Volume 19 (2015)

Download this article
Download this article For screen
For printing
Recent Volumes
Volume 1, 1998
Volume 2, 1999
Volume 3, 2000
Volume 4, 2002
Volume 5, 2002
Volume 6, 2003
Volume 7, 2004
Volume 8, 2006
Volume 9, 2006
Volume 10, 2007
Volume 11, 2007
Volume 12, 2007
Volume 13, 2008
Volume 14, 2008
Volume 15, 2008
Volume 16, 2009
Volume 17, 2011
Volume 18, 2012
Volume 19, 2015
The Series
About this Series
Ethics Statement
Purchase Printed Copies
Author Index
ISSN (electronic): 1464-8997
ISSN (print): 1464-8989
 
MSP Books and Monographs
Other MSP Publications
Broken Lefschetz fibrations and mapping class groups

R İnanç Baykur and Kenta Hayano

Geometry & Topology Monographs 19 (2015) 269–290
Bibliography
1 D Auroux, S K Donaldson, L Katzarkov, Singular Lefschetz pencils, Geom. Topol. 9 (2005) 1043 MR2140998
2 R I Baykur, Existence of broken Lefschetz fibrations, Int. Math. Res. Not. 2008 (2008) MR2439543
3 R I Baykur, Handlebody argument for modifying achiral singularities, Geom. Topol. 13 (2009) 312
4 R I Baykur, Topology of broken Lefschetz fibrations and near-symplectic four-manifolds, Pacific J. Math. 240 (2009) 201 MR2485463
5 R I Baykur, Broken Lefschetz fibrations and smooth structures on 4–manifolds, from: "Proceedings of the Freedman Fest" (editors R Kirby, V Krushkal, Z Wang), Geom. Topol. Monogr. 18 (2012) 9 MR3084230
6 R I Baykur, Inequivalent Lefschetz fibrations and surgery equivalence of symplectic 4–manifolds, preprint (2015) arXiv:1408.4869
7 R I Baykur, K Hayano, Multisections of Lefschetz fibrations and topology of symplectic 4–manifolds, preprint (2015) arXiv:1309.2667
8 R I Baykur, S Kamada, Classification of broken Lefschetz fibrations with small fiber genera, J. Math. Soc. Japan 67 (2015) 877 MR3376572
9 R I Baykur, D Margalit, Lefschetz fibrations and Torelli groups, Geom. Dedicata 177 (2015) 275 MR3370034
10 S Behrens, On 4–manifolds, folds and cusps, Pacific J. Math. 264 (2013) 257 MR3089398
11 C J Earle, J Eells, A fibre bundle description of Teichmüller theory, J. Differential Geometry 3 (1969) 19 MR0276999
12 H Endo, Meyer’s signature cocycle and hyperelliptic fibrations, Math. Ann. 316 (2000) 237 MR1741270
13 B Farb, D Margalit, A primer on mapping class groups, 49, Princeton Univ. Press (2012) MR2850125
14 T Fuller, Hyperelliptic Lefschetz fibrations and branched covering spaces, Pacific J. Math. 196 (2000) 369 MR1800582
15 R E Gompf, A I Stipsicz, 4–manifolds and Kirby calculus, 20, Amer. Math. Soc. (1999) MR1707327
16 K Hayano, On genus-1 simplified broken Lefschetz fibrations, Algebr. Geom. Topol. 11 (2011) 1267 MR2801419
17 K Hayano, A note on sections of broken Lefschetz fibrations, Bull. Lond. Math. Soc. 44 (2012) 823 MR2967249
18 K Hayano, M Sato, Four-manifolds admitting hyperelliptic broken Lefschetz fibrations, Michigan Math. J. 62 (2013) 323 MR3079266
19 K Hayano, M Sato, A signature formula for hyperelliptic broken Lefschetz fibrations, Topology Appl. 173 (2014) 157 MR3227213
20 N V Ivanov, Mapping class groups, from: "Handbook of geometric topology" (editors R J Daverman, R B Sher), North-Holland (2002) 523 MR1886678
21 K Jänich, Symmetry properties of singularities of C–functions, Math. Ann. 238 (1978) 147 MR512820
22 A Kas, On the handlebody decomposition associated to a Lefschetz fibration, Pacific J. Math. 89 (1980) 89 MR596919
23 R Kirby, P Melvin, P Teichner, Cohomotopy sets of 4–manifolds, from: "Proceedings of the Freedman Fest" (editors R Kirby, V Krushkal, Z Wang), Geom. Topol. Monogr. 18 (2012) 161 MR3084237
24 Y Matsumoto, Lefschetz fibrations of genus two — A topological approach, from: "Topology and Teichmüller spaces" (editors S Kojima, Y Matsumoto, K Saito, M Seppälä), World Sci. Publ. (1996) 123 MR1659687
25 B Ozbagci, Signatures of Lefschetz fibrations, Pacific J. Math. 202 (2002) 99 MR1883972
26 J Park, K H Yun, Nonisomorphic Lefschetz fibrations on knot surgery 4–manifolds, Math. Ann. 345 (2009) 581 MR2534109
27 B Siebert, G Tian, On hyperelliptic C–Lefschetz fibrations of four-manifolds, Commun. Contemp. Math. 1 (1999) 255 MR1696101
28 B Siebert, G Tian, On the holomorphicity of genus two Lefschetz fibrations, Ann. of Math. 161 (2005) 959 MR2153404
29 I Smith, Lefschetz fibrations and the Hodge bundle, Geom. Topol. 3 (1999) 211 MR1701812
30 J Williams, The h–principle for broken Lefschetz fibrations, Geom. Topol. 14 (2010) 1015 MR2629899