
msp
Geometry & Topology Monographs 19 (2015) 1–19

Sections of surface bundles

JONATHAN A HILLMAN

Let pW E! B be a bundle projection with base B and fibre F aspherical closed
connected surfaces. We review what algebraic topology can tell us about such bundles
and their total spaces and then consider criteria for p to have a section. In particular,
we simplify the cohomological obstruction, and show that the transgression d2

2;0

in the homology LHS spectral sequence of a central extension is evaluation of the
extension class. We also give several examples of bundles without sections.

20K35; 55R10, 57N13

1 Introduction

Let pW E ! B be a bundle projection with base B and fibre F aspherical closed
connected surfaces, and let � D �1.E/, ˇ D �1.B/ and � D �1.F /. The exact
sequence of homotopy for p reduces to an extension of fundamental groups

�.p/ W 1! �! �! ˇ! 1

which determines p up to bundle isomorphism over B . Sections 3–5 are a summary of
our talk at the conference, reviewing what else algebraic topology can tell us about such
bundles and their total spaces. (We refer to [13] for the arguments and other sources.)

The main part of this work (Sections 6–9) considers criteria for the existence of sections.
Such a bundle p has a section if and only if �.p/ splits, and this is so if and only if the
action of ˇ through outer automorphisms of � lifts, and a cohomology class is trivial.
We simplify the latter condition, and identify the transgression d2

2;0
in the homology

LHS spectral sequence of a central extension with evaluation of the extension class. It
is relatively easy to find examples of torus bundles without sections, but seems more
difficult to construct such examples with hyperbolic fibre. We thank H Endo for the
example with base and fibre of genus 3 given in Section 10, and N Salter and the
referees for further suggestions relating to this example.

We conclude with a short list of questions arising from issues considered here.
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2 Jonathan A Hillman

2 Notation

Let �G , G0 and I.G/ denote the centre, the commutator subgroup and the isolator
subgroup of a group G , respectively. (Thus G0 � I.G/ and G=I.G/ is the maximal
torsion-free quotient of the abelianization Gab DG=G0 .) If H is a subgroup of G let
CG.H / be the centralizer of H in G . Let cg denote conjugation by g , for all g 2G .
If S is a subset of G then hSi is the subgroup of G generated by S and hhSii is the
normal closure of S in G (the smallest normal subgroup of G which contains S ).
Our commutator convention is Œa; b�D aba�1b�1 .

If A is an abelian group and � W ˇ!Aut.A/ is a homomorphism then A� shall denote
the left ZŒˇ�–module with underlying group A and module structure determined by
g:aD �.g/.a/ for all g 2 ˇ and a2A. (We shall usually write just A when the action
� is trivial.) If G is any group then the homomorphism from Aut.G/ to Aut.�G/
determined by restriction factors through Out.G/. In particular, a homomorphism
� W ˇ! Out.G/ determines a ZŒˇ�–module �G� .

We shall assume throughout that “surface” means aspherical closed connected 2–
manifold, except in the result cited at the end of Section 3. (We do not assume that
surfaces are orientable, although this constraint is imposed by some of the references
cited.) A group G is a PD2 –group if G Š �1.X / for some such surface X , and it
is a PDC

2
–group if X is orientable. If G is a PD2 –group, with orientation character

w D w1.G/ D w1.X /, let GC D Ker.w/ and let XC be the associated orientable
covering space of X .

3 Bundles and group extensions

The classification of surface bundles follows from the deep result of Earle and Eells [8],
that if X is a hyperbolic surface then the identity component of Diff.X / is contractible.
(See Gramain [11] for a proof using only differential topology, which applies also to the
based case.) The flat surfaces X DT or Kb have circle actions, and Diff.X /o� .S1/r ,
where r D 2 or 1 is the rank of the centre of �1.X /. In all cases, the inclusions of
Diff.X / into Homeo.X / and into the group of self homotopy equivalences E.X / are
homotopy equivalences.

Theorem [13, Theorem 5.2] Let pW E!B be a bundle projection with base B and
fibre F surfaces. Then p is determined up to bundle isomorphism over B by the group
extension �.p/. Conversely, every such extension is realized by some bundle.
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Sections of surface bundles 3

Conjugation in � determines a homomorphism � from ˇ to the outer automorphism
group Out.�/. If �.F / < 0 (ie if �� D 1), the extension is determined by the action
alone; in general, extensions corresponding to a given action � are classified by
characteristic cohomology classes in H 2.BI ��� /DH 2.ˇI ��� /:

When is a closed 4–manifold M “equivalent” to the total space of such a bundle,
and, if so, in how many ways? If equivalent means “homotopy equivalent” or “TOP
s–cobordant”, there is a satisfactory answer, but little is known about diffeomorphism,
except when M has additional structure.

Theorem [13, Theorem 3.5.1] Let M be a closed 4–manifold such that � D�1.M /

is an extension of �1.B/ by �1.F /, where B and F are surfaces. Then M is
aspherical if and only if �.M /D �.B/�.F /.

Although 4–dimensional TOP surgery techniques are not yet available if � has non-
abelian free subgroups, 5–dimensional surgery often suffices to construct s–cobordisms.

Theorem [13, Theorem 6.15] A closed 4–manifold M is TOP s–cobordant to the
total space E of an F –bundle over B , where B and F are surfaces, if and only if
�1.M /Š �1.E/ and �.M /D �.E/. If so, then the universal covering space fM is
homeomorphic to R4 .

When � is solvable s–cobordism implies homeomorphism, and M is then homeo-
morphic to an E4 –, Nil4 –, Nil3�E1 – or Sol3�E1 –manifold. Conversely, if M has
one of these geometries and ˇ1.M /� 2 then M fibres over T . The other geometries
realized by total spaces of surface bundles are H2 � E2 , H3 � E1 , eSL� E1 and
H2 �H2 . (See [13, Chapters 7–9, 13].) Hamenstädt [12] has announced that no such
bundle space has geometry H4 . Finally, H2.C/ may be excluded as a consequence of
the next theorem (due independently to Kapovich [18], Kotschick [20] and Hillman)
and the observation of Liu [21] that quotients of the unit ball in C2 do not submerse
holomorphically onto complex curves.

Theorem [13, Theorem 13.7] Let S be a complex surface. Then S admits a holo-
morphic submersion onto a complex curve, with base and fibre of genus � 2, if and
only if S is homotopy equivalent to the total space of a bundle with base and fibre
hyperbolic surfaces.

In this case homotopy equivalence implies diffeomorphism!
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4 Jonathan A Hillman

4 The group determines the bundle up to finite ambiguity

If �.B/ < 0, then there are only finitely many ways of representing � as an extension
of PD2 –groups, up to “change of coordinates” [16]. Let � be a PD4 –group with
a normal subgroup K such that K and �=K are surface groups with trivial centre.
Johnson showed that whether

(I) Im.�/ is infinite and Ker.�/ 6D 1,

(II) Im.�/ is finite,

(III) � is injective

depends only on � and not on the subgroup K . In case I there is an unique such normal
subgroup, and in case II there are two, and � is virtually a product. In case III there
are finitely many such normal subgroups. These assertions follows ultimately from the
facts that nontrivial finitely generated normal subgroups of hyperbolic surface groups
have finite index, and the Euler characteristic increases on passage to such subgroups.
(See [16], or Theorems 5.5 and 5.6 of [13].)

There are only finitely many conjugacy classes of finite subgroups of Out.�/, for any
given PD2 –group � . (This follows from the Nielsen conjecture. See [10, Chapter 7]
for the case when � is orientable.) Thus the number of groups � of type II with
given �.�/ is finite. In particular, for each n> 0 there are only finitely many surface
bundles with total space E such that �.E/D n and E admits a geometry (necessarily
H2 �H2 ; see [13, Chapter 13]). At the other extreme, if � is orientable and � has
no subgroup isomorphic to Z2 , it must be of type III, and there are again only finitely
many such groups with given �.�/ [4].

The examples of Kodaira, Atiyah and Hirzebruch of surface bundles with nonzero
signature are of type III, and each have at least two such normal subgroups [6]. It is
noteworthy that in each case one of the subgroups satisfies the condition �.K/2��.�/.
It is a straightforward consequence of Johnson’s arguments that this extra condition
holds for at most one such subgroup K , if � is of type III. (In particular, if �.�/D 4

there is at most one such K with K and �=K both orientable.)

The Johnson trichotomy extends to the case when �=K has a centre, but is inappropriate
if �K 6D 1, as there are then nontrivial extensions with trivial action (� D 1). Moreover
Out.K/ is then virtually free, and so � is never injective.

However the situation is very different if �=K Š Z2 , �.K/ < 0 and ˇ1.�/ > 2. For
then there are epimorphisms from � to Z2 with kernel a surface group of arbitrarily
high genus [7].
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Sections of surface bundles 5

5 Orbifolds, Seifert fibrations and virtual bundles

In this section we allow the base B to be an aspherical 2–orbifold. An orbifold bundle
with general fibre F over B is a map f W M ! B which is locally equivalent to a
projection Gn.F �D2/! GnD2 , where G acts freely on F and effectively and
orthogonally on D2 . We shall also say that f W M !B is an F–orbifold bundle (over
B ) and M is an F–orbifold bundle space.

A Seifert fibration (in dimension 4) is an orbifold bundle with general fibre T or Kb .
A virtual bundle space is a manifold with a finite cover which is the total space of a
bundle. Orbifold bundle spaces are virtual bundle spaces, but the converse is not true.
(See [13, page 189].)

Aspherical orbifold bundles (with 2–dimensional base and fibre) are determined up
to fibre–preserving diffeomorphism by their fundamental group sequences. In many
cases they are determined up to diffeomorphism (among such spaces) by the group
alone [26]. See [14] for a discussion of geometries and geometric decompositions of
the total spaces of such orbifold bundles.

Johnson’s trichotomy extends to groups commensurate with extensions of a surface
group by a surface group with trivial centre, but it is not known whether all torsion–free
such groups are realized by aspherical 4–manifolds.

6 Extensions of groups

The extensions � of a group ˇ with kernel � and action � W ˇ ! Out.�/ (induced
by conjugation in the “ambient group” � ) may be parametrised by H 2.ˇI ��� /. In
general, there is an obstruction in H 3.ˇI ��� / for there to be such an extension, but
this obstruction group is trivial when ˇ is a surface group. If � factors through
a homomorphism z� W ˇ! Aut.�/ then the semidirect product � Ìz� ˇ corresponds to
0 2H 2.ˇI ��� /. (See [5, Chapter IV].)

Let pW �! ˇ be an epimorphism with kernel � corresponding to such an extension � .
Then � splits if there is a homomorphism sW ˇ! � such that ps D idˇ . (If so, then
� is a semidirect product.) This is so if and only if � factors through Aut.�/ and the
cohomology class Œ�� 2H 2.ˇI ��� / of the extension is 0.

Lemma 1 If � � �� then � splits if and only if � Š ��ˇ . If �� D 1 then � splits if
and only if � factors through Aut.�/.
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6 Jonathan A Hillman

Proof If � is central in � the action is trivial, and the semidirect product is the direct
product. The first assertion follows easily.

If � has trivial centre then the extension is determined by the action, since H 2.ˇI ��/D

0. Thus if the action factors � must be a semidirect product, ie p� splits. The converse
is clear.

The exact sequence of low degree for the extension has the form

H2.� IZ/!H2.ˇIZ/!H0.ˇIH1.�IZ/
�ab

/!H1.� IZ/!H1.ˇIZ/! 0;

where �ab is the automorphism of �ab induced by � . This exact sequence is usually
derived from the homology LHS spectral sequence for the extension. The second
homomorphism in this sequence is the transgression d2

2;0
, the first nontrivial differential

on page 2 of the spectral sequence. In Section 8 we shall show that when � is abelian
then d2

2;0
is the image �� of Œ�� under the change of coefficients and evaluation

homomorphisms

H 2.ˇI�� /!H 2.ˇIH0.ˇI�
� //! Hom.H2.ˇIZ/;H0.ˇI�

� //:

(The transgression in degree q for a fibration pW E! B with fibre F was originally
defined as a homomorphism from a subgroup of Hq.BIZ/ to a quotient of Hq�1.F IZ/,
corresponding to the connecting homomorphism from �q.B/ to �q�1.F / in the long
exact sequence of homotopy, via the Hurewicz homomorphisms. It may be identified
with a differential on page q of the homology spectral sequence for the fibration, and
the terminology has been dualized to cohomology and extended to purely algebraic
situations. See [22, page 172].)

If a homomorphism sW ˇ ! � splits p then Hi.s/ splits Hi.p/, for all i , and the
five-term exact sequence above gives rise to an isomorphism

�ab
Š .�ab=.I � �ab/�ab/˚ˇab

D .�=Œ�; ��/˚ˇab:

This apparently innocuous observation gives the most practical test for whether an
extension � splits, both when �0 D 1, as in the next lemma, and when �� D 1, as
considered in Section 10 below.

Lemma 2 Let G be a group with a finitely generated abelian normal subgroup A

such that ˇDG=A is a PDC
2

–group. Then the canonical projection from G to ˇ has a
section if and only if

Gab
ŠA=ŒG;A�˚ˇab:
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Sections of surface bundles 7

Proof Let � W ˇ ! Aut.A/ be the action induced by conjugation in G . Let A D

A=ŒG;A� and G DG=ŒG;A�. Then G is a central extension of ˇ by A, and Gab Š

Gab . Since c:d:ˇ D 2, the epimorphism from A to A induces an epimorphism
from H 2.ˇIA� / to H 2.ˇIA/. Since ˇ is a PDC

2
–group, H 2.ˇIA� /ŠH0.ˇIA

� /

and H 2.ˇIA/ Š H0.ˇIA/. These are each isomorphic to A, and so the natural
homomorphism from H 2.ˇIA� / to H 2.ˇIA/ is an isomorphism. Therefore G splits
as a semidirect product if and only if the same is true for G . Since A is central in G ,
this is so if and only if G ŠA�ˇ , and this is equivalent to Gab ŠA˚ˇab .

7 The extension class for actions which lift

Let pW � ! ˇ be an epimorphism with kernel � , and suppose that ˇ has a finite
presentation hX jRi, with associated epimorphism qW F.X /! ˇ . Let "W ZŒˇ�! Z
be the augmentation homomorphism, and let @x W ZŒF.X /�! ZŒˇ� be the composite
of the Fox free derivative with the linear extension of q , for each x 2 X . Then
"x.v/D "@x.v/ is the exponent sum of x in the word v . The presentation determines
a Fox–Lyndon partial resolution

C FL
� .ˇ/ W ZŒˇ�R! ZŒˇ�X ! ZŒˇ�! Z! 0;

where the differentials map the basis elements by

@c0 D 1; @cx
1 D q.x/� 1 and @cr

2 D

X
y2X

@yr:c
y
1

for all r 2R and x 2X .

Let h�W C
FL
� .ˇ/! C bar

� be the chain morphism to the standard (bar) resolution C bar
�

given by the identity on C FL
0
.ˇ/D ZŒˇ�D C bar

0
, and which sends the basis elements

cx
1

of C FL
1 .ˇ/ D ZŒˇ�X and cr

2
of C FL

2 .ˇ/ D ZŒˇ�R to Œq.x/� and to
P

x2X Œ@xr j

q.x/� 2 C bar
2 , respectively, for all x 2 X and r 2 R. (Here the symbol Œ� j � � is

extended to be additive in its first argument. See [5, Exercises II.5.3 and II.5.4].) If
c:d:ˇ � 2 then C FL

� .ˇ/ is a resolution and h is a chain homotopy equivalence.

Suppose that � factors through a homomorphism z� W ˇ!Aut.�/. Let � W ˇ! � be a
set-theoretic section such that �.1/D 1 and c�.g/ D z�.g/, for all g 2 ˇ , and define a
function f W ˇ2! � by

�.g/�.h/D f .Œg j h�/�.gh/ for all g; h 2 ˇ:

Then f .Œg j h�/ is in �� , for all g; h 2 ˇ , since z� is a homomorphism. The linear
extension f W C bar

2 ! �� is a 2–cocycle, which represents the extension class Œ�� 2
H 2.ˇI ��/. (See [5, Chapter IV, Sections 3 and 6].)

Geometry & Topology Monographs, Volume 19 (2015)



8 Jonathan A Hillman

For each r D
Qc

iD1 x
�.i/
i in R, with �.i/D˙1, let Ik.r/D

Qk�1
iD1 x

�.i/
i , for 1�k� c .

(If kD 1 this is the empty product: I1.r/D 1.) Then @xr D
P

xiDx �.i/q.Ii.r/x
ı.i/
i /,

where ı.i/D 0 if �.i/D 1 and ı.i/D�1 if �.i/D�1, for all x 2X . Hence

f .h2.c
r
2//D f

�X
x2X

Œ@xr j q.x/�

�
D f

� cX
iD1

�
�.i/q.Ii.r/x

ı.i/
i / j q.xi/

��
D

cX
iD1

�.i/f
��

q.Ii.r/x
ı.i/
i / j q.xi/

��
:

As this lies in � , we may write it multiplicatively as
cY

iD1

f
��

q.Ii.r/x
ı.i/
i / j q.xi/

���.i/
:

On the other hand, if sW F.X /! � is the homomorphism defined by s.x/D �.q.x//

for all x 2X , then

s.r/D

cY
iD1

s.xi/
�.i/D

cY
iD1

�.q.xi//
�.i/:

A finite induction shows that this product equals� cY
iD1

f
�
q.ŒIi.r/x

ı.i/
i / j q.xi/�

��.i/�
�.q.r//D

cY
iD1

f
��

q.Ii.r/x
ı.i/
i / j q.xi/

���.i/
/:

(Note that �.g/�.g�1/D f .Œg j g�1�/, and so �.g/�1 D f .Œg j g�1�/�1�.g�1/, for
all g 2 ˇ . The calculations simplify if the exponents �.i/ are all positive.) Hence
s.r/D f .h2.c

r
2
//, and so is in �� , for all r 2R. It follows that

��.Œz�/D s
�Y

rnr

�
;

for any 2–cycle z D
P

r2R nr cr
2

of Z˝ˇ C FL
� .ˇ/.

Suppose now that ˇ is a PD2 –group with 1–relator presentation hX j ri and orientation
character w D w1.ˇ/W ˇ! Z� . Let "wW ZŒˇ�! Z be the linear extension of w , and
let JwDKer."w/. If A is any left ZŒˇ�–module then H 2.ˇIA/ŠA=.@xr j x 2X /A,
since c:d:ˇ D 2. This is isomorphic to H0.ˇIA/DA=JwA by Poincaré duality, and
so Jw is also the ideal generated by f@xr j x 2 X g. Then we may recapitulate the
above discussion as follows.

Lemma 3 If � factors through Aut.�/ then s.r/ is in �� , and its image Œs.r/� 2
��=Jw�� is well defined. The epimorphism p� splits if and only if Œs.r/�D 0.

Geometry & Topology Monographs, Volume 19 (2015)



Sections of surface bundles 9

Proof The first assertion holds since q.r/ D 1. If � 0 is another such set-theoretic
section and s0 D � 0q then s0.x/ D u.q.x//s.x/ for some function uW q.X /! �� .
(Conversely, every such function u arises in this way.) A simple induction shows
that s0.r/D s.r/C

P
x2X @xr:u.q.x//, and so Œs.r/� is independent of the choice of

section.

If � W ˇ ! � splits p� then we may take s D �q , and so s.r/ D 1 in � . Hence
Œs.r/�D 0. Conversely, if Œs.r/�D 0 then we may choose s so that s.r/D 1, and so
p� splits.

8 Abelian extensions and transgression

We shall show that if � is an extension with abelian kernel � then the transgression
homomorphism d2

2;0 in the associated exact sequence of low degree is the image ��
of the class Œ�� in Hom.H2.ˇIZ/;H0.ˇI�//. The significance of this result is that
it is often useful to have “explicit” expressions for homomorphisms defined via the
machinery of homological algebra. The result appears to be “folklore”, but we have
not found a published proof. (Theorem 4 of [15] gives the cohomological analogue.)
Our argument uses naturality of the constructions arising (see [1; 3]) to reduce to a
special case.

Theorem 4 Let � be an extension of a group ˇ with abelian kernel � . Then d2
2;0D�� W

the first nontrivial differential on page 2 of the LHS spectral sequence for the extension
is the homomorphism given by evaluation of the extension class.

Proof We shall reduce to the situation when ˇ Š Z2 , � is infinite cyclic and central,
and Œ�� generates H 2.ˇIZ/ Š Z. (In this case � Š F.2/=F.2/Œ3� is the free 2–
generator nilpotent group of class 2.)

Let N� be the extension 0! �=Œ�; ��! �=Œ�; ��! ˇ! 1 obtained by factoring out
Œ�; ��. Then the projection of � onto �=Œ�; �� induces isomorphisms of the 5–term
exact sequences corresponding to the extensions � and N� , and so we may assume that
� is central.

Secondly, every class in H2.ˇIZ/ is the image of the fundamental class of an orientable
surface. (This is most easily seen topologically, by assembling pairwise the 2–simplices
of a representative 2–cycle for H2.K.ˇ; 1/IZ/, or by using orientable bordism, since
�2.X /DH2.X I�0/ for any cell complex X . However, there is an algebraic argument
in [27].) Thus if Œz� 2 H2.ˇIZ/ there is a PDC

2
–group y̌ with fundamental class

Œ y̌� 2H2. y̌IZ/ and a homomorphism f W y̌! ˇ such that f�.Œ y̌�/D Œz�. On passing
to the extension f �� , we may assume that ˇ is a PDC

2
–group.

Geometry & Topology Monographs, Volume 19 (2015)



10 Jonathan A Hillman

Thirdly, suppose that ˇ is the PDC
2

–group of genus g and �g is the central extension
of ˇ by � D Z corresponding to a generator of H 2.ˇIZ/. It is easy to see that d2

2;0

and �g� are isomorphisms of infinite cyclic groups, and so d2
2;0 D˙�g� . There is a

natural morphism of extensions from �g to � , and it follows that d2
2;0D˙�� whenever

ˇ is a PDC
2

–group.

This is enough to show that d2
2;0.Œz�/ D ˙��.Œz�/ in general. However to prove the

theorem we must actually calculate d2
2;0 for the special case �g . This is a little tedious,

but is not difficult. We shall make one more reduction. Let hW ˇ! Z2 be a degree-1
homomorphism. Then �g D˙h��1 , and so it is enough to prove the claim for �1 .

Although � D F.2/=F.2/Œ3� has a presentation hx;y j x;y˛ Œx;y�i, we shall use

hu;x;y j uŒx;y�; Œu;x�; Œu;y�i

instead. We shall use the same notation x and y for generators of ˇD�=hŒx;y�iDZ2 ,
for simplicity of reading. Let r , s and t denote the relators uŒx;y�, Œu;x� and Œu;y�,
respectively. Let � D ZŒ�� and ƒD ZŒˇ�.

The presentation of � determines a (partial) resolution

P�W �
3
! �3

! �! Z! 0

of the ZŒ��–augmentation module, with bases p0 for P0 , pu
1 , px

1 and py
1 for P1 ,

and pr
2 , ps

2 and pt
2 for P2 . Let P�Dƒ˝� P� , and let @0 and @00 be the differentials

of C FL
� .ˇ/ and P� , respectively.

The homology LHS for the extension is based on the bicomplex Kp;qDC FL
p .ˇ/˝ƒPq ,

with differential d D @0˝1C.�1/p1˝@00 . (Since ƒ is commutative we may view the
left module structure on C FL

� .ˇ/ as also being a right module structure.) The associated
total complex Ktot

n D
L

pCqDn Kp;q has a filtration FiK
tot
� , given by

F0Ktot
n DK0;n; F1Ktot

n DK0;n˚K1;n�1 and F2Ktot
n DKtot

n :

(See [5, Chapter VII].)

The generator of H2.ˇIZ/ is represented by the 2–cycle c
Œx;y�
2

in C FL
2
.ˇ/. Let

z D c
Œx;y�
2
˝ 1� cx

1 ˝p
y
1
C c

y
1
˝px

1 :

Then z 2Z2
2;0 , and z represents a generator of E2

2;0DH2.C
FL
� .ˇ/˝ˇZ/DH2.ˇIZ/.

Now
d2

2;0.Œz�/D Œ.1�x/p
y
1
C .y � 1/px

1 �
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Sections of surface bundles 11

in E2
0;1
DH0.ˇIH1.P�//Š � . On the other hand,

@00pr
2 D @uuŒx;y�pu

1 C @xuŒx;y�px
1 C @yuŒx;y�p

y
1

D pu
1 C .1�xyx�1/px

1 C .x� 1/p
y
1
D pu

1 C .1�y/px
1 C .x� 1/p

y
1
;

since uD 1 and uxyx�1 D y in ƒ. Thus

d2
2;0.Œz�/D Œp

u
1 � @

00pr
2 �D Œp

u
1 �;

which corresponds to the generator u of � . Hence d2
2;0D �1� , proving the theorem.

It is easy to see that Ker.d2
2;0/ � Ker.��/ and Im.��/ � Im.d2

2;0/, without such
reductions or calculation. The diagonal �W �! � �ˇ � splits the pullback p�� of �
over p . Hence p�Œ��D 0, and so

Ker.d2
2;0/D Im.H2.p//� Ker.��/:

On the other hand, if zD
P

r2R nr cr
2

is a 2–cycle of Z˝ˇC FL
� .ˇ/, then

P
nr"x.r/D

0, for all x 2X . Let j be the inclusion of � as a subgroup of � . Since the exponent
sum of x in

Q
rnr is 0, for each x 2 X , the image j s.

Q
rnr / is in � 0 . Since

��.z/D s.
Q

rnr /, we see that

Im.��/� Ker.H1.j //D Im.d2
2;0/:

If � is central in � and ˇab is a free abelian group then ��D0 if and only if Œ��D0, for
then H0.ˇI�/Š � and H 2.ˇI�/Š Hom.H2.ˇIZ/; �/, by the universal coefficient
theorem. (Of course, this is also clear from the implications Œ��D 0, � Š � �ˇ,

�ab Š �˚ˇab, �� D 0.)

9 Bundles with flat fibre

When the base is an orientable surface and the fibre F is the torus T the class Œs.r/�
is the only obstruction to a section.

Theorem 5 Let pW E! B be a bundle with base B a surface and fibre F D T . Let
ˇ D �1.B/ and � D Z2 , and let � be the action determined by conjugation in �1.E/.
Then p has a section if and only if Œs.r/�D 0. If B is orientable then p has a section
if and only if H1.EIZ/ŠH0.BIH1.F IZ//˚H1.BIZ/. The �–conjugacy classes
of sections are parametrised by H 1.ˇI�� /.
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12 Jonathan A Hillman

Proof Since the action of Aut.�/D GL.2;Z/ on � is induced by the natural (based)
action of GL.2;Z/ on T DR2=Z2 , every semidirect product Z2 Ì� ˇ is realized by
a T–bundle over B with a section. Therefore p has a section if and only if p� splits,
since bundles are determined by the associated extensions. This in turn holds if and
only if Œs.r/�D 0, since Aut.�/D Out.�/.

The second assertion follows from Lemma 2.

If p� splits and � and � 0 are two sections then � 0.g/�.g/�1 is in � , for all g 2 ˇ .
Therefore the sections are parametrised (up to conjugation by an element of � ) by
H 1.ˇI�� /. (See [5, Proposition IV.2.3].)

If p has a section then so does the pullback over BC . The converse also holds if
H 2.ˇI�� /ŠH0.ˇIZ

w˝�� / has no 2–torsion. For then restriction to H 2.ˇCI�� /

is injective, since composition with the transfer is multiplication by 2. (See [5, Chapter 3,
Section 9].)

The situation is a little more complicated when F DKb . We may view Kb as the
quotient of R2 by a glide-reflection x along the X –axis and a unit translation y

parallel to the Y–axis. Then �D �1.Kb/ has presentation hx;y j xyx�1 D y�1i, and
�� is generated by the image of x2 . Let ˛ and 
 be the automorphisms determined
by ˛.x/D x�1 , 
 .x/D xy and ˛.y/D 
 .y/D y . Then Aut.�/ is generated by ˛ ,

 and cx , and 
 2 D cy . It is easily verified that ˛
 D 
˛ , and so Out.�/Š .Z=2Z/2

is the image of an abelian subgroup h˛; 
 i< Aut.�/.

Theorem 6 Let pW E!B be a bundle with base B a surface and fibre F DKb . Let
ˇ D �1.B/ and � D � , and let � be the action determined by conjugation in �1.E/.
Then p has a section if and only if � factors through Aut.�/ and Œs.r/�D 0. If B is
orientable then p has a section if and only if Œs.r/�D 0.

Proof The automorphism ˛ is induced by a reflection across a circle of fixed points
(the image of the Y–axis), while the outer automorphism class of 
 is induced by a half-
unit translation parallel to the Y–axis. This may be isotoped through homeomorphisms
that commute with ˛ to fix the Y–axis also. Thus h˛; 
 i lifts to a group of based
self-homeomorphisms of Kb . Hence p has a section if and only if p� splits. This in
turn holds if and only if � factors though Aut.�/ and Œs.r/�D 0.

If B is orientable then ˇ=ˇ0 is a free abelian group, and so any homomorphism from
ˇ to Out.�/ factors through h˛; 
 i < Aut.�/. Hence in this case p has a section if
and only if Œs.r/�D 0.
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If (as in Theorem 6) ˇ acts on �� through w1.ˇ/ we can make the condition Œs.r/�D 0

more explicit. For then H 2.ˇI ��� / maps injectively to H 2.ˇCI ��/ Š Z under
passage to ˇC . Thus p� splits if and only if � factors through Aut.�/ and the
restriction to p�1

� .ˇC/ splits. Since �� maps injectively to �=I.�/ŠZ, H 2.ˇCI ��/

in turn maps injectively to H 2.ˇCI�=I.�//. The image of Œ�.p/� is the class of the
extension

1! �=I.�/! y�=I.�/! ˇC! 1;

where y� is the preimage of ˇC . Hence the extension is trivial if ˇ1.y�/ is odd, by
Lemma 2.

Examples. Suppose first that base and fibre are tori, ie that ˇ Š � Š Z2 . If the action
is trivial then H 2.ˇI�/Š Z2 . The split extension is the direct product, with ambient
group Z4 . All other extensions with trivial action have ambient group � with �=� 0

of rank 3 and � 0 Š Z< �� Š Z2 . These groups are discrete cocompact subgroups of
Nil3 �R.

Although the central extensions corresponding to these Nil3 �R–groups do not split,
such groups have many other epimorphisms to Z2 , since every subgroup which contains
� 0 is normal. The kernels are again Z2 , but the actions are nontrivial, and the extensions
split.

The groups corresponding to the nonsplit extensions for these new actions have abelian-
ization of rank 2, as do the ambient groups for all other extensions with ˇ Š � Š Z2 .
For such groups the extension structure is unique. The groups are Nil4 – or Sol3 �R–
lattices.

Suppose now that the fibre is the Klein bottle. The group with presentation

hu; v;x;y j u; v˛ x;y; Œu; v�D x2; xyx�1
D y�1

i

is the group of a Nil3 �E1 –manifold which fibres over T with fibre Kb . The base
group acts trivially on the fibre, but ˇ1.�/D 2, rather than 3, and so the bundle does
not have a section.

The group with presentation

hu; v;x;y j u˛ x;y; vxv�1
D x�1; vy D yv; Œu; v�D x2; xyx�1

D y�1
i

is the group of a flat 4–manifold which fibres over T with fibre Kb . In this case
H 2.ˇI ��/D Z=2Z, but Œs.r/� 6D 0, and so the bundle does not have a section.

Similar examples over a hyperbolic base B may be constructed from these by pullback
over a degree-1 map to T .
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10 Bundles with hyperbolic fibre

Suppose now that �.F / < 0 or, equivalently, that �� D 1. If an F –bundle pW E!B

has a section then the action � factors through Aut.�/. Conversely, every semidirect
product � Ìz� ˇ is realized by a bundle with a section. This follows from the work
in [11] extending [8] to the based cases. We shall not use this, as our concern here is
merely to give examples of such bundles without sections.

We may construct the extension corresponding to an action � W ˇ! Out.�/ as follows.
Let hX j ri be a 1–relator presentation for ˇ , with associated epimorphism qW F.X /!

ˇ . Let  W F.X /!Aut.�/ be a lift of �q . Then  .r/D cg for some g 2 � , which is
uniquely determined by  , since ��D 1. Let GD�Ì F.X /. Then � DG=hhrg�1ii

is an extension of ˇ by � which realizes the action � . In particular, � is a semidirect
product if gD 1. However, g depends on the choice of  . We need a condition which
does not depend on this choice.

If such a bundle has a section then so does the associated Jacobian bundle, with
base B , fibre the Jacobian of F and group �=�0 . Lemma 2 renders more explicit a
result of Morita [24]. He showed that if E and F are orientable and F is of genus
g � 2 then the Jacobian bundle has a section if and only if ��� D 0, where � is a
class in H 2.MgIH

1.�IZ//. (Here Mg is the mapping class group of F , which is
isomorphic to the orientation preserving subgroup of Out.�/, by a theorem of Nielsen.
See [10].) Examining his construction, we see that if f is the 2–cocycle with values
in �ab associated to a set-theoretic section � W ˇ! �=�0 , as in Section 6 above, then
��� is the image of Œf � under the change of coefficient isomorphism induced by the
Poincaré duality isomorphism �ab ŠH 1.�IZ/. Thus if base and fibre are orientable
the Jacobian bundle has a section if and only if �ab Š .�=Œ�; ��/˚ˇab . This is so
if and only if g 2 Œ�; ��, where cg D  .r/, for some (and hence all)  as in the
preceding paragraph.

Endo has suggested the following example of a surface bundle, with base and fibre of
genus 3, which has no section. Let D1;D2;D3 be disjoint small discs in the interior
of the standard unit disc D2 , and let †DD2 n

S
j�3 Dj be the 4–punctured sphere,

with the standard planar orientation. Let F D T3 D @.†� Œ0; 1�/Š†0[†1 , where
†0 and †1 are collar neighbourhoods of †� f0g and †� f1g, respectively, meeting
along N D @†� f1

2
g. Let j0 and j1 be the natural identifications of † with †0 and

†1 , respectively. Orient F so that j0 is orientation preserving. Then j1 is orientation
reversing.

Let b1; b2; b3; b4 be the boundary components of †, and x;y; z be simple closed
curves in the interior of †, as in [10, Figure 5.1]. Let d1; : : : ; d4 be simple closed
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Sections of surface bundles 15

curves parallel to b1; : : : ; b4 in the interior of †. The left-hand Dehn twists td1
; : : : ; tz

about these curves fix @†. The lantern relation asserts that

txty tz D td1
td2

td3
td4

up to isotopy rel @†. (See [10, Chapter 5].)

Let xi D ji.x/, and so on. Then tx0
D j0txj�1

0
etc, while tx1

D j1t�1
x j�1

1
, since the

notions of left and right Dehn twist are interchanged under an orientation reversing
homeomorphism. Hence the lantern relation gives two equations

tx0
ty0

tz0
D td10

td20
td30

td40
;

t�1
x1

t�1
y1

t�1
z1
D t�1

d11
t�1
d21

t�1
d31

t�1
d41
;

up to isotopy in F rel N . Combining the last two equations and using the commutativity
of Dehn twists about disjoint curves gives

tx0
ty0

tz0
t�1
x1

t�1
y1

t�1
z1
D td10

.td11
/�1td20

.td21
/�1td30

.td31
/�1td40

.td41
/�1:

Let f be the hyperelliptic involution of F which maps †0 onto †1 . This is orientation
preserving, but induces an orientation-reversing involution of N , with two fixed points
in each component of N . Let � be one of the two fixed points of f on b1 , and let
g D Œb1� 2 � D �1.F;�/. Then td10

.td11
/�1 induces cg on � , while tdi1

is isotopic
to tdi0

rel�, for i � 2. If we modify Figure 5.1 of [10] so that b1 , b2 and b3 are
aligned vertically down the Y–axis, and the fixed points of f are the intersections of
the boundary with this axis then we see that we may assume that f .x0/ D x1 and
f .y0/ D y1 . However, f .z0/ D t�1

y1
.z1/, ie z1 D f ty0

.z0/. Thus tx1
D f tx0

f �1 ,
ty1
D f ty0

f �1 and tz1
D f ty0

tz0
.f ty0

/�1 . The equation becomes

tx0
ty0

tz0
:f t�1

x0
f �1:f t�1

y0
f �1:f ty0

t�1
z0

t�1
y0
f �1

D tx0
ty0

tz0
f t�1

x0
f �1:t�1

z0
t�1
y0

ty0
tz0
:f t�1

y0
f �1:t�1

z0
tz0
:f ty0

t�1
z0

t�1
y0
f �1

D tx0
ty0

tz0
f t�1

x0
f �1t�1

z0
t�1
y0
:ty0

tz0
f t�1

y0
f �1t�1

z0
:tz0
f ty0

t�1
z0

t�1
y0
f �1

D Œtx0
; ty0

tz0
f �Œty0

; tz0
f �Œtz0

; f ty0
�D cg

in Aut.�/, the mapping class group of .F;�/. The left-hand side is a product of
three commutators, and so we may define an action � W ˇ ! Out.�/ which sends
the standard generators to tx0

, ty0
tz0
f , ty0

, tz0
f , tz0

and f ty0
, respectively. (Thus

Im.�/ is generated by tx0
; ty0

; tz0
and f .) It is not hard to see that the image of g in

�=Œ�; ��Š .Z=2Z/4 is nontrivial. Hence �ab is a proper quotient of �=Œ�; ��˚ˇab ,
and so the associated Jacobian bundle has no section. Hence the F –bundle determined
by � does not have a section either. However, N Salter has shown, in unpublished

Geometry & Topology Monographs, Volume 19 (2015)



16 Jonathan A Hillman

work, that there is a 2–fold cover of the base such that the induced F –bundle has a
section.

If we use the reflection � of F across N instead of the hyperelliptic involution then
tx1
D �t�1

x0
��1 , etc., and so we get the equation

tx0
ty0

tz0
�tx0

ty0
tz0
��1
D cg:

This gives rise to an F –bundle over Kb , with monodromy generated by tx0
ty0

tz0
and

� , and nonorientable total space. We again see that the bundle has no section. (The
criterion of Section 5 above involves no assumptions of orientability.) However, the
bundle induced over the torus has cyclic monodromy, and so has a section.

The referees have suggested that Endo’s idea may be extended in an inductive manner
to give similar examples with base and fibre of genus g for any g � 3. We should use
the “daisy chain relation” of [9], which is also the “generalized lantern relation” of [2],
and is an iteration of the lantern relation.

Are there any such examples with fibre of genus 2, or with hyperbolic fibre and base T ?

11 Some questions

The following questions mostly arise from the considerations of Sections 2–4 above.

(1) Is the number of ways in which a PD4 –group � with �.�/ > 0 can be an
extension of surface groups bounded by c�.�/ for some c > 1?

(2) If a torsion-free group is virtually the group of a surface bundle, is it realized by
an aspherical 4–manifold?

(3) Is every iterated extension of k � 3 surface groups realized by an aspherical
2k –manifold?

(4) Is a surface bundle group � coherent (ie all finitely generated subgroups are
finitely presentable) if and only if �.�/D 0?

(5) Is every bundle with base and fibre hyperbolic surfaces finitely covered by one
which has a section?

(6) Which bundle groups are realized by complex surfaces?

(7) If a symplectic 4–manifold M is homotopy equivalent to the total space E of a
surface bundle is it diffeomorphic to E?
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Sections of surface bundles 17

Salter [25] has shown that for each n� 1 there is a PDC
4

–group � with �.�/D 24n�8

which has at least 2n normal subgroups K such that K and �=K are PDC
2

–groups.
On the other hand, [13, Corollary 5.6.1] can be used to show that if �.�/D 4d then
there are at most d2dC3 such subgroups. (Moreover, if �.�/� 16 then at most 2�.�/

of these have j�.�=K/j> log�.�/.)

Question (1) is only of interest for surface bundle groups of type III. The same is true
for Question (2), since the answer is yes if the group is of type I or II, by Corollary 7.3.1
and Theorem 9.9 of [13], respectively.

Johnson [17] has shown that every iterated extension of surface groups has a subgroup of
finite index which is the fundamental group of an aspherical compact smooth manifold.
A natural extension of Question (3), which would include Question (2), is whether
every torsion-free group which is virtually an iterated extension of surface groups is
thus realisable.

It is easily seen that if �.�/ D 0 then � is coherent. If �.�/ < 0 and � has type I
or II in Johnson’s trichotomy then C�.�/ 6D 1, and � �C�.�/� � . Thus either � is
virtually a central extension of a 3–manifold group (if �.ˇ/D 0) or it has subgroups
� �F.r/ with r > 1, and so is not coherent (if �.ˇ/ < 0). Thus Question (4) is only
of interest for groups of type III.

Question (5) is closely related to Problem 2.17 of Kirby’s list [19], which asks whether
every such bundle with � injective has a multisection. A multisection of p is a surface
C �E such that pjC W C ! B is a finite covering projection. In terms of groups, p

has a multisection if ˇ has a subgroup 
 of finite index such that � j
 factors through
Aut.�/. If �.E/D 0 then p has a multisection [12]. In particular, this is clearly so
for every group of type II. (If p is holomorphic and �.E/ > 0 then p is of type II if
and only if �.E/D 0 by [20, Theorem 4].)

Only finitely many surface bundle groups � with given �.�/ > 0 are realisable by
holomorphic submersions pW S!C , where S is a complex surface and C a complex
curve, by the geometric Shafarevitch conjecture, proven by Parshin and Arakelov.
Moreover, “Kodaira fibrations” (for which � is not virtually a product) have at most
finitely many holomorphic sections, by work of Manin and Grauert. (See [23] for an
illuminating sketch of these results, and for further references.) Are there examples
with � of type I? In Question (6) we want to allow also for complex surfaces with
fundamental group an extension of PD2 –groups, but for which the minimal models
are not aspherical.

The final question is prompted by the facts that it is true when M is a complex surface,
and that (orientable) total spaces of surface bundles are symplectic.
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