .p/;p/ and M.p; zU .p//

with the stable, respectively unstable, manifold in normal coordinates yields balls

(10)
ev�WM. zU .p/;p/ �!� W Cq \

zU .p/' B
n�jpj
2�

� f0g DW zBCp ;

evCWM.p; zU .p// �!� W �q \
zU .p/' f0g �B

jpj
2�
DW zB�p :

From now on we will identify points in normal coordinates .x;y/ 2 zB�p � zB
C
p with

their image �p.x;y/ 2 zU .p/�X . In particular, we use these coordinates to construct
the global chart in Theorem 2.6 for trajectories near the critical point p .

Lemma 4.2 The open set zV.p/ WD .ev� � evC/�1. zU .p/� zU .p//�M.X;X / sup-
ports a homeomorphism

z�.p/ WD z�p � .pr zBCp � pr zB�p / ı .ev� � evC/W zV.p/
�! Œ0; 1��M. zU .p/;p/�M.p; zU .p//
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given by the evaluations (7), the projections pr zB˙p W
zBCp �

zB�p !
zB˙p in normal coordi-

nates, the identification (10) and the rescaling of the renormalized length (3),

(11) z�pW zV.p/ �! Œ0; 1�;  7�! e�`. /=.1�`. // D

�
e�L  D . W Œ0;L�!X /;

0 otherwise:

Moreover, z�.p/ satisfies the properties of a global chart in Theorem 2.6 as follows.

(i) The restriction to the unbroken trajectories zV.p/0 D zV.p/\M.X;X /0 is a
diffeomorphism z�.p/jzV.p/0 W

zV.p/0! .0; 1��M. zU .p/;p/�M.p; zU .p//.

(ii) The restriction to the maximally broken trajectories zV.p/1D zV.p/\M.X;X /1
is the canonical bijection

zV.p/1 �! f0g �M. zU .p/;p/�M.p; zU .p//; .�; C/ 7�! .0; �; C/:

(iv) The parameter e�T 2 Œ0; 1� encodes the length T of the time interval Œ0;T �
on which the trajectory is defined. In particular, e�T D 0 corresponds to the
trajectory breaking at p , and e�T D 1 corresponds to a trajectory of length 0.

Finally, the evaluation maps are smooth with respect to this chart, that is .ev� � evC/ ı
z�.p/�1 maps smoothly to X �X .

Remark 4.3 The inverse of the homeomorphism z�.p/ in Lemma 4.2,

z�.p/�1
W Œ0; 1��M. zU .p/;p/�M.p; zU .p// �! zV.p/; .�;x;y/ 7�!  �;x;y ;

is explicitly given in the normal coordinates by the unbroken flow lines for � > 0,

(12) �;x;y W Œ0;T � �! zU .p/; s 7�! .e�sx; es�T y/ with T WD � ln �;

and the broken flow lines  �;x;y WD .C; �/ for � D 0 given by

(13)
CW Œ0;1/ �! zU .p/;

�W .�1; 0� �! zU .p/;

s 7�! .e�sx; 0/;

s 7�! .0; esx/:

Proof of Lemma 4.2 and Remark 4.3 Bijectivity of z�.p/, the canonical form (ii),
and the formulas for z�.p/�1 are seen by checking that (12) and (13) uniquely character-
ize the trajectories of the flow ‰t in zU .p/. Indeed, these trajectories can break at most
at p , hence are determined by an initial point .x;y0/ and end point .x0;y/. If they are
connected by a flow of length T then y0D e�T y and x0D e�T x . If they are connected
by a broken flow, then y0 D 0 and x0 D 0 corresponding to � D 0. Continuity of z�.p/
follows from the continuity of the evaluation maps (see Lemma 3.3), the renormalized
length (by definition of the metric on M.X;X /), the projections in normal coordinates
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and the diffeomorphism Œ0; 1/ 3 ` 7! e�`=.1�`/ 2 .0; 1�, which extends continuously
to 1 7! 0. So it remains to check (i) and the continuity of �.p/�1 .

The renormalized length `. �;x;y/ D � ln �=.1 � ln �/ is a continuous function of
� 2 .0; 1� which for � ! 0 converges to lim�!0� ln �=.1� ln �/ D 1 D `. 0;x;y/.
Hence we obtain uniform continuity (independent of x;y ) with respect to the length
term in the metric on M.X;X /. To check continuity of the Hausdorff distance near a
fixed .�;x;y/ 2 Œ0; 1/� zBCp � zB

�
p note that the image of the generalized trajectory is

im  �;x;y D
˚�

z �x; .�=z/ �y
� ˇ̌

z 2 Œ�; 1�
	
[
˚�
.�=w/ �x; w �y

� ˇ̌
w 2 Œ�; 1�

	
:

(In case � > 0 both sets are the same.) For � > 0 one easily obtains for .� 0;x0;y0/ in
Œ0; 1/� zBCp �

zB�p the estimate

dH

�
 � 0;x0;y0 ;  �;x;y

�
� jx0�xjC jy0�yjC 2�.1C ��1/j� 0� � j:

For � D 0 we obtain

dH

�
 � 0;x0;y0 ;  0;x;y

�
� jx0�xjC jy0�yjC 4�

p
� 0:

Indeed, the distance to the point .z �x; 0/ (and similarly for .0; w �y/) for all z 2 Œ0; 1�

is

dRn

�
.z �x; 0/;

˚�
z0 �x0; .� 0=z0/ �y0

� ˇ̌
z0 2 Œ� 0; 1�

	�
� zjx0�xjCjx0j � jz0� zjCjy0j �

� 0

z0

� jx0�xjC 4�
p
� 0

by choosing z0 D maxfz;
p
� 0g such that 0 � z0 � z D maxf0;

p
� 0 � zg �

p
� 0 .

Conversely, the distance to the point .z0 � x0; .� 0=z0/ � y0/ for z0 2 Œ
p
� 0; 1� can be

estimated by picking z D z0 as

dRn

�˚
.z �x; 0/

ˇ̌
z 2 Œ0; 1�

	
;
�
z0 �x0; .� 0=z0/ �y0

��
� jx0�xjC 2�

p
� 0;

and for all remaining w0 D � 0=z0 2 Œ
p
� 0; 1� by picking w D w0 as

dRn

�˚
.0; w �y; 0/

ˇ̌
w 2 Œ0; 1�

	
;
�
.� 0=w0/ �x0; w0 �y0

��
� jy0�yjC 2�

p
� 0:

This finishes the proof of continuity of �.p/�1 .

For (i) note that in the smooth coordinates M.X;X /0 ' Œ0;1/�X we have

zV.p/0 '
˚
.T; z/ 2 Œ0;1/� zU .p/ j‰T .z/ 2 zU .p/

	
:

The smooth structure for the trajectory spaces

M. zU .p/;p/' zBCp and M.p; zU .p//' zB�p
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is given by (10). Now in these coordinates and with zU .p/ ' zB�p � zB
C
p the map

z�.p/W .T; .x;y// 7! .x; e�T ;y/ evidently is a diffeomorphism as claimed. Finally,
the evaluation map is given by the evidently smooth map

.ev� � evC/ ı z�.p/�1
W Œ0; 1��M. zU .p/;p/�M.p; zU .p// �! U.p/�U.p/

.�;x;y/ 7�!
�
.x; �y/; .�x;y/

�
:

Next, we introduce the half size neighborhood of p , which is precompact in zU .p/,

U.p/ WD �p

�
B

n�jpj
�

�B
jpj
�

�
:

From the above characterization of Morse trajectories we can read off its entry and
exit sets,

zSCp WD fjxj D�g D SCp �B�p ;
zS�p WD fjyj D�g D BCp �S�p ;

where SCp WD @B
C
p and S�p WD @B

�
p are spheres in the stable, respectively unstable,

manifolds and we abbreviated

BCp WD B
n�jpj
�

'W Cp \U.p/; B�p WD B
jpj
�
'W �p \U.p/:

Indeed, zSCp [ zS
�
p is the boundary of the domain U.p/'BCp �B�p and the intersection

of any broken or unbroken flow line with U.p/ has its endpoints on zSCp and zS�p . With
this we can introduce the local trajectory space near p as the set of broken or unbroken
trajectories that start and end on the entry and exit set,

Mp WD .ev� � evC/�1. zS�p ;
zSCp /�M.X;X /;

with topology induced from M.X;X /. The following gives the local trajectory space
Mp the structure of a smooth manifold with boundary in which the evaluations ev˙
are smooth.

Lemma 4.4 The evaluations .ev� � evC/WMp!
zSCp �

zS�p composed with the pro-
jection

(14) prpW zS
C
p �

zS�p �! Œ0; 1/�SCp �S�p ; .x;y0;x0;y/ 7�!
�
jx0jCjy0j

2�
;x;y

�
;

define a homeomorphism

(15) prp ı.ev� � evC/WMp �! Œ0; 1/�SCp �S�p :
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Proof The map prp ı .ev� � evC/ is the restriction of the homeomorphism �.p/

from Lemma 4.2 to Mp �
zV.p/. Indeed, the endpoints of a trajectory  of length

T <1 are of the form .x;y0 D e�T y;x0 D e�T x;y/, hence the length parameter
e�`. /=.1�`. // is given by e�T D .jx0jCjy0j/=2�. Broken trajectories are of the form
.x;y0D0;x0D0;y/, hence again the length parameter is given by 0D .jx0jCjy0j/=2�.
Here it is important to note that .ev� � evC/.Mp/� zS

C
p �

zS�p so that the projection
map (14) is only defined at .x;y0;x0;y/ with jxj D jyj D � > 0, thus continuous.
Surjectivity onto Œ0; 1/�SCp �S�p follows from checking that the inverse map given
by (12) and (13) indeed provides trajectories in Mp , ie with endpoints on zS˙p .

4.2 Restrictions to local trajectory spaces

In the construction of the smooth corner structure for general Morse trajectory spaces
we will use restriction maps from the spaces of trajectories passing near a critical point
to the local trajectory space of that point. For that purpose we introduce the following
families of open neighborhoods for t 2 .0; 1�,

zUt .p/ WD
˚
�p.x;y/

ˇ̌
jxj< .1C t/�; jyj< .1C t/�; jxjjyj<�2t

	
�X;

Ut .p/ WD zUt .p/\Ut .p/D
˚
�p.x;y/

ˇ̌
jxj<�; jyj<�; jxjjyj<�2t

	
�X:

These neighborhoods are precompactly nested zUt .p/ @ zUt 0.p/ for t < t 0 (ie the
compact closure of zUt .p/ is contained in zUt 0.p/), and for t! 0 converge to the union
of stable and unstable manifold, f�p.x;y/ j x D 0 or y D 0g D .W �p [W Cp /\U.p/.
The nesting Ut .p/� Ut 0.p/ and convergence also holds for Ut .p/, all of which are
precompact in zU .p/, and with U1.p/D U.p/. We will keep identifying zU .p/ with
zB�p �

zBCp �Rn�jpj �Rjpj .

Remark 4.5 The entry and exit sets for Ut .p/ are the nested subsets

zS�p .t/ WD S�p � tBCp �
zS�p ;

zSCp .t/ WD tB�p �SCp �
zSCp :

The set of trajectories traversing Ut .p/ is

Mp;t WD .ev� � evC/�1. zS�p .t/;
zSCp .t//�Mp:

The homeomorphism (15) then restricts to Mp;t �!
� Œ0; t/�SCp �S�p . The global

chart for the tuple q D . zU .p/;p; zU .p// and t > 0 in Theorem 2.6 will be defined
as restriction �.q/ WD z�.p/jVt .q/ to the open subset Vt .q/ � zV.p/ given by those
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trajectories that intersect zUt .p/. Using Remark 4.3 we may read off the image

z�.p/
�
Vt .q/

�
�M. zU .q/; q/� Œ0; 1��M.q; zU .q//

D

�
.0;E; 1/

ˇ̌̌̌
Ej ev�.0/j;Ej evC.1/j< .1C t/�;

Ej ev�.0/jj evC.1/j< t�2

�
:

Indeed, the end points are of the form ev�.0/D .x;Ey/, evC.1/D .Ex;y/, and
since the product of norms of the coordinates in zBCp and zB�p is preserved by the flow,
the condition Ejxjjyj< t�2 is equivalent to the trajectory intersecting ‰R. zUt .p//.
The conditions Ej ev�.0/j< .1C t/� and Ej evC.1/j< .1C t/� are equivalent to
the trajectory not being entirely contained in ‰R. zUt .p// n zUt .p/.

In order to construct restriction maps from spaces of Morse trajectories traversing U.p/

to the local trajectory space Mp we will use evaluation at the entry and exit sets zS˙p .
These are transverse to rf , hence are local slices for the flow such that the evaluation
maps (for U˙ any open sets or critical points)

ev zS˙p WM
�
U�;UCI‰R�.

zS˙p /; ‰RC.
zS˙p /

�
�! zS˙p

are well-defined; see Definition 3.1. From these we can construct a restriction map

(16) .ev� � evC/�1
ı .ev zSCp � ev zS�p /WM.U�;UCI‰R�.

zSCp /; ‰RC.
zS�p //�!Mp;

which is well-defined and continuous since it can be written as composition of the
homeomorphism (15) with

prp ı.ev zSCp � ev zS�p /WM
�
U�;UCI‰R�.

zSCp /; ‰RC.
zS�p /

�
�! Œ0; 1/�SCp �S�p :

Continuity of the latter map follows from Lemma 3.3 for the evaluation map and
continuity of the projection prp defined in (14) holds as in Lemma 4.4. In particular,
the latter map contains the (rescaled) transition time through U.p/, which we separately
denote by

(17) �p WDEp ı .ev zSCp � ev zS�p /WM
�
U�;UCI‰R�.

zSCp /; ‰RC.
zS�p /

�
�! Œ0; 1/;

with Ep.x;y
0;x0;y/ WD .jy0j C jx0j/=2�. Note that the restriction of trajectories

intersecting Ut .p/ then takes values in Œ0; t/�SCp �S�p with actual transition time
� ln �p > � ln t bounded below.

The above restriction maps will be used in the construction of charts for Morse trajecto-
ries starting and ending outside of U.p/. The case of trajectories that start and end in
zU .p/ was already dealt with in Lemma 4.2. So it remains to construct restrictions to
local trajectory spaces for trajectories with one end in zU .p/. Let us give an outlook on
the use of the restriction maps in order to justify the subsequent technical constructions.
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The global charts for Morse trajectory spaces will be obtained from a fibered product
of local trajectory spaces and spaces of flow lines between the exit and entry set
zS�p and zSCp0 of different critical points. The construction of tubular neighborhoods of
M.p;p0/ in the latter will require a smooth extension of restriction maps to trajectories
from zS�p � @U.p/ to X nU.p/. Hence we will not restrict ourselves to trajectories
intersecting U.p/. However, evaluation at zS�p is still important, so we will extend
this definition to trajectories starting in ‰Œ0;1/. zS�p / as the unique intersection point
of the extended trajectory. With this the natural transition time for trajectories from
zU .p/ to X nU.p/ is the time for which the trajectory is defined and contained in
‰R�.U.p//. For trajectories starting in zU .p/\‰Œ0;1/.U.p// D ‰Œ0;ln 2/. zS

�
p / this

leads to negative numbers, or in the exponential rescaling to factors E 2 Œ1; 2/ between
the y –coordinates of initial point and evaluation to zS�p .

So for trajectories with initial or end point in zU .p/ we consider the local trajectory
spaces

�Mp;t WD .ev� � evC/�1. zU .p/; @ zU .p//�M.X;X I zUt .p//;

CMp;t WD .ev� � evC/�1.@ zU .p/; zU .p//�M.X;X I zUt .p//:

The intersection condition im  \ zU1.p/¤∅ implies that the exit, respectively entry,
point of the trajectory lies in ‰� ln 2. zS

˙
p /� @

zU .p/. We may hence define extended
evaluation maps at zS˙p on ˙Mp , and more generally

(18)
ev zS�p WM. zU .p/;UCI‰RC.

zS�p // �!
zS�p ;

ev zSCp WM.U�; zU .p/I‰R�.
zSCp // �!

zSCp ;

 7�! zS�p \‰R.im  /;

 7�! zSCp \‰R.im  /:

We use these evaluations to give the local trajectory spaces a smooth structure as
follows.

Lemma 4.6 The extended evaluation maps (18) are continuous, and smooth when
restricted to M.U�;UC/. The evaluations ev� � ev zS�p , respectively ev zSCp � evC ,
composed with

(19)
�prpW zU .p/� zS

�
p �! Œ0; 2/� zBCp �S�p ;

CprpW zS
C
p �

zU .p/ �! Œ0; 2/�SCp �
zB�p ;

�
.x;y0/; .x0;y/

�
7!
�
jy0j
�
;x;y

�
;�

.x;y0/; .x0;y/
�
7!
�
jx0j
�
;x;y

�
;

define homeomorphisms

�Mp;t �!
˚
.E;x;y/ 2 Œ0; 1C t/� zBCp �S�p

ˇ̌
Ejxj< t�

	
;

CMp;t �!
˚
.E;x;y/ 2 Œ0; 1C t/�SCp �

zB�p
ˇ̌
Ejyj< t�

	
:
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Proof The initial points ev�. / of trajectories in M. zU .p/;UCI‰RC.
zS�p / lie within

zU1.p/ by the intersection condition with

‰RC.
zS�p /D f.x;y/ j jxjjyj ��

2; �� jyj � 2�g:

The standard evaluation map ev zS�p . / is well-defined for ev�. /2 zU1.p/n‰Œ0;1/. zS
�
p /

and has the claimed regularity by Lemma 3.3. So it suffices to establish the regularity
of the extended evaluation on the open subset ev�1

� .
zU1.p/ nW Cp /, where it can be

expressed as composition ev zS�p D ��ıev� with the smooth map in normal coordinates

��W
˚
.x;y/ 2 zU .p/

ˇ̌
y ¤ 0

	
�! zS�p ; .x;y/ 7�!

�
jyj

�
jxj;

�

jyj
y
�
:

The extension of ev zSCp has an analogous expression. The regularity then follows from
the fact that the endpoint evaluations ev˙ are continuous, respectively smooth, on
M.U�;UC/ by Lemma 3.3.

As in the proof of Lemma 4.4, note that the map �prp ı .ev� � ev zS�p / restricted
to ev�1

� .‰R�.
zS�p // (ie trajectories that actually intersect zS�p ) is a restriction of the

homeomorphism �.p/ from Lemma 4.2, mapping onto the subset fE < 1g of the
claimed image. The complement of ev�1

� .‰R�.
zS�p // �

�Mp;t are the trajectories
that intersect zUt .p/ nU.p/D ‰Œ0;ln.1Ct//. zS

�
p /\ fjxjjyj < t�2g but not ‰R�.

zS�p /.
These are uniquely determined by their initial points

f.x;y0/ 2 zU .p/ j�� jy0j � .1C t/�; jxjjy0j< t�2
g:

Their generalized evaluation at zS�p is given as above by .x0;y/ D ��.x;y
0/, and

�prp identifies these pairs of points with the subset f1 �E < 1C tg of the claimed
image. This shows bijectivity of �prp ı .ev� � ev zS�p /. Continuity and openness can
be checked separately on the open sets

ev�1
�

�
‰R�.

zS�p /
�

and ev�1
�

�
‰.� ln 2;ln 2/. zS

�
p /
�
;

which cover the domain. On the first subset, regularity follows from the homeomorphism
property of �.p/. On the latter, we may use the coordinate chart ev� to express the
map in local coordinates as the evident homeomorphism˚
.x;y0/ 2 zU .p/

ˇ̌
jy0j> 1

2
�; jxjjy0j< t�2

	
�!

˚
.E;x;y/ 2 .1

2
; 2/� zBCp �S�p

ˇ̌
Ejxj< t�

	
;

.x;y0/ 7�!
�
jy0j
�
;x; �
jy0j

x
�
:

This establishes the homeomorphism for �Mp;t ; the proof for CMp;t is analogous.
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Now we obtain restriction maps to these local trajectory spaces (with t D 1)

(20)
.ev� � evC/�1

ı .ev� � ev zS�p /WM. zU .p/;UCI‰RC.
zS�p // �!

�Mp;

.ev� � evC/�1
ı .ev zSCp � evC/WM.U�; zU .p/I‰R�.

zSCp // �!
CMp;

which are well-defined and continuous since it they be written as composition of the
homeomorphisms of Lemma 4.6 with

�prp ı .ev� � ev zS�p /; resp. �prp ı .ev zSCp � evC/:

We separately denote the transition time, namely the rescaling of the time for which
the trajectory is defined and contained in ‰R�.U.p//, respectively ‰RC.U.p//, by

(21)
��p WD

�Ep ı .ev� � ev zS�p /WM
�
zU .p/;UCI‰RC.

zS�p /
�
�! Œ0; 2/;

C�p WD
CEp ı .ev zSCp � evC/WM

�
U�; zU .p/I‰R�.

zSCp /
�
�! Œ0; 2/;

with �Ep.x;y
0;x0;y/ WD jy0j=� and CEp.x;y

0;x0;y/ WD jx0j=�.

A natural extension of the local trajectory spaces of trajectories with one end in zU .p/
are the spaces of trajectories from ‰R�.

zSCp / � X nU.p/ to zS�p , respectively from
zSCp to ‰RC.

zS�p /�X nU.p/,

�fMp WD .ev� � evC/�1
�
‰R�.

zSCp /�
zS�p
�
�M.X;X /;

CfMp WD .ev� � evC/�1
�
zSCp �‰RC.

zS�p /
�
�M.X;X /:

The global charts will also involve the restriction maps to these spaces,

(22)
.ev� � evC/�1

ı .ev� � ev zS�p /WM
�
‰R�.

zSCp /;UCI‰RC.
zS�p /

�
�!

�fMp;

.ev� � evC/�1
ı .ev zSCp � evC/WM

�
U�; ‰RC.

zS�p /I‰R�.
zSCp /

�
�!

CfMp:

However, instead of extending the charts for ˙Mp , the natural charts for these trajectory
spaces are given by combining the charts for Mp with flow times T˙ outside of
U.p/. The restriction maps are then well-defined and continuous since they are a
composition of the following charts with .T �;�prp ı .ev� � ev zS�p //, respectively
.TC;Cprp ı .ev zSCp � evC//.

Lemma 4.7 The flow times given by solving ev˙. / 2‰T˙.
zS�p / define continuous

maps

T �WM.‰R�.
zSCp /;UC/ �!R� and TCWM.U�; ‰RC.

zS�p // �!RC:
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Restricted to M.X;UC/, respectively M.U�;X /, the flow times are smooth. Together
with the maps prp ı.ev zSCp � ev zS�p / they define homeomorphisms

�fMp �!R� � Œ0; 1/�SCp �S�p and CfMp �!RC � Œ0; 1/�SCp �S�p :

The subspaces ˙fMp;t , which consist of trajectories that intersect zUt .p/, have image
RC� Œ0; t/�SCp �S�p .

Proof We may express T � , and similarly TC , as composition of the evaluation ev�
and the map ‰R�.

zSCp /! R�; z 7! t given by solving ‰.t; z/ 2 zSCp . The latter is
well-defined and smooth by the implicit function theorem since zSCp is a local slice to
the Morse flow. The regularity of ev� is as claimed by Lemma 3.3.

Using the homeomorphism (15), we may view the maps on ˙fMp;t as products of T˙

with the continuous restriction map to Mp;t . They are bijective since the trajectories in
the domains are uniquely determined by the respective flow time and their behavior in
zU .p/. To see that the inverses are continuous in the Hausdorff distance, we express the
image of the trajectory associated to .T �; �;x;y/ as im  �;x;y[‰.ŒT

�; 0�; �p.x; �y//,
and similarly for the second map, and quote continuity of (15), T˙ and the flow.

Finally, we compare the charts for the local trajectory spaces ˙Mp and ˙fMp . They
differ only in the transition times, which we moreover compare with the rescaled length
of time interval from Lemma 4.2 for trajectories in zV.p/ entirely contained in zU .p/.

Lemma 4.8 The transition times �p and ˙�p defined in (17) and (21) are con-
tinuous, and smooth when restricted to M.U�;UC/. On the overlap of domains
ev�1
� .‰R�.

zSCp /\
zU .p//, respectively ev�1

C .‰RC.
zS�p /\

zU .p//, they are related by

��p. /D eT�. / � �p. /D
� � �p. /ˇ̌

pr zBCp ev�. /
ˇ̌ ;

C�p. /D e�TC. / � �p. /D
� � �p. /ˇ̌

pr zB�p evC. /
ˇ̌ :

The rescaled length z�p from (11) is related to the transition times ˙�p on the overlap
of domains ev�1

C .‰RC.
zS�p //�

zV.p/, respectively ev�1
� .‰R�.

zSCp //�
zV.p/, by

z�p. /D
� ���p. /ˇ̌

pr zB�p evC. /
ˇ̌ ; z�p. /D � �C�p. /ˇ̌

pr zBCp ev�. /
ˇ̌ :

Proof Both continuity and smoothness in the interior follow from the corresponding
regularity of the evaluation maps, see Lemma 3.3, and the maps Ep;

˙Ep which are
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smooth on the complement of .x0D 0;y0D 0/, corresponding to the broken trajectories.
The relations on the overlaps follow from the definitions and the explicit form of the
flow on zU .p/.

4.3 Connecting trajectory spaces and fibered products

For pairs of critical points p�;pC 2 Crit.f / with M.p�;pC/¤∅ we construct the
connecting trajectory space

M. zS�p� ;
zSCpC/ WD .ev� � evC/�1

�
zS�p� �

zSCpC

�
�M.X;X /

as space of unbroken flow lines between the exit set zS�p� and the entry set zSCpC . The
embedding ev� � evC identifies it with the graph of the flow,

(23)
Grp�

pC
WD graph.Gp�

pC
/� zS�p� �

zSCpC ;

Gp�
pC
W zS�p� \‰R�.U.pC// �!

zSCpC ; z 7�! ev zSCpC
.‰. �; z//:

These are indeed graphs of smooth maps defined on open subsets of zS�p� , since the
entry sets zSCpC are local slices to the flow. This gives M. zS�p� ;

zSCpC/ the structure of a
smooth manifold. Moreover, we have a continuous restriction map to the connecting
trajectory space

(24) �p�
pC
WD .ev� � evC/�1

ı .ev zSCp�
� ev zS�pC

/WM
�
U�;UCIU.p�/;U.pC/

�
�!M. zS�p� ;

zSCpC/:

In the special cases U� D p� , respectively UC D pC , the same restriction map takes
values in the subspaces

M.S�p� ;
zSCpC/ WD ev�1

� .S
�
p�
/; resp. M. zS�p� ;S

C
pC
/ WD ev�1

C .S
C
pC
/;

of M. zS�p� ;
zSCpC/, which are identified by the evaluations ev˙ with intersections of the

unstable, respectively stable, manifold with the opposing entry, respectively exit, set,

(25)
M.p�;UCIU.pC//

�
p�
pC

�!M.S�p� ;
zSCpC/

evC
�!
�

�Grp�
pC
WDW �p� \

zSCpC ;

M.U�;pCIU.p�//
�

p�
pC

�!M. zS�p� ;S
C
pC
/

ev�
�!
�

CGrp�
pC
WDW CpC \

zS�p� :

We can now give an outline of how the restriction maps (16), (24), (25) are employed to
construct the smooth structure and global charts for the compactified spaces of Morse
trajectories between critical points U˙ D q˙ .
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For any critical point sequence q D .q1; : : : ; qk/ 2 Critseq.f I q�; qC/ the open set
Vt .q/ of trajectories intersecting all zUt .qi/ supports restriction maps to the con-
necting trajectory spaces M.S�q� ;

zSCq1
/, M. zS�qi

; zSCqiC1
/ for i D 1; : : : ; k � 1 and

M. zS�qk
;SCqC/ as well as the restriction maps (16) to the local trajectory spaces Mqi ;t

for i D 1; : : : ; k . Now trajectories in Vt .q/ are exactly given by tuples of trajectories
in all these spaces that fit together on the entry and exit sets. Thus we have identified
Vt .q/ with the fibered product�
M.S�q� ;

zSCq1
/�

Y
i

M. zS�qi
; zSCqiC1

/�M. zS�qk
;SCqC/

�
Ev�Ev0

�
Mq1;t � � � � �Mqk ;t

�
;

where both products of evaluations

EvD evC �
k�1Y
iD1

.ev� � evC/� ev� and Ev0 D
kY

iD1

.ev� � evC/

map to
Qk

iD1
zSCqi
� zS�qi

. Here the product of connecting trajectory spaces on the left
carries a natural smooth structure without boundary, induced by evaluation at a local
slice to the flow from the smooth structure of X . The product of local trajectory spaces
on the right was equipped above with a natural smooth structure with boundary and
corners, induced by evaluations at local slices and a projection to unstable and stable
sphere and a time parameter. Once we have proven transversality of the evaluation
maps (reformulated in Remark 5.3), this induces a smooth structure on Vt .q/, with the
corner strata determined by the transition times in the local trajectory spaces.

Remark 4.9 The smooth structure on the local trajectory spaces depends on the
choice of a homeomorphism �W Œ0; 1/ �!� .0;1/[ f1g. In the polyfold setup of
[8], this is known as the choice of a gluing profile. Our choice e�T 7! T is the
“logarithmic gluing profile” �ln.�/D� ln � and naturally arises from the evaluation
maps by mapping ��1j pr zB˙q .ev�. /j to the length of time for which the trajectory
is contained in U.q/. This choice thus ensures smoothness of the evaluation maps
ev˙WMq;t!X . Any other choice of homeomorphism � would yield a diffeomorphic
smooth structure on each Mq;t . The induced smooth structures on M.U�;UC/ may
also be diffeomorphic, if the diffeomorphisms ��1

ln ı � on the gluing parameters can
be extended to a homeomorphism of M.U�;UC/ with the help of the associative
gluing maps. However, the regularity of the evaluation map is given by the regularity
of the function �ln ı �

�1W Œ0; 1/! Œ0; 1/, which differentiates between some of these
smooth structures. For Euclidean Morse–Smale pairs, we are thus constructing a
smooth structure that not only does not depend on any abstract choices, but also uses
the geometrically natural choice of gluing profile. Note that this defines a smooth
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structure, not just a diffeomorphism class of smooth structures, since we construct an
explicit atlas and prove in Remark 5.4 that all other choices (eg of Euclidean normal
coordinates) induce smoothly compatible charts.

In order to construct the global chart Vt .q/! Œ0; t/k �M.q�; q1/� � � � �M.qk ; qC/

we will read off the transition times from the local trajectory spaces and project each
connecting trajectory space M. zS�qi

; zSCqiC1
/ to the corresponding Morse trajectories

between the critical points M.qi ; qiC1/, which are embedded into the former by
restrictions. To make this precise we need to show that the local trajectories for fixed
transition times � 2 Œ0; t/k intersect each fiber of the product of these projections
transversely in a unique point. For that purpose we will iteratively construct the
projections as tubular neighborhoods of the embedding

M.q�; q1/�

k�1Y
iD1

M.qi ; qiC1/�M.qk ; qC/ ,!
�Grq�

q1
�

k�1Y
iD1

Grqi
qiC1
�
CGrqk

qC

given by
ev zS�q1

�

k�1Y
iD1

�
ev zSCqi

� ev zS�qiC1

�
� ev zSCqk

:

The construction of these tubular neighborhoods will iteratively proceed by pulling back
previously defined charts for M. zU .p�/; zU .pC// near broken trajectories to Grp�

pC ,
where the charts induce tubular neighborhood submersions, which then just need to
be extended to a compact set. In fact, this is enforced by the associativity. Thus the
construction of associative gluing maps for standard Morse trajectory spaces naturally
uses Morse trajectory spaces with finite ends.

For the Morse trajectory spaces with finite ends, we will use a similar fibered product
setup, making use of the restriction maps (20) and (22) and the following connecting
trajectory spaces for pairs of one finite end condition P� DX and a critical point p˙
in Crit.f /,

M.X; zSCpC/ WD ev�1
C

�
zSCpC

�
�M.X;X /; M. zS�p� ;X / WD ev�1

�

�
zS�p�/�M.X;X /:

The evaluations ev� , respectively evC , identify them with the set of initial points
‰R�.

zSCpC/, respectively end points ‰RC.
zS�p�/. However, the initial conditions for

our global charts will also allow for trajectories with initial, respectively end, point
in zU1.p˙/ that do not intersect the entry, respectively exit, set. For eg initial point in
zU1.pC/n zB

�
pC

we can extend the trajectory backwards in time to obtain an intersection
with zSCpC ; however this definition does not extend to initial points on the unstable
manifold zB�pC . As a consequence, we lack a complete identification with a space of
connecting trajectories for the relevant sets of initial, respectively end, points

(26) �GrX
pC
WD‰R�.

zU1.pC//;
CGrp�

X
WD‰RC.

zU1.p�//:
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We do however have continuous restriction maps to the connecting trajectory spaces

(27)
ev�1
� ı ev�WM.X;UCIU.pC//� ev�1

�

�
‰R�.

zSCpC/
�
�!M.X; zSCpC/;

ev�1
C ı evCWM.U�;X IU.p�//� ev�1

C

�
‰RC.

zS�p�/
�
�!M. zS�p� ;X /:

5 Global charts for Morse trajectory spaces

This section constructs the global charts of Theorem 2.6, following the outline in
Section 4.3, and thus providing associative gluing maps by Corollary 2.8 and equipping
the Morse trajectory spaces with a smooth corner structure, finishing the proof of
Theorem 2.3.

5.1 Domains and targets

Recall that we restrict ourselves to the Morse trajectory spaces M.U�;UC/ with free
endpoint(s) U˙ DX or limits at critical points U˙ D q˙ 2 Crit.f /. We then need to
construct global charts for all critical point sequences

Critseq.f;U�;UC/ WD
�
.q1; : : : ; qk/

ˇ̌̌̌
k 2N0I q1; : : : ; qk 2 Crit.f /I
M.U�; q1/;M.q1; q2/; : : : ;M.qk ;UC/¤∅

�
and end conditions Q0�U� , QkC1�UC as in 2.2. Recall here that the end condition
Q0 is either q� in case U�D q� or one of X nU.q1/ or zU .q1/ in case U�DX , and
analogously QkC1 is either qC or one of X nU.qk/ or zU .qk/. For unified notation
we will also denote the tuple of end conditions and critical point sequence by q D

.Q0D q0; q1; : : : ; qk ; qkC1DQkC1/ and write q0DQ0 , respectively qkC1DQkC1 ,
in case these are critical points rather than open sets. The domain of the global chart for
q will be the set of all trajectories starting in Q0 , ending in QkC1 , intersecting each
of the neighborhoods zUt .q1/; : : : ; zUt .qk/, and not touching any other critical point.
More precisely, we define the domains for t > 0 as

Vt .q/ WD

�
 2M.U�;UC/

ˇ̌̌̌
ev�. / 2Q0; evC. / 2QkC1;

im  �X �; im  \ zUt .qi/¤∅ 8i

�
with X � WD .X n Crit.f // [ fq�; q1; : : : ; qk ; qCg, where we only add q˙ in case
U˙ D q˙ .

Remark 5.1 The domains Vt .q/�M.U�;UC/ are open subsets by Lemma 3.2 since
they are defined by open sets X � and zUt .qi/. The inclusions Vt .q/�Vt 0.q/ for t < t 0

are precompact up to breaking, that is the closure of Vt .q/0�M.U�;UC/ is contained
in Vt 0.q/0 . Indeed, this follows from the precompact inclusion zUt .p/@ zUt 0.p/.
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Moreover, by Remark 4.1 the domains Vt .q/ for t > 0 sufficiently small are nonempty
iff the subspace of maximally broken trajectories is nonempty, ie

Vt .q/¤∅,M.q/ WDVt .q/k DM.Q0; q1/�M.q1; q2/�� � ��M.qk ;QkC1/¤∅:

This coincides with the definition of critical point sequences q 2 Critseq.f IU�;UC/
unless q1 is a local minimum or qkC1 is a local maximum. In the latter case we
have critical point sequences .q1; : : : / in Critseq.f IX;UC/, respectively . : : : ; qk/ in
Critseq.f IU�;X /, and nonempty domains

Vt . zU .q1/; : : : /; resp. Vt . : : : ; zU .qk//

(these contain eg broken trajectories starting at q1 , respectively ending at qk , cor-
responding to M. zU .q1/; q1/ ' fq1g, respectively M.qk ; zU .qk// ' fqkg), but the
domains for Q0DX nU.q1/, respectively QkC1DX nU.qk/, are empty, correspond-
ing to M.X nU.q1/; q1/D∅, respectively M.qk ;X nU.qk//D∅.

We will prove Theorem 2.6 by constructing for every such tuple q a homeomorphism

(28) �.q/W Vt .q/ �!
�

[
�2It .q/

f�g �Mt;� .q/� Œ0; 1C t/k �M.q/

to the open subset given by

Mt;� .q/ WD

�
.0; : : : ; k/ 2M.q/

ˇ̌̌̌
�1j ev�.0/j< t� in case Q0 D

zU .q1/;

�k j evC.k/j< t� in case QkC1 D
zU .qk/

�
and

It .q/ WD

�
Œ0; 1C t/ if Q0 D

zU .q1/;

Œ0; t/ otherwise;

�
�Œ0; 1/k�2

�

�
Œ0; 1C t/ if QkC1D

zU .qk/;

Œ0; t/ otherwise;

�
except in the special case q1 D . zU .q1/; q1; zU .q1//, when �.q1/ will be defined as in
Remark 4.5 with image in an open subset of Œ0; 1��M.q/ given by

It .q1/ WD Œ0; 1�;

Mt;�1
.q1/ WD

�
.0; 1/

ˇ̌̌̌
�1j ev�.0/j; �1j evC.1/j< .1C t/�;

�1j ev�.0/jj evC.1/j< t�2

�
:

In case k D 0 with qD .Q0;Q1/ we interpret
S
�2It .q/

Mt;� .q/DM.Q0;Q1/. The
further properties required by Theorem 2.6 of the homeomorphisms (28) are as follows.

(i) The restriction �.q/jVt .q/0 is a diffeomorphism

Vt .q/0 �!
[

�2It .q/\.0;1/k

Mt;� .q/:
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(ii) The restriction �.q/jVt .q/k is the canonical bijection Vt .q/k ! f0g
k �M.q/.

(iii) Let q;Q be tuples such that Q D .Q0; : : : ; qi ; q
0
1
; : : : ; q0

`
; qiC1; : : : ;QkC1/

is obtained from q D .Q0; : : : ; qi ; qiC1; : : : ;QkC1/ by inserting a nontrivial
critical point sequence .q0

1
; : : : ; q0

`
/. Then we have �.Q/D .Id��.q0/� Id/ ı

�.q/ on Vt .q/\Vt .Q/ with

q0 D
�nQ0 i D 0;

qi i > 1

o
; q01; : : : ; q

0
`;
nQkC1 i D k;

qiC1 i < k;

o�
:

(iv) The real parameters, the transition maps between different end conditions for
U˙ DX , and the form of charts for Q0 D

zU .q1/, respectively QkC1 D
zU .q1/,

are given explicitly.

We will construct global charts �.q/ with these properties iteratively. Before going into
the general construction we take note of two special cases that are already constructed.

5.2 Construction of a global chart for kD 0

The open sets associated to the shortest critical point sequences with k D 0,

Vt ..Q0;Q1//D
˚
 2M.U�;UC/

ˇ̌
ev�. / 2Q0; evC. / 2Q1; im. /�X �

	
D .ev� � evC/�1.Q0 �Q1/�M.U�;UC/;

are the subsets of unbroken flow lines with the given end conditions, and by (ii) with
k D 0 these homeomorphisms are set to be the identities

�..Q0;Q1//D IdM.U�;UC/ jVt ..Q0;Q1//:

This chart also clearly satisfies (i), will trivially fit into (iii), has no real parameters to
which (iv) would apply, and the transition maps for different choices of Q0 or Q1 are
the identity. In fact, there is no need to separate U�DX or UCDX into two domains
in this case.

5.3 Construction of a global chart for kD 1 with end conditions
Q0 D

zU .q1/DQ2

For the special tuples q1 D . zU .q1/; q1; zU .q1// with end conditions near the same crit-
ical point we constructed the charts �.q1/ WD z�.q1/jVt .q1/ for any t > 0 in Lemma 4.2
and Remark 4.5. For future reference,

�.q1/ WD z�q1
� .pr zBCq1

� pr zB�q1

/ ı .ev� � evC/W V.q1/ �!
[

�12Œ0;1�

f�1g �Mt;�1
.q1/
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is given by a transition time �.q1/ WD z�q1
, evaluation Ev.q1/ WD ev� � evC and

projection �.q1/ WD pr zBCq1
� pr zB�q1

. These charts are completely fixed by (iv) and
by construction satisfy (i) and (ii). Note that Vt .q1/ has nonempty intersection with
another chart Vt .q/ only for q D .Q0; q1;Q2/ since the trajectories are contained in
zU .q1/, which is disjoint from the neighborhood of any other critical point. Hence
this chart appears in (iii) only in the trivial identity �.q1/ D �.q1/ ı IdM.X ;X / on
M.X;X /\ Vt .q1/. The transition maps in (iv) will be established in the iterative
construction.

For all other end conditions and critical point sequences q the global charts on Vt .q/

will be constructed similarly as composition of transition times and evaluations, which
we introduce next, and tubular neighborhoods of M.q/ generalizing the projections
from zU .q/ to

zBCq 'M. zU .q/; q/ and zB�q 'M.q; zU .q//;

which will be constructed iteratively.

5.4 Evaluations and transition times

For any tuple q of a critical point sequence .q1; : : : ; qk/ 2 Critseq.f;U�;UC/ and
choices of end conditions Q0 � U� , QkC1 � UC from 2.2 we define the evaluation
map

Ev.q/ WD ev.U�;q1/ � ev zS�q1

� ev zSCq2

� � � � � ev zS�qk�1

� ev zSCqk

� ev.qk ;UC/;

where

ev.U�;q1/ WD

(
ev zSCq1

if U� D q�;

ev� if U� DX;
ev.qk ;UC/ WD

(
ev zS�qk

if UC D qC;

evC if UC DX:

This generalizes the evaluation Ev.X; q1;X /D ev� � evC from Section 5.3. However,
due to the time parameter in Œ0; 1� this special case does not quite fit into the language
of the rest of this section, where we build up to showing in Proposition 5.2 that for q

not covered by Section 5.2 or 5.3 this evaluation defines a homeomorphism to its image

Ev.q/W Vt .q/ �! zS
C

.U�;q1/
� zS�q1

� zSCq2
� � � � � zS�qk�1

� zSCqk
� zS�.qk ;UC/ DW

zS.q/

in the target space given by the entry and exit sets, with the notation

zSC
.U�;q1/

WD

�
zSCq1

if U� D q�;

X if U� DX;
zS�.qk ;UC/ WD

�
zS�qk

if UC D qC;

X if UC DX:

Since the evaluations of Vt .q/ are connected by flow lines between each consecutive
zS�qi

and zSCqiC1
, and the initial, respectively end, evaluation is connected by a flow
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line to U� , respectively UC , the image of the evaluation map is contained in the
submanifold

Gr.q/ WD �GrU�q1
�Grq1

q2
� � � � �Grqk�1

qk
�
CGrqk

UC �
zS.q/:

Here Grp�
pC are the graphs of the flow from (23), homeomorphic to the connecting spaces

of trajectories from exit set zS�p� to entry set zSCpC . For critical point end conditions,
˙Grp�

pC are the restrictions from (25) to trajectories starting on the unstable sphere,
respectively ending on the stable sphere. For finite end conditions, the behavior of the
trajectories before zS�q1

, respectively after zSCqk
, will be encoded in the local trajectory

space for .Q0; q1/, respectively .qk ;QkC1/, so we merely use the spaces �GrX
pC

,
respectively CGrp�

X
, of possible initial, respectively end, points. To summarize,

�GrU�q1
D

�
W �q� \

zSCq1
if U� D q�;

‰R�.
zU1.q1// if U� DX;

CGrqk

UC D

�
W CqC \

zS�qk
if UC D qC;

‰RC.
zU1.qk// if UC DX:

On the other hand, the evaluations of trajectories in Vt .q/ are also connected by
trajectories in Mqi

for i D 1; : : : ; k , except for i D 1; k and U˙ D X , when we
need to use the local trajectory spaces ˙fMqi

, respectively ˙Mqi
, depending on

the end conditions Q0;QkC1 . Including the intersection conditions with zUt .qi/,
we thus describe the open set Vt .q/ as fibered product of Gr.q/ and the evaluation
Ev0 D

Qk
iD1.ev� � evC/ from the local trajectory spaces,

Vt .q/' Gr.q/�Ev0

0B@
8̂<̂
:

Mq1

�Mqi

�fMqi

9>=>;�Mq2
� � � � �Mqk�1

�

8̂<̂
:

Mqk

CMqk

CfMqk

9>=>;
1CA :

From Lemmas 4.4, 4.6 and 4.7 we know that the evaluations of the local trajectories are
given by the smooth family of embeddings for transition times � D .�1; : : : ; �k/2 It .q/,

�q;� W S
C

.Q0;q1/
�S�q1

� � � � �SCqk
�S�.qk ;QkC1/

�! zSC
.U�;q1/

� zS�q1
� : : : zSCqk

� zS�.qk ;UC/ D
zS.q/;

.T�;x1;y1; : : : ;xk ;yk ;TC/

7�!
�
‰T�.x1; �1y1/; .�1x1;y1/; : : : ; .xk ; �kyk/; ‰TC.�kxk ;yk/

�
:

Here we still identify the coordinates zBCqi
� zB�qi

with their images in zU .qi/�X , and
.T�;x1/, respectively .xk ;TC/, are coordinates on W Cq1

, respectively W �qk
, taking

values in

SC
.Q0;q1/

WD

8<:
f0g �SCq1

if Q0 D q�;

R� �SCq1
if Q0 DX nU.q1/;

f0g � zBCq1
if Q0 D

zU .q1/;
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respectively

S�.qk ;QkC1/
WD

8<:
S�qk
� f0g if QkC1 D qC;

S�qk
�RC if QkC1 DX nU.qk/;

zB�qk
� f0g if QkC1 D

zU .qk/:

For a complete description of Vt .q/ it remains to note that the intersection condition
with zUt .qi/ gives rise to a restriction of the domain of �� in the case of end conditions
near q1 or qk . With that, and abbreviating �� D �q;� , the evaluations of local trajectories
are given by

Ev0

0B@
8̂<̂
:

Mq1

�Mqi

�fMqi

9>=>;�Mq2
� � � � �Mqk�1

�

8̂<̂
:

Mqk

CMqk

CfMqk

9>=>;
1CAD [

�2It .q/

im �� .Dt;� .q//� zS.q/;

where

Dt;� .q/ WD

(
.T�;x1; : : : ;yk ;TC/

2 SC
.Q0;q1/

� � � � �S�.qk ;QkC1/

ˇ̌̌̌
ˇ �1jx1j< t� if Q0 D

zU .q1/;

�k jyk j< t� if QkC1 D
zU .qk/

)
:

Here we do not deal with the cases k D 0 or Q0 D
zU .q1/ D Q2 , for which the

global charts were constructed in the previous sections. For all other critical point
sequences we have achieved a complete description of the image of the evaluation
homeomorphism,

(29) Ev.q/.Vt .q//D
[

�2It .q/

�� .Dt;� .q//\Gr.q/:

The transition times � 2 It .q/ implicit in (29) can be read off explicitly by the map

�.q/ WD �.Q0;q1/ � �q2
� � � � � �qk�1

� �.qk ;QkC1/W Vt .q/ �! Œ0; 2/k

given by the transition times from (17) and (21),

�.Q0;q1/ WD

�
��q1

if Q0 D
zU .q1/;

�q1
if otherwise;

�.qk ;QkC1/ WD

�
C�qk

if QkC1 D
zU .qk/;

�qk
if otherwise:

Note that this does not define �.q1/ in the special case q1 D . zU .q1/; q1; zU .q1// of
Section 5.3. In that case we denote by �.q1/ WD z�q1

the rescaled time for which the
trajectory is defined. Similar to the construction of the global chart in that special case,
we can show in general that the transition times and evaluations provides a map that
satisfies most properties of a global chart, except that it maps to a neighborhood of the
intended target. In particular the following establishes the homeomorphism property of
Ev.q/.
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Proposition 5.2 For any t > 0, .q1; : : : ; qk/ 2 Critseq.f;U�;UC/ and choice of end
conditions Q0 � U� , QkC1 � UC from 2.2 that are not covered by Section 5.2 or 5.3,
the map

�.q/�Ev.q/W Vt .q/ �!
[

�2It .q/

f�g �
�
�� .Dt;� .q//\Gr.q/

�
� Œ0; 2/k �Gr.q/

is a homeomorphism and satisfies the following:

(i) Restricted to the unbroken trajectories, .�.q/�Ev.q//jVt .q/0 is a diffeomorphism

Vt .q/0 �!
[

�2It .q/\.0;1/k

f�g �
�
�� .Dt;� .q//\Gr.q/

�
� .0; 2/k �Gr.q/:

(ii) Restricted to the maximally broken trajectories, .�.q/ � Ev.q//jVt .q/k is the
bijection

Vt .q/k DM.q/ �!� f0gk � .im �0\Gr.q//

given by evaluating .0; : : : ; k/ to�
0I ev.U�;q1/.0/; ev zS�q1

.1/; ev zSCq2

.1/; : : : ; ev zSCqk

.k�1/; ev.qk ;UC/.k/
�
:

(iii) Let Q D . : : : ; qi ; q
0
1
; : : : ; q0

`
; qiC1; : : : / be obtained by inserting a nontrivial

critical point sequence .q0
1
; : : : ; q0

`
/ into q D .Q0; : : : ; qi ; qiC1; : : : ;QkC1/. Then we

have �
�.q/�Ev.q/

�ˇ̌
Vt .q/\Vt .Q/

D Fq;Q ı
�
�.Q/�Ev.Q/

�ˇ̌
Vt .q/\Vt .Q/

with the forgetful map Fq;QW It .Q/�Gr.Q/! It .q/� zS.q/.

(iv) The transition times �.q/ are given explicitly as in Theorem 2.6. For nontrivial
critical point sequences .q1; : : : ; qk/ 2 Critseq.f;U�;UC/ and switching end con-
ditions from Q0 D

zU .q1/ to Q0 D X n U.q1/, respectively from QkC1 D
zU .qk/

to QkC1 D X n U.qk/, the homeomorphisms � � Ev have overlap of domains
ev�1
� .‰R�.

zSCq1
/\ zU .q1//, respectively ev�1

C .‰RC.
zS�qk
/\ zU .qk//, and are related by

.E1; : : : I zC
1
; : : : / 7!

 ˇ̌pr
W
C

q1

.zC
1
/
ˇ̌

�
E1; : : : I zC

1
; : : :

!
;

. : : : ;Ek I : : : ; z�k / 7!

 
: : : ;

ˇ̌
prW �qk

.z�
k
/
ˇ̌

�
Ek I : : : ; z�k

!
:

This last part includes the special case Q0 DQ2 D
zU .q1/ with �.q/ from (11).
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Proof We will give the proof for t D 1, then the general case follows by restriction to
Vt .q/� V1.q/. The product of the evaluation maps

Ev.q/D ev.U�;q1/ � ev zS�q1

� � � � � ev zSCqk

� ev.qk ;UC/

is injective since the value of ev zSCqi
� ev zS�qi

(respectively ev� � ev zS�q1
in some cases

of i D 1, respectively ev zSCqk
� evC in some cases of i D k ) determines the behavior

near the critical point qi , a generalized trajectory in Vt .q/ does not break at any other
critical point, and the behavior near all critical points, together with initial and end
point, determine the entire trajectory. Moreover, Ev.q/ is a product of continuous
maps by Lemma 3.3. In fact, when restricted to Vt .q/0 , then Ev.q/ is a product
of smooth embeddings, again by Lemma 3.3. The transition times are continuous
by Lemma 4.8 and smooth when restricted to Vt .q/0 . This shows that � � Ev is a
continuous injection and .� �Ev/jVt .q/0 is an embedding into .0; 2/k �Gr.q/. This
proves (i) up to determining the image .� � Ev/.Vt .q//, since then the unbroken
trajectories in Vt .q/0 are exactly those with no breaking, ie with rescaled transition
times in .0; 2/.

The characterization of the image was given in Section 5.4, based on the fact that the
trajectories in Vt .q/ can be uniquely described by their behavior near each critical
point q1; : : : ; qk , including the initial or end point in case U� DX or UC DX . On
the other hand, a tuple of local trajectories near q1; : : : ; qk fits together to a trajectory
in Vt .q/ if and only if they satisfy the matching conditions encoded in Gr.q/.

Properties (ii), (iii) and (iv) follow directly from the definition of the maps, so it remains
to prove continuity of .�.q/�Ev.q//�1 . For that purpose it suffices to show that the
map R.q/W Vt .q/!

S
�2Œ0;2/k f�g � .Dt;� .q/\ �

�1
� .Gr.q/// given by

R.q/ WD
�
IdŒ0;2/k �.�

�1
� /�2Œ0;2/k

�
ı .�.q/�Ev.q//

has a continuous inverse. We will do this explicitly for the case of trajectories between
critical points U˙ D q˙ . The case of finite end conditions U� D X or UC D X is
completely analogous, after replacing the spheres SCq1

, respectively S�qk
, with either a

ball zBCq1
, respectively zB�qk

, or adding a flow time parameter in R� respectively RC .
To prove continuity for U˙ D q˙ first recall from Lemma 4.4 that we have continuous
local inverse maps

R�1
qi
W Œ0; 1/�SCqi

�S�qi
�!M.X;X /; .�i ;xi ;yi/ 7�!  �i ;xi ;yi

:

Their images lie in the neighborhoods U.qi/ and the matching conditions of ��1
� .Gr.q//

can be rephrased as ev�. �1;x1;y1
/ 2W �q� , evC. �k ;xk ;yk

/ 2W CqC and

ev�. �i ;xi ;yi
/ 2‰RC

�
evC. �i�1;xi�1;yi�1

/
�
8i D 2; : : : ; k:
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Hence the image of the full trajectory  .�;x;y/ WDR.q/�1..�i ;xi ;yi/iD1;:::;k/ is given
by the local trajectories and Morse flow lines between,

im  .�;x;y/ D

k[
iD1

im  �i ;xi ;yi
[

k[
iD1

‰RC.�ixi ;yi/[‰R�.x1; �1y1/:

For 2� i �k we can even replace ‰RC.�ixi ;yi/ by a finite flow line ‰Œ0;Ti �.�ixi ;yi/,
where Ti > 0 is determined by ‰Ti

.�ixi ;yi/D .xi�1; �i�1yi�1/. We can now fix a
neighborhood U �Mq1;t � � � � �Mqk ;t of .�;x;y/ such that for every

.� 0;x0;y0/D .� 0i ;x
0
i ;y
0
i/iD1;:::;k 2 U

the corresponding flow times T 0i > 0 satisfy T 0i � 2Ti . With that we can express the
new image as similar union

im  .� 0;x0;y0/

D

k[
iD1

im  � 0
i
;x0

i
;y0

i
[

k[
iD2

‰Œ0;2Ti �.�
0
ix
0
i ;y
0
i/[‰R�.x

0
1; �
0
1y01/[‰RC.�

0
kx0k ;y

0
k/:

Now, given " > 0, we need to choose the neighborhood U so small that the Hausdorff
distance between the images of trajectories is small,

dH.im  .� 0;x0;y0/; im  .�;x;y//� ":

(Note that adding finitely many critical points for the closure of the image will not
change the Hausdorff distance.) By the additivity property

dH.A1[A2;B1[B2/�maxfdH.A1;B1/; dH.A2;B2/g

it suffices to check that the corresponding local trajectories and flow lines are nearby.
Firstly, from the continuity of R�1

qi
we have dH.im  � 0

i
;x0

i
;y0

i
; im  �i ;xi ;yi

/ � " for
sufficiently small U . Secondly, continuity of the Morse flow ‰ provides

dH.‰Œ0;2Ti �.�
0
ix
0
i ;y
0
i/; ‰Œ0;2Ti �.�ixi ;yi//� ":

Finally, for the convergence to q� we can fix T� > 0 and choose U such that
‰�T .x

0
1
; � 0

1
y0

1
/ 2 B".q�/ for all .� 0;x0;y0/ 2 U and T � T� . Then we obtain

dH.‰R�.x
0
1; �
0
1y01/; ‰R�.x1; �1y1//

�max
˚
"; dH.‰Œ�T�;0�.x

0
1; �
0
1y01/; ‰Œ�T�;0�.x1; �1y1//

	
;

which by continuity of the flow ‰ will be bounded by " for small U . A similar
argument ensures dH.‰RC.�

0
k
x0

k
;y0

k
/; ‰RC.�kxk ;yk//� " and finishes the proof.
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5.5 Construction of a general global chart

To obtain a smooth structure for Vt .q/ from Proposition 5.2 note that for � D 0 the
embedding �0 intersects Gr.q/ transversely. Indeed, im �0 is the product of stable and
unstable spheres,

im �0 D SCq1
�S�q1

� � � � �SCqk
�S�qk

;

with SCq1
replaced by W C.q1/ in case U�DX and S�qk

replaced by W �.qk/ in case
UCDX . It intersects the submanifold Gr.q/� zS.q/ transversely by the Morse–Smale
condition,

(30) im �0\Gr.q/D SCq1
tW �q� �

�k�1Y
iD1

�
S�qi
�SCqiC1

�
t Grqi

qiC1

�
�S�qk

tW CqC ;

where in the case of finite ends SCq1
tW �q� , respectively S�qk

tW CqC , is replaced by
the trivial intersection W Cq1

t‰R�.
zU1.q1//, respectively W �qk

t‰RC.
zU1.qk//. In

case U˙ D q˙ the first respectively last factor is simply an intersection of stable and
unstable manifold within zSCq1

, respectively zS�qk
. In each of the middle factors the

intersection is with the graph of the map G
qi
qiC1

which encodes the flow from zS�qi
to

zSCqiC1
, and hence transversality follows from the transverse intersection of the unstable

manifold G
qi
qiC1

.S�qi
/DW �qi

\ zSCqiC1
with the stable manifold SCqiC1

in zSCqiC1
.

Remark 5.3 The transversality im �� t Gr.q/ for � D 0 does not simply extend to
small � ¤ 0 since Gr.q/, and sometimes also the domain of �� , is noncompact. We will
however prove as part of the construction of the global charts that the smooth embedding
�W .�;T�;x1; : : : ;yk ;TC/ 7! �� .T�;x1; : : : ;yk ;TC/ is transverse to Gr.q/, as a map
from the manifold with corners

C WD
[

�2It .q/

Dt;� .q/� Œ0; 2/
k
�SC

.Q0;q1/
� � � � �S�.qk ;QkC1/

to zS.q/ in the following sense: At every intersection point c 2 ��1.Gr.q// the image of
the “interior tangent space” T int

c C under the differential dc� contains a complement of
T�.c/ Gr.q/. Here T int

c C consists of those tangent vectors in TcC that are represented
by paths .�"; "/!C tangent to the boundary @C . Indeed, dc�.T

int
c C / at cD .�; : : : /

contains the image of d �� on T .SC
.Q0;q1/

� � � ��S�
.qk ;QkC1/

/, so transversality follows
from (33) below.

This transversality with corners then induces a smooth structure on ��1.Gr.q// as
submanifold of C , ie with the corner strata determined by the coordinates in Œ0; 2/k ;
see eg [14]. Since � is a smooth embedding, this coincides with the smooth structure on
im.idŒ0;2/k � �/\.Œ0; 2/k�Gr.q//D .�.q/�Ev.q//.Vt .q//. Now the smooth structure
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on Vt .q/ will be defined by pullback with the homeomorphism �.q/�Ev.q/, so that
the transition times �.q/ and evaluations Ev.q/ are smooth by definition.

Remark 5.4 The previous remark already fixes the smooth structure on M.U�;UC/
in the sense that it induces an atlas of smoothly compatible charts, given by smooth
charts for the open subsets V t .q/ which cover M.U�;UC/. Before going into the
construction of specific (associative gluing) charts, we can check that charts arising
from different choices of Euclidean normal coordinates are smoothly compatible.

For simplicity of notation, we give the argument for the special case M.q�; qC/

of Morse flow lines between fixed critical points. Let `S˙q and ` zS˙q for ` D 1; 2

be the spheres in the (un)stable manifolds and entry/exit sets that arise from two
different choices of Euclidean normal coordinates. Then the transition maps between
the charts for M.q�; qC/ arising from a fixed critical point sequence q can be viewed
as homeomorphisms between the corresponding submanifolds of

`C D Œ0; 1/k � `SCq1
� � � � �

`S�qk
:

The latter is the pullback via the embeddings `�W `C ,! ` zSCq1
� � � � � ` zS�qk

of the product
of maps induced by the Morse flow between open subsets of each pair of entry/exit sets
1 zS˙qi

and 2 zS˙qi
. Each of these maps is smooth since the flow is smooth and the ` zS˙qi

are transverse to the flow. Moreover, `��1 is given by (19) and thus extends to a smooth
map between open subsets of ` zSCq1

� � � � � ` zS�qk
and `C . This shows compatibility of

charts for fixed q arising from different choices of normal coordinates, and since each
set of charts is a compatible atlas by itself, this implies complete compatibility.

Remark 5.5 At this point we can also deduce smoothness of the evaluation maps
evH at the hypersurfaces of type (6). In the interior M.U�;UC/ this was proven in
Lemma 3.3. For the global charts covering the boundary note that Vt .q/ intersects the
domain of definition of ev zS˙p only when p 2 q is part of the critical point sequence.
Hence ev zS˙p is part of Ev.q/, except for ev zSCpDq1

in case U� D X or ev zS�pDqkC1
in

case UC DX . In the latter cases, the domain of the evaluations within the chart is

ev�1
� .‰R�.

zSCp //� Vt .q/; resp. ev�1
C .‰RC.

zS�p //� Vt .q/;

and the evaluations ev� respectively evC are part of Ev.q/, hence smooth by definition.
In this chart ev zSCpDq1

is smooth since it is given by composing ev� with the map

‰R�.
zSCp / �!

zSCp ; z 7�!‰RC.z/\
zSCp ;

which is smooth by Lemma 3.3. Similarly ev zS�pDqkC1

is smooth since it is the compo-
sition of evC with the smooth map

z 7�!‰R�.z/\
zS�p :

Geometry & Topology Monographs, Volume 18 (2012)



Smooth structures on Morse trajectory spaces 423

For a general hypersurface H � X transverse to the flow consider a trajectory near
the boundary  2 Vt .q/ that also lies in the domain of H , ie im  \‰R˙.H /¤∅.
Its intersection point evH . / with H flows in finite time to the next entry set zSCqj ,
unless it lies within zU .qj / or near the endpoint of  , in which case it flows in finite
time backwards to the previous exit set zS�qj . Now evH is smooth in a neighborhood of
 2M.U�;UC/ since it can be expressed as composition of ev zS˙qj with a smooth map
from a neighborhood of ev zS˙qj . / 2

zS˙qj to a neighborhood of evH . / 2H , given by
the finite (backward) flow from zS˙qj to H .

Next, recall that the evaluation maps Ev.q/ identify the maximally broken trajectories
in Vt .q/k DM.q/ with the intersection im �0\Gr.q/,

Ev.q/
�
M.q/

�
D im �0\Gr.q/:

In fact, this is an embedding by Lemma 3.3. In the case of finite ends, the evaluations
moreover intertwine the restricted domains,

Ev.q/
�
Mt;� .q/

�
D �0.Dt;� .q//\Gr.q/ 8� 2 It .q/:

Construction of the global chart (28) now requires identifications of �� .Dt;� .q//\Gr.q/
with �0.Dt;� .q//\Gr.q/ varying continuously with � 2 It .q/. We will achieve this
by constructing a generalized tubular neighborhood of the embedding of maximally
broken trajectories Ev.q/WM.q/ ,! Gr.q/, that is a surjective submersion

�.q/W Gr.q/�N .q/ �!M.q/

of a neighborhood N .q/�Gr.q/ of im �0\Gr.q/, which restricts to the diffeomorphism
�.q/jim �0\Gr.q/DEv.q/�1W im �0\Gr.q/!M.q/. From this we will define the global
chart as composition with the transition times and evaluation maps

(31) �.q/ WD �.q/�
�
�.q/ ıEv.q/

�
W Vt .q/ �! Œ0; 2/k �M.q/:

Equivalently, this can be expressed as composition of a homeomorphism with the
projection �.q/ restricted to domains varying with � 2 It .q/,

Vt .q/
�.q/�Ev.q/
�������!

[
�2It .q/

f�g �
�
�� .Dt;� .q//\Gr.q/

� Id
Œ0;2/k

��.q/

���������!

[
�2It .q/

f�g �Mt;� .q/:

In order for �.q/ to be a well-defined map, we need to construct the tubular neighbor-
hoods and choose t > 0 sufficiently small to ensure that

(32) �� .Dt;� .q//\Gr.q/�N .q/ 8� 2 It .q/:
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On the maximally broken trajectories Vt .q/k , this map automatically has the required
form by Proposition 5.2(ii) and

�.q/jim �0\Gr.q/ D Ev.q/�1:

Moreover, our definition of tubular neighborhood ensures that each fiber �.q/�1. / is
a smooth manifold and intersects �0.Dt;0.q// uniquely and transversely in  . In order
for �.q/ to be a homeomorphism (and diffeomorphism in the interior) with the given
image we need �.q/ to also induce diffeomorphisms �� .Dt;� .q//\Gr.q/ �!� Mt;� .q/

for � ¤ 0. This can be ensured by the fiber intersections for each � 2 It .q/ being
transverse at single points over Mt;� .q/ and empty over the complement,

(33) zS.q/� �� .Dt;� .q// t �.q/�1. /D

�
1 point if  2Mt;� .q/;

∅ if  62Mt;� .q/:

This will also imply the transversality im �� t Gr.q/� zS.q/ claimed in Remark 5.3
since �.q/�1. / � Gr.q/. Note also that in case U˙ D q˙ , when the domain of
�� is independent of � and compact, im �� \�.q/

�1. / remains a single transverse
intersection point for sufficiently small j� j and  in a compact subset of M.q/. In the
iterative construction of the tubular neighborhoods �.q/ the fibers over the complement
of a compact subset will in fact be determined and automatically satisfy (33) by the
previous constructions.

5.6 Tubular neighborhoods of subspaces of maximally broken trajectories

We will use the following generalized notion of tubular neighborhoods of embeddings.

Definition 5.6 Let eW M ,! G be an embedding of smooth manifolds. Then a
tubular neighborhood of e is a smooth surjective submersion � W N !M of an open
neighborhood N �G of e.M /, which restricts to �je.M / D e�1 .

Remark 5.7 Let � W N !M be a tubular neighborhood of eW M ,!G . Then, by the
implicit function theorem, for every n 2N there is a diffeomorphism V �F �!� U to
a neighborhood of n that pulls back � to the trivial fiber bundle over a neighborhood
V �M of �.n/. If n D e.m/ then one can make the pullback of eW V ! U is a
constant section.

If M or N are noncompact, then we may not deduce a global fiber bundle structure,
but this local structure is sufficient for our purposes. In particular, each fiber ��1.m/

is a smooth manifold and intersects e.M / uniquely and transversely in e.m/.
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The tubular neighborhood �.q/W N .q/!M.q/ of Ev.q/WM.q/ ,! Gr.q/ will be
constructed as product

��U�
q1
��q1

q2
� � � � ��qk�1

qk
�
C�

qk

UC

of tubular neighborhoods of the evaluation factors in Ev.q/. In each of these factors
we will construct the tubular neighborhoods by iteration over the following breaking
numbers.

Definition 5.8 For each pair .P�;PC/ of end conditions P˙ D p˙ 2 Crit.f / or
P˙ DX with M.P�;PC/¤∅ we define

b.P�;PC/
WDmax

˚
m
ˇ̌
9p1; : : :pm 2Crit.f / WM.P�;p1/;M.p1;p2/; : : : ;M.pm;PC/¤∅

	
as maximal number of breakings of a trajectory from P� to PC . Moreover, for any
tuple q D .Q0; q1; : : : ; qk ;QkC1/ of a critical point sequence and end conditions
Q0 � U� , QkC1 � UC with M.q/¤∅ we denote by

b.q/ WDmaxfb.U�; q1/; b.q1; q2/; : : : ; b.qk�1; qk/; b.qk ;UC/g

the maximal breaking number between consecutive entries of q .

To see that the breaking number is well-defined recall that we defined M.p;p/D∅.
Note moreover that necessarily maxf .P�/� f .p1/ > � � �> f .pm/�minf .PC/, so
all breaking numbers are bounded above by the number of critical points of f . We
can hence use a finite iteration over b D 0; : : : ; #Crit.f / with a decreasing sequence
1� t0 > t1 > t2 > � � �> 0 to construct tubular neighborhoods as follows.

� For each pair P�Dp�;PCDpC 2Crit.f / with b.p�;pC/D b we will construct
tubular neighborhoods

(34) �p�
pC
W Grp�

pC
.t/�!M.p�;pC/ of .ev zS�p� � ev zSCpC /WM.p�;pC/ ,!Grp�

pC

for 0< t � tb by restriction of the construction for t D tb to

Grp�
pC
.t/ WD Grp�

pC
\
�
‰R.Ut .p�//�‰R.Ut .pC//

�
� Grp�

pC
:

� For each pair p�;pC 2 Crit.f / with b.p�;pC/ D b we then obtain tubular
neighborhoods

��p�
pC
W
�Grp�

pC
.t/!M.p�;pC/ of ev zSCpC WM.p�;pC/,!

�Grp�
pC
DW �p�\

zSCpC ;

C�p�
pC
W
CGrp�

pC
.t/!M.p�;pC/ of ev zS�p� WM.p�;pC/,!

CGrp�
pC
DW CpC\

zS�p� ;
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for 0< t � tb on the domains

�Grp�
pC
.t/ WD �Grp�

pC
\‰R.Ut .pC// and CGrp�

pC
.t/ WD CGrp�

pC
\‰R.Ut .p�//

by pullback of �p�
pC under the embeddings to Grp�

pC D graph.Gp�
pC /�

.Gp�
pC
/�1
� Id zSCpC

�
W
�Grp�

pC
,! Grp�

pC
and

�
Id zS�p� �Gp�

pC

�
W
CGrp�

pC
,! Grp�

pC
:

These embeddings pull ev zS�p� � ev zSCpC back to ev zSCpC , respectively ev zS�p� , hence
pullback of �p�

pC induces tubular neighborhoods.

� For each PC D pC 2 Crit.f / and P� DX with b.X;pC/D b we will construct
tubular neighborhoods

(35) ��X
pC
W
�GrX

pC
.t/ �!M.X;pC/ of ev�WM.X;pC/ ,!

�GrX
pC
DX

for 0< t � tb by restriction of the construction for t D tb to

�GrX
pC
.t/ WD‰R�.

zUt .pC//�
�GrX

pC
:

� For each P� D p� 2 Crit.f / and PC DX with b.p�;X /D b we will construct
tubular neighborhoods

(36) C�
p�
X
W
CGrp�

X
.t/ �!M.p�;X / of evCWM.p�;X / ,!

CGrp�
X
DX

for 0< t � tb by restriction of the construction for t D tb to

CGrp�
X
.t/ WD‰RC.

zUt .p�//�
CGrp�

X
:

� From the tubular neighborhoods for b.P�;PC/ � b and t � tb we then obtain
tubular neighborhoods of Ev.q/WM.q/! Gr.q/, given by

�.q/ WD��U�
q1
��q1

q2
� � � � ��qk�1

qk
�
C�

qk

UC W Nt .q/ �!M.q/;

Nt .q/ WD
�GrU�q1

.t/�Grq1
q2
.t/� � � � �Grqk�1

qk
.t/�CGrqk

UC.t/� Gr.q/;

for all critical point sequence and end conditions q D .Q0; q1; : : : ; qk ;QkC1/ with
b.q/� b , not covered by Section 5.2 or 5.3. These automatically satisfy (32) for all
0< t � tb since It .q/ is defined such that im �� \Gr.q/�Nt .q/ for � 2 It .q/. We
will moreover make the construction and choice of tb > 0 such that the intersection
properties of the fibers (33) are satisfied for all 0< t � tb .

� From each tubular neighborhood for b.q/� b we then obtain a well-defined map

�.q/ WD
�
IdŒ0;2/k ��.q/

�
ı
�
�.q/�Ev.q/

�
W Vtb

.q/ �! Œ0; 2/k �M.q/

as in (31), and may restrict it to Vt .q/ for t < tb .
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Remark 5.9 In each case the open subsets .˙/GrP�PC.t/�
.˙/GrP�PC converge in the

Hausdorff distance as t ! 0 to the image of M.P�;PC/ under the respective evalua-
tion. Indeed, in the identification

Grp�
pC
' .ev� � evC/�1. zS�p� �

zSCpC/�M.X;X /

from Section 4.3 we see that for any sequence .ev� � evC/. �/ 2 Grp�
pC.2

��/ there
will be a convergent subsequence  �!  2M.X;X / with ev˙. / 2 S˙p˙ . For this
subsequence .ev� � evC/. �/ converges to a point in

.ev� � evC/
�
.ev� � evC/�1

�
S�p� �SCpC

�
�M.X;X /

�
D .ev zS�p� � ev zSCpC /.M.p�;pC//;

which is contained in the closure of .ev zS�p� � ev zSCpC /.M.p�;pC//. On the other hand,
this latter set is contained in Grp�

pC.t/ for all t > 0, which proves Hausdorff convergence
of Grp�

pC.t/ to .ev zS�p� � ev zSCpC /.M.p�;pC//. The other cases are analogous.

In order for this construction of �.q/ to provide the global charts of Theorem 2.6, we
need to impose further conditions on the tubular neighborhoods, taking the properties
of �.q/�Ev.q/ given by Proposition 5.2 into account. In unraveling the associativity
(iii) note that the insertion of a nontrivial q0 implies b.q0/ < b.q/ and b.Q/� b.q/,
so the compatibility can be phrased as condition on the factors of �.q/.

Lemma 5.10 Let the special global charts in Sections 5.2 and 5.3 be fixed, and for
some b � 1 suppose that the above construction of �.q/ for b.q/ � b � 1 satis-
fies Theorem 2.6 for 0 < t � tb�1 . Then the following conditions on .˙/�P�

PC for
b.P�;PC/D b ensure that the induced maps �.q/ satisfy Theorem 2.6 up to breaking
number b for 0< t � tb .

(i) The induced maps �.q/ for any critical point sequence and end conditions with
b.q/D b satisfy transversality to the fibers (33), which we may simplify to

im �� t �.q/�1. /D 1 point 8� 2 I 0tb
.q/;  2M.q/;

with

I 0t .q/ WD

�
Œ0; 1

2
t � if Q0 D

zU .q1/

Œ0; t/ otherwise

�
� Œ0; t/k�2

�

�
Œ0; 1

2
t � if QkC1 D

zU .qk/

Œ0; t/ otherwise

�
:

(ii) (Canonical form on the maximally broken trajectories is automatically satisfied.)

(iii) For any nontrivial critical point sequence q0 with end conditions associated to
.P�;PC/ with b.P�;PC/D b and the associated zq0 with open end conditions of the
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form

q0 D .p�; q
0
1; : : : ; q

0
`;pC/; zq0 D

�
zU .p�/;p�; q

0
1; : : : ; q

0
`;pC;

zU .pC/
�
;

resp. q0 D .Q00; q
0
1; : : : ; q

0
`;pC/; zq0 D

�
Q00; q

0
1; : : : ; q

0
`;pC;

zU .pC/
�
;

resp. q0 D .p�; q
0
1; : : : ; q

0
`;Q

0
`C1/; zq

0
D
�
p�; zU .p�/; q

0
1; : : : ; q

0
`;Q

0
`C1

�
;

the submersions are given on the domains of trajectories intersecting all zUtb
.q0i/ by

�p�
pC
ı
�
ev� � evC

�ˇ̌
M. zS�p� ;

zS
C
pC
/\Vtb

.zq0/0
D �.q0/ ı prq0 ı�.zq

0/;

resp. ��X
pC
ı ev�

ˇ̌
M.X ; zS

C
pC
/\Vtb

.zq0/0
D �.q0/ ı prq0 ı�.zq

0/;

resp. C�
p�
X
ı evC

ˇ̌
M. zS�p� ;X /\Vtb

.zq0/0
D �.q0/ ı prq0 ı�.zq

0/;

with the canonical projections prq0 W It .zq
0/�M.zq0/! Œ0; 1/` �M.q0/.

(iv) For b.X;pC/ D b , respectively b.p�;X / D b , the submersions near critical
points are given explicitly via (10) by

(37)
��X

pC
j zUtb

.pC/
D ev�1

� ı pr zBCpC
;

C�
p�
X
j zUtb

.p�/
D ev�1

C ı pr zB�p� ;

�
��X

pC

��1�M. zUtb
.pC/;pC/

�
� zUtb

.pC/;�
C�

p�
X

��1�M.p�; zUtb
.p�//

�
� zUtb

.p�/:

(The explicit transition times and relation between charts for different end conditions
are automatically satisfied.)

Proof To understand the simplification in (i) we begin by noting that Mt;� .q/DM.q/

and
Dt;� .q/D SCQ0;q1

� � � � �S�qk ;QkC1

unless �1 > t=2 in case Q0 D
zU .q1/ or �k > t=2 in case QkC1 D

zU .qk/. In the
latter cases for t � tb we will show that the unique transverse intersection follows
from the intersection property for �1 D t=2 or �k D t=2. We will do this in the case
Q0 D

zU .q1/, QkC1 D
zU .qk/ and �1; �k > t=2. The arguments for each end will

clearly be separate so that this also covers the case of just one end condition near a
critical point. In the chosen case for � 2 .t=2; 1C t/� Œ0; t/k�2� .t=2; 1C t/ we have

Dt;� .q/D
t

2�1

zBCq1
�S�q1

� � � � �SCqk
�

t

2�k

zB�qk

and by pullback to zBCq1
� � � � � zB�qk

obtain

��
�
Dt;� .q/

�
DRt;�1;�k

�
im �.t=2;�2;:::;�k�1;t=2/

�
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with

Rt;�1;�k

D

��
t

2�1
Id zBCq1

�
2�1

t
Id zB�q1

�
� IdS�q1

� � � � � Id
S
C
qk

�

�
2�k

t
Id zBCqk

�
t

2�k
Id zB�qk

��
:

On the other hand, by (iv) the fiber over any  D .0; : : : ; k/ 2Mt;� .q/ is

�.q/�1. /D
��

ev�.0/� zB
�
q1

�
; : : : ;

�
zBCqk
� evC.k/

��
\Nt .q/

D
�
Rt;�1;�k

�
�.q/�1. 00; 1; : : : ; k�1; 

0
k/
��
\Nt .q/;

with elongated first and last trajectories

 00 D ev�1
�

�
2�1

t
ev�.0/

�
2M. zU .q1/; q1/;

 0k D ev�1
C

�
2�k

t
evC.k/

�
2M.qk ; zU .qk//:

Hence transversality and uniqueness of �� .Dt;� .q//\�.q/
�1. / follows by linear

transformation with Rt;�1;�k
from transversality and uniqueness of

im �.t=2;�2;:::;�k�1;t=2/\�.q/
�1. 00; : : : ; 

0
k/:

Also, by definition of �� and condition (iv) any point in ��1
� .�.q/�1.0; : : : ; k// is

of the form .0; ev�.0/;�; : : : ;�/ in case Q0 D
zU .q1/ and .�; : : : ;�; evC.k/; 0/

in case QkC1 D
zU .qk/. Hence �� .Dtb;� .q// \ �

�1.q/. / D ∅ is automatic for
 62Mt;� .q/. Moreover, for � 2 Œ0; t/k we have im �� \Gr.q/�Nt .q/ by definition,
so the t –dependence of the domain of �.q/ is immaterial. In particular, the intersection
property for tb implies the analogous property for all 0< t < tb .

Now the intersection conditions in (i) together with the characterization of the image

.�.q/�Ev.q//.Vtb
.q// D

[
�2Itb

.q/

f�g �
�
�� .Dtb;� .q//\Gr.q/

�
evidently imply that �.q/ D .IdŒ0;2/` ��.q// ı .�.q/ � Ev.q// is injective with the
claimed image. Moreover, it is continuous and smooth on Vtb

.q/0 by the regularity
of its factors. So it remains to show that .IdR` �d�.q// restricts to an isomorphism
from T.�.q/�Ev.q/.Vtb

.q///DR` � .im d�� \T Gr.q// to R` �T zM.q/. The latter
follows from the transversality T zS.q/D ker d�.q/C im d�� between the fibers of �.q/
and the embeddings �� since d�.q/ is surjective and ker d�.q/� T Gr.q/.

Theorem 2.6(ii) follows from the defining property �.q/jEv.q/.M.q// D Ev.q/�1 of
tubular neighborhoods and Proposition 5.2(ii). For Theorem 2.6(iv), the explicit form
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of the charts for trajectories starting or ending near critical points is equivalent to (37).
The transition times and relation between different end conditions are determined by
Proposition 5.2(iv). Note here that the tubular neighborhood �.q/ is the same for both
choices of end conditions in U˙ DX , and in the relevant factors is given by (37).

To check that condition (iii) implies the compatibility of charts in Theorem 2.6 we
begin by noting that the compatibility is trivially satisfied for k D 0 when �.q/D Id.
In the notation of the theorem the breaking numbers are related by

b.q/� b.qj ; qjC1/� b.q0/C ` and b.Q/� b.q/; b.q/0;

so in order to check the compatibility up to breaking number b it suffices to consider
the case b.q/D b > b.q0/ and k � 1. Now the complement Vt .Q/nVt .q/ consists of
those trajectories that break at one or several points of q0 , so the overlap Vt .q/\Vt .Q/

consists of all those trajectories  2 Vt .Q/ that do not break between qj and qjC1 .
Here in case j D 0 respectively j D k we have to replace qj by Q0

0
respectively

qjC1 by Q0
kC1

, and will consider these cases separately later. For 0 < j < k and
 2Vt .q/\Vt .Q/ the transition times through U.q0i/ (which are positive corresponding
to no breaking) �.q0/. /D �.q0/. / and evaluations Ev.q0/. /D Ev.q0/. / near q0i
are determined by the restriction

 WD �
qj
qjC1

. / 2M. zS�qj ;
zSCqjC1

/

corresponding to

.z� ; z
C
 / WD .ev�. /; evC. //D .ev zS�qj

. /; ev zSCqjC1

. // 2 Grqj
qjC1

:

With this notation the compatibility condition of Theorem 2.6(iii) in case 0< j < k

becomes the following tuple of conditions on the tubular neighborhood �qj
qjC1

for all
 2M. zS�qj ;

zSCqjC1
/ with im  \Ut .q

0
i/¤∅ for i D 0; : : : ; `C 1:

�
q0

i

q0
iC1

��
ev zS�

q0
i

� ev zSC
q0

iC1

�
. /

�

D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

��
qj
q0

1

�
ev zSC

q0
1

�
�

qj
qjC1

.z� ; z
C
 /
��

if i D 0;

�
q0

i

q0
iC1

��
ev zSC

q0
i

� ev zSC
q0

iC1

��
�

qj
qjC1

.z� ; z
C
 /
��

if 0< i < `;

C�
q0
`

qjC1

�
ev zS�

q0
`

�
�

qj
qjC1

.z� ; z
C
 /
��

if i D `;

and
�q0

i
. /D �q0

i

�
�

qj
qjC1

.z� ; z
C
 /
�
81� i � `:

In case j D 0, U�D q�D q0D q0
0

, respectively j D k , UCD qCD qkC1D q0
`C1

, the
compatibility can analogously be rewritten as conditions on ��q0

q1
.zC/, respectively
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C�
qk
qkC1

.z�/, on the right hand side for all

zC 2 �Grq0
q1
; resp. z� 2 CGrqk

qkC1
;

with ‰R.z
˙/\Ut .q

0
i/¤∅ and the corresponding trajectory  D ‰. �; z˙/. By the

pullback definition of ˙�qj
qjC1

, these are equivalent to requirements on

�q0
q1
.z� ; z

C
 / for  2M.S�q0

; zSCq1
/ as above,

resp. �qk
qkC1

.z� ; z
C
 / for  2M. zS�qk

;SCqkC1
/ as above.

On the left-hand side, the conditions involve

��
q0

0

q0
1

ı ev zS�
q0

1

for i D 0; resp. C�
q0
`

q0
`C1

ı ev zSC
q0
`

for i D `,

however these equal

�
q0

0

q0
1

�
ev zS�

q0
0

� ev zSC
q0

1

�
; resp. �

q0
0

q0
1

�
ev zS�

q0
0

� ev zSC
q0

1

�
;

by the pullback definition of ˙�
q0

i

q0
iC1

. Hence the requirements here are of the same
form as those for 0< j < k .

Next, we compare these requirements to the definition of the chart for b.q0/ < b ,

�.q0/WM.qj ; qjC1/� Vt .q
0/0 �!
� .0; t/`�M.q0/; � 7�! .� 01; : : : ; �

0
`; 
0
0; : : : ; 

0
`/;

which is given by the transition times near q0
1
; : : : ; q0

`
and projection to the trajectories

 0i D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

��
qj
q0

1

�
ev zSC

q0
1

.�/
�

if i D 0;

�
q0

i

q0
iC1

�
ev zSC

q0
i

� ev zSC
q0

iC1

�
.�/ if i D 1; : : : ; `� 1;

C�
q0
`

qjC1

�
ev zS�

q0
`

.�/
�

if i D `;

� 0i D �q0
i
.�/ 81� i � `:

Comparing this definition of �.q0/ with the above requirements we see that for 0<j <k

Theorem 2.6(iii) is equivalent to the requirement for all  2M. zS�qj ;
zSCqjC1

/\Vt .zq
0/0

(38) �.q0/
�
�

qj
qjC1

.z� ; z
C
 /
�
D

��
�q0

i
. /

�
iD1;:::;`

;
�
�

q0
i

q0
iC1

�
ev zS�

q0
i

� ev zSC
q0

iC1

�
. /

�
iD0;:::;`

�
:
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The right-hand side can be expressed as composition prq0 ı�.zq
0/ of the chart for the

critical point sequence

zq0 D . zU .qj /; qj D q00; q
0
1; : : : ; q

0
`; q
0
`C1 D qjC1; zU .qjC1//

with the projection

prq0 W Œ0; 2/� Œ0; 1/
`
� Œ0; 2/�M. zU .qj /; qj /�M.q0/�M.qjC1; zU .qjC1//

�! Œ0; 1/` �M.q0/:

Since �.q0/ is invertible and ev� � evCW  ! .z� ; z
C
 / identifies the domains

M. zS�qj ;
zSCqjC1

/! Grqj
qjC1

;

this makes the requirement �qj
qjC1
ı .ev� � evC/D �.q0/�1 ı prq0 ı�.zq

0/, as claimed.

In case j D 0, U� D X respectively j D k , UC D X the compatibility can be
rewritten as above into conditions on ��X

q1
.z� /, respectively C�qk

X
.zC /, instead of

�
qj
qjC1

.z� ; z
C
 / on the right-hand side, with the further replacements�

q0 X; ev zSC
q0

1

 ev�; �q0
1
 �.Q0

0
;q0

1
/

�
;

respectively �
qkC1 X; ev zS�

q0
`

 evC; �q0
`
 �.q0

`
;Q0

kC1
/

�
;

and with a modification of the left-hand side to

��X
q0

1

ı ev� and �.Q0
0
;q0

1
/ for i D j D 0,

resp.C�
q0
`

X
ı evC and �.q0

`
;Q0

kC1
/ for i D `, j D k.

In these cases the requirements are for all restricted trajectories

 2M.X; zSCq1
/; resp.  2M. zS�qk

;X /;

with im  \Ut .q
0
i/¤∅ for i D 1; : : : ; ` and

ev�. / 2Q00; resp. evC. / 2Q0kC1;
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and the corresponding z˙ D ev˙. /. Spelling this out for j D 0, the requirements are

��X
q0

1

�
ev�. /

�
D
��X

q0
1

�
ev zSC

q0
1

�
��X

q1
.z� /

��
;

�
q0

i

q0
iC1

�
ev zS�

q0
i

� ev zSC
q0

iC1

�
. /D

8̂<̂
:
�

q0
i

q0
iC1

�
ev zSC

q0
i

� ev zSC
q0

iC1

��
��X

q1
.z� /

�
if 0< i < `;

C�
q0
`

q1

�
ev zS�

q0
`

�
��X

q1
.z� /

��
if i D `;

�.Q0
0
;q0

1
/. /D �.Q0

0
;q0

1
/

�
��X

q1
.z� /

�
;

�q0
i
. /D �q0

i

�
��X

q1
.z� /

�
if 2� i � `:

We again compare this with the chart �.q0/, which now depends on the choice of end
condition Q0

0
�X , respectively Q0

kC1
�X , via the modification

 00 D
��X

q0
1

�
ev�. /

�
and � 01 D �.Q00;q

0
1
/. /;

resp.  0` D
C�

q0
`

X

�
evC. /

�
and � 0` D �.q0`;Q

0
kC1

/. /:

Spelling this out for j D 0, the chart is

�.q0/WM.Q00; q1/� Vt .q
0/0 ,! .0; 2/` �M.q0/;  7�! .� 01; : : : ; �

0
`; 
0
0; : : : ; 

0
`/;

where

 0i D

8̂̂̂̂
<̂
ˆ̂̂:
��X

q0
1

�
ev�. /

�
if i D 0;

�
q0

i

q0
iC1

�
ev zSC

q0
i

� ev zSC
q0

iC1

�
. / if 1� i < `;

C�
q0
`

q1

�
ev zS�

q0
`

. /
�

if i D `;

and

� 0i D

(
�.Q0

0
;q0

1
/. / if i D 0;

�q0
i
. / if 2� i � `:

This shows that Theorem 2.6(iii) for j D 0, U�DX , respectively j D k , UCDX , is
equivalent to a requirement of the same form as (38) for �.q0/.��X

q1
.z� //, respectively

�.q0/.C�
qk

X
.zC //, and all  2M.X; zSCpC/\Vtb

.zq0/0 , respectively  2M. zS�p� ;X /\

Vtb
.zq0/0 , just with the first respectively last trajectory and transition time on the right

hand side replaced by

��X
q0

1

.ev�. // and �.Q0
0
;q0

1
/. /;

resp. C�
q0
`

X
.evC/. / and �.q0

`
;Q0

kC1
/. /:
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We may again express the right-hand side as composition prq0 ı�.zq
0/ of the chart for

the associated critical point sequence zq0 with the canonical projection

prq0 W It .zq
0/�M.zq0/ �! Œ0; 1/` �M.q0/:

In case j D 0 that is zq0D .Q0
0
; q0

1
; : : : ; q0

`
; q0
`C1
D q1; zU .q1// satisfying b.zq0/D b.q0/,

and the projection is

prq0 W Œ0; 2/
`
� Œ0; 2/�M.q0/�M.q1; zU .q1// �! Œ0; 2/` �M.q0/:

Since �.q0/ is a homeomorphism and ev�W  7! z� identifies M.X; zSCq1
/ with

�GrX
q1
.1/, this makes the requirement

��X
q1
ı ev� D �.q0/�1

ı prq0 ı�.zq
0/:

Similarly, evCW ! zC identifies the domains M. zS�qk
;X /!CGrqk

X
.1/, which makes

the requirement
C�

qk

X
ı evC D �.q0/�1

ı prq0 ı�.zq
0/:

This finishes the proof of Theorem 2.6(iii).

5.7 Construction for breaking number bD 0

In this section we construct tubular neighborhoods ˙�P�
PC for b.P�;PC/ D 0 as

specified in Section 5.6 and find t0 > 0 such that the induced maps �.q/ satisfy
Theorem 2.6 for b.q/D 0 and 0< t � t0 .

For pairs of critical points p�;pC 2 Crit.f / with M.p�;pC/ ¤ ∅ the breaking
number is b.p�;pC/D 0 iff there exist no broken Morse trajectories from p� to pC ,
which is equivalent to the space of unbroken Morse trajectories M.p�;pC/ being
compact. This trajectory space is embedded in the connecting trajectory space by

.ev zS�p� � ev zSCpC /WM.p�;pC/ ,! Grp�
pC
:

Its image, M � Grp�
pC has a standard tubular neighborhood diffeomorphism (given by

the exponential map for some metric)

expW NM � B �!� W � Grp�
pC

from a neighborhood B of the zero section in the normal bundle NM � T Grp�
pC jM to

a neighborhood W of M . Since M is compact and Grp�
pC.t/!M in the Hausdorff

distance as t ! 0, we find tp�;pC 2 .0; 1� such that Grp�
pC.tp�;pC/ � U . Then with

the projection …M W NM !M the map

�p�
pC
WD .ev zS�p� � ev zSCpC /

�1
ı…M ı exp�1

W Grp�
pC
.tp�;pC/ �!M.p�;pC/
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clearly defines a tubular neighborhood of ev zS�p� � ev zSCpC in the sense of Definition 5.6.

Next, we have b.X;pC/ D 0 iff pC is a maximum, and b.p�;X / D 0 iff p� is a
minimum. In those cases the connecting trajectory spaces are

�GrX
pC
.1/D‰R�.

zU1.pC//D zU1.pC/;
CGrp�

X
.1/D‰RC.

zU1.p�//D zU1.p�/;

and we are dealing with the embeddings of the trivial Morse trajectory spaces

ev�WM. zU .pC/;pC/D fpC � pCW Œ0;1/ �!X g �!� zBCpC D fpCg �
zU1.pC/;

evCWM. zU .p�/;p�/D fp� � p�W .�1; 0� �!X g �!� zB�p� D fp�g �
zU1.p�/:

We define their tubular neighborhoods according to (37) by

��X
pC
WD pC W

�GrX
pC
.1/ �!M. zU .pC/;pC/;

C�
p�
X
WD p� W

CGrp�
X
.1/ �!M.p�; zU .p�//:

This constructs all tubular neighborhoods for breaking number b D 0 as listed in
Section 5.6 with t 0

0
WDminftp�;pC jM.p�;pC/¤∅g 2 .0; 1�.

In order for the induced maps �.q/W Vt .q/! Œ0; 2/k �M.q/ for b.q/D 0 to satisfy
Theorem 2.6 it suffices to check the conditions of Lemma 5.10. Here condition (iii)
is trivially satisfied since b.q/ D 0 does not allow for the insertion of a nontrivial
critical point sequence. Condition (iv) holds evidently since ˙� were only defined
on zU1.p˙/. Finally, the following lemma will provide t0 2 .0; t

0
0
� such that (i) holds.

Note from above that b.q/ D 0 only for critical point end conditions U˙ D q˙ or
finite end conditions Q0 D

zU .q1/ with q1 a maximum, respectively QkC1 D
zU .qk/

with qk a minimum. Moreover, b.q/ D 0 implies compactness of the subset of
maximally broken trajectories M.q/.

Lemma 5.11 Let S be a manifold, G � S a submanifold and

�W Œ0; 1/n �Z �! S; .� ; z/ 7�! �� .z/

a smooth family of embeddings �� W Z ,! S such that im �0 tG � S transversely. Let
eW M ,! S be an embedding to e.M /D im �0 \G and let � W G!M be a tubular
neighborhood of e . Suppose moreover that � is uniformly continuous with respect to
the Euclidean distance on Œ0; 1/n and some metrics on Z;S (compatible with the given
topologies).

Then for every compact open subset K �M there exists t > 0 and a neighborhood
N �G of e.M / such that

(39) im �� t
�
��1.m/\N

�
D 1 point 8m 2K; � 2 Œ0; t/n:
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If Z is compact then this holds with N DG .

Here all manifolds are smooth, finite-dimensional and without boundary; the difficulty
lies in allowing noncompactness, which will be needed in the iteration step. In the
present case just G WDNt 0

0
.q/�Gr.q/ is noncompact. The base space KDM WDM.q/

is compact and in case of finite end conditions Q0 D
zU .q1/, respectively QkC1 D

zU .qk/, only contains trajectories  with j ev�. /j D 0, respectively j evC. /j D 0,
hence Mt;� .q/ DM.q/. Similarly, the embeddings �� WD �q;� to S WD zS.q/ have
compact domains, in case

Q0 D
zU .q1/; resp. QkC1 D

zU .qk/;

given by
zBCq1
D f0g; resp. zB�qk

D f0g:

In the latter cases note that �� is well-defined for � 2 Œ0; 1/k , so we will obtain the
intersection property for transition times in Œ0; t/k , which contains I 0t .q/. This finishes
the construction in case b D 0 with t0 WDminft 0

0
; tg.

Proof of Lemma 5.11 To begin note that the transversality im �0tGDe.M / together
with the submersion property of � W G!M implies fiber-wise transversality

im �0 t ��1.m/D e.m/ 8m 2M:

To show that, after a restriction, this intersection property persists for small � ¤ 0,
we crucially need compactness of K . With that it suffices, given any k 2K , to find
tk > 0 and a neighborhood Nk �G of e.M / such that (39) holds on a neighborhood
Uk of k .

By assumption, zk D �
�1
0
.��1.k// is a unique point, and dzk

.� ı �0/W Tzk
Z! dkM

is an isomorphism. The implicit function theorem for

F W
�
Œ0; 1/n �M

�
�Z �!M �M; .� ;mI z/ 7�! .�.�� .z//;m/;

with .0; kI zk/ 7!�M then provides open neighborhoods Œ0; t/n �U � Œ0; 1/n �M

of .0; k/ and V � Z of zk such that F.�;mI �/ 2 �M has unique solutions in V

for all .�;m/ 2 U . That is, �� .V / \ ��1.m/ is a unique point for all j� j < t and
m 2 U . By restricting F to precompact neighborhoods of zk we can ensure that V is
precompact. Then dz.� ı �� /! dz.� ı �0/ converges uniformly in z as � ! 0, and
hence is surjective for small j� j. So by choosing t > 0 smaller we additionally achieve
transversality,

(40) �� .V / t ��1.m/D 1 point 8j� j< t;m 2 U:
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It remains to trade the restriction to V � Z for a restriction to N � G . For that
purpose we work with open neighborhoods throughout and write U 0 @U for U 0 being
precompact in U (ie its closure in U is compact, which yields a positive distance
between U 0 and the complement of U ). We can combine a local trivialization of � from
Remark 5.7 with the transversality im �0 tG D e.M / to find a neighborhood U0 @U

of k , open balls B0 � Rdim G�dim M and C0 � Rdim S�dim G and a diffeomorphism
�W U0 �B0 �C0 �!

� S0 @ S to a neighborhood of �0.zk/D e.k/D �.k; 0; 0/ such
that

im �0\S0D�.U0; 0;C0/; G\S0D�.U0;B0; 0/; ���DprU0
; ��eD IdU0

�0�0:

Now by (40) we have ��1
0
.�.U 1; 0; 0//� �

�1
0
.��1.U0//� V for any choice of neigh-

borhood U1 @ U0 of k . Since �0 is an embedding we then find a neighborhood
C1 @ C0 of 0 such that Z1 WD �

�1
0
.�.U1; 0;C1///� V while

�0.Z nZ1/D im �0 n�.U1; 0;C1/� S n�.U1;B0;C1/:

Next, we apply the implicit function theorem again to F jŒ0;1/n�U1�Z1
to find t 0 > 0,

V1 �Z1 and U2 @ U1 such that �� .V1/ t ��1.m/ is a unique point for all j� j < t 0

and m 2 U2 . Since (40) also holds on U2 � U and V1 �Z1 � V , we obtain

(41) �� .Z1/ t ��1.m/D 1 point 8j� j< t;m 2 U2:

We pick further neighborhoods B1 @ B0 and C2 @ C1 of 0 to obtain a precompact
neighborhood

S2 WD �.U2;B1;C2/@ �.U1;B0;C1/DW S1

of �0.zk/ with ı WD dS .S2;S nS1/ > 0. Now uniform continuity provides tı > 0 such
that for all j� j< tı

�� .Z nZ1/� Bı
�
�0.Z nZ1/

�
� Bı.S nS1/� S n�.U2;B1;C2/

and

�� .Z1/\�
�1.U2/� Bı.�0.Z1//\�

�1.U2/D Bı.�.U1; 0;C1//\�
�1.U2/:

Finally, for sufficiently small ı0 2 .0; ı� we obtain for all j� j< tı0 DW tk

�� .Z1/\�
�1.U2/� �.U0;B1;C0/\�

�1.U2/� �.U2;B1; 0/:

Now

Nk WD �
�1.M nU 1/[�.U0;B1; 0/�G
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is a neighborhood of e.M nU 1/[ e.U0/ D e.M / and for all m 2 U2 and j� j < t 0

we have

im �� \�
�1.m/\Nk D im �� \�.k;B1; 0/D �� .Z1/\�.m0;B1; 0/

D �� .Z1/\�
�1.m/:

Thus (39) on Uk WD U2 follows from (41). Finally, after finding a finite open cover
K �

S
Uki

, the lemma holds with t WD min tki
and N WD

T
Nki

. If Z is compact
then we can moreover choose t > 0 sufficiently small such that im �� \G �N for all
j� j< t , and hence im �� \ .�

�1.m/\N /D im �� \�
�1.m/.

5.8 Construction for b � 1 based on the construction for b� 1

Let the special global charts in Sections 5.2 and 5.3 be fixed, and for some b � 1

suppose that we have given a construction of �.q/D .Id��.q// ı .�.q/� ev.q// for
b.q/� b� 1 as specified in Section 5.6, and satisfying Theorem 2.6 for 0< t � tb�1 .
Then the goal of this iteration step is to construct tubular neighborhoods .˙/�P�

PC for
b.P�;PC/D b as specified in Section 5.6, and find tb > 0 such that the induced maps
�.q/ satisfy Theorem 2.6 for b.q/� b and 0< t � tb . By Lemma 5.10 it suffices to
satisfy conditions (i), (iii) and (iv). Hence we start from the formulas

f
˙
g
y�
P�
PC ı

n ev� � evC
ev˙

oˇ̌̌
Vtb

.zq0/0
WD �.q0/�1

ı prq0 ı�.zq
0/;

˙�
P�
PC j zU1.pC/

WD ev�1
˙ ı pr zB�p�

;

for nontrivial critical point sequences q0 D .P� �Q0
0
; q0

1
; : : : ; q0

`
;Q0

`C1
� PC/ and

the associated

zq0 D

��
zU .p�/;p� if P� D p�
Q0

0
if P� DX

�
; q01; : : : ; q

0
`;

�
pC; zU .pC/ if PC D pC
Q0
`C1

if PC DX

��
to define maps

y�p�
pC
W

[
q0

Grp�
pC
.tb�1; q

0/ �!
[
q0

Vtb�1
.q0/0 �M.p�;pC/;

�
y�X

pC
W zU1.pC/[

[
q0

�GrX
pC
.tb�1; q

0/�! ev�1
� .
zBCpC/[

[
q0

Vtb�1
.q0/0 �M.X;pC/;

C
y�

p�
X
W zU1.p�/[

[
q0

CGrp�
X
.tb�1; q

0/�! ev�1
C .
zB�p�/[

[
q0

Vtb�1
.q0/0�M.p�;X /;
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with the union over critical point sequences as above, and on the domains

Grp�
pC
.tb; q

0/ WD
�
ev zS�p� � ev zSCpC

��
M. zS�p� ;

zSCpC/\Vtb
.zq0/0

�
;

�GrX
pC
.tb; q

0/ WD ev�.M.X; zSCpC/\Vtb
.zq0/0/;

CGrp�
X
.tb; q

0/ WD evC.M. zS�p� ;X /\Vtb
.zq0/0/:

If we define .˙/�P�
PC by extension of

.˙/
y�
P�
PC j zUtb

.p˙/[
S

q0
.˙/GrP�PC .tb;q0/

to .˙/GrP�PC.tb/, then (iii) and the first part of (iv) are automatically satisfied. In fact,
the following lemma shows that this definition is consistent with all conditions on the
tubular neighborhoods.

Lemma 5.12 For each b.P�;PC/ D b the maps y�p�
pC , Cy�p�

X
, Cy�p�

X
are well-

defined tubular neighborhoods of ev zS�p� � ev zSCpC , ev� , respectively evC , restricted
to the above subdomains of M.P�;PC/, and satisfy the preimage condition in
Lemma 5.10(iv). For 0< t < tb�1 they restrict to maps[

q0

.˙/GrP�PC.t; q
0/ �!

[
q0

Vt .q
0/0:

Moreover, the product y�.q/ D �y�U�
q1
� y�

q1
q2
� � � � �Cy�

qk

UC for any b.q/ D b satisfies
the intersection condition in Lemma 5.10(i) for � 2 I 0tb�1

.q/ and

 2M.q/ \
[

Q�q; b.Q/<b

Vtb�1
.Q/�M.U�;UC/:

Proof We begin by noting that the nontrivial critical point sequences have breaking
number b.zq0/ D b.q0/ < b.P�;PC/ D b , hence by the iteration hypothesis we can
work with the charts �.q0/ and �.zq0/, satisfying the properties of Theorem 2.6.

In order to see that y�p�
pC is well-defined we have to check consistency of the definitions

at a fixed .z�; zC/2Grp�
pC.tb/ for different critical point sequences q0D .p�; : : : ;pC/.

Note that Qz˙Dfp2Crit.f / j‰R.z
˙/\ zUt .p/¤∅g defines a critical point sequence

in Critseq.f Ip�;pC/ such that .z�; zC/ 2 Grp�
pC.t;Q

z˙/. In fact, it is maximal in
the sense that if .z�; zC/ 2 Grp�

pC.t; q
0/ then we have q0 �Qz˙ . In this situation we

actually have .z�; zC/ 2 Grp�
pC.t;Q

0/ for each intermediate critical point sequence
Q0 D .p�; : : : ;pC/ with q0 � Q0 � Qz˙ . Now arguing step by step, it suffices to
check the identity

�.Q0/�1
ı prQ0 ı�.zq

0/D �.q0/�1
ı prq0 ı�.zq

0/ at z˙ WD .ev� � evC/�1.z�; zC/
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for pairs q0 �Q0 , where Q0 is obtained from q0 by inserting a critical point sequence

q00 D .q0i D q000 ; : : : ; q
00
kC1 D q0iC1/

at a unique i . In each step the breaking numbers b.Q0/D b. zQ0/� b.q0/D b.zq0/ < b

are strictly less than b.p�;pC/D b , so the identity above follows, after applying �.q0/
to both sides, from the associativity relations �.Q0/D .Id��.q00/� Id/ ı �.q0/ and
�. zQ0/D .Id��.q00/� Id/ ı�.zq0/. That is, we have at z˙

�.q0/ ı�.Q0/�1
ı prQ0 ı�.

zQ0/

D
�
Id��.q00/�1

� Id
�
ı prQ0 ı

�
Id��.q00/� Id

�
ı�.zq0/D prq0 ı�.zq

0/

since prq0 and prQ0 merely project out the first two and last two factors in

zBCp� � Œ0; 2/�M.p�; q
0
1/� Œ0; 1/� � � �

�M.q0i ; q
0
iC1/� � � � � Œ0; 1/�M.q0`;pC/� Œ0; 2/�

zB�pC ;

zBCp� � Œ0; 2/�M.p�; q
0
1/� � � � � Œ0; 1/

k

�M.q00/� � � � � Œ0; 1/�M.q0`;pC/� Œ0; 2/�
zB�pC ;

while �.q00/�1 ı �.q00/ D IdM.q0
i
;q0

iC1
/ cancels out on a factor not involved in the

projections. Thus we have proven consistency of the definition

y�p�
pC
WD �.q0/�1

ı prq0 ı�.zq
0/ ı .ev� � evC/�1:

Next, by the explicit construction of transition times and tubular neighborhoods near
critical points in (37) we have for all  2M. zS�p� ;

zSCpC/\Vt .zq
0/0

�.zq0/. /D
�
1; �.q0/. /; 1I pr zBCp�

.ev�. //;�
�

q0
i

q0
iC1

�
ev zS�

q0
i

. /; ev zSC
q0

iC1

. /
��

iD0;:::;`
; pr zB�pC

.evC. /
�

and conversely �.zq0/�1
�
1; .0; t/`; 1I �;�;�

�
�M. zS�p� ;

zSCpC/\ Vt .zq
0/0 . Hence the

chart restricts to a diffeomorphism

�.zq0/WM. zS�p� ;
zSCpC/\Vt .zq

0/0 �! f1g � .0; t/
`
� f1g �

t

2
zBCp� �M.q0/�

t

2
zB�pC :

Since �.q/ also restricts to a diffeomorphism to .0; t/` �M.q0/, this already shows
that

�.q0/�1
ı prq0 ı�.zq

0/WM. zS�p� ;
zSCpC/\Vtb

.zq0/0 �! Vtb
.q0/0 �M.p�;pC/
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is a smooth submersion. In fact, it is a tubular neighborhood of the restriction

�p�
pC
D
�
ev� � evC

��1
ı
�
ev zS�p� � ev zSCpC

�
WM.p�;pC/� Vtb

.q0/0 ,!M. zS�p� ;
zSCpC/:

To see this it remains to check prq0 ı�.zq
0/ı�

p�
pCD�.q

0/, which by the above expression
for �.zq0/ reduces to identifying the factors

��
p�
q0

1

ı ev zSC
q0

1

and C�
q0
`

pC ı ev zS�
q0
`

of �.q0/ with

�
q0

i

q0
iC1

ı
�
ev zS�

q0
i

� ev zSC
q0

iC1

�
ı �p�

pC
for i D 0 and i D `.

Here the effect of the restriction is�
ev zS�p� � ev zSC

q0
1

�
ı �p�

pC
D ev� � ev zSC

q0
1

resp.
�
ev zS�

q0
`

� ev zSCpC
�
ı �p�

pC
D ev zS�

q0
`

� evC;

so the required identities follow from the pullback definitions

��
p�
q0

1

.zC/D �
p�
q0

1

.z�; zC/;

resp. C�
q0
`

pC.z
�/D �

q0
`

pC.z
�; zC/:

Since y�p�
pC is defined from this tubular neighborhood of �p�

pC by pullback with the
diffeomorphisms .ev� � evC/�1W Grp�

pC !M. zS�p� ;
zSCpC/, it indeed is a tubular neigh-

borhood of ev zS�p� � ev zSCpC .

In the definition of �y�X
pC

we similarly use the explicit construction of transition times
and tubular neighborhoods near pC to see that for all  2M.X; zSCpC/\Vt .zq

0/0

�.zq0/. /D
�
�.q0/. /; 1I��X

q0
1

�
ev�. /

�
;�

�
q0

i

q0
iC1

�
ev zS�

q0
i

. /; ev zSC
q0

iC1

. /
��

iD1;:::;`
; pr zB�pC

.evC. /
�

and conversely �.zq0/�1.It .q
0/; 1I �;�;�/�M.X; zSCpC/\Vt .zq

0/0 . Hence the chart
restricts to a diffeomorphism

�.zq0/WM.X; zSCpC/\Vt .zq
0/0 �!

[
�2It .q0/\.0;1/`

f�g � f1g �Mt;� .q
0/�

t

2
zB�pC :
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Since �.q/ also restricts to a diffeomorphism to
S
�2It .q0/\.0;1/`

f�g�Mt;� .q
0/, this

proves that

�.q0/�1
ı prq0 ı�.zq

0/WM.X; zSCpC/\Vtb
.zq0/0 �! Vtb

.q0/0 �M.X;pC/

is a smooth submersion. In fact, the same identities as before prove that it is a tubular
neighborhood of the restriction ev�1

� ı ev�WM.X;pC/ � Vtb
.q0/0 ,!M.X; zSCpC/.

Assuming for now that �y�X
pC

is well-defined on
S

q0
�GrX

pC
.tb�1; q

0/, it is the pullback
of this tubular neighborhood by the diffeomorphism

ev�1
� W
�GrX

pC
.1/!M.X; zSCpC/;

and hence a tubular neighborhood of ev� . We may extend this by

�
y�X

pC
j zU1.pC/

WD pr zBCpC

in the identification ev�WM.X;pC/ �!
� zBCpC , where the domains �GrX

pC
.tb�1; q

0/

do not intersect zU1.pC/ since they are subsets of ‰R�.
zUtb
.q0

1
// for f .q0

1
/ > f .pC/.

In particular this separation of domains ensures condition (iv), that is

.�y�X
pC
/�1. zBCpC/D

zU1.pC/:

The analogous construction of Cy�p�
X

provides a tubular neighborhood of

evCWM.p�;X /� zB
�
p�
[

[
q0

Vtb�1
.q0/0 �!

CGrp�
X
.tb�1; q

0/:

Finally, we check consistency of definitions for ��X
pC

(and analogously for C�p�
X

)
at z� 2 �GrX

pC
.t/ for different critical point sequences q0; q00 . If these have the same

type of end conditions Q0
0
DX nU.q0

1
/, Q0

0
0 DX nU.q00

1
/ then the same argument as

above applies. It remains to check consistency for the same critical points but different
end conditions. For q0 D . zU .q0

1
/; q0

1
; : : : ; q0

`
;pC/, q00 D .X nU.q0

1
/; q0

1
; : : : ; q0

`
;pC/

we have

�.q0/ ı�.q00/�1
ı prq00 ı�.zq

00/D
�
R�1

t � Id
�
ı prq00 ı

�
Rt � Id

�
ı�.zq0/D prq0 ı�.zq

0/

at  2 Vt .q
0/0\Vt .q

00/0 � ev�1
� .
zUt .q

0
1
/ nU.q0

1
// since prq00 D prq0 both project out

the last two factors in

Œ0; 2/� zBC
q0

1

� Œ0; 1/� � � � �M.q0`;pC/� Œ0; 2/�
zB�pC ;

and Rt W Œ0; 2/� zB
C

q0
1

� f.E;x/ jEjxj< t�g ! Œ0; t/� zBC
q0

1

is a rescaling on the first
two factors.
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With all properties of y�p�
pC , Cy�p�

X
, Cy�p�

X
established, let us start analyzing the

fibers. For  2M.p�;pC/ and q0 D .p� D q0
0
; q0

1
; : : : ; q0

`C1
D pC/ let us denote

�.q0/. / D .� ; � / 2 .0; 2/` �M.q0/, then it is easiest to read off the fiber in the
formulation (38),�
y�p�

pC

��1
. /

D .ev� � evC/

8̂<̂
:ı 2M. zS�p� ;

zSCpC/

ˇ̌̌̌
ˇ̌̌ �


D
�
�q0

i
.ı/
�
iD1;:::;`

� D
�
�

q0
i

q0
iC1

�
ev zS�

q0
i

� ev zSC
q0

iC1

�
.ı/
�
iD0;:::;`

9>=>;
D…q0

���
�

q0
i

q0
iC1

�
iD0;:::;`

��1

.� /\

�
zS�p� �

Ỳ
iD1

im �qi ;�


i
� zSCpC

��
;

where …q0 W
Q`

iD0 Gr
q0

i

q0
iC1

! zS�p� �
zSCpC is the projection to the outside factors, and

�q;� W S
�
q �SCq �!

zS�q �
zSCq ; .x;y/ 7�!

�
.x; �y/; .�x;y/

�
for � 2 Œ0; 1/ are the slices of fixed transition time of the embedding

.ev� � evC/WMq �!
zS�q �

zSCq

of the local trajectory space in the coordinates (15). The fibers�
�
y�P�

pC

��1
. /D ev�

˚
: : :
	

and
�
C
y�

p�
PC
��1

. /D evC
˚
: : :
	

have analogous expressions involving special terms

��
P�
q0

1

ı evP�;q01 ; resp. C�
q0
`

PC ı evq0
`
;PC ;

and in case P� DX , respectively PC DX , embeddings

R� �S�q �SCq �!X � zSCq or zB�q �SCq �!X � zSCq ;

resp. S�q �SCq �RC �! zS
�
q �X or S�q �

zBCq �!
zS�q �X;

encoding the local trajectory spaces with ends in X nU.q/ or zU .q/ as in the definition
of �q;� in Section 5.4.

Now for a critical point sequence q D .q� D q0; q1; : : : ; qkC1 D qC/ with b.q/D b

let us view M.q/ DM.q�; q1/ � � � � �M.qk ; qC/ �M.q�; qC/ as stratum of a
compactified Morse trajectory space. Then the product y�.q/ WD�y�q�

q1
�y�

q1
q2
�� � ��Cy�

qk
qC

defines a tubular neighborhood (defined on the product of domains)

y�.q/W Gr.q/� dom�y�q�
q1
� � � � � domCy�qk

qC
�!M.q/\

[
Q�q

b.Q/<b

Vtb�1
.Q/
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of �
ev zS�

q0
i

� ev zSC
q0

iC1

�
iD0;:::;`

WM.q/ �! Gr.q/;

restricted to the union of domains for critical point sequences Q 2 Critseq.f I q�; qC/
with smaller breaking number b.Q/ < b and containing q . More precisely, we can
write any such QD q[

Sk
jD0qj as union of q with (potentially trivial) critical point

sequences qj 2 Critseq.f I qj ; qjC1/. From the above we can then read off the fiber
over  D .0; : : : ; k/ 2 Vtb�1

.Q/\M.q/ with �.qj /.j /D .�
j ; �j / as

y�.q/�1. /D…
Q
q

�
�.Q/�1.�0; : : : ; �k/\

�
�.q0; �0/� eS q1

�� � �� eS qk
� �.qk ; �k/

��
with the natural projection …

Q
q W
zS.Q/! zS.q/ and the shorthands eS q WD

zS�q� �
zSCqC

and
�
�
.q0; q1; : : : ; q`; q`C1/; .�1; : : : ; �`/

�
D im.�q1;�1

� � � � � �q`;�`/:

Let us denote

�

WD .�0; : : : ; �k/ 2M.Q/ and T  ;� WD .�

0; �1; �
1; : : : ; �k ; �

k/

for any � 2 Œ0; 1/k , then the image of the embedding of all local trajectory spaces for
Q, as introduced in Section 5.4, is

im �Q;T ;� D �.q
0; �0/� im �q1;�1

� �.q1; �1/� � � � � im �qk ;�k
� �.qk ; �k/:

Comparing this with
�q;� D �q1;�1

� � � � � im �qk ;�k

we obtain for every  2 Vtb�1
.Q/\M.q/ and � 2 Œ0; tb�1/

k

y�.q/�1. /\ im �q;� D…
Q
q

�
�.Q/�1.�


/\ im �Q;T ;�

�
:

This is a unique point by the intersection property (33) for the fibers of �.Q/ with
b.Q/ < b . Moreover, this intersection is transverse since from

�.Q/�1.�

/ t im �Q;T ;�

we obtain

T zS.Q/D ker d�.q/˚
�
T�.q0; �0/� f0g �T�.q1; �1/� � � � � f0g �T�.qk ; �k/

�
˚
�
f0g � im d�q1;�1

� f0g � � � � � im d�qk ;�k
� f0g

�
D

�
ker d�.q/\

�
T�.q0; �0/�TeSq1

�T�.q1; �1/� � � � �TeSqk
�T�.qk ; �k/

��
C ker d…

Q
q C

�
f0g � im d�q1;�1

� f0g � � � � � im d�qk ;�k
� f0g

�
:
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Here the direct sum implies

T�.q0; �0/C � f0g � � � � � f0g �T�.qk ; �k/C � ker d�.q/

for some complements of T�.q0; �0/. Projection by d…
Q
q then yields the claim,

T zS.q/D d…
Q
q

�
ker d�.q/\

�
T�.q0; �0/�TeSq1

� � � � �T�.qk ; �k/
��

C im d�q1;�1
� � � � � im d�qk ;�k

D T
�
y�.q/�1. /

�
CT

�
im �q;�

�
:

For general end conditions q D .U� �Q0; q1; : : : ;QkC1 � UC/ with b.q/D b the
same arguments show that the fibers of the product

y�.q/D �y�U�
q1
� y�q1

q2
� � � � �

C
y�

qk

UC

satisfy the intersection condition for any  2M.q/\
S

Q Vtb�1
.Q/ and � 2 I 0tb�1

.q/,
as claimed.

We will extend each .˙/y�P�
PC to a full tubular neighborhood of the evaluation embedding

M.P�;PC/ ,! .˙/GrP�PC by using the following lemma.

Lemma 5.13 Let eW M ,!G be an embedding between smooth manifolds, V �M

an open subset such that M nV is compact, and suppose that y� W yG! V is a tubular
neighborhood of ejV defined on an open neighborhood yG �G of e.V /. Then for any
open subset V 0 �M such that V 0 � V and y��1.V 0/\ e.M nV /D∅ there exists a
tubular neighborhood � W G �N !M of e such that ��1.V 0/D y��1.V 0/�N and
�jy��1.V 0/ D y� .

Proof Since M is a metric space and M nV is compact we may enlarge V 0 such that
M nV 0 is compact. Then we find open sets V D V0 � V1 � V2 � V3 � V4D V 0 � V5

such that M nVi is compact and V iC1 � Vi . Next we choose a metric on G such that
ker de.m/y� ? Te.m/e.M /. By the compactness of M nV5 the exponential map then
induces a diffeomorphism expW D" �!

� N" from a sufficiently small disk bundle in
the normal bundle

D" WD
˚
Z 2 Te.m/G

ˇ̌
m 2M nV5; Z ? Te.m/e.M /; jZj< "

	
� TGje.MnV5/

to a neighborhood N"�G of e.M nV5/. The projection to the zero section in D"'N"
composed with e�1 then provides a surjective submersion �0W N"!M n V5 such
that

(42) �0je.V nV5/ D y�je.V nV5/; d�0je.V nV5/ D dy�je.V nV5/:
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In fact, these are equal to e�1 and the orthogonal projection to Te.M /. Next, for
U �M nV5 we will write abbreviate D"jU W DD"\TGje.U / . With this notation we
may choose " > 0 sufficiently small such that

exp.D"jV 1nV5
/� yG; exp.D"jMnV2

/�G n y��1.V 0/:

Indeed, the first inclusion can be achieved since yG is a neighborhood of the compact set
e.V 1nV5/. For the second inclusion we use the assumption y��1.V 0/\e.M nV /D∅
and add that y��1.V 0/\e.V nV 3/D∅ since y��1.V nV 3/ is an open neighborhood of
e.V nV 3/ disjoint from y��1.V 0/. So the compact set e.M nV2/�e.M nV 3/ is disjoint
from the closed set y��1.V 0/, and hence infp2MnV2

d.e.p/; y��1.V 0//DW ı>0. Hence
we can choose " > 0 so that exp.D"jMnV2

/ is disjoint from y��1.V 0/.

Now choose a smooth cutoff function  W M nV 5! Œ0; 1� such that  jMnV1
� 0 and

 jV2nV 5
� 1. We need to extend the linear interpolation in a local chart to a smooth

construction on V1 nV 5 . For that purpose we equip M with a metric, and for ı > 0

smaller than the minimal injectivity radius on the compact set V 1 nV5 define

S W
˚
.p; q/ 2M �M

ˇ̌
p 2 V1 nV 5; d.p; q/ < ı

	
�!M;

.p; q/ 7�! expp

�
 .p/ exp�1

p .q/
�
:

Then for sufficiently small " > 0 we obtain an extended tubular neighborhood

� WD

8̂<̂
:
y� on y��1.V 0/

S ı .�0 � y�/ on exp.D"jV1nV 5
/

�0 on exp.D"jMnV1
/

9>=>;W y��1.V 0/[exp.D"jMnV 5
/DWN �!M:

Here by (42) and the compactness of V 1 n V5 � V n V5 we may choose " > 0 so
that .�0 � y�/jexp.D"jV1nV 5

/ takes values in the domain of S . To check that this
map is well-defined it remains to check the overlap of the different domains. On
y��1.V 0/\ exp.D"jMnV 5

/� exp.D"jV2nV 5
/ we have  ı�0 � 1 and hence � D y� .

Moreover, S ı .�0 � y�/ extends smoothly to exp.D"jMnV1
/ since  ı �0 � 0 on

exp.D"jV 1nV1
/. Hence � is a smooth map. It is defined on y��1.V 0/[exp.D"jMnV 5

/,
which is a neighborhood of e.V 0/[ e.M n V 5/ D e.M /, and on the latter clearly
restricts to e�1 . Towards ensuring that � is a submersion, note that for any p 2V 1nV5

we have by (42)

de.p/� D d.p;p/S ı
�
de.p/�0 � de.p/y�

�
D de.p/�0:

Since V 1 nV5 is compact, we then find " > 0 such that d�jexp.D"jV1nV 5
/ continues to

be a submersion. Finally, we obtain

��1.V 0/D y��1.V 0/ and �jy��1.V 0/ D y�
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if �.exp.D"jMnV2
/
�
�M nV 0 . This holds for small enough " > 0 since �je.MnV2/D

e�1 maps the compact set e.M n V2/ to M n V2 @ M n V 0 and � is uniformly
continuous on compact sets.

We apply this lemma to y� WD .˙/y�
P�
PC and the evaluation embedding of M WD

M.P�;PC/ into G WD .˙/GrP�PC . Then

V WD
[
q0

Vtb�1
.q0/0 �M.P�;PC/

has a compact complement since it covers @M.P�;PC/, so

M.P�;PC/ n
[
q0

Vt .q
0/0 DM.P�;PC/ n

[
q0

Vt .q
0/

is the complement of an open set in a compact space. For P� D X or PC D X we
add ev�1

� .
zBCpC/, respectively ev�1

C .
zB�p�/, to the open set V . We can then use

V 0 WD
[
q0

V 1
2

tb�1
.q0/0 �M.P�;PC/;

and in case P� DX or PC DX add

ev�1
�

�
zB˙p˙ \

zU 1
2

tb�1
.p˙/

�
:

Its closure is contained in V since the closure of

V 1
2

tb�1
.q0/0 �M.P�;PC/

is contained in Vtb�1
.q0/0 by Remark 5.1, and also

zU 1
2

tb�1
.p˙/@ zU1.p˙/:

Hence Lemma 5.13 yields tubular neighborhoods � DW .˙/�P�
PC W N !M.P�;PC/

defined on neighborhoods N � .˙/GrP�PC of e.M.P�;PC// that contain

y��1.V 0/D zU 1
2

tb�1
.p˙/[

[
q0

.˙/GrP�PC.
1
2
tb�1; q

0/:

Now taking 0 < t 0
b
�

1
2
tb�1 sufficiently small we can ensure that .˙/GrP�PC.t

0
b
/ � N

since for t ! 0 as in Remark 5.9 we have

.˙/GrP�PC.t/ n
[
q0

.˙/GrP�PC.
1
2
tb�1; q

0/ �! e
�
M.P�;PC/ n

[
q0

V 1
2

tb�1
.q0/0

�
;
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which is a compact subset of N . Hence we obtain tubular neighborhoods

�p�
pC
W Grp�

pC
.t 0b/ �!M.p�;pC/ of .ev zS�p� � ev zSCpC /WM.p�;pC/ ,! Grp�

pC
;

��X
pC
W
�GrX

pC
.t 0b/ �!M.X;pC/ of ev�WM.X;pC/ ,!

�GrX
pC
;

C�
p�
X
W
CGrp�

X
.t 0b/ �!M.p�;X / of evCWM.p�;X / ,!

CGrp�
X
:

for each p�;pC 2 Crit.f / with b.p�;pC/ D b , respectively b.X;pC/ D b , re-
spectively b.p�;X / D b . By construction these satisfy conditions (iii) and (iv) of
Lemma 5.10, so it remains to choose 0< tb � t 0

b
such that the intersection condition (i)

is met. For that purpose, as specified in Section 5.6, we define ˙�p�
pC by pullback from

�
p�
pC , and then obtain well-defined tubular neighborhoods �.q/W Nt 0

b
.q/!M.q/ for

all b.q/ � b . Their fibers over Vt 0
b
.Q/ for Q � q with b.Q/ < b by construction

are identical to the fibers of y�.q/ as defined in Lemma 5.12. Hence the intersection
condition im �� t �.q/�1. /D 1 pt already holds for

� 2 It 0
b
.q/ and  2M.q/ \

[
Q�q; b.Q/<b

Vt 0
b
.Q/:

For the remaining fibers we may apply Lemma 5.11 to the tubular neighborhood
� WD �.q/ and the submanifold G WDNt 0

b
.q/� zS.q/DW S . As before,

K WDM.q/ n
[
Q�q

b.Q/<b

Vt 0
b
.Q/

is a compact subset of M WDM.q/. The embeddings �� to S are well-defined, with
im �� \Gr.q/ �Nt 0

b
.q/ for � 2 Œ0; t 0

b
/k , so Lemma 5.11 provides 0 < t 00

b
� t 0

b
and a

neighborhood N �G of e.M / such that the intersection property

im �� t .�.q/�1. /\N /D 1 pt

holds for transition times in Œ0; t 00
b
/k and the fibers within N over  2 K . Finally

taking 0< tb �
1
2
t 00
b

sufficiently small we can ensure that Ntb
.q/\��1.K/�N since,

as in Remark 5.9,

Nt .q/\�
�1.K/DNt .q/ n

[
Q

��1
�
Vt 0

b
.Q/

�
for t ! 0 converges in the Hausdorff distance to

e

�
M.q/ n

[
Q

Vtb�1
.Q/

�
;
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which is a compact subset of N . Now for

� 2 I 0tb
.q/\ It 0

b
.q/� Œ0; t/k and  2M.q/D .M nK/[K

we have the full intersection condition im �� t�.q/�1. /D1 pt, establishing condition
(i) of Lemma 5.10. Finally, this lemma implies that the maps �.q/ constructed from
the tubular neighborhoods for b.q/� b satisfy all properties of global charts claimed
in Theorem 2.6.

Moreover, we proved the fiberwise transversality (33), hence Remarks 5.3 and 5.5
imply smoothness of the evaluation maps with respect to these charts.
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