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Approximating C 1;0–foliations

WILLIAM H KAZEZ

RACHEL ROBERTS

We extend the Eliashberg–Thurston theorem on approximations of taut oriented
C 2 –foliations of 3–manifolds by both positive and negative contact structures to
a large class of taut oriented C 1;0 –foliations, where by C 1;0 foliation we mean a
foliation with continuous tangent plane field. These C 1;0 –foliations can therefore be
approximated by weakly symplectically fillable, universally tight, contact structures.
This allows applications of C 2 –foliation theory to contact topology and Floer theory
to be generalized and extended to constructions of C 1;0 –foliations.

57M50; 53D10

1 Introduction

In [12], Eliashberg and Thurston introduce the notion of confoliation and prove that
when k � 2, a transversely oriented C k –foliation F of a closed, oriented 3–manifold
not equal to S1 �S2 can be C 0 –approximated by a pair of C1 contact structures,
one positive and one negative. They also prove that when F is also taut, any contact
structure sufficiently close to the plane field of F is weakly symplectically fillable and
universally tight. For the most part, they restrict attention to confoliations which are at
least C 1 . For their main theorem, they restrict attention to confoliations which are at
least C 2 . Their assumption that 2–plane fields and 1–forms are C 1 is necessary for it
to be possible to take derivatives. Their assumption that 2–plane fields and 1–forms
are C 2 is necessary for Sacksteder’s theorem ([50], see also [12, Theorem 1.2.5]) to
apply. A weakening of this C 2 assumption in the neighborhood of compact leaves is
used by Kronheimer, Mrowka, Ozsváth, and Szabó [38] to show that the methods of
[12] apply to those foliations constructed by Gabai [17; 21; 22] which are C1 except
along torus leaves. In this paper we show that many of the techniques of Eliashberg
and Thurston extend to transversely oriented, taut, C 1;0 –foliations satisfying a natural
transitivity condition.

Eliashberg and Thurston’s proof that sufficiently smooth transversely oriented taut
foliations of 3–manifolds can be perturbed to weakly symplectically fillable contact
structures gives a direct connection between foliation theory and symplectic topology via
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contact topology. This connection has been most spectacularly exploited by Kronheimer
and Mrowka [36] in their proof of the Property P conjecture.

Since the contact structures produced by Eliashberg and Thurston are weakly symplec-
tically fillable and universally tight, their theorem is important in contact topology. To
apply their theorem, of course one must start with a taut oriented foliation. The issue
that we seek to address is that most new constructions of foliations produce foliations
that are not smooth enough to apply the Eliashberg–Thurston theorem.

Constructions of foliations which fail even to be C 1 can be found in [7; 8; 17; 18;
19; 20; 21; 22; 23; 33; 40; 41; 42; 47; 48; 49]. In each of these papers, foliations are
constructed using branched surfaces. Foliations constructed using branched surfaces
will have smooth leaves but will often vary only continuously in a transverse direction
because of the role and nonsmooth nature of leaf blow-up [23, Operation 2.1.1]. (To
obtain the smooth foliations found in [17; 18; 19; 20; 21; 22], Gabai avoids appealing
to Operation 2.1.1 and instead takes advantage of the fact that the branched surfaces
involved in his construction are finite depth.)

The main results of this paper are, roughly, that C 1;0 –foliations satisfying a simple
transitivity condition can be approximated by weakly symplectically fillable contact
structures. Such foliations include most of those found in [7; 8; 18; 19; 20; 22; 23; 33;
42; 47; 48; 49] and many of those found in [17; 21; 40; 41]. In proving this, we give
new methods for both initiating and propagating contact structures when beginning
with a foliation. Before giving a more precise indication of our results, we give a brief
description of some of the main ideas in Eliashberg and Thurston’s proof.

Eliashberg and Thurston interpolate between the notions of foliation and contact
structure by introducing confoliations. This structure restricts to a contact structure on
an open set, but is equal to the original foliation elsewhere. Their first step is to create a
contact zone in the manifold, that is, to approximate the foliation so that it is a contact
structure on a nonempty set. One place they accomplish this is in a neighborhood of a
curve with attracting holonomy. We obtain a related result, Theorem 7.2, for the larger
class of curves for which the holonomy has a contracting interval. We also introduce
the notion of L–bracketed foliation in Definition 8.4 and show how a contact zone
can be naturally introduced about a regular neighborhood of the corresponding link L.
This has applications to spines of open book decompositions, and more generally to
manifolds obtained by surgery or filling.

Their next step is to propagate the contact structure throughout the manifold using
smooth foliation charts. See Lemma 5.1, and Corollary 5.2. We use a similar strategy,
but we rely on the local existence of smooth approximations to a given C 1;0 –foliation.
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To prove that the contact structure they produce is weakly symplectically fillable, they
use the crucial structure of a smooth volume-preserving flow ˆ transverse to the taut
foliation. Such a smooth flow is the starting point for our work, for they exist even for
C 1;0 –foliations.

There are several notions that describe the relationship between a foliation F and
“nearby” contact structures � . If there is a continuous family of contact structures �t

such that �t ! F , we say F can be perturbed or deformed to a contact structure.
A weaker notion is the existence of a sequence �n ! F , in which case F can be
approximated by contact structures. Both notions of convergence can be refined by
defining convergence using a C k norm on tangent planes for values of k ranging from
0 to 1. We use the flow ˆ transverse to F to define a weaker, topological notion of
approximation.

Definition 1.1 Given an oriented foliation F and a positively transverse flow ˆ, we
say an oriented 2–plane field �, typically a contact structure or a confoliation, is a
ˆ–approximation of F if � is positively transverse to ˆ. We say that two oriented
2–plane fields are ˆ–close if both are positively transverse to ˆ.

One application of our work is to complete the proof of a theorem of [32]. Honda,
Kazez, and Matić show that sufficiently large fractional Dehn twisting for an open
book decomposition with connected binding implies that the canonically associated
contact structure is weakly symplectically fillable. Their proof requires the existence
of contact structures approximating C 1;0 –foliations constructed by Roberts in [49],
and thus needs a stronger version of the Eliashberg–Thurston theorem.

Another application of our work is to prove that 3–manifolds containing taut, ori-
ented C 1;0 –foliations satisfying our transitivity condition cannot be L–spaces, thus
extending the result of Ozsváth and Szabó [45, Theorem 1.4]. (See also Kronheimer,
Mrowka, Ozsváth and Szabó [38, Theorem 2.1] and Kronheimer and Mrowka [37,
Theorem 41.4.1].)

Our result also strengthens a result of Baldwin and Etnyre [1]. They give a set of exam-
ples showing that when an open book decomposition has multiple binding components,
no fixed lower bounds on fractional Dehn twisting can guarantee weak symplectic
fillability. This can now be viewed as a nonexistence theorem for taut, oriented C 1;0 –
foliations satisfying our transitivity condition.

The techniques introduced in this paper are used by the authors in [34] to prove general
C 0 approximation theorems; in particular, in Corollary 2.9, the condition that F be ˆ–
bracketed can be replaced by the condition that F be taut, with continuous tangent plane
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field. Closely related C 0 approximation results have also been obtained independently
by J Bowden [2] using different techniques.

We thank Larry Conlon, John Etnyre, and Ko Honda for many helpful conversations.
We would also like to thank the referee for several helpful suggestions and corrections.

2 An overview

The transition from taut foliations to tight contact structures involves two auxiliary
structures, volume-preserving flows and symplectic topology. We summarize the results
we need from each field as follows.

Theorem 2.1 ([51, Theorem II.20]; see also [29, Theorem A1]) Suppose F is a taut
codimension-1 C 1;0 –foliation of a smooth closed Riemannian 3–manifold M . Then
there is a volume-preserving smooth flow ˆ transverse to F .

For clarity, we break the theorem found in [12] into two statements:

Theorem 2.2 ([12, Corollaries 3.2.2, 3.2.4 and 3.2.8]; see also [37, Theorem 41.3.2])
Let M be a smooth closed Riemannian 3–manifold with a volume-preserving flow
ˆ. Suppose there exist a smooth positive contact structure �C and a smooth negative
contact structure �� , both of which are transverse to ˆ. Then each of �˙ is weakly
symplectically fillable and universally tight. Moreover, if � is any smooth (positive or
negative) contact structure transverse to ˆ, then � is weakly symplectically fillable and
universally tight.

Remark The statement of Theorem 2.2 is meant to emphasize two things. First, given
a smooth positive (respectively, negative) contact structure transverse to a volume-
preserving flow, it is sufficient to produce a negative (respectively, positive) contact
structure also transverse to the flow to conclude both are weakly symplectically fillable
and universally tight. Next, once such �C and �� are shown to exist, any contact
structure � transverse to ˆ is necessarily weakly symplectically fillable and univer-
sally tight.

Theorem 2.3 ([12, Corollary 3.2.5]; see also [37, Theorem 41.3.2]) Let M be a
smooth closed oriented 3–manifold which contains a taut, oriented C 2 –foliation F .
There exist a smooth positive contact structure �C and a smooth negative contact
structure �� , both C 0 –close to F .
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After giving background definitions and facts about foliations in Section 3, we describe
in Section 4 how flow boxes can be organized with an eye towards spreading an initial
contact structure throughout the ambient manifold. Contact structures are propagated
from one flow box to the next via a collection of local extension theorems described in
Section 5. This leads to an inductive construction of the desired contact structure in
Section 6. Throughout, it is helpful to keep in mind the following

Guiding principle Constructions must be kept transverse to the flow. Moreover,
when constructing a positive contact structure, the slope of the characteristic foliation
of a partially constructed confoliation must be greater than or equal the slope of the
intersection of the given foliation of F and vertical boundary of our flow boxes, with
equality allowed only where F is smooth. When constructing a negative contact
structure, the slope inequality is reversed.

To explain this principle more formally, suppose that a closed oriented 3–manifold
M is expressed as a union of smooth submanifolds V and W , possibly with corners,
with @V D @W . Suppose, moreover, that W admits a codimension-1 foliation FW .
These submanifolds will be chosen so that their common boundary decomposes into
horizontal and vertical portions, that is, portions tangent and transverse, respectively,
to FW . If a confoliation �V has been constructed on V so that it is tangent to the
horizontal portion of @V , transverse to the vertical portion, and contact on certain
prescribed portions of V , then we call V a contact zone.

The guiding principle is a statement that the confoliation �V on V must dominate the
foliation FW along the vertical boundary (see Definition 6.4) both for an initial choice
of V , and also for subsequent choices as V is expanded to all of M , and W is shrunk
correspondingly.

To expand a contact zone V to the entire manifold M , we use the following structure.

Definition 2.4 A foliation FW is V–transitive if every point in W can be connected
by a path in a leaf of F to a point of V .

We will see in Theorem 6.10 that the following structure is very useful.

Definition 2.5 A closed 3–manifold M admits a positive (respectively, negative)
.�V ;FW ; ˆ/ decomposition if M can be decomposed as a union

M D V [W;

where the horizontal portion of @W is tangent to FW and the vertical portion of @V
is tangent to ˆ, and:
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(1) FW is a V–transitive oriented foliation of W .

(2) �V is a smooth contact structure defined on V which positively (respectively,
negatively) dominates FW .

(3) For some choice of Riemannian metric, M admits a volume-preserving flow ˆ

transverse to both �V and FW .

Note that the existence of a .�V ;FW ; ˆ/ decomposition does not require the existence
of a codimension-1 foliation defined on all of M .

Theorem 6.10 If M admits a positive .�V ;FW ; ˆ/ decomposition, then M admits
a smooth positive contact structure which agrees with �V on V and is ˆ–close to
FW on W . The analogous result holds if M admits a negative .�V 0 ;FW 0 ; ˆ/ de-
composition. If M admits both a positive .�V ;FW ; ˆ/ decomposition and a negative
.�V 0 ;FW 0 ; ˆ/ decomposition, then these contact structures .M; �C/ and .�M; ��/ are
weakly symplectically fillable and universally tight.

Question 2.6 If a closed oriented 3–manifold admits both a positive .�V ;FW ; ˆ/

and a negative .�V 0 ;FW 0 ; ˆ/ decomposition, does it contain a taut oriented foliation
transverse to ˆ?

Definition 2.7 Given a splitting M DV [W and a flow ˆ, an oriented, codimension-
1 foliation F is compatible with .V;W; ˆ/ if F is transverse to ˆ, and the common
boundary @V D@W decomposes into subsurfaces which are either horizontal or vertical
with respect to F .

Definition 2.8 An oriented codimension-1 foliation F of a 3–manifold M is brack-
eted if, for some volume-preserving flow ˆ:

(1) F is compatible with some .V;W; ˆ/ decomposition of M for which there
exist FW and �V such that .�V ;FW ; ˆ/ is a positive decomposition.

(2) F is compatible with some .V 0;W 0; ˆ/ decomposition of M for which there
exist FW 0 and �V 0 such that .�V 0 ;FW 0 ; ˆ/ is a negative decomposition.

When we wish to specify the flow ˆ, F is called ˆ–bracketed.

Corollary 2.9 Let F be an oriented codimension-1 foliation of a 3–manifold M

which is ˆ–bracketed. Then there exist a smooth positive contact structure �C and a
smooth negative contact structure �� , both ˆ–close to F . These contact structures
.M; �C/ and .�M; ��/ are weakly symplectically fillable and universally tight.
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Sometimes FW and FW 0 are obtained by restricting F to W and W 0 respectively,
and sometimes they are not. Very roughly speaking, when W DW 0 , we think of the
restriction of F to W as being bracketed by FW 0 and FW as a generalization of the
situation in which the slope of F along boundary components of W lies between the
corresponding boundary slopes of FW 0 and FW .

As noted in Corollary 7.3, all taut, oriented C 2 –foliations apart from the product
foliation S1 �S2 are bracketed. In Example 8.8, we show that the product foliation
of S1 �S2 is not bracketed. In this paper, we show that many taut, oriented C 1;0 –
foliations are bracketed. For each bracketed foliation considered in this paper, it is
possible to choose V D V 0 and W DW 0 .

Conjecture 2.10 Let F be a taut oriented C 1;0 –foliation of a closed oriented 3–
manifold M ¤ S1 �S2 . Then F is bracketed.

We have the following two closely related questions.

Question 2.11 Suppose F is a taut, oriented foliation with no torus leaf. Is F C 0 –
close to a taut, oriented smooth foliation?

Question 2.12 Suppose F is a taut, oriented foliation with no torus leaf. Is F ˆ–close
to a taut, oriented smooth foliation for some volume-preserving flow ˆ?

Establishing the initial contact zone is of fundamental importance. In the context
of C 1;0 –foliation theory we introduce, in Section 7, the notion of holonomy with a
contracting interval and define what we mean by attracting neighborhood. This is
significantly weaker than the more familiar notion of linear attracting holonomy, yet it
suffices to build an initial contact zone. The precise definition appears as Definition 7.1.
As a corollary to Theorem 6.10, we obtain:

Theorem 7.2 Let F be a taut C 1;0 –foliation transverse to a flow ˆ. If V is a disjoint
union of attracting neighborhoods, and F is V–transitive, then F is bracketed and
hence can be ˆ–approximated by a pair of contact structures �˙ , one positive and one
negative. These contact structures .M; �C/ and .�M; ��/ are weakly symplectically
fillable and universally tight.

When working with C 1;0 –foliations, it can be difficult, or even impossible, to establish
the existence of sufficient attracting holonomy. Therefore, we introduce a different
way of creating an initial contact zone. Roughly speaking, instead of looking for loops
tangent to the foliation and satisfying a nice property, we look for loops transverse
to the foliation and satisfying a nice property. We make this precise in Definition 8.4,
where we define L–bracketed foliation. As a corollary to Theorem 6.10, we obtain:
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Theorem 8.5 Suppose F is a taut oriented codimension-1 foliation in M , and that
F is L–bracketed for some link L. Then F is bracketed and hence can be ˆ–
approximated by a pair of smooth contact structures �˙ , one positive and one negative.
These contact structures .M; �C/ and .�M; ��/ are weakly symplectically fillable and
universally tight.

In Section 9.6, we consider the important special case that F is transverse to a flow
ˆ that has been obtained by removing a fibered link L and doing a Dehn filling of a
volume-preserving suspension flow. In this case, L forms the binding of an open book
decomposition .S; h/ of M and the contact structure �.S;h/ compatible with .S; h/ is
ˆ–close to F .

In [32], Honda, Kazez and Matić introduced the use of foliations ˆ–close to �.S;h/
as a way of establishing universal tightness of �.S;h/ . In particular, they appealed to
C 1;0 –foliations constructed in [48; 49] to claim that �.S;h/ is universally tight whenever
the binding of .S; h/ is connected and the fractional Dehn twist coefficient at least one.
Although the foliations constructed in [48; 49] are not smooth, and therefore the proof
in [32] contained a gap, they are L–bracketed, and hence Theorem 8.5 reveals that the
conclusions of [32] are correct.

In Section 9 we also include some background material relating language arising in the
theory of open books with language arising in the theory of foliations. In particular, we
give a translation between coordinates used in each subject together with a summary
of our results related to open book decompositions.

To make the paper more self-contained there is an appendix containing an overview
of the relationship between volume-preserving flows and closed dominating 2–forms,
and giving some standard definitions from symplectic topology. Most of this material
is present either implicitly or explicitly in [12].

We close this section with an application of Theorem 6.10 to the study of L–spaces.

Definition 2.13 [46, Definition 1.1] A closed three-manifold Y is called an L–space
if H1.Y IQ/D 0 and bHF .Y / is a free abelian group of rank jH1.Y IZ/j.

Theorem 2.14 [45, Theorem 1.4] An L–space has no symplectic semifilling with
disconnected boundary; and all its symplectic fillings have bC

2
.W /D 0. In particular,

Y admits no taut smooth foliation.

In other words, Ozsváth and Szabó show that if Y is an L–space then there is no
symplectic manifold .X; !/ with weakly convex boundary such that j@X j> 1 and Y
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is one of the boundary components. So an L–space cannot contain a pair of ˆ–close
contact structures, �C positive and �� negative, where ˆ is a volume-preserving flow.
(For details, see the Appendix.) Theorem 6.10 thus implies the following.

Corollary 2.15 An L–space Y admits no bracketed foliation.

In particular, the foliations constructed in [33; 42; 48; 49] never exist in an L–space.

3 Foliation basics

Definition 3.1 Let M be a smooth closed 3–manifold, and let k be a nonnegative
integer or infinity. A C k codimension-1 foliation F of (or in) M is a union of disjoint
connected surfaces Li , called the leaves of F , such that:

(1)
S

i Li DM .

(2) There exists a C k atlas A on M which contains all C1 charts and with respect
to which F satisfies the following local product structure:

For every p 2M , there exists a coordinate chart .U; .x;y; z// in A about p

such that U �R3 and the restriction of F to U is the union of planes given by
z D constant.

If the tangent plane field TF exists and is continuous, F is called C 1;0 . If F is C 1;0

and all leaves are smoothly immersed, then F is called C1;0 . (Compare with [5,
Definition 1.2.22] and see [34, Definition 2.2].)

When TF is continuous, there is a continuous, and hence a smooth, 1–dimensional
foliation transverse to F . Moreover, it follows by Theorem 3.3 that if F is C 1;0 , then
it can be C 0 approximated by a C1;0 foliation. Thus in seeking to approximate a
C 1;0 foliation, no generality is lost in assuming the leaves are smoothly immersed.

A frequently used technique for constructing foliations is to start with a branched surface
embedded in M that has product complementary regions. Since the embedding may
be smoothed, a foliation resulting from thickening the branched surface and extending
across the complementary regions can be constructed to be C 1;0 .

Definition 3.1 extends in an obvious way to define a codimension-1 foliation on a
compact oriented smooth 3–manifold with nonempty boundary, where we insist that
for each torus boundary component T , either T is a leaf of F , or F is everywhere
transverse to T , and that any nontorus boundary component is a leaf of F .
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Recall that a smooth structure with corners on a topological 3–manifold M with
nonempty boundary is a maximal collection of smoothly compatible charts with corners
whose domains cover M , where a chart with corners is an open set diffeomorphic
to one of R3 , f.x;y; z/g j z � 0g, f.x;y; z/g j y; z � 0g, or f.x;y; z/g j x;y; z � 0g.
Notice that the boundary of a manifold with corners naturally admits a stratification as
a disjoint union of 0–, 1–, and 2–dimensional manifolds. The 0– and 1–manifolds of
this stratification are referred to as the corners of M .

Definition 3.1 extends further in an obvious way to define a codimension-1 foliation
on a compact smooth 3–manifold M with corners, where we insist that @M can be
written as a union of two compact piecewise linear surfaces @vM and @hM , where
the intersection @vM \ @hM is a union of corners of M , the components of @hM

are contained in leaves of F , and @vM is everywhere transverse to F .

Definition 3.2 A flow is an oriented 1–dimensional foliation of M ; namely, a decom-
position ˆ of a smooth compact 3–manifold M into a disjoint union of connected
1–manifolds, called the flow curves of ˆ, such that there exists a C k atlas A on M

which contains all C1 charts and with respect to which ˆ satisfies the following local
product structure:

For every p 2M , there exists a coordinate chart .U; .x;y; z// in A about p such
that U �R3 , and the restriction of ˆ to U is the union of lines given by .x;y/D
constant.

When M has boundary a disjoint union of tori, we insist that for each torus boundary
component T , either ˆ is everywhere tangent to T or ˆ is everywhere transverse
to T . When M is smooth with corners, we insist that @M can be written as a union
of two compact piecewise linear surfaces @vM and @hM , where the intersection
@vM \ @hM is a union of corners of M , @hM is everywhere transverse to ˆ, and
@vM is everywhere tangent to ˆ.

Flows and oriented codimension-1 foliations coexist in interesting ways. A good
overview can be found in [5]. In particular, given an oriented C 1;0 –foliation F of an
oriented 3–manifold M , possibly with nonempty boundary and possibly with corners,
there is a C1 flow everywhere transverse to F . From this we have the following:

Theorem 3.3 [4; 35] Suppose F is a C 1;0 foliation in M . Then there is an isotopy
of M taking F to a C1;0 foliation G with smoothly immersed leaves which is C 0

close to F . If ˆ is a smooth flow transverse to F , the isotopy may be taken to map
each flow line of ˆ to itself.
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When the oriented foliation F is taut, and M is Riemannian, the smooth transverse
flow can be chosen to be volume-preserving.

Theorem 3.4 ([51, Theorem II.20]; see also [29, Theorem A1]) Let F be a codimen-
sion-1, taut C 1;0 –foliation of a closed smooth Riemannian 3–manifold M . Then there
is a volume-preserving smooth flow everywhere transverse to F . Equivalently, there is
a smooth closed 2–form dominating F .

Given a 3–manifold M containing a taut C 1;0 –foliation, one can ask whether there is
a closely related C1–foliation. Interpreting “closely related” to mean any of C 0 –�–
close for some fixed � > 0, ˆ–close, or topologically conjugate results in questions for
which the answers are very little understood. There are certainly 3–manifolds which
contain Reebless C 1;0 –foliations but not Reebless C1–foliations [3, Theorem D].
The existence of a taut sutured manifold hierarchy guarantees the existence of two
types of foliation, one C 1;0 and finite depth and the other C1 [17; 21; 22]. Fixing a
Riemannian metric and some � > 0, these two types of foliation are not necessarily
C 0 –�–close. However, since they are carried by a common transversely oriented
branched surface, they are ˆ–close.

We will take advantage of the fact that it is always possible locally to C 0 –approximate
.F ;TF/ by .zF ;T zF/, for some locally defined smooth foliation zF .

Proposition 3.5 Let D be a smooth disk with corners and let F be a C 1;0 –foliation
of D2 � Œ0; 1� which is positively transverse to the smooth 1–dimensional foliation by
intervals f.x;y/g � Œ0; 1�; .x;y/ 2D2 . Given any � > 0, there is a smooth foliation
zF which is positively transverse to the smooth 1–dimensional foliation by intervals
f.x;y/g� Œ0; 1�; .x;y/2D2 , and satisfies .zF ;T zF/ is C 0 �–close to .F ;TF/. More-
over, if F is smooth on some compact F –saturated subset, then we may choose zF to
equal F on this subset.

Proof By identifying D with a subset of the plane, a point p in a leaf of F determines
both a point in R3 , and by choosing a unit vector perpendicular to the tangent plane of
the leaf, a point up in T R3 . The standard metric on T R3 DR6 is used to measure
the distance between two leaves of F as follows.

By Theorem 3.3, we may assume that the leaves of F are given by the graphs of z D

f� .x;y/, for some continuous family of smooth functions f� W D! Œ0; 1�, 0� � � 1.
For any two such leaves, L1 and L2 say, given by z D f�1

.x;y/ and z D f�2
.x;y/

respectively, define the distance between them to be the maximum distance, computed in
T R3 , between .x;y; f�1

.x;y/;u.x;y;f�1
.x;y/// and .x;y; f�2

.x;y/;u.x;y;f�2
.x;y///

Geometry & Topology Monographs, Volume 19 (2015)



32 William H Kazez and Rachel Roberts

for .x;y/2D . Since D is compact, uniform continuity guarantees that d is continuous
and hence a metric on the leaf space of F .

For any � 2 Œ0; 1�, let U� denote the subset of D� Œ0; 1� which is the union of all graphs
zD f� .x;y/ which are of d–distance strictly less than �=2 from the leaf zD f� .x;y/.
Since U� is the pullback of an �=2 d –neighborhood in the leaf space, U� is open in
D � Œ0; 1�.

Pick a finite cover of D � Œ0; 1� by U�0
;U�1

; : : : ;U�r
for some r � 0 and 0D �0 <

�1 < � � �< �r D 1. Now let zF be the foliation of D � Œ0; 1� which includes the leaves
given by the graphs of f�i

and, for each i; 0� i � r �1, the leaves given by the graphs
of a damped straight line homotopy between f�i

and f�iC1
. Thus if g is a smooth

homeomorphism of Œ0; 1� with derivatives at 0 and 1 vanishing to infinite order, the
leaves of zF are z D .1�g.t//f�i

.x;y/Cg.t/f�iC1
.x;y/, 0 � t � 1, on the subset

of D � Œ0; 1� bounded by the graphs of f�i
and f�iC1

. By construction, zF is smooth.

Moreover, .zF ;T zF/ and .F ;TF/ are �–close. To see this, recall that a normal vector
to a graph z D f .x;y/ is given by nf D h�fx;�fy ; 1i, and a straight-line ho-
motopy between f�1

and f�2
induces a straight-line homotopy between nf�1

and
nf�2

. Normalizing this straight-line homotopy of normal vectors gives a geodesic
on the unit sphere joining uf�1

and uf�2
. Since the leaves given by z D f�i

.x;y/

and z D f�iC1
.x;y/ are of d –distance at most �=2, it follows immediately from

the triangle inequality that the leaves given by z D f.1�g.t//�iCg.t/�iC1
.x;y/ and

z D .1 � g.t//f�i
.x;y/ C g.t/f�iC1

.x;y/ are of d –distance strictly less than � .
So.zF ;T zF/ and .F ;TF/ are �–close.

If F is smooth on some compact F –saturated subset A of D� Œ0; 1�, each component
of A is bounded by graphs of the form f� . By compactness of A, @A contains only
finitely many such f� . For each zD f� in @A, include � in the list �0; �1; : : : ; �r and
modify F only on the complement of A.

Next we recall Operation 2.1.1 of [23]. Let L1; : : : ;Lm be distinct leaves of a C 1;0 –
foliation F . Modify F by thickening each of the leaves Lj . Thus, each Lj is blown
up to an I –bundle Lj � Œ�1; 1�. Let F 0 denote the resulting foliation. We highlight
the following observation.

Lemma 3.6 The leaves L1; : : : ;Lm may be thickened so that the foliation F 0 is C 1;0

and the restriction of F 0 to
Lj � .�1; 1/�M

is a smooth foliation for each j .
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4 Transitive flow box decompositions

Definition 4.1 A flow box, F , for a C 1;0 –foliation F and smooth transverse flow ˆ,
is a smooth chart with corners that is of the form D� I , where D is a polygon (a disk
with at least three corners), ˆ intersects F in the arcs f.x;y/g�I , and F intersects F

in disks which are everywhere transverse to ˆ and hence can be thought of as graphs
over D . In particular, D � @I lies in leaves of F , each component of F \ F is a
smoothly embedded disk, and these disks vary continuously in the I direction.

The vertical boundary of F , denoted @vF , is @D � I . The horizontal boundary of F

is D � @I and is denoted @hF . An arc in M is vertical if it is a subarc of a flow line
and horizontal if it contained in a leaf of F .

It is often useful to view the disk D as a 2–cell with @D the cell complex obtained
by letting the vertices correspond exactly to the corners of D . Similarly, it is useful
to view the flow box F as a 3–cell possessing the product cell complex structure of
D � I . Then the horizontal boundary @hF is a union of two (horizontal) 2–cells and
the vertical boundary @vF is a union of c (vertical) 2–cells, where c is the number of
corners of D .

A subset R of F is called a vertical rectangle if it has the form ˛ � Œa; b�, where
0 � a < b � 1 and ˛ is either a 1–cell of @D or else a properly embedded arc in D

connecting distinct vertices of D . A subset e of F is called an edge if it is a compact
interval contained in a 1–cell of F .

Given a vector Ew tangent to @vF , we choose a slope convention such that the leaves
of F \ @vF have slope 0, the flow lines have slope 1, and the sign of the slope of Ew
is computed as viewed from outside of F .

Definition 4.2 Given a codimension-1 leafwise smooth foliation F and transverse
smooth flow ˆ, let V be a compact codimension-0 submanifold of M , with @V D
@vV [ @hV , where @vV is a union of flow arcs or circles, and @hV is a union of
subsurfaces of leaves of F . In the case that @V D @vV , F and ˆ need only be defined
on the complement of V . A flow box decomposition of M rel V is a decomposition
of M n int V as a finite union M D V [ .

S
i Fi/, where:

(1) Each Fi is a standard flow box for F .

(2) If i ¤ j , the interiors of Fi and Fj are disjoint.

(3) If Fi and Fj are different flow boxes, then their intersection is connected and
either empty, a 0–cell, an edge, a vertical rectangle, or a subdisk of @hFi\@hFj .
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Definition 4.3 We call a flow box decomposition M D V [F1[ � � � [Fn transitive
if V0 D V , Vi D Vi�1[Fi , and for i D 1; : : : ; n:

(1) Each 2–cell of @vFi has interior disjoint from @hFj for all j < i .

(2) Vi�1\Fi is a union of horizontal subsurfaces and vertical 2–cells of Fi , together
possibly with some 0– and 1–cells.

(3) Vi�1\Fi contains a vertical 2–cell of Fi .

Proposition 4.4 If M is V–transitive, then there is a transitive flow box decomposition
of M rel V .

Proof Since M is V–taut, for each point x 2M nV , there exists  an embedded arc
in the leaf containing x that connects x to V . By taking a regular neighborhood of
 in its leaf and flowing along it, create a flow box F with the property that it has
one vertical 2–cell contained in @vV . The point x may or may not be in the interior
of F . Using compactness of M , pick a finite collection of flow boxes, of the sort
just described, F1;F2; : : : ;Fr that cover M nV . Assume no proper subset of the Fi ,
1� i � r , cover.

Next, let L1;L2; : : : ;Lm be the collection of leaves of F that contain the horizontal
boundaries of all Fi .

We proceed by induction to show that V [F1[� � �[Fi admits a flow box decomposition
with respect to V for every i; 1 � i � r . Certainly, V [F1 does. So suppose that
V [F1[� � �[Fi�1 admits a flow box decomposition with respect to V . After renaming
and reindexing as necessary, we assume that this flow box decomposition is given by
V [F1[ � � �[Fi�1 . We show that Vi D V [F1[ � � �[Fi�1[Fi also admits a flow
box decomposition with respect to V .

Begin by slightly increasing the size of Fi in M n int V , as necessary, so that Fi is
still a flow box and, for all j < i , @vFj and @vFi are transverse away from V , where
they may overlap tangentially. Notice that this ensures that V [F1[ � � � [Fi�1[Fi

is a codimension-0 submanifold with corners and piecewise vertical and horizontal
boundary. Also, cut Fi open along those (horizontal disk) components of .

S
i Li/\Fi

which have nonempty intersection with @hFj for some j < i . Denote the resulting
flow boxes by F1

i ; : : : ;F
s
i ; so Fi D F1

i [ � � � [F s
i .

Consider Fj \F1
i for some j < i . Since @vFj and @vF1

i are transverse away from
V , each component of Fj \F1

i is a flow box. Consider any such component, X say,
from the point of view of the flow box F1

i DDi � Œc; d �. Notice that X DD � Œc; d �,
where D is a subdisk (with corners) of Di , and X \ @vF

1
i is a nonempty union of

vertical 2–cells.
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Now, for all j < i , remove Fj \F1
i from F1

i . Taking the closure of the result we get
a union G1[ � � � [Gb of flow boxes, where each Gk \Vi�1 is a union of horizontal
subsurfaces and vertical 2–cells of Gk , together possibly with some 0– and 1–cells,
and contains a vertical 2–cell of Gk . Notice that Gk \Gl D ∅ if k ¤ l and, by
subdividing each Gk along finitely many vertical rectangles as necessary, we may
assume Gk \Fj is connected for all j < i . The resulting union

V [F1[ � � � [Fi�1[G1[ � � � [Gb

is then a transitive flow box decomposition of V [F1[ � � � [Fi�1[F1
i with respect

to V .

Repeat this process for each a, 2� a� s , to obtain a transitive flow box decomposition
of V [F1[ � � � [Fi with respect to V .

5 Basic extension results

In this section, we collect together an assortment of confoliation extension results
important for the inductive construction to be described in Section 6. For the most part,
it will be possible to restrict attention to flow boxes diffeomorphic to one of the flow
boxes F , G or H , where F , G and H are defined as follows.

Let F denote the flow box given by

F D fjxj � 1; 0� y � 1; jzj � 1g:

Let G denote the flow box given by �� Œ0; 1�, where � is the region in the xy –plane
bounded by the triangle with vertices

.�3
2
; 1/; .3

2
; 1/ and .0;�1

2
/:

Let �.0/ denote the 0–skeleton

�.0/ D f.�3
2
; 1/; .3

2
; 1/; .0;�1

2
/g:

Let H D F \G , a flow box with hexagonal horizontal cross-section. Notice that H

is diffeomorphic to the complement in G of an open neighborhood of the 1–skeleton
of @vG .

We begin with the following elementary, and very useful, observations of Eliashberg
and Thurston [12].
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Lemma 5.1 [12, Proposition 1.1.5] Let � be a C k –confoliation with k � 1 and
domain F given by a 1–form dz� a.x;y; z/dx . Then

@a

@y
.x;y; z/� 0

at all points of F , and
@a

@y
.x;y; z/ > 0;

where � is contact.

Eliashberg and Thurston use this lemma to approximate the confoliation by a contact
structure with the following corollary.

Corollary 5.2 [12, Lemma 2.8.2] Let � be a C k –confoliation, with k � 1 and
domain F , given by a 1–form dz� a.x;y; z/dx . If � is contact in a neighborhood of
y D 1 in F , then � can be approximated by a confoliation y� which coincides with �
together with all of its derivatives along the boundary @F and which is contact inside F .

Proof It is enough to approximate a.x;y; z/ along each interval fxg � Œ0; 1�� fzg
by a function ya.x;y; z/ that is strictly monotonic for .x; z/ 2 .�1; 1/� .�1; 1/ but is
damped to agree smoothly with a.x;y; z/ on @F .

Definition 5.3 If ˛ and ˇ are families of curves transverse to @=@z and contained in
a vertical 2–cell R of the vertical boundary of a flow box, we say ˛ strictly dominates
ˇ along A�R if at every p 2 A, the slope of the tangent to ˛ at p is greater than
the slope of the tangent to ˇ at p . It must be specified if the comparison of slopes is
made from inside or outside of the flow box. If ˛ strictly dominates A, and ˛ and ˇ
are the characteristic foliations of 2–plane fields �1 and �2 respectively, we also say
that �1 strictly dominates �2 along R. If �2 D TF for some codimension-1 foliation
F , we also say that �1 strictly dominates F along R.

The statement of Lemma 5.1 raises the question of whether flow box coordinates can
always be chosen so that the contact form can be written as dz � a.x;y; z/dx . The
next lemma points out that this is the case and gives a simple condition for a contact
structure to dominate in such coordinates.

Lemma 5.4 Let U be a regular neighborhood in F of the union of x D ˙1 and
z D ˙1. Let � be a C k –confoliation with k � 1 defined in a neighborhood V of
y D 1 in F which is everywhere transverse to the vertical segments .x;y/D constant,
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horizontal in U , and contact on V nU . Then, after smoothly reparametrizing F as
necessary, we may assume that � is given by a 1–form

dz� a.x;y; z/dx

with

(1) a.x;y; z/D 0 on V \U ,

(2)
@a

@y
.x;y; z/ > 0 on V nU .

Moreover, the characteristic foliation of � along the complement of U in y D 1

strictly dominates the horizontal foliation, when viewed from inside F , if and only if
a.x;y; z/ > 0 in V 0 nU , for some neighborhood V 0 � V of y D 0.

Proof Since dz� a.x;y; z/dx vanishes on @=@y , it is enough to choose coordinates
x;y for leaves so that curves with constant x coordinate are Legendrian. At points
where � is transverse to the horizontal foliation, there is a unique Legendrian direction.
At all other points, any direction is Legendrian. The coordinate y can be constructed
by choosing a section of the Legendrian directions.

(a) (b) (c)

(d) (e) (f)

F F F

H
G G

U U

V

U U

V

U U

V

V

U U

V U U

U

V V

U U

U

V

V V

Figure 1: Each figure shows a z D 0 slice capturing the flow box setup of
one of Corollaries 5.5–5.10. Plus signs are positioned on the side from which
the contact structure dominates the horizontal foliation. Dashes, for instance
along U , show where the confoliation slope is 0. The smooth foliation acts
as a transport mechanism for contact structures in the direction shown by the
arrows.
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Corollary 5.5 (Figure 1a) Let U be a regular neighborhood in F of the union of
xD˙1 and zD˙1. Let � be a C k –confoliation with k�1 defined in a neighborhood
V of y D 1 in F by a 1–form

dz� a.x;y; z/dx

with

(1) a.x;y; z/D 0 on V \U ,

(2) a.x;y; z/ > 0 and
@a

@y
.x;y; z/ > 0 on V nU .

Then � can be extended to a C k –confoliation y� on F that agrees with the horizontal
foliation of F in U , is contact on the complement of U , and strictly dominates, when
viewed from outside F , the horizontal foliation on the complement in y D 0 of U .

Proof It is enough to extend a.x;y; z/ along each interval fx0g � Œ0; 1�� fz0g to a
C k function ya.x;y; z/ such that

(1) ya.x;y; z/D 0 in U ,

(2) ya.x;y; z/ > 0 and
@ya

@y
.x;y; z/ > 0 outside U .

This completes the proof.

Corollary 5.6 (Figure 1b) Let U be a regular neighborhood in F of the union of
xD˙1 and zD˙1. Let � be a C k –confoliation with k�1 defined in a neighborhood
V of y D 1 in F by a 1–form

dz� a.x;y; z/dx

with

(1) a.x;y; z/D 0 on V \U ,

(2) a.x;y; z/ > 0 and
@a

@y
.x;y; z/ > 0 on V nU .

Then � can be extended to a C k –confoliation y� on F that agrees with the horizontal
foliation of F in U , is contact on the complement of U in the interior of F , and
smoothly agrees with the horizontal foliation at y D 0.

Proof Proceed as in the proof of Corollary 5.5 except insist that

ya.x; 0; z/� 0:
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Corollary 5.7 (Figure 1c) Let U be a regular neighborhood in F of the union of
xD˙1 and zD˙1. Let � be a C k –confoliation with k�1 defined in a neighborhood
V of the union of y D 0 and y D 1 in F . Suppose that when viewed from inside
F , � dominates the horizontal foliation along the vertical faces given by y D 0 and
y D 1, with strict domination in the complement of U . Then � can be extended to a
C k –confoliation y� on F that agrees with the horizontal foliation of F in U , and is
contact on the complement of U .

Proof Decompose F as a union of two flow boxes diffeomorphic to F by cutting
open along the plane yD 1

2
. Apply Corollary 5.6 to each of the resulting flow boxes.

The point of “smoothly agrees with” in the next corollary is that flow boxes are brick-
like objects that, when sensibly glued together, should define a smooth confoliation.
Thus we require smooth convergence of the confoliation to horizontal at y D 0.

Corollary 5.8 (Figure 1d) Let U be a regular neighborhood in F of the union of
xD˙1 and zD˙1. Let � be a C k –confoliation with k�1 defined in a neighborhood
V of y D 1 in F by a 1–form

dz� a.x;y; z/dx

with

(1) a.x;y; z/D 0 on V \U ,

(2) a.x;y; z/ > 0 and
@a

@y
.x;y; z/ > 0 on V nU .

Then � can be extended to a C k –confoliation y� on H that agrees with the horizontal
foliation of H in U , is contact on the complement of U in the interior of H , smoothly
agrees with the horizontal foliation at y D 0, and dominates the horizontal foliation in
the complement of U along the lines

y D x� 1
2

and y D�1
2
�x:

Proof This follows from Corollary 5.6.

Corollary 5.9 (Figure 1e) Let U be a regular neighborhood in G of the union of
z D˙1 and �.0/ � Œ�1; 1�. Let S denote the complement in @vG of the 2–cell given
by y D 1. Let � be a C k –confoliation with k � 1 defined in a neighborhood V of S

in G such that:
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(1) � is contact on V nU .

(2) � agrees with the horizontal foliation on V \U .

(3) � strictly dominates the horizontal foliation along S nU , when viewed from
inside G .

Then � can be extended to a C k –confoliation y� on G that agrees with the horizontal
foliation of G in U , is contact on the complement of U in the interior of G , and, when
viewed from outside G , dominates the horizontal foliation in the complement of U

along the line y D 1.

Proof Let ˛ be a smooth arc properly embedded in � which connects the vertices
.3

2
; 1/ and .0;�1

2
/ and is not tangent to a side of the triangle � at its endpoints. Let

RD ˛� Œ�1; 1�, a vertical rectangle in G . Decompose G along R into two flow boxes
as G DG0[F 0 , where G0 is diffeomorphic to G and F 0 is diffeomorphic to F . First
apply Corollary 5.8 to G0 and then apply Corollary 5.5 to F 0 .

Corollary 5.10 (Figure 1f) Let U be a regular neighborhood in G of the union of
z D ˙1 and �.0/ � Œ�1; 1�. Let � be a C k –confoliation with k � 1 defined in a
neighborhood V of @vG in G such that:

(1) � is contact on V nU .

(2) � agrees with the horizontal foliation on V \U .

(3) � strictly dominates the horizontal foliation along @vG nU , when viewed from
inside G .

Then � can be extended to a C k –confoliation y� on G that agrees with the horizontal
foliation of G in U and is contact on the complement of U in the interior of G .

Proof This time we cut G open along two vertical rectangles and consider instead
the resulting union of flow boxes. This time we cut G open along two disjoint vertical
rectangles to obtain

G DG0[F 0[F
00

;

where G0 is diffeomorphic to G and each of F 0 and F
00

is diffeomorphic to F . Then
apply Corollary 5.8 to G0 . Finally, apply Corollary 5.5 to each of F 0 and F

00

.

We now consider a case where the initial confoliation is defined on the entire vertical
boundary of a solid cylinder. Let L be a smooth 1–dimensional foliation on the cylinder
S1 � I such that the boundary components of S1 � I are leaves of L. Let hW I ! I

be the holonomy map of L.
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Proposition 5.11 If h0.z/ < 0 for z 2 .0; 1/, there is a confoliation on D2 � I that
is contact on D2 � .0; 1/, tangent on D2 � @I , has characteristic foliation L, and is
everywhere transverse to @=@z .

Proof This will follow from Lemmas 5.12–5.14.

Lemma 5.12 If h0.z/ < 0 for z 2 .0; 1/, then there exists a smooth 1–dimensional
foliation K of S1 � I with the same holonomy map hW I ! I such that for every
.�; z/ 2 S1 � .0; 1/, the slope s.�; z/ of K at .�; z/ is negative.

Proof As a first approximation, let K1 be the foliation of Œ0; 2�� � I given by
connecting each point .0; z/ to .2�; h.z// by a straight line. Next create S1 � I by
identifying .0; z/ and .2�; z/ for z 2 I . Let K2 denote the image of K1 in S1 � I .
This has the desired properties, except that K2 is not smooth along f0g � I . Carefully
rounding these corners (see for example [43, Lemma 4.7]), yields the desired smooth
foliation.

Lemma 5.13 There is a diffeomorphism, F , of D2 � I that is the identity map on
D2 � @I and takes L to K .

Proof Let � D 0 be a base point for S1 so that the holonomy map for each foliation
is hW f0g� I !f0g� I . Let f be the diffeomorphism of S1� I such that f restricts
to the identity map on f0g � I , preserves the S1 coordinate, and maps L to K .

Define F W D2�I!D2�I by F.r; �; z/D .r; t.r/f .�; z/C .1� t.r//.�; z//, where
t is a diffeomorphism of the interval smoothly damped at the endpoints.

Lemma 5.14 There is a confoliation � on D2 � I that is contact on D2 � .0; 1/,
tangent on D2 � @I , has characteristic foliation K , and is everywhere transverse
to @=@z .

Proof Using cylindrical coordinates, define ˛ D dz � r2s.�; z/d� . Then d˛ D

�2rs.�; z/drd� � r2sz.�; z/dzd� , from which it follows that

˛^ d˛ D�2s.�; z/rdrd�dz:

Setting � D ker˛ has the desired properties.
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6 The inductive construction of �

In this section, we show how a C 1;0 –foliation can be used to propagate a contact struc-
ture across M . Before describing this procedure, we highlight the role of smoothness
in the approach used by Eliashberg and Thurston in performing this propagation.

First, recall Lemma 5.1. Roughly speaking, a clever choice of foliation coordinates
permits a confoliation along a Legendrian curve to be described by a monotone function.
By taking advantage of a beginning contact zone, such a function can be approximated
by a strictly monotone function, thereby creating a larger contact zone. This argument
can be repeated on overlapping regions covering the manifold. The issue is whether
strict monotonicity attained on a given region can be preserved under subsequent
approximations. This is precisely where smoothness of the foliation becomes important,
guaranteeing that derivatives are globally defined and continuous, and thus allowing
one to preserve strict monotonicity under subsequent approximations.

We circumvent the issue of monotonicity with carefully chosen, minimally overlapping,
flow boxes and a more discrete propagation technique, which we now describe.

Recall Definition 5.3 and the slope convention chosen in Definition 4.1. Let F be a
flow box and let R be a rectangle in @vF . Let ��1

and ��2
denote the characteristic

foliations induced on R by two 2–plane fields �1 and �2 defined in a neighborhood of
R and positively transverse to ˆ. We write ��1

<p ��2
if the unit vector tangent to

��1
at p has slope less than the unit vector tangent to ��2

at p . Similarly, we write
��1
Dp ��2

if the unit vector tangent to ��1
at p has slope equal to the unit vector

tangent to ��2
at p . We write ��1

< ��2
if ��1

<p ��2
for all p 2 int.R/. Similarly,

we write ��1
� ��2

if ��1
�p ��2

for all p 2 int.R/.

Definition 6.1 Let M be a closed oriented 3–manifold with smooth flow ˆ. Suppose
that M decomposes as a union

M D V [W;

where V and W are smooth 3–manifolds, possibly with corners, and @V D @W .
We say that this decomposition is compatible with the flow ˆ if @V (and hence @W )
decomposes as a union of compact subsurfaces @vV [ @hV , where @vV is a union
of flow segments of ˆ and, @hV is transverse to ˆ. In the presence of a foliation
transverse to the flow, the notation @hV will be used for the portion of @V tangent to
the foliation.

Definition 6.2 Let M be a closed oriented 3–manifold with smooth flow ˆ. Suppose
that M can be expressed as a union

M D V [W;
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where V and W are smooth 3–manifolds, possibly with corners, such that @V D
@W . Suppose also that this decomposition is compatible with ˆ, that V admits a
smooth contact structure �V , and that W admits a C 1;0 –foliation FW . We say that
.V; �V / is ˆ–compatible with .W;FW /, and that M admits a positive .�V ;FW ; ˆ/

decomposition, if the following are satisfied:

(1) �V and FW are (positively) transverse to ˆ on their domains of definition.

(2) �V is tangent to @hV .

(3) ��V
< �TFW

on the interior of @vV , when viewed from outside V .

The main result of the section is Theorem 6.10. The starting point is a transitive flow box
decomposition M DV [F1[� � �[Fn for F . Set V0DV and Vi DV [F1[� � �[Fi

for each i; 1� i � n. For each i; 0� i � n, set Wi DM n int.Vi/. Thus, for 0� i � n,
F is compatible with .Vi ;Wi ; ˆ/. When i D 0, @hVi D∅, and when i D n, VnDM

and hence @Vn D∅.

Lemma 6.3 After possibly blowing up finitely many leaves of F , we may assume that:

(1) F is smooth in a neighborhood of the horizontal faces @hFi .

(2) F is smooth in a neighborhood of the vertical edges of each Fi .

Proof We will define � inductively and in a piecewise fashion over each Fi . To
guarantee that the resulting confoliation is everywhere smooth, we add a smoothly
foliated collar about the horizontal boundary and the vertical 1–simplices of each
Fi as follows. Let L1;L2; : : : ;Lm be the collection of leaves of F that contain the
horizontal boundaries of all Fi . Modify the original foliation F by thickening each
of the leaves Lj . Thus each Lj is replaced with a product of leaves Lj � Œ�1; 1�.
The thickening should be performed so that for each i , if a component of @hFi was
originally contained in Lj , then it is now contained in Lj�f0g. As noted in Lemma 3.6,
we may assume the interior of each thickening, Lj � .�1; 1/, is smoothly immersed.
Note that M D V [F1[ � � � [Fn remains a transitive flow box decomposition of M

with respect to this new foliation. Moreover, F \Fi is smooth in a neighborhood of
@hFi for each i .

The vertical edges of the Fi are smooth transverse arcs, thus F can be smoothed on
D2 � I product neighborhoods of these edges.

Now we fix a preferred regular neighborhood of the union of the horizontal 2–cells
and the vertical 1–cells of the flow box decomposition. We do this as follows. For
each i; 1 � i � n, choose a regular neighborhood of @hFi which is contained in the
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thickening Li � .�1; 1/, and choose a regular neighborhood of the vertical 1–cells of
Fi on which F is smooth. Choose these neighborhoods so that the union U of these
neighborhoods is a regular neighborhood of the union of all horizontal 2–cells and
all vertical 1–cells of the flow box decomposition. We refer to both this preferred
neighborhood U and the restriction of F to U as the smoothly foliated collar.

Next, we modify Definition 6.2 slightly to account for the smoothly foliated collar.

Definition 6.4 Let 0� i < n and let �i be a smooth confoliation on Vi such that �i
is tangent to @hVi and everywhere transverse to @vVi . (Note that by smoothness, we
may consider �i to be defined on an open neighborhood of Vi .) We say the smooth
confoliation �i dominates F if ��i

� �F on @vVi when viewed from outside Vi , with
equality permitted only on the closure U of the smoothly foliated collar. Use strictly
dominates if the inequality is strict.

Let �i be a smooth confoliation defined on Vi . We say that .Vi ; �i/ is smoothly
ˆ–compatible with .Wi ;F/ if the following are satisfied:

(1) �i and FW are (positively) transverse to ˆ on their domains of definition.

(2) �i is tangent to @hVi .

(3) �i D TF on U \Vi .

(4) �i is a contact structure on Vi nU .

(5) �i dominates F (on @vVi ).

Proposition 6.5 Let M D V [F1[ � � � [Fn be a transitive flow box decomposition
of M , and let �i , i � 0, be a smooth confoliation defined on Vi that is smoothly
ˆ–compatible with .Wi ;F/. Then there is a smooth confoliation �iC1 defined on
ViC1 that is smoothly ˆ–compatible with .WiC1;F/ and restricts to �i on Vi .

Proof Since any polygon admits a triangulation, any transitive flow box decomposition
can be chosen to consist only of flow boxes diffeomorphic to the flow box GD��Œ0; 1�

defined in Section 5. In particular, we may assume that FiC1 is diffeomorphic to G .
Such a diffeomorphism preserves the foliation and flow directions, that is, slopes 0 and
1; thus we will make slope comparisons and approximations without reference to the
change of coordinates.

By hypothesis, � strictly dominates F on X D @vVi nU . By compactness, there exists
� > 0 such that

slope.�i/� slope.F/ > 3�

on X \ @vFiC1 .
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By Proposition 3.5, we may approximate the restriction of F to FiC1 by a smooth
foliation zF such that .zF ;T zF/ is C 0 –close to .F ;TF/. Choose this approximation
so that �i dominates zF on @v.FiC1/\Vi , and so that

jslope.zF/� slope.F/j< �

on all of @vFiC1 . It follows that

slope.�i/� slope.zF/ > 2�

on X \@vFiC1 . Choose smooth coordinates .x;y; z/ on FiC1 so that the leaves of zF
are horizontal, given by z D constant. (Note that although this change of coordinates
might change slope values, it doesn’t affect the relative values of slopes.)

Next consider the number of 2–cells contained in @v.FiC1/\Vi . From the definition
of a transitive flow box decomposition there is at least one. Depending on whether
there are exactly one, two, or three such 2–cells, apply the corresponding Corollary 5.8,
5.9, or 5.10 to smoothly extend �i across FiC1 and call the resultant confoliation �iC1 .
Smoothness of the glued confoliation is assured by the construction of the confoliations
near the boundaries of their flow boxes.

In constructing the extensions of Corollaries 5.7–5.10 the starting point is a 1–form on
@vFiC1 given by dz�a.x;y; z/dx with a.x;y; z/ > 0 on X \ @vFiC1 . This is then
extended across FiC1 while keeping a.x;y; z/ > 0 and also @a

@y
.x;y; z/ > 0. Given

any ı > 0, these constructions can be performed while keeping the change in a.x;y; z/

along Legendrian curves less than ı . In other words, the extension �iC1 can be chosen
so that the change in slope.�iC1/ along Legendrian curves is less than � . Thus

slope.�iC1/� slope.zF/ > �

on @vViC1� .Nh[Nv/, and consequently, on this set we also have

slope.�iC1/� slope.F/ > 0:

Corollary 6.6 Let M D V [F1 [ � � � [Fn be a transitive flow box decomposition
of M , and let �i , i � 0, be a smooth confoliation defined on Vi that is smoothly
ˆ–compatible with .Wi ;F/ and lies within � of F on the intersection of the domain of
F with Vi . Then there is a smooth confoliation �iC1 defined on ViC1 that is smoothly
ˆ–compatible with .WiC1;F/, restricts to �i on Vi , and lies within 3� of TF on the
intersection of the domain of F with ViC1 .

Proof It follows from Proposition 3.5 that a smooth foliation zF may be chosen on
FiC1 so that T zF is within � of TF . Restricting attention to @vV \FiC1 , T zF lies
within 2� of �i . From the proof of Proposition 6.5, �iC1 is constructed to be as close
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or closer to T zF on FiC1 than �i is on @vV \FiC1 . Thus �iC1 is within 2� of T zF ,
and hence within 3� of TF .

Corollary 6.7 Let M D V [F1 [ � � � [Fn be a transitive flow box decomposition
of M , and let �0 be a smooth contact structure defined on V that is compatible with
.W;F/. Then there is a smooth contact structure defined on M that agrees with �0 in
V and is ˆ–close to F on W .

Proof Inductively applying Proposition 6.5 produces a transitive smooth confoliation
that is ˆ–close to F on W and agrees with �0 in V . By [12, Proposition 2.8.1] (see
also [14]), this transitive smooth confoliation can be smoothly deformed into a smooth
contact structure. Thus there is a smooth contact structure defined on M that agrees
with �0 in V and is ˆ–close to F on W .

Corollary 6.8 Let M D V [F1 [ � � � [Fn be a transitive flow box decomposition
of M , and let �0 be a smooth confoliation defined on V that is ˆ–compatible with
.W;F/. Then there is a smooth contact structure defined on M that agrees with �0 in
V and is ˆ–close to F on W . If �0 is within � of TF along @V D @W , then � can
be chosen to lie within f .n/� of TF in W , for some positive function f .

Proof This follows immediately from Corollary 6.6.

Lemma 6.9 Let M be a closed oriented 3–manifold. Suppose that M can be ex-
pressed as a union

M D V [W;

such that @V D @W , V admits a smooth contact structure �0 , W admits a C 1;0 –
foliation F , and .V; �0/ and .W;F/ are ˆ–compatible. Then �0 can be modified in
an arbitrarily small collar neighborhood of @V so that the restriction of �0 to @vV lies
arbitrarily C 0 –close to TF .

Proof Fix any � > 0. Let X D .@vV /� .Nh [Nv/. Let X � .�ı; 0� be a collar
neighborhood of X in V , with X D X � f0g. Pick any smooth line field l on X

which is tangent to F along the smoothly foliated collar, is dominated by the projection
of �0jX�f�ıg to X , dominates the projection of F jX�f0g to X , and lies with � of
F jX�f0g . Replace the restriction of �0 to X � Œ�ı; 0� by a straight line homotopy
between �0 restricted to X � f�ıg and l , damped to fit smoothly with the original �0
as defined on the complement of the collar.
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Theorem 6.10 If M admits a positive .�V ;FW ; ˆ/ decomposition, then M admits
a smooth positive contact structure �C which agrees with �V on V and is ˆ–close to
FW on W . Moreover, M also admits a smooth contact structure which agrees with
�0 on the complement in V of a collar neighborhood of @V and is arbitrarily C 0 –
close to F on W . The analogous result holds if M admits a negative .�V 0 ;FW 0 ; ˆ/

decomposition. If M admits both a positive .�V ;FW ; ˆ/ decomposition and a negative
.�V 0 ;FW 0 ; ˆ/ decomposition, then these contact structures .M; �C/ and .�M; ��/ are
weakly symplectically fillable and universally tight.

Proof This follows from Proposition 4.4, Corollary 6.7, and Lemma 6.9.

7 Attracting holonomy

This section gives a generalization of the Eliashberg–Thurston result on perturbing
foliations in a neighborhood of a curve in a leaf with sometimes attracting holonomy
[12, Proposition 2.5.1] to the larger class of C 1;0 –foliations with holonomy containing
a contracting interval. Holonomy with a contracting interval will be defined below in
terms of the existence of a particular smooth submanifold with corners. Holonomy
with a contracting interval is a weaker condition than holonomy with an attracting leaf.

Let P be the prism in R3 given by jxj � 1, jyj � 1 and jzj � y=2C 3
2

. The slanted
top and bottom of P is denoted by @hP , and the rest of @P is denoted by @vP . Let
V be the solid torus given by identifying each pair of points .x;�1; z/ and .x; 1; z/
where both are in P . Then @hV is defined to be the image of @hP , and @vV is defined
to be the portion of @V that is in the image of @vP .

Definition 7.1 The holonomy of a C 1;0 –foliation F transverse to a flow ˆ in a
3–manifold M has a contracting interval if there is a subset of M diffeomorphic to
V , called an attracting neighborhood, such that:

(1) @hV is mapped into leaves of F .

(2) vertical intervals in V are mapped to flow lines of ˆ.

Theorem 7.2 Let F be a taut oriented C 1;0 –foliation transverse to a flow ˆ. If V

is a disjoint union of attracting neighborhoods, and F is V–transitive, then F can
be ˆ–approximated both by a smooth positive contact structure �C and by a smooth
negative contact structure �� . These contact structures .M; �C/ and .�M; ��/ are
weakly symplectically fillable and universally tight.
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Proof In light of Theorem 6.10, it is enough to construct a smooth confoliation �
on V such that .V; �/ is compatible with .W;F/, in the sense of Definition 6.4. It is
sufficient to consider the case that � is positive. The construction of the desired � is
the same on each component of V , so we will treat V as if it is connected. Let W

denote the closure of the complement of V in M .

x

y

z

Q

N
J

P V

Figure 2: Foliated neighborhoods of horizontal faces and vertical edges are
shown only in Q though they exist in P and V D P=� as well

Consider the transformation of the prism P to the cube

QD Œ�1; 1�� Œ�1; 1�� Œ�1; 1�

that fixes .x;y/ and linearly scales the z–coordinate. View V as the quotient

V DQ=�

of Q obtained by identifying

.x;�1; z/� .x; 1; z=2/:

Notice that @hQ is mapped into leaves of F , and vertical intervals in Q are mapped
to flow lines of ˆ. Moreover, we may assume that the original parametrization of P

was chosen so that F meets the y D˙1 sides of @vQ in horizontal lines. Since F is
C 1;0 , the leaves of the foliation meet each of the x D˙1 sides in a continuous family
of smooth graphs.

To facilitate smooth gluings, thicken the leaf or leaves of F which meet @hQ. Fix
0< � < 1

4
. Choose the thickening of the leaves of F intersecting @hV to replace the

leaves z D˙1 in Q with a disjoint union, J , of I –bundles in Q, with J containing
Œ�1; 1�� Œ�1; 1�� Œ�1;�1C�� and Œ�1; 1�� Œ�1; 1�� Œ1��; 1� as components. Assume
also that F meets an �–neighborhood, N , of the quotient of the vertical edges of Q
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in a smooth horizontal foliation. Let UQ D int.J [N /; UQ is an �–neighborhood of
the union of @hQ with the 1–cells of @vQ. We assume also that the pull-back of F to
UQ is horizontal. We will abuse notation and let UQ also refer to the projection of
UQ to M .

Since Q is a flow box it is amenable to the constructions of Section 5. We will ˆ–
approximate F in Q, and thus in V , by a C1–confoliation �0 which smoothly respects
both the identification � and the gluing of .V; �0/ and .W;F/ along @hV D @hW .

The confoliation �0 will be chosen to agree with F on UQ and to be a contact structure
on Q nUQ which, when viewed from outside Q, is strictly dominated by F on the
y D�1 side of @vQ and strictly dominates F on the remaining three sides of @vQ.
See Figure 3. Since the interior of the y D �1 side lies in the interior of V , the
resulting .V; �0/ will be compatible with .W;F/ in the sense of Definition 6.4.

A B C D

y D�1 x D 1 y D 1 x D�1

1� �

1=2

0

�1=2

�� 1

XA

F

Figure 3: Some of the choices of flow lines of the vector fields XA; : : : and
their relationship to F are shown. Not enough detail is drawn to show that
the holonomy given by flowing from left to right, that is counterclockwise
about @vQ , is decreasing.

As a first step in constructing �0 , we define �0 along @vQ. The vertical boundary @vQ
consists of four vertical faces. Let A denote the face y D�1, let B denote the face
x D 1, let C denote the face y D 1, and let D denote the face x D�1.

We construct �0 by first specifying smooth unit vector fields XA;XB;XC , and XD

along the faces A;B;C; and D respectively, and then declaring �0 along @vQ to
be the 2–plane field which is normal to @vQ and contains the corresponding tangent
vector XA;XB;XC , or XD . We will choose XA;XB;XC , and XD to be horizontal
on UQ and hence in a neighborhood of the vertical 1–simplices of @vQ; in particular,
the 2–plane field �0 will therefore be well-defined on the vertical edges.

Begin by defining the vector field XB . Choose XB DXB.1;y; z/ to be a smooth unit
vector field which satisfies the following:
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(1) XB dominates F .

(2) XB has positive slope when both y and z lie in .�1C �; 1� �/.

(3) XB D @=@y when y or z lies in Œ�1;�1C ��[ Œ1� �; 1�.

Let ‰B denote the flow generated by XB . Abusing notation a bit, we denote by
‰B.y; z/ the intersection of the flow line of ‰B that starts at .1;�1; z/ with f.1;y/g�
Œ�1; 1�. (We use this notation when referring to all flows in this section.) Let
fBW Œ�1; 1�! Œ�1; 1� denote the diffeomorphism given by fB.z/D‰B.1; z/.

Note that since XB has positive slope whenever both t and z lie in .�1C �; 1� �/,
fB.z/ > z whenever z lies in .�1C �; 1� �/. Indeed, by choosing the slope of XB to
be great enough, we may guarantee that fB.�

1
2
/� 1

2
. Rechoose XB as necessary so

that XB satisfies (1)–(3) and also:

(4) fB.�
1
2
/� 1

2
.

Now choose XD along the side x D�1 by setting XD.�1;y; z/DXB.1;�y; z/.

Notice that if f W Œ�1; 1�! Œ�1; 1� is any orientation-preserving diffeomorphism, then
there is a smooth flow ‰ D ‰.x; z/ on Œ�1; 1�� Œ�1; 1� such that ‰.1; z/ D f .z/;
simply set

‰.x; z/D
1� t.x/

2
zC

1C t.x/

2
f .z/;

where t.x/ is a smooth function of x that is �1 for x 2 Œ�1;�1C��, 1 for x 2 Œ1��; 1�,
and has positive derivative for all other x . Thus, by specifying a diffeomorphism
f W Œ�1; 1�! Œ�1; 1�, we specify a family of smooth flows ‰.x; z/ and corresponding
smooth unit tangent vector fields X .

We take advantage of this to define the vector field XA along the side y D �1. Let
fAW Œ�1; 1�! Œ�1; 1� be the diffeomorphism given by

f �1
A .z/D u ıfB ıfB ıfB.z/;

where uW Œ�1; 1�! Œ�1; 1� is a diffeomorphism which is the identity on z 2 Œ�1;�1C

��[ Œ1� �; 1� and strictly increasing elsewhere. Let ‰A be a smooth flow on Œ�1; 1��

Œ�1; 1� which satisfies the following:

(1) ‰A has negative slope whenever z 2 .�1C �; 1� �/.

(2) ‰A has unit tangent vector field given by @=@x when z 2 Œ�1;�1C��[Œ1��; 1�.

(3) ‰A.1; z/D fA.z/.
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Let XA be the smooth unit tangent vector field to ‰A . Recall that F is horizontal, and
hence is dominated by XA , along A.

Similarly, we use a diffeomorphism fC W Œ�1; 1�! Œ�1; 1� to define a smooth vector
field XC along the side y D 1. Let fC W Œ�1; 1�! Œ�1; 1� be a diffeomorphism which
satisfies:

(1) fC .z/D
1
2
fA.2z/ when jzj � 1

2
.

(2) fC .z/D z when z 2 Œ�1;�1C ��[ Œ1� �; 1�.

(3) fC .z/ < fB.z/ when 1
2
< jzj< 1� � .

Since fA.z/D z whenever jzj � 1� � , fC .z/D z for .1� �/=2� jzj � 1
2

. Therefore,
fC Œ�

1
2
; 1

2
� D Œ�1

2
; 1

2
�. Since fB.�

1
2
/ > 1

2
, it follows that fC .z/ � fB.z/ for all z ,

with equality only when jzj � 1�� . So fB ıfC ıfB.z/ < fB ıfB ıfB.z/, and hence

fA ıfB ıfC ıfB.z/ < z;

for all z 2 .�1C �; 1� �/.

So the diffeomorphism fA ıfB ıfC ıfBW Œ�1; 1�! Œ�1; 1� is strictly decreasing on
.�1C �; 1� �/ and hence Proposition 5.11 applies.

Corollary 7.3 Let F be a taut, oriented, C 2 –foliation of a closed oriented 3–manifold.
Suppose F is not the product foliation S1 �S2 . Then F is bracketed.

Proof Let ˆ be a volume-preserving flow transverse to F . As noted in [12], either
F has a lot of nontrivial linear holonomy or it is C 0 close, and hence ˆ–close, to a
foliation F 0 which has a lot of nontrivial linear holonomy. In other words, there exists a
disjoint union V of attracting neighborhoods such that one of F or F 0 is V–transitive.
In either case it follows that F is bracketed.

8 L–bracketed foliations

In this section, we introduce a new method for ˆ–approximating a foliation F by a
pair of transitive confoliations, one positive and one negative. This method applies
whenever there exists a link transverse to F which satisfies the condition given in
Definition 8.4. We also remark on some consequences yielding 3–manifolds containing
weakly symplectically fillable contact structures.

Before stating Definition 8.4, we make some preliminary observations.
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Proposition 8.1 Suppose F is a taut oriented codimension-1 foliation in M . Let L be
any link transverse to F . Then there is a choice of metric on M and volume-preserving
flow ˆ everywhere transverse to F such that L is contained as a union of closed orbits
of ˆ. Moreover, given a choice of regular neighborhood N.L/D

S
i Di �S1 of L,

the metric on M and ˆ can be chosen so that ˆ is a trivial product fpg�S1 , p 2Di ,
on this regular neighborhood; in particular, ˆ restricts to a flow on @N.L/.

Proof This follows immediately from the proof of Theorem A1 found in [29].

So any link transverse to F can be extended to a volume-preserving flow ˆ transverse
to F . Alternatively, we may begin with a volume-preserving flow ˆ and let L

be a collection of closed orbits of ˆ. Without loss of generality, we will restrict
attention to the case that this flow ˆ restricts to a flow on @N.L/ for some choice of
regular neighborhood N.L/ of L. In either case, ˆ determines a preferred, possibly
noncompact, curve on each component of @N.L/:

Lemma 8.2 Let T be a framed torus and let ˆ be a flow on T . Then either ˆ contains
a simple closed curve of some rational slope mˆ or ˆ is topologically conjugate either
to a foliation by lines of some irrational slope mˆ or to a Denjoy blowup of a foliation
by lines of some irrational slope mˆ . In each case, the slope mˆ is uniquely determined
(by ˆ).

Proof As long as no leaf of ˆ has slope 1=0, the framing determines a unique
realization of ˆ as a suspension of some homeomorphism f of S1 and the Poincaré
rotation number of f determines the slope mˆ . See, for example, [30, 4.3.1, 5.1.1
and 5.1.3].

Denote this preferred isotopy class of curves, represented by either a simple closed
leaf or an immersed R, by mT

ˆ
. We are interested in the case that this torus T is a

component of @N.L/. In this case, there is also the isotopy class of the meridian, �T

say, and �T ¤mT
ˆ

. We shall call an isotopy class of a nontrivial curve C in T positive
if it has positive slope with respect to h�;mˆi when viewed from inside N . Similarly,
we shall call an isotopy class of curves negative if it has negative slope with respect to
h�;mˆi when viewed from inside N . This convention is illustrated in Figure 4.

Note that if F is an oriented codimension-1 foliation which intersects a torus T

transversely, then F \T is a flow on T , and mT
F denotes the preferred isotopy class

of this flow.

Definition 8.3 Define a triple .M;F ; ˆ/ to be coherent if the foliation F is taut and
oriented, the flow ˆ is volume-preserving and positively transverse to F , and the
boundary of M, if nonempty, is a union of flow lines.
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slope m

ˆ

�

m> 0

slope m

ˆ

�

m< 0

Figure 4: Slope convention on a component of @N.L/ in which slopes are
designated as viewed from inside N.L/

Let L be a link in M . A foliation F is L–taut if F t L, and F is L–transitive,
that is, each leaf of F has nonempty intersection with L. Similarly, if @M ¤ ∅,
then F is @M –taut if F intersects @M transversely, with no Reeb annuli, and F is
@M –transitive, that is, each leaf of F has nonempty intersection with @M .

Recall that a foliation F0 is said to realize slope m along a framed torus boundary
component T if @F0\T consists of parallel curves, not necessarily compact, of slope
x . When F0 is oriented, these curves @F0\T are necessarily consistently oriented.
Notice that the condition that a foliation F0 be @M0 –taut is weaker than the condition
that @F0 realizes slope mT

F0
for each component T of @M0 ; in other words, nontrivial

holonomy is possible for F0\ @M0 .

Definition 8.4 Suppose F is a taut oriented codimension-1 foliation in M . Let L be
a link in M which is transverse to F and let M0 equal M n int N.L/. Let F0 denote
the restriction of F to M0 . The foliation F is L–bracketed if, for some choice of
metric on M0 , there is a volume-preserving flow ˆ0 on M0 such that .M0;F0; ˆ0/

is coherent and the following property is satisfied:

M0 contains a pair of foliations F˙ such that:

(1) .M0;FC; ˆ0/ and .M0;F�; ˆ0/ are coherent.

(2) F˙ are @M0 –taut.

(3) For each component T of @M0 , mT
F� is negative and mT

FC is positive with
respect to h�T ; ˆjT i, where �T is the meridian slope of component T (and
hence is the slope of F0\T ).

To make the flow explicit, we also say that M contains an .F ; ˆ/–transitive link L,
where ˆ is the flow ˆ0 blown down to a (volume-preserving) flow on M .
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The notion of L–bracketed is a special case of a bracketed foliation F . The decom-
position is given by setting V D V 0 DN.L/, W DW 0 DM0 . There is a canonical
choice of positive or negative contact structure on N.L/ which is given by perturbing
the meridional disks, and then the requirement is to find foliations FW D FC and
FW 0 D F� on M0 .

Theorem 8.5 Suppose F is a taut oriented codimension-1 foliation in M and that F
is L–bracketed for some link L. Then F can be ˆ–approximated by a pair of smooth
contact structures �˙ , one positive and one negative. These contact structures .M; �C/

and .�M; ��/ are necessarily weakly symplectically fillable and universally tight.

Proof Set V DN.L/, and let W denote the closure of the complement of V . Define
a contact structure �0 on N.L/ so that each component of L is a transverse knot
and each component of N.L/ is a standard positive contact neighborhood of its core.
Choosing the rate of rotation of the contact planes along each meridional disk to be
small guarantees that the characteristic foliation of �0 along @N.L/ is close to the
meridian. It follows that we may choose �0 so that it is strictly dominated by FC .
Apply Theorem 6.10 to obtain �C . Similarly, each component of N.L/ can be modeled
using the standard negative radial model, and Theorem 6.10 can be applied to obtain �� .

Since �˙ are both positively transverse to the volume-preserving flow ˆ, they are
weakly symplectically fillable.

Since transitive links are somewhat mysterious, it is natural to ask:

Question 8.6 Given a foliation F , does there exist a link L for which F is L–
bracketed?

It is not clear how the answer to this might change if the link is required to be connected.

Question 8.7 Given a foliation F , does there exist a knot K for which F is K–
bracketed?

Example 8.8 The product foliation F on S1�S2 is an example of a foliation which
is not L–bracketed for any link L. The existence of such a link would imply, by
Theorem 8.5, that F can be approximated by a tight contact structure � . This would
imply that the underlying 2–plane bundles of F and � are equivalent. The Euler class
of the foliation, e.F/, evaluated on a spherical leaf S2 of F equals 2. On the other
hand, this S2 is homotopic to a convex surface S 0 [24] in a tight contact structure. It
follows that S 0 has a connected dividing set [25] and that e.�/ vanishes on it.
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A taut foliation F is certainly L–taut for some link L. In fact, it is L–taut for some
knot L. Moreover, as noted above, for some choice of metric there is a volume-
preserving flow ˆ transverse to F and containing L as an orbit or union of closed
orbits. And often, although not necessarily, foliations on M0 that are ˆ0 –close to F
will also be L–taut. So a key question is the existence of a pair of ˆ0 –close foliations
F˙ in M0 such that mT

F� < slope @F0jT <mT
FC for each component T .

Example 8.9 Consider the case that M0 is any compact orientable manifold with
boundary a nonempty union of b tori. Suppose that ˆ0 is a volume-preserving
flow which is tangent to @M0 and that B is a transversely oriented branched surface
transverse to ˆ0 .

If B fully carries a set of foliations which are @M0 –taut and realize a nonempty open
set J of boundary slopes (if b D 1) or multislopes (if b � 2), then Dehn-filling M0

along any rational slope or multislope in J results in a foliation which is L–bracketed,
where L is the link which is the core of the Dehn filling. Examples of such foliations
can be found in the papers [7; 8; 18; 19; 20; 22; 33; 41; 42; 47; 48; 49].

One can ask whether the foliations constructed by Dehn filling more than one torus
can be K–bracketed for some knot K .

In [17; 21; 22], Gabai constructs foliations in closed manifolds M with H2.M /¤ 0.
These foliations are fully carried by finite depth branched surfaces. One can ask whether
such foliations are L–bracketed for some link L.

Finally, we note that the proof of Theorem 8.5 doesn’t actually require the existence of
the foliation F0 . More precisely, we have the following.

Definition 8.10 Suppose .M; �/ is a contact 3–manifold. Let L be a transverse link
in .M; �/. Let M0 equal M n int N.L/. The contact structure � is L–bracketed if, for
some choice of metric on M0 , there is a volume-preserving flow ˆ0 on M0 , tangent
to @M0 , such that the following property is satisfied:

M0 contains a pair of foliations F˙ such that:
(1) .M0;FC; ˆ0/ and .M0;F�; ˆ0/ are coherent.
(2) F˙ are @M0 –taut.
(3) For each component T of @M0 , mT

F� is negative and mT
FC is positive with

respect to h�T ; ˆjT i, where �T is the meridian slope of component T .

Theorem 8.11 Suppose .M; �/ is a contact 3–manifold and that � is L–bracketed for
some transverse link L. Then � can be ˆ–approximated by a pair of smooth contact
structures �˙ , one positive and one negative. These contact structures are necessarily
weakly symplectically fillable and universally tight.
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9 Open book decompositions

An interesting class of L–bracketed foliations is obtained by considering the special
case that L is a fibered link in M and F is transverse to a flow ˆ obtained by
surgery from a volume-preserving suspension flow of the corresponding fiber bundle
complement of L. In this case L forms the binding of an open book decomposition
.S; h/ of M and the contact structure �.S;h/ compatible with .S; h/ is ˆ–close to F .

For completeness, we begin with some standard definitions. Since we are relating ideas
from the world of codimension-1 foliations and the world of contact structures, we
will also provide some translations between the terminologies of these two worlds. The
main results of this section appear in Section 9.6.

9.1 Open book decompositions

Let S be a compact surface with nonempty boundary. A pair .S; h/, where h is
a homeomorphism that restricts to the identity map on @S , determines a closed 3–
manifold M D S � Œ0; 1�= �, where the equivalence relation � identifies .x; 1/ �
.h.x/; 0/ for all x 2S and .x; s/� .x; t/ for all x 2 @S and s; t 2 Œ0; 1�. The singular
fibration with pages S �ftg is called the open book determined by the data .S; h/, and
we write M D .S; h/.

9.2 Surface bundles over S 1

Corresponding to an open book decomposition of M is a description of M as a Dehn
surgery along the binding LD

S
i li by meridional multislope .�1; : : : ; �b/. Conversely,

corresponding to such a Dehn filling description of M , we have a corresponding open
book description of M . Since many existing constructions of foliations are described
from the Dehn surgery perspective, it is useful to consider this correspondence more
carefully.

Let M0 denote the compact complement of L; so M0 DM n int N.L/, where N.L/

is a regular neighborhood of L, and M0 is homeomorphic to S � Œ0; 1�=h.

Notice that if S is a disk, then necessarily h is isotopic rel boundary to the identity
map. If S is an annulus, then h is isotopic rel boundary to some power of the Dehn
twist about the core of S . Otherwise, S is hyperbolic. We therefore lose little by
restricting attention to the case that S is hyperbolic and will now do so.

Recall Thurston’s classification of surface automorphisms.
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Theorem 9.1 [52; 6; 15] Let S be an oriented hyperbolic surface with geodesic
boundary, and let h 2Homeo.S; @S/. Then h is freely isotopic to one of the following:

(1) A pseudo-Anosov homeomorphism � .

(2) A periodic homeomorphism � , in which case there is a hyperbolic metric for
which S has geodesic boundary and such that � is an isometry of S .

(3) A reducible homeomorphism h0 that fixes, setwise, a maximal collection of
disjoint simple closed geodesic curves fCj g in S .

Recall that a pseudo-Anosov homeomorphism has finitely many prong singularities and
is smooth and hyperbolic elsewhere [15]. To avoid overlap in the cases, we refer to a map
as reducible only if it is not periodic. Since we will be considering homeomorphisms
h in the context of open books .S; h/, we will be considering only homeomorphisms
h which fix @S pointwise. Therefore, given a reducible map, splitting S along

S
j Cj

gives a collection of surfaces S1; : : : ;Sn � S with geodesic boundary that are fixed by
h0 . Maximality of fCj g implies that applying Thurston’s classification theorem to each
h0jSi

2 Homeo.Si ; @Si/ produces either a pseudo-Anosov or periodic representative.
So we may assume that h0 is either periodic or pseudo-Anosov away from some small
neighborhood of the Ci .

Definition 9.2 Let S be hyperbolic and h 2 Homeo.S; @S/. If conclusion (1) or
conclusion (2) of Theorem 9.1 is satisfied, call � the Thurston representative of h. If
instead conclusion (3) holds, let � W .S; @S/! .S; @S/ denote the piecewise continuous
function uniquely determined by the following constraints:

(3.1) � restricted to each component of the complement of the union
S

i Ci is freely
isotopic to the restriction of h0 to this component and is either periodic or
pseudo-Anosov.

(3.2) � restricted to each simple closed geodesic Ci is freely isotopic to the restriction
of h0 to Ci and is a periodic isometry.

Again, we refer to � as the Thurston representative of h.

Now consider again the open book decomposition M D .S; h/ and let � denote
the Thurston representative of h. When � is periodic or pseudo-Anosov, the link
complement M0 DM n int N.L/ is also homeomorphic to the mapping torus S �

Œ0; 1�=.x; 1/� .�.x/; 0/ of � , and in the discussions which follow, we will typically
view M0 as the mapping torus of � . When � is reducible and so only piecewise
continuous, we will typically view M0 as the union along essential tori of the mapping
tori of the extension to

S
Si of the restriction of � to the complement of the union

S
Ci .
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Let ‚0 be the flow obtained by integrating the vector field @=@t , where points of M0

are given by Œ.x; t/�, x 2S; t 2 Œ0; 1�. We will refer to this flow as either the suspension
flow of � or the Thurston flow (associated to h).

Since � is area-preserving with respect to some metric on the fiber, ‚0 is volume-
preserving with respect to some choice of metric on M0 .

Notice that the suspension flow ‚0 is pseudo-Anosov (respectively, periodic) when �
is pseudo-Anosov (respectively, periodic). In particular, when � is periodic, all orbits
of ‚0 are closed. When � is pseudo-Anosov, there are an even number of alternately
attracting and repelling closed orbits of ‚0 j @N.li/ for each i . When � is periodic or
pseudo-Anosov, this flow is continuous and the orbits are smoothly embedded. When �
is reducible, this flow is not continuous, but orbits of the flow are smoothly embedded.

Since many closed manifolds, together with corresponding open book decompositions,
can be realized by Dehn filling M0 , it is useful to have canonical framings on the
boundary components of M0 which are defined independently from M . As in [49], we
will use the Thurston flow ‚0 to define these canonical coordinate systems on @M0 .

9.3 The Thurston flow framing on surface bundles over S 1

Definition 9.3 Let @iM0 denote the i th boundary component of M0 . Choose an
oriented identification @iM0 � R2=Z2 by choosing oriented curves �i and �i , so
that �i has slope 0 and �i has slope 1, as follows. Let �i D @.S � f0g/, with
orientation induced by the orientation on S . Let i be a closed orbit of the flow
‚0 restricted to @iM0 . Choose �i to be an oriented simple closed curve which
has algebraic intersection number h�i ; �ii D 1 and which minimizes the geometric
intersection number ji\�i j. This choice is unique except in the case that the geometric
intersection number ji \�i j D 2. In this case we choose �i so that i has slope C2.
Call the resulting framing the Thurston flow framing on @iM0 . Slopes expressed in
terms of the flow framing will be said to be given in Thurston flow coordinates. This
was originally called the natural framing or natural coordinates by Roberts in [49]. In
this section, we are beginning with a fixed fibering and hence the associated Thurston
flow coordinates are well defined. In general, different choices of fibering can lead to
nonisotopic closed orbits i , and hence to different Thurston flow coordinates. Notice
also that in these coordinates, the slope of i always satisfies

1=.slope i/ 2 .�
1
2
; 1

2
�:

Now let’s consider the relationship between the flow framing and the fractional Dehn
twist coefficient defined by Honda, Kazez, and Matić in [31]. First recall the definition
of fractional Dehn twist coefficient.
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Definition 9.4 [31] Fixing a component Ci of @S and restricting the flow ‚0 to the
component of @N.L/ corresponding to Ci , ‚0 necessarily has periodic orbits. Let i

be one such, and write
i D pi�i C qi�i ;

where �i D Ci , �i is the meridian (oriented so that h�i ; �ii D 1), and pi and qi are
relatively prime integers with qi > 0. The fractional Dehn twist coefficient of h with
respect to the component Ci of @S is given by

ci.h/D pi=qi :

In particular, when i D �i ; .pi ; qi/D .0; 1/ and ci.h/D 0.

Recall that M is obtained from M0 by .�1; : : : ; �b/ Dehn filling along the boundary
components of M0 . Beginning with the open book decomposition of M and the
associated fractional Dehn twist coefficients ciDpi=qi , 1� i �b , (as above, expressed
in .�i ; �i/ coordinates), it is sometimes useful to express the slopes of �i and i in
terms of the Thurston flow coordinates, .�i ; �i/. We now describe how to do this. In
flow coordinates, �i has slope 0. Since j�i\�i jD1, it follows that, in flow coordinates,
�i has slope 1=ki for some integer ki . As noted in [32], the integer ki is uniquely
determined by the fractional Dehn twist coefficient ci.h/ for each i , 1� i � b . This
relationship can be very simply stated:

Proposition 9.5 (Coordinate translation I) Let ci D ci.h/ and let ni be the integer
determined by the condition

ci 2 .ni �
1
2
; ni C

1
2
�:

In other words,
ni D dci �

1
2
e;

the integer nearest to ci , with ties in the case ci 2 ZC 1
2

broken by rounding down.

Then ki D�ni and so �i has slope �1=ni . Moreover, i has slope 1=.ci �ni/ and so:

(1) If ci D ni , then i D �i has slope 1=0.

(2) If ci > ni , then i has positive slope.

(3) If ci < ni , then i has negative slope.

Proof The meridian �i has slope 1=ki and so �i D �i C ki�i . So

i D pi�i C qi�i D pi�i C qi.�i C ki�i/D qi�i C .pi C kiqi/�i
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has slope qi=.pi C kiqi/ D 1=.ci C ki/ and ji \�i j D jpi C kiqi j. By definition
of flow coordinates, ki is chosen to minimize ji \�i j D jpi C kiqi j, and hence to
minimize jci C ki j. There is a unique such minimizing ki unless ci 2 ZC 1

2
. In this

case, ki is chosen so that i has slope 2
1

; namely, so that ci D�ki C
1
2

. So ki is the
unique integer satisfying ci 2 .�ki �

1
2
;�ki C

1
2
�.

Conversely, given the fibered 3–manifold M0 and meridional Dehn filling slopes
�i ; 1� i � b , in terms of the Thurston flow coordinates .�i ; �i/, it is often useful to
express the slopes �i and i in terms of the associated open book coordinates .�i ; �i/.
We have the following.

Proposition 9.6 (Coordinate translation II) Suppose M0 is fibered, with the bound-
ary components @iM0 given the Thurston flow framing .�i ; �i/ for each i . As above,
let �i be a meridional slope and let i be a closed orbit of the Thurston flow on @iM0 .
In terms of the Thurston framing, �i D�1=ni and i D ri=si , for some integers ni ; ri

and si . Again as above, let M be the manifold obtained by .�1; : : : ; �b/ filling M0

and let .S; h/ be the open book decomposition of M determined by the fibering of
M0 . Then, in terms of the open book framing .�i ; �i/ on @iM0 D @N.li/,

�i D 1=0; �i D 1=ni and i D ri=.niri C si/:

In particular, the fractional Dehn twist coefficient along or S \ @iM0 is given by

ci.h/D ni C si=ri ;

where, as noted in Definition 9.3, si=ri 2 .�
1
2
; 1

2
�.

Proof To eliminate the ugliness of subscripts, focus on a particular boundary compo-
nent @iM0 and drop all reference to i .

Two right handed framings are related by a unique transformation in SL2.Z/. Notice
that

AD

�
1 n

0 1

�
is the element in SL2.Z/ which maps the pair

��
1
0

�
;
�
�n
1

��
to the pair

��
1
0

�
;
�
0
1

��
.

Hence, with the correspondence
�

a
b

�
7! b=a, A describes the translation from .�; �/

coordinates to .�; �/ coordinates. The slope computations follow immediately.
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9.4 Dehn filling the Thurston flow

Dehn surgery on Anosov flows is defined by Goodman in [27]. (See also [16].) This
definition generalizes naturally to the setting of pseudo-Anosov flows and permits us
to consider the effect of Dehn filling of Thurston flows. We define Dehn filling of a
Thurston flow as follows. Let Y be any closed 3–manifold obtained by Dehn filling
M0 . For each i; 1� i � b , let Xi denote the solid torus in Y bounded by @iM0 and
let �i denote the core of Xi . As long as the surgery coefficient along @iM0 is not i ,
it is possible to blow down Xi to its core and obtain a flow ‚ defined on Y . Notice
that the cores �i are closed orbits of ‚. Also, either ‚0 is periodic in a neighborhood
of @iM0 and therefore so is ‚ in a neighborhood of �i , or else ‚0 is pseudo-Anosov
(with possibly a single prong pair along �i ) in a neighborhood of @iM0 and therefore
so is ‚ in a neighborhood of �i . We shall refer to this flow ‚ as the surgered Thurston
flow. Notice that since ‚0 is volume-preserving for some metric, so is ‚.

Lemma 9.7 Suppose M has an open book decomposition .S; h/ with binding L

and corresponding Dehn filling description M DM0.�1; : : : ; �b/. Let ‚0 denote the
Thurston flow on the complement of L. Then ‚0 extends to a flow ‚ on M if and
only if all fractional Dehn twist coefficients ci are nonzero.

Proof Notice that

ci.h/D 0 () pi D 0; qi D 1 () i D �i D) �i D �i D i :

In particular, if at every component Ci of @S the fractional Dehn twist coefficient
ci.h/¤ 0, then �i ¤ i and so it is possible to blow down the flow ‚0 to the surgered
Thurston flow ‚ on M . Otherwise it is not.

Notice that the binding LD
S

li inherits orientations both from the open book structure
and from the flow ‚.

`

�

�

S C

subarc of 

c > 0; @F D��
.�C/.S;h/ tC ˆ

`

�

�

S C

subarc of 

c < 0; @F D �
.��/.S;h/ tC ˆ

Figure 5: Curves on a boundary component of M0
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Lemma 9.8 When ci > 0, these orientations agree on li . When ci < 0, these orienta-
tions do not agree on li .

Proof The orientation of ‚ restricted to the binding is determined by the sign of the
slope of i as expressed in .�i ; �i/ coordinates. This is illustrated in Figure 5.

9.5 Contact structures supported by an open book

In [26], Giroux defined the notion of contact structure supported by an open book: a
positive (respectively, negative) contact structure � on M is supported by, or compatible
with, an open book decomposition .S; h/ of M if � can be isotoped through contact
structures so that there is a contact 1–form ˛ for � such that:

(1) d˛ is a positive area form on each page St of the open book.

(2) ˛ > 0 (respectively, ˛ < 0) on the binding l .

Proposition 9.9 [26] Two contact structures supported by the same open book are
contact isotopic.

We may therefore abuse language and refer to the contact structure compatible with
the open book decomposition .S; h/.

Notation 9.10 Let .�C/.S;h/ denote the positive contact structure compatible with the
open book decomposition .S; h/. Let .��/.S;h/ denote the negative contact structure
compatible with the open book decomposition .S; h/.

Lemma 9.11 Suppose all fractional Dehn twist coefficients are nonzero and let ‚
denote the surgered Thurston flow.

(1) .�C/.S;h/ is positively transverse to ‚ if and only if all fractional Dehn twist
coefficients are positive.

(2) .��/.S;h/ is positively transverse to ‚ if and only if all fractional Dehn twist
coefficients are negative.

Proof This follows immediately from Lemma 9.8.

Any contact structure .M; �/ is supported by infinitely many open book decompositions.
Honda, Kazez, and Matić proved in [32] that if there is a compatible open book
decomposition with nonpositive fractional Dehn twist coefficient ci for some i , then
necessarily � is overtwisted. In fact, they show the following.

Geometry & Topology Monographs, Volume 19 (2015)



Approximating C 1;0 –foliations 63

Theorem 9.12 [31, Theorem 1.1] A contact structure .M; �/ is tight if and only
if all of its compatible open book decompositions .S; h/ have fractional Dehn twist
coefficients ci � 0 for 1� i � j@S j.

Let S 0 be the smallest invariant subsurface of S for the Thurston representative of h;
thus S 0 D S if and only if h is not reducible. If ci D 0 for some common boundary
component of S and S 0 , there are two possibilities for hjS 0 . The first is that it is
periodic, and it follows that it is equal to the identity map. The second possibility
is that hjS 0 is pseudo-Anosov, but this immediately implies � is overtwisted [31].
Since our primary focus is studying tightness for pseudo-Anosov maps it is enough to
consider open book decompositions for which all fractional Dehn twist coefficients
ci are positive (or, in the case that the contact structure is negative, to a consideration
of open book decompositions for which all fractional Dehn twist coefficients ci are
negative).

9.6 Foliations compatible with an open book decomposition

Definition 9.13 Let F be an oriented foliation of M . Let .S; h/ be an open book
decomposition of M , with binding L. Let ˆ be the surgered Thurston flow associated
to h. If F is everywhere transverse to ˆ, then we say that F is compatible with the
open book .S; h/.

Proposition 9.14 Let .S; h/ be an open book decomposition of M , with binding L,
and surgered Thurston flow ˆ. Set M0 DM n int N.L/ and ˆ0 to be the Thurston
flow associated to h.

(1) Suppose all fractional Dehn twist coefficients are positive. If there exists a
foliation F� in M0 which is L–taut, is transverse to ˆ0 and satisfies mT

F� < 0

with respect to h�T ; ˆjT i for all components T of @M0 , then .M; .�C/.S;h//

is weakly symplectically fillable and universally tight.

(2) Suppose all fractional Dehn twist coefficients are negative. If there exists a
foliation FC in M0 which is L–taut, is transverse to ˆ0 and satisfies mT

FC > 0

with respect to h�T ; ˆjT i for all components T of @M0 , then .�M; .��/.S;h//

is weakly symplectically fillable and universally tight.

Proof Consider case (1). Since .�C/.S;h/ is transverse to ˆ, it suffices to show
that there is a negative contact structure �� which is transverse to ˆ. This follows
immediately from the assumptions by Theorem 6.10.

Case (2) follows similarly.
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Set G0 to be the fibration S � Œ0; 1�=h in the complement of L. Note that G0\T has
either positive or negative slope with respect to h�T ; ˆjT i, on each component T of
@N.L/. For completeness, we note the following:

Lemma 9.15 Let Ti be a component of @N.L/. Then G0\Ti has positive (respec-
tively, negative) slope with respect to h�Ti ; ˆjTi

i if the corresponding fractional Dehn
twist ci is positive (respectively, negative).

Proof Consider the relative slope values of ; �, and � on any boundary component
Ti of @M0 . This is captured in Figure 5. Notice that � represents the slope of @G0 and
 represents the slope of ˆ. Recalling the slope convention, illustrated in Figure 4, we
see that G0\Ti has positive (respectively, negative) slope with respect to h�Ti ; ˆjTi

i

if the corresponding fractional Dehn twist ci is positive (respectively, negative).

So G0 extends to a positive confoliation transverse to ˆ when ci > 0 for all i and
to a negative confoliation transverse to ˆ when ci < 0 for all i . In other words, and
unsurprisingly, G0 as a foliation playing the role of FC (respectively, F� ) gives a
second way of establishing the existence of �C (respectively �� ).

Finally, we use Proposition 9.5 to rephrase Proposition 9.14 in terms of Thurston
flow coordinates. For simplicity of exposition, we restrict attention to the case that all
fractional Dehn twist coefficients are positive. There is a symmetric statement in the
case that all fractional Dehn twist coefficients are negative.

Proposition 9.16 Let .S; h/ be an open book decomposition of M , with binding L.
Suppose all fractional Dehn twist coefficients ci ; 1 � i � b , are positive. For each i ,
let ni be the integer nearest to ci , with ties in the case ci 2 ZC 1

2
broken by rounding

down. Set M0 DM n int N.L/. Let ˆ0 denote the Thurston flow associated to h and
let ˆ denote the surgered Thurston flow on M .

Suppose there exists a foliation F� in M0 which is L–taut, is transverse to ˆ, and
such that, for each component Ti of @M0 , ci , ni and

mi Dm
Ti

F�

satisfy one of the following:

(1) ci D ni and mi 2
�
�1;� 1

ni

�
.

(2) ci > ni and mi 2
�

1
ci�ni

;1�[ Œ�1;� 1
ni

�
.

(3) ci < ni and mi 2
�

1
ci�ni

;� 1
ni

�
.
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Thus mT
F� < 0 with respect to h�T ; ˆjT i for all components T of @M0 , and conse-

quently, .�C/.S;h/ is weakly symplectically fillable and universally tight.

Proof The boundary slope of F� on the i th boundary component lies between ˆ
and �i as shown in Figure 4. By Proposition 9.5 the slope of ˆ is 1=.ci � ni/ while
the slope of �i is �1=ni . The form of the intervals given, depends on a case by case
analysis of whether or not they contain slope 1. Weak symplectic fillability and
universal tightness of .�C/.S;h/ follow from Proposition 9.14.

One can translate the results of [32; 49] into the current context as follows.

Theorem 9.17 [49] When the binding L is connected, c > 0, and the monodromy h

has pseudo-Anosov representative, there are @M0 –taut foliations in M0 transverse to
ˆ0 which realize all slopes in an interval J as follows:

(1) c D n and J D .�1;1/.

(2) c > n and J D .�1; 1/.

(3) c < n and J D .�1;1/.

The next corollary follows by intersecting the intervals where foliations exist in
Theorem 9.17 with the intervals where they are required in Proposition 9.16.

Corollary 9.18 There exists F� as described in Proposition 9.16, if one of the follow-
ing is true:

(1) c D n and
�
�1;�1

n

�
\ .�1;1/¤∅.

(2) c > n and
��

1
c�n

;1
�
[
�
�1;�1

n

��
\ .�1; 1/¤∅.

(3) c < n and
�
�

1
n�c

;�1
n

�
\ .�1;1/¤∅.

The case when the fractional Dehn twist coefficient is greater than or equal to 1 is of
particular interest since

Corollary 9.19 If c � 1 there exists F� as described in Proposition 9.16.

Proof If c > 0 then n � 0, with n D 0 only when c 2 .0; 1
2
�. Thus c � 1 implies

n � 1, and it follows that the intersections in Cases (1) and (2) are nonempty. In
Case (3), 1� c < n, and the intersection is again nonempty.

This corollary is exactly what is needed to complete the proof of a theorem of Honda,
Kazez, and Matić in [32] that was one of the original motivations for this work.
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Theorem 9.20 If .S; h/ is an open book decomposition such that S has connected
boundary, h is isotopic to a pseudo-Anosov homeomorphism, and the fractional Dehn
twist coefficient of h is greater than or equal to 1, then the contact structure canonically
associated to the open book decomposition �.S; h/ is weakly symplectically fillable
and universally tight.

The proof strategy of [32] used a single foliation F defined on all of .S; h/ as con-
structed by Roberts, [48; 49] with boundary slope related to open book data. Next they
wanted to apply the Eliashberg–Thurston theorem to produce a weakly symplectically
fillable and universally tight contact structure � . Finally they argued that the two
contact structures �.S; h/ and � were necessarily equivalent.

There is a somewhat surprising aspect that arises in addressing the issue of lack of
smoothness of F . It is that we do not use the same foliation. To complete their proof
with our strategy, we require the existence of two foliations FC and F� , both of which
exist on the complement of the binding of .S; h/, by the work of Roberts, and have
boundary slopes on either side of the boundary slope of F . One foliation is used to the
produce a positive contact structure, the other a negative contact structure, and both are
necessary to conclude that the approximating contact structure is weakly symplectically
fillable and universally tight.

The notion of ˆ–approximating contact structure that we produce is sufficient to
conclude that �.S; h/ and � are equivalent using the argument of [32].

When M D .S; h/ has binding which is not connected, our results can be applied to
the Kalelkar–Roberts constructions of @M0 –taut foliations in M0 transverse to ˆ0 .

Theorem 9.21 [33, Theorem 1.1] There are @M0 –taut oriented foliations in M0

transverse to ˆ0 and realizing a neighborhood of rational boundary multislopes about
the boundary multislope of the fibration.

Corollary 9.22 Suppose M has open book decomposition .S; h/ and fractional Dehn
twist coefficients ci ; 1� i � b . There are constants AiDAi.M0/; 1� i � b , dependent
on M0 such that if ci >Ai , then �.S;h/ is weakly symplectically fillable and universally
tight.

Work of Baldwin and Etnyre [1] implies that any such constants Ai must depend on
M0 , at least in the case that the page S has genus one.

Theorem 9.23 [1, Theorem 1.16] There exist open books whose fractional Dehn
twist coefficients are arbitrarily large, but whose compatible contact structures are not
C 0 close to smooth orientable taut foliations.
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Corollary 9.24 There exist open books whose fractional Dehn twist coefficients are
arbitrarily large, but whose compatible contact structures are not ˆ–close to taut
oriented bracketed C 1;0 –foliations for any volume-preserving flow ˆ.

Appendix: Some symplectic topology

This section contains an overview of the relationship between foliations, volume-
preserving flows, symplectic topology, and contact topology that is summarized in
Theorem 2.2.

Let F be a transversely oriented, taut C 1;0 –foliation in M . Fix a metric on M ,
and let ˆ be a volume-preserving flow transverse to F . The starting point for the
interconnections we will describe is a carefully chosen 2–form.

Definition A.1 [12, Section 3.2] Let � be a cooriented C k 2–plane field on a smooth
3–manifold M with k � 0. A smooth closed 2–form ! on M is said to dominate � if
!j� does not vanish (ie if p 2M and Xp;Yp is a basis for �p , then !p.Xp;Yp/¤ 0).
A smooth closed 2–form ! on M is said to positively dominate � if !j� is positive (ie
for all p 2M , if Xp;Yp is a positively oriented basis for �p , then !p.Xp;Yp/ > 0).

To produce such a dominating closed 2–form, let � be the volume form on M

preserved by the smooth flow ˆ, and let X be the vector field which generates ˆ.
Define

! DXy�:

Recall that ˆ is volume-preserving if and only if LX�D 0, where LX denotes the Lie
derivative with respect to X . (See for example [39, Proposition 18.16].) By Cartan’s
formula (see for example [39, Proposition 18.13]),

LX�DX y .d�/C d.Xy�/D d.Xy�/D d!:

It follows that ! is closed. From its definition, ! is killed by the flow direction X ,
thus a cooriented 2–plane field � is positively dominated by ! if and only if it is
everywhere positively transverse to ˆ.

A closed 2–form dominating TF can be produced directly from a taut foliation [29; 51]
thereby eliminating the need to choose a metric, a volume form, and a flow-preserving
the volume form. We have chosen to emphasize the volume-preserving flow since it
clarifies the local nature of our foliations in flow boxes.
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Specialize now to the case of Theorem 2.2 in which � is a contact structure positively
transverse to ˆ. Choose a 1–form ˛ such that ker˛ D � and ˛ ^! > 0. Define a
2–form z! on M � Œ�1; 1� using the projection map p and the formula

(1) z! D p?.!/C �d.t˛/:

Direct computation shows that if � is positive and small enough, .M � Œ�1; 1�; z!/

is a symplectic manifold with boundary, that is, z! is a nondegenerate 2–form. The
important role of the positive and negative contact structures �C and �� of Theorem 2.2
will be described after the next definition.

Definition A.2 A boundary component Y of a symplectic manifold .W; z!/ is called
weakly convex if Y admits a positive contact structure dominated by z!jY .

This is precisely the structure that the boundary components of .M � Œ�1; 1�; z!/ have.
The restriction of z! positively dominates �C on M � f1g. Because of boundary
orientations, �� defines a positive contact structure on M � f�1g that is positively
dominated by the restriction of z! . Moreover, z! restricts to ! on M � f0g, thus
M � Œ�1; 0� also has weakly convex boundary.

Since both boundary components of either .M � Œ�1; 1�; z!/ or the restriction of z! to
M � Œ�1; 0� are weakly convex, they give examples of weak symplectic fillings.

Definition A.3 A weak symplectic filling of a contact manifold .M; �/ is a symplectic
manifold .W; z!/ with @W DM (as oriented manifolds) such that z!j� > 0. A contact
manifold .M; �/ which admits a weak symplectic filling is called weakly symplectically
fillable.

Definition A.4 A strong symplectic filling of a contact manifold .M; �/ is a symplectic
manifold .W; z!/ with @W DM (as oriented manifolds), where �Dker˛ for a 1–form
˛ satisfying d˛D z!jM . A contact manifold .M; �/ which admits a strong symplectic
filling is called strongly symplectically fillable.

In general, strong symplectic fillability is a stronger condition than weak symplectic
fillability [10]. However, by [44, Lemma 1.1], when M is a rational homology sphere,
.M; �/ is weakly symplectically fillable if and only if it is strongly symplectically fill-
able.

Definition A.5 A contact manifold is said to be weakly (or strongly) semifillable if it
is one boundary component of a weak (or strong) symplectic filling.
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A weakly (or strongly) semifillable contact manifold is weakly (or strongly) fillable
[11; 13].

The following fundamental theorem gives an example of the importance of weak
symplectic fillability in contact topology.

Theorem A.6 [28; 9; 12] Weakly symplectically fillable contact structures are tight.
Weakly symplectically fillable contact structures that are ˆ–close to taut foliations are
universally tight.
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