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Decision problems for 3–manifolds
and their fundamental groups

MATTHIAS ASCHENBRENNER

STEFAN FRIEDL

HENRY WILTON

We survey the status of some decision problems for 3–manifolds and their funda-
mental groups. This includes the classical decision problems for finitely presented
groups (word problem, conjugacy problem, isomorphism problem), and also the
homeomorphism problem for 3–manifolds and the membership problem for 3–
manifold groups.
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Introduction

The classical group-theoretic decision problems were formulated by Max Dehn in his
work on the topology of surfaces [23] about a century ago. He considered the following
questions about finite presentations hA jRi for a group � :

(1) The word problem, which asks for an algorithm to determine whether a word on
the generators A represents the identity element of � .

(2) The conjugacy problem, which asks for an algorithm to determine whether two
words on the generators A represent conjugate elements of � .

(3) The isomorphism problem, which asks for an algorithm to determine whether
two given finite presentations represent isomorphic groups.

Viewing � as the fundamental group of a topological space (represented as a simplicial
complex, say), these questions can be thought of as asking for algorithms to determine
whether a given loop is null-homotopic, whether a given pair of loops is freely homo-
topic, and whether two aspherical spaces are homotopy-equivalent, respectively. We
add some further questions that arise naturally:
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(4) The homeomorphism problem, which asks for an algorithm to determine whether
two given triangulated manifolds are homeomorphic.

(5) The membership problem, where the goal is to determine whether a given element
of a group lies in a specified subgroup.

Since the 1950s, it has been known that problems (1)–(5) have negative answers in the
generality in which they have been formulated above. A finitely presented group with
undecidable conjugacy problem was first constructed in 1954 by P S Novikov [82], and
soon thereafter he [83] and W Boone [13] independently found a finitely presented group
with undecidable word problem. (See [108] for an exposition.) Hence Problem (5),
being a generalization of (1), is also undecidable. Similarly, Problem (3) is undecidable,
since Adyan [2; 1] and Rabin [93] showed that there is no algorithm for the more
restrictive problem of determining whether a given finite presentation describes the
trivial group. Problem (4) is undecidable even if we restrict to smooth manifolds of
the same given dimension � 4; this was shown by Markov [65], as a corollary of the
unsolvability of (3).

In contrast to this, in this paper we show that all these problems can now be solved for
compact 3–manifolds and their fundamental groups, with the caveats that in (3) we
restrict ourselves to closed, orientable 3–manifolds, and in (4) we restrict ourselves
to orientable, irreducible 3–manifolds. Contrary to common perception (see [89,
Section 7.1]) the homeomorphism problem for 3–manifolds is still open for reducible
3–manifolds. We discuss the status of the homeomorphism problem in detail in
Section 4.5.

The solutions to the first four problems, with the aforementioned caveats, have been
known to the experts for a while, and as is to be expected, they all rely on the ge-
ometrization theorem. An algorithm for solving the membership problem was recently
given in [28], and we will provide a summary of the main ideas in this paper. The
solution to the membership problem requires not only the geometrization theorem
but also the tameness theorem of Agol [3] and Calegari and Gabai [18], the virtually
compact special theorem due to Agol [5] and Wise [114; 115; 116], as well as a result
of Kapovich, Miasnikov and Weidmann [51].

Once a decision problem has been shown to be solvable, a natural next question concerns
its complexity, and its implementability. The complexity of decision problems around
3–manifolds is a fascinating topic which is not touched upon in the present paper,
except for a few references to the literature here and there. Practical implementations
of algorithms for 3–manifolds are discussed eg in [66].

The paper is organized as follows. In Section 1 we recall the precise statement of the
(uniform) decision problems. In Section 2 we collect some basic definitions in group
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theory and 3–manifold topology. Then, we recall in Section 3 some of the key results in
the study of 3–manifolds which appear time and again in the solutions to the decision
problems. Finally in Section 4 we show that the five aforementioned problems are
indeed solvable for (most) 3–manifolds and their fundamental groups. We conclude
with a list of open problems in Section 5.

A final remark: the paper is written for group theorists and low-dimensional topologists
alike. We hope that we succeeded in striking a balance between giving an exposition at
an appropriate level of precision and conveying the main ideas behind the arguments.
However, in order to make the paper more readable we refrained from giving some
arguments in full detail.

Convention All 3–manifolds are assumed to be compact and connected. All surfaces
in a 3–manifold are compact and properly embedded.
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1 Decision problems

To formulate group-theoretic decisions problems such as those from the introduction
rigorously (and thus, to be able to prove their undecidability in general), one needs to
make precise the informal notion of “algorithm.”

1.1 Turing machines

Several mathematically rigorous definitions of algorithm were proposed in the 1930s,
one of them being the notion of a Turing machine, defined by Turing in [111]. They
were subsequently shown to all be equivalent in a natural sense. This is usually seen as
evidence for the Church–Turing thesis, which asserts that every effective computation
(be it on an abacus or a modern-day computer) can be carried out by a Turing machine.
Hence in practice, to show the (mechanical) decidability of a mathematical question,
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one usually just sketches an algorithm informally and then appeals to the Church–Turing
thesis to ascertain that it could in principle be translated into an actual Turing machine
if so desired. In contrast, to prove undecidability of a given problem, one needs to
resort to the precise definition of one’s preferred model of computation. Since in this
paper, we are mainly concerned with decidability results, below we only give a rough
description of the structure and workings of a Turing machine; for a detailed and
mathematically rigorous discussion, see [42].

A Turing machine is a hypothetical device consisting of a finite-length program as
well as

(1) an infinite memory, usually visualized as a tape divided into infinitely many
cells, sequentially ordered, where each cell can store exactly one symbol, either
0 or 1, or be blank;

(2) a head that can read, write and delete symbols on the tape and move the tape
left and right one (and only one) cell at a time; and

(3) a state register that stores the current state of the Turing machine, one of finitely
many.

The Turing machine is provided with some input on the tape, with all but finitely many
of the cells of the tape being initially blank. It then proceeds to modify this input
according to its predetermined program, until it reaches a distinguished terminal state.
If the machine never reaches this state, the computation will go on forever; but if it
does (we say: if the Turing machine terminates), then the non-blank cells left on the
tape are called the output of the Turing machine.

Turing machines can be viewed as accepting other objects as input and computing
other objects as output, provided an encoding of these objects into finitely many finite
strings of 0s and 1s has been chosen; these strings can then be written onto the tape
of the Turing machine, separated by blanks, to provide the input for the machine. For
example, Turing machines can work with words in the usual Latin alphabet, since its
letters can be encoded by the binary representations of their ASCII codes. In fact, we
may just as well use any countable, potentially infinite alphabet. More relevant for this
paper, a finite presentation hA jRi of a group can be fed into a Turing machine by
listing first an encoding of the elements of the generating set A in binary representation,
followed by the words in R, again suitably encoded into natural numbers via binary
representation, and by separating these binary strings by blanks. Similarly one can also
treat other finite mathematical objects, like finite simplicial complexes. Indeed, the
(finite) data describing a Turing machine itself can be encoded (by a natural number)
and thus be fed as an input to a Turing machine. A universal Turing machine is one that
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takes as input such an encoding of a Turing machine T , together with some input s ,
and then simulates the computation of T with input s . In essence (except for the lack
of infinitely large memory and the possibility of computational errors due to hardware
failure), modern computers are implementations of universal Turing machines; see [41].

A decision problem is a subset of the set of possible inputs for a Turing machine.
One says that a Turing machine solves a decision problem S if it terminates for each
possible input, and if it outputs “Yes” if the input belonged to S , and “No” otherwise.
A decision problem is solvable if there exists a Turing machine solving it. Since there
are only countably many Turing machines, but uncountable many decision problems,
it is clear that there are many unsolvable decision problems. Using the concept of
universal Turing machine, Turing [111] first exhibited a particular unsolvable decision
problem, the halting problem: there is no Turing machine which takes as input an
encoding of a Turing machine T and decides whether T halts upon input of the empty
tape (with all cells blank). See [89] for a survey of many naturally occurring decision
problems in mathematics which turned out to be undecidable.

A set S of possible outputs of a Turing machine is called recursively enumerable if
there exists a Turing machine, possibly non-terminating, that prints the elements of S ,
separated by blanks, onto its tape. Here we allow the possibility of repetitions, but it is
easy to see that this notion of “recursively enumerable” does not change if we insist
that the Turing machine writes each element of S exactly once.

1.2 Group-theoretical decision problems

We refer to [72] for an authoritative survey of decision problems in group theory. These
come in two flavors. The word problem, the conjugacy problem and the subgroup
membership problem are all local, in the sense that they concern the relations of
collections of elements of a fixed given finitely presented group. In contrast, the
isomorphism problem is an example of a global decision problem, in the sense that it
concerns relations between groups themselves.

1.2.1 Local decision problems We start with the local problems that we will consider.
Fix a countable infinite alphabet A and a subset A � A; below, A usually is finite.
All presentations of groups considered below are assumed to have the form hA jRi
where A�A. By a word on A we mean an element of the free group F.A/ generated
by A; that is, a formal expression of the form a

�1

1
a
�2

2
� � � a

�n
n , where a1; : : : ; an 2 A

and �1; : : : ; �n 2 f˙1g. If A is a generating set for a group � , then there is a surjective
group morphism F.A/! � with a 7! a for each a 2 A; given an element g of � ,
every word w 2 F.A/ which maps to g under this morphism is said to represent the
element g of � .
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We now give more precise formulations of Dehn’s decidability questions stated in the
beginning of the introduction. Throughout, we assume that a fixed encoding of finite
presentations hA jRi of groups and of finite collections of words from F.A/ as inputs
for Turing machines has been chosen once and for all.

Definition 1.1 Let � be a group with finite generating set A.

(1) The word problem in � asks for an algorithm that takes as input a word w on
A and determines whether w represents the identity element of � . Note that
whether the word problem for � is solvable does not depend on the choice of
the (finite) generating set A for � .

(2) The conjugacy problem in � asks for an algorithm that takes as input two words
w1; w22F.A/ and determines whether w1 and w2 represent conjugate elements
of � . Again, this notion is invariant under changing the (finite) generating set A.

(3) The membership problem in � asks for an algorithm that takes as input words
v;w1; : : : ; wk on A and determines whether v represents an element of the
subgroup hg1; : : : ;gki of � generated by the elements g1; : : : ;gk represented
by w1; : : : ; wk , respectively.

These “local” decision problems also have uniform analogues:

Definition 1.2 Let G be a class of finitely presentable groups.

(1) The word problem in G asks for an algorithm that takes as input a pair consisting
of a presentation hA jRi of a group � in G and a word w2F.A/ and determines
whether w represents the identity element of � .

(2) The conjugacy problem in G asks for an algorithm that takes as input a presenta-
tion hA jRi of a group � in G and two words w1; w2 2 F.A/ and determines
whether w1 and w2 represent conjugate elements of � .

(3) The membership problem in G asks for an algorithm that takes as input a
presentation hA j Ri of a group � in G and words v;w1; : : : ; wk 2 F.A/,
and determines whether v represents an element of the subgroup hg1; : : : ;gki

of � generated by the elements g1; : : : ;gk of � represented by w1; : : : ; wk ,
respectively.

We say that the word problem is uniformly solvable in G if there is an algorithm which
solves the word problem in G ; similarly for the other two decision problems.
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Note that in the definition above, we do not assume about G that there is an algorithm
to decide whether a given finite presentation describes a group in G . Although the class
of 3–manifold groups is not algorithmically recognizable (see Lemma 3.4 below), for
3–manifold groups, all the algorithms we consider in this paper turn out to be uniform,
in the sense that there is a single algorithm that solves the problem in question for any
3–manifold group, with its presentation provided as additional input for the algorithm.

1.2.2 Global decision problems The main global group-theoretic decision problem
that we consider is the isomorphism problem: Consider a class G of finitely presentable
groups, closed under isomorphism. The isomorphism problem in G asks for an algorithm
that takes as input finite subsets A1;A2 � A, R1 � F.A1/ and R2 � F.A2/ such
that the groups �i WD hAi j Rii are in G , and determines whether �1 and �2 are
isomorphic. The next lemma shows that if we have determined that �1 and �2 are
indeed isomorphic, then an isomorphism between them can be found algorithmically.
Note that a group morphism F.A/!F.A0/ is uniquely specified by the images of the
generators a 2A of F.A/, and thus can be encoded as the output of a Turing machine.

Lemma 1.3 There exists an algorithm which, given finite presentations hA j Ri

and hA0 j R0i of isomorphic groups � , � 0 as input, constructs a group morphism
F.A/! F.A0/ which induces an isomorphism �! � 0 .

Proof We denote by N the subgroup of F.A/ normally generated by R; thus
�ŠF.A/=N . Similarly we define N 0 . Note that group morphisms 'W F.A/!F.A0/

and '0W F.A0/! F.A/ gives rise to group morphisms � ! � 0 and � 0! � which
are mutually inverse if and only if the following two conditions hold:

(1) '.g/ 2N 0 for all g 2R and '0.g0/ 2N for all g0 2R0 .

(2) '0.'.a//a�1 2N for all a 2A and '.'0.a0//.a0/�1 2N 0 for all a0 2A0 .

We now simultaneously enumerate all words in N and N 0 as well as all group mor-
phisms 'WF.A/! F.A0/ and '0WF.A0/! F.A/, and check whether conditions (1)
and (2) are satisfied. By assumption there exists an isomorphism �! � 0 , and so after
finitely many steps we will find a pair ' , '0 as above, satisfying (1) and (2).

A similar argument as in the previous proof shows that we may let hA jRi and hA0 jR0i
range over a recursively enumerable set of finite presentations:

Lemma 1.4 Let R, R0 be recursively enumerable sets of finite presentations for
groups, and suppose some group represented by an element of R is isomorphic to some
group represented by an element of R0 . Then there exists an algorithm which finds
presentations hA jRi in R and hA0 jR0i in R0 for groups � and � 0 , respectively, and
also an isomorphism �! � 0 .
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Proof We simultaneously enumerate all presentations hA j Ri in R and hA0 j R0i
in R0 , all elements of the normal closure N of R in F.A/ and all elements of the
normal closure N 0 of R0 in F.A0/, as well as all group morphisms 'WF.A/!F.A0/

and '0WF.A0/ ! F.A/, and check whether conditions (1) and (2) in the proof of
Lemma 1.3 are satisfied.

The following lemma is used in Section 4.3.

Lemma 1.5 There exists an algorithm which upon input of finite presentations of
groups � and � , finitely many elements of � generating a finite index subgroup �0 of
� , and a group morphism 'W�! � , produces a finite presentation for �0 WD '

�1.�0/

and a set of coset representatives for �0 in � .

Proof By going through all epimorphisms from � to finite groups we first find a
surjective group morphism  W� ! G to a finite group G and a subgroup G0 of G

such that �0D 
�1.G0/. Replacing � , �0 , ' by G , G0 ,  ı' , respectively, we can

thus assume that � is finite. We can compute '.�/ and '.�0/D �0\'.�/, and find
coset representatives for '.�0/ � '.�/. We then compute preimages of these coset
representatives under the map ' , which are then coset representatives for �0 � � .
Using these coset representatives, the Reidemeister–Schreier process [61, Chapter II,
Proposition 4.1] allows us to find a finite presentation for �0 .

The homeomorphism problem is a topological analogue of the isomorphism problem.
For this, consider a class M of compact, triangulable manifolds. The homeomorphism
problem in M asks for an algorithm that takes as input triangulations for two manifolds
M1;M2 2M and determines whether or not M1 and M2 are homeomorphic.

2 Basic definitions of group theory and 3–manifold topology

As mentioned in the introduction, the intended audience for this paper consists of both
group theorists and 3–manifold topologists. In order not to clutter the paper with
definitions which are obvious to many, but perhaps not all, readers, in this section we
summarize some of the basic definitions in 3–manifold topology and group theory
which come up later in the paper.

2.1 Special classes of 3–manifolds

We start out with the definition of special classes of 3–manifolds, which form the
“building blocks” of arbitrary 3–manifolds (see Section 3 below).
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First of all, a spherical 3–manifold is the quotient of S3 by a finite subgroup � of
SO.4/ acting freely by rotations on S3 ; the fundamental group of such a spherical
3–manifold is isomorphic to � . Examples of spherical 3–manifolds are given by the
Poincaré homology sphere and by lens spaces. Recall that given coprime integers
p; q � 1 the corresponding lens space L.p; q/ is defined as

L.p; q/ WD S3=.Z=pZ/D f.x;y/ 2C2
W jxj2Cjyj2 D 1g=.Z=pZ/;

where kCpZ 2 Z=pZ (k 2 Z) acts on S3 by

.x;y/ 7! .xe2� ik=p;ye2�ikq=p/:

The fundamental group of L.p; q/ is isomorphic to Z=pZ.

A Seifert fibered manifold is a 3–manifold N together with a decomposition into
disjoint simple closed curves (called Seifert fibers) such that each Seifert fiber has a
tubular neighborhood that forms a standard fibered torus. The standard fibered torus
corresponding to a pair of coprime integers .a; b/ with a� 1 is the surface bundle of
the automorphism of a disk given by rotation by an angle of 2�b=a, equipped with
the natural fibering by circles. Every spherical 3–manifold is a Seifert fibered space
(see [100]). Further examples of Seifert fibered spaces are given by Nil-manifolds,
which are by definition 3–manifolds that are finitely covered by a torus bundle over S1

whose monodromy action on the first homology of the torus is represented by an upper
triangular matrix which is not diagonal.

A Seifert fibered space is called small if the base orbifold is a sphere with at most three
cone points.

Later on we will also consider Sol-manifolds; these are 3–manifolds which are finitely
covered by a torus bundle over S1 such that the monodromy has real eigenvalues
�, ��1 with � > 1. Sol-manifolds are not Seifert fibered.

The other building blocks for 3–manifolds are hyperbolic 3–manifolds; these are the
3–manifolds whose interior admits a complete metric of constant negative curvature �1.

Thurston showed that, up to a certain equivalence, there exist precisely eight 3–
dimensional geometries that model compact 3–manifolds. These geometries are: the
3–sphere with the standard spherical metric, Euclidean 3–space, hyperbolic 3–space,
S2�R, H2�R, the universal cover CSL.2;R/ of SL.2;R/, and two further geometries
called Nil and Sol. We refer to [99] for details. A 3–manifold is called geometric if it
is an X–manifold for some geometry X . By [99] a 3–manifold is geometric if and
only if it is either a Sol-manifold, or hyperbolic or Seifert fibered.
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2.2 Combining 3–manifolds

Given oriented 3–manifolds M and N we denote the connected sum of M and
N by M # N . Let N be a 3–manifold. We say that N is prime if N cannot be
written as a non-trivial connected sum of two manifolds, ie if N Š N1 # N2 , then
N1 Š S3 or N2 Š S3 . (Here “Š” denotes “homeomorphic,” and below we often
identify homeomorphic 3–manifolds.) Moreover, N is called irreducible if every
embedded S2 bounds a 3–ball. Every irreducible 3–manifold is prime. Also, if N is
an orientable prime 3–manifold with no spherical boundary components, then by [39,
Lemma 3.13] either N is irreducible or N D S1 �S2 .

Recall that in this paper, all surfaces in 3–manifolds are assumed to be compact and
properly embedded. A connected surface † in a 3–manifold N is called incompressible
if the inclusion induced group morphism �1†!�1N is injective. A Haken manifold is
an orientable and irreducible 3–manifold which contains an incompressible, orientable
surface † not homeomorphic to D2 or S2 .

Finally, given a property P of manifolds we say that a 3–manifold is virtually P if it
admits a (not necessarily regular) finite cover which has the property P .

2.3 Definitions from group theory

Let P be a property of groups and � be a group. As for manifolds, we say that �
is virtually P if � admits a (not necessarily normal) subgroup of finite index that
satisfies P . Furthermore, we say that � is residually P if given any g 2 � with g¤ 1

there exists a morphism ˛W�!G onto a group G that satisfies P such that ˛.g/¤ 1.
A case of particular importance is when P is the class of finite groups, in which case
� is said to be residually finite.

We say that a subset S of � is separable if for any g 2 � nS , there exists a morphism
˛W� ! G to a finite group with ˛.g/ 62 ˛.S/. We say that � is locally extended
residually finite (LERF) (or subgroup separable) if any finitely generated subgroup of
� is separable in this sense. Likewise, we say that � is conjugacy separable if every
conjugacy class in � is separable.

Finally, let � be a subgroup of � . We say that � is a retract (of � ) if there exists a
retraction of � onto � , that is, a group morphism �! � which is the identity on � .
We say that � is a virtual retract if there exists a finite index subgroup of � which
contains � as a retract.
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3 A quick trip through 3–manifold topology

In this section we recall some of the key results in 3–manifold topology. Along the
way we draw some first conclusions for the algorithmic study of 3–manifolds.

3.1 Moise’s theorem

The first theorem of this section is a consequence of [75; 76]. We refer to [8] for precise
references. The theorem says in particular that in the classification of 3–manifolds it
does not matter whether we work in the category of topological, triangulable or smooth
manifolds.

Theorem 3.1 (Moise) Let N be a topological 3–manifold.

� N admits a finite triangulation, ie N is homeomorphic to a finite simplicial
complex; any two triangulations are related by a finite sequence of subdivisions
and isotopies.

� N admits a smooth structure; any two smooth structures give rise to diffeomor-
phic manifolds.

We list various consequences of this theorem:

Corollary 3.2 The set of finite simplicial complexes which are homeomorphic to
closed 3–manifolds is recursively enumerable. Furthermore, the set of finite simplicial
complexes which are homeomorphic to closed orientable 3–manifolds is recursively
enumerable.

Proof The first statement follows immediately from Moise’s theorem and the fact that
there is an algorithm to determine whether a given finite simplicial complex represents
a 3–manifold. The algorithm in question simply checks that the link of each vertex is
a 2–sphere. The details are left to the reader. (See the proof of [30, Lemma 5.4].) The
second statement is proved in exactly the same way, except that now we also compute
the third homology group to check for orientability.

It is clear that, given a triangulation of a 3–manifold, we may write down a finite
presentation for its fundamental group, coming from the 2–skeleton. Hence the previous
corollary implies that there is a recursively enumerable set of finite presentations of
3–manifold groups which contains a presentation of each 3–manifold group. The next
result shows that we can also pass from groups to (closed) 3–manifolds.
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Lemma 3.3 There is an algorithm that takes as input a finite presentation for a group
� and outputs a closed 3–manifold N with �1N Š � , if one exists.

Proof By Corollary 3.2 and the remark following it, the set of triangulations of
closed 3–manifolds is recursively enumerable, and from a triangulation for a closed
3–manifold N , a finite presentation for �1N can be computed. Hence the claim
follows from the argument used in the proof of Lemma 1.4. (The algorithm will not
terminate if it is fed a finite presentation of a group that is not a fundamental group of
a closed 3–manifold.)

In contrast to the previous lemma, we have:

Lemma 3.4 There is no algorithm that takes as input a finite presentation for a group
� and decides whether � is the fundamental group of a closed 3–manifold.

This is an immediate consequence of the fact that although there is no algorithm to
decide whether a given finite presentation describes the trivial group [1; 2; 93], there
is such an algorithm for the class of 3–manifold groups (see Corollary 4.9 below).
One can also show Lemma 3.4 by observing that being a 3–manifold group is a
“Markov property” in the sense of [93], using the existence of finitely presentable
groups which cannot appear as subgroups of 3–manifold groups (for example, the
well-known Baumslag–Solitar groups [9], or Z4 ).

In fact, the word problem is the only obstacle in the way of algorithmically recognizing
closed geometric 3–manifolds:

Theorem 3.5 (Groves, Manning and Wilton [30]) Let G be any class of finitely
presentable groups with uniformly solvable word problem. Then there is an algorithm
which takes as input a finite presentation of a group from G and decides whether the
group presented by it is the fundamental group of a closed geometric 3–manifold.

In a forthcoming paper, Groves, Manning and Wilton will prove the corresponding
theorem in the remaining, non-geometric, case. So for example, one can determine
algorithmically whether a residually finite finitely presented group is a 3–manifold
group (cf Lemma 4.3 below).

Finally we observe that given the fundamental group � of a 3–manifold, we may find
a closed 3–manifold whose fundamental group retracts onto � .

Lemma 3.6 There is an algorithm that takes as input a finite presentation for the
fundamental group � of a 3–manifold and outputs a triangulation for a closed 3–
manifold N together with an inclusion � ,! �1N and a retraction �1N ! � .
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Proof Let M be a 3–manifold, and let N be the double of M . Then N is closed;
note that N is orientable if and only if M is orientable. The “folding map” N !M

is a retraction onto M , hence induces a left inverse �1N ! �1M to the morphism
�1M ! �1N induced by inclusion.

The algorithm enumerates all closed 3–manifolds N and all group morphisms i W �!

�1N and �W �1N ! � satisfying � ı i D id� . By the above discussion such N , i

and � exist. An algorithm as in the proof of Lemma 1.3 will eventually find them.

A similar argument as in the proof of the previous lemma, letting N run through all
closed orientable 3–manifolds instead of all closed 3–manifolds, shows:

Lemma 3.7 There is an algorithm that takes as input a finite presentation for the
fundamental group � of an orientable 3–manifold and outputs a triangulation for a
closed orientable 3–manifold N together with an inclusion � ,! �1N and a retraction
�1N ! � .

3.2 The prime decomposition theorem

The following theorem allows one to reduce many questions about 3–manifolds to
the case of prime 3–manifolds. The existence of a prime decomposition is due to
Kneser [55], and its uniqueness is due to Milnor [73, Theorem 1].

Theorem 3.8 (Prime decomposition theorem) Let N be an oriented 3–manifold
with no spherical boundary components.

� There exists a decomposition N Š N1 # � � � # Nr where the 3–manifolds N1 ,
: : :, Nr are oriented prime 3–manifolds.

� If N ŠN1 # � � �# Nr and N ŠN 0
1

# � � �# N 0s where the 3–manifolds Ni and N 0i
are oriented and prime, then r D s and (after reordering) there exist orientation-
preserving diffeomorphisms Ni!N 0i .

The following fact says that at least for closed 3–manifolds, the prime decomposition
can be computed; this is due to Jaco and Rubinstein [47] and Jaco and Tollefson [49,
Algorithm 7.1].

Theorem 3.9 There is an algorithm that takes as input a finite triangulation for a
closed, orientable 3–manifold N and outputs a finite list of triangulations for closed
oriented 3–manifolds N1; : : : ;Nr with the property that N1 # � � � # Nr is the prime
decomposition of N .
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Remark 3.10 The problem of determining whether an orientable 3–manifold is ir-
reducible (or prime) is decidable in space polynomial in the size of the triangulation.
This is implicit in the work of Jaco and Rubinstein [47] and it is also proved explicitly
by Ivanov [44, Theorem 1].

The prime decomposition theorem implies that the fundamental group of any orientable
3–manifold with no spherical boundary component can be written as the free product
of fundamental groups of prime 3–manifolds. The following theorem can be viewed
as a converse.

Theorem 3.11 (Kneser conjecture) Let N be a compact, orientable 3–manifold
with incompressible boundary and �1; �2 � �1N with �1N Š �1 ��2 . Then there
exist compact, orientable 3–manifolds N1 and N2 with �1Ni Š �i for i D 1; 2 and
N ŠN1 # N2 .

The Kneser conjecture was first proved by Stallings [107] in the closed case, and by
Heil [37, page 244] in the bounded case.

3.3 The geometrization theorem

The central result in 3–manifold topology is the geometrization theorem, which had
been conjectured by Thurston [110] and proved by Perelman.

Theorem 3.12 (Geometrization theorem) Let N be an orientable, irreducible 3–
manifold with empty or toroidal boundary. Then there exist disjointly embedded
incompressible tori T1; : : : ;Tk such that each component of N cut along T1[� � �[Tk

is hyperbolic or Seifert fibered. Any such collection of tori with a minimal number of
components is unique up to isotopy.

Jaco and Shalen [48] and Johannson [50] independently showed that N splits along tori
into Seifert fibered pieces and “atoroidal” pieces; they furthermore showed uniqueness
for a minimal collection of such tori. These atoroidal pieces were then shown by
Perelman [86; 87; 88] to be either small Seifert spaces or hyperbolic. The full details
of Perelman’s proof can be found in [77; 78].

The decomposition of N along a minimal collection of tori as in the geometrization
theorem is called the JSJ (Jaco–Shalen-Johannson) decomposition of N . The tori in
question are called the JSJ tori of N and the components obtained by cutting along
the JSJ tori are referred to as the JSJ components of N . If all of the JSJ components
are Seifert fibered, then one calls N a graph manifold.
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Remark 3.13 The geometrization conjecture has also been formulated for non-orien-
table 3–manifolds; we refer to [12, Conjecture 4.1] for details. To the best of our
knowledge this has not been fully proved yet.

Jaco and Tollefson [49] and also Jaco, Letscher and Rubinstein [45] showed how to
compute JSJ decompositions:

Theorem 3.14 There is an algorithm that takes as input a finite triangulation for a
closed, orientable, irreducible 3–manifold N and outputs the JSJ decomposition of N .

A proof of the following theorem is provided by [49, Algorithm 8.1].

Theorem 3.15 There is an algorithm that takes as input a finite triangulation for a
closed, orientable, irreducible 3–manifold N and determines whether N is Seifert
fibered or not.

3.4 Consequences of the geometrization theorem

The subsequent theorem is a consequence of the geometrization theorem together
with work of Leeb [59]; see also [10, Theorem 2.3] for the extension to the case of
non-toroidal boundary.

Theorem 3.16 If N is an aspherical, orientable 3–manifold which is not a closed
graph manifold, then the interior of N admits a complete, non-positively curved,
Riemannian metric.

It is important to note that there are graph manifolds that are not non-positively curved.
For example Sol- and Nil-manifolds are not non-positively curved. We refer to [16;
17] and [59] for more information.

The following theorem is a consequence of the geometrization theorem in combination
with the Mostow–Prasad rigidity theorem, work of Waldhausen [112, Corollary 6.5],
and Scott [100, Theorem 3.1] and classical work on spherical 3–manifolds.

Theorem 3.17 Let N and N 0 be two orientable, closed, prime 3–manifolds and let
'W�1N ! �1N 0 be an isomorphism. Then the following hold:

� If N and N 0 are not lens spaces, then N and N 0 are homeomorphic.

� If N and N 0 are not spherical, then there exists a homeomorphism which
induces ' .
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3.5 The virtually compact special theorem

We now turn to the theorem which is arguably the most important result in 3–manifold
topology since the proof of the geometrization conjecture. The statement was proved
by Wise [114; 115; 116] for hyperbolic 3–manifolds with boundary and for closed
hyperbolic 3–manifolds which admit a geometrically finite surface. The general case
of closed hyperbolic 3–manifolds is due to Agol [5].

Theorem 3.18 (Virtually compact special theorem) The fundamental group of a
hyperbolic 3–manifold is the fundamental group of a virtually special compact cube
complex.

The definition of a “special compact cube complex” goes back to Haglund and Wise [32].
We will not repeat the definition here, but we will give a precise algebraic statement
which is a consequence of the preceding theorem, and sufficient for our purposes.

In order to do so, we need one more definition. Given a graph G with vertex set
V D fv1; : : : ; vkg and edge set E , the corresponding right-angled Artin group is
defined as

� D �.G/D hv1; : : : ; vk j Œvi ; vj �D 1 if .vi ; vj / 2E i:

For example, free groups of finite rank and finitely generated free abelian groups are
right-angled Artin groups. See [19] for a survey on this class of groups. The following
theorem now follows from Theorem 3.18.

Theorem 3.19 Let N be a hyperbolic 3–manifold. Then �1N is virtually a virtual
retract of a right-angled Artin group. This means that there exists a finite index subgroup
� 0 of �1N , a finite-index subgroup � of a right-angled Artin group, and an embedding
� 0! � which has a left-inverse �! � 0 .

We refer to [8] for details. The virtually compact special theorem has many striking
consequences; for example, it implies by Agol’s theorem [4] (see also [27]) that any
hyperbolic 3–manifold with empty or toroidal boundary is virtually fibered. Together
with the tameness theorem of Agol [3] and Calegari and Gabai [18] and work of
Haglund [31] one also obtains the following theorem.

Theorem 3.20 Let N be a hyperbolic 3–manifold and � be a finitely generated
subgroup of � WD �1N . Then one of the following holds:
� � is a virtual retract of � .
� There exists a finite index subgroup � 0 of � which contains � as a normal

subgroup with � 0=� Š Z.

In either case, � is a separable subgroup of � .
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In the theorem the former case corresponds to � being “geometrically finite”, whereas
the latter corresponds to � being “geometrically infinite”. Here we again refer to our
survey [8] for details and precise references. Theorem 3.20 implies in particular that
the fundamental group of a hyperbolic 3–manifold is subgroup separable.

4 Decision problems

This section is organized as follows. For each decision problem, we start by stating
the theorem that describes its solvability in maximum generality and by sketching a
proof or giving all the relevant references. We then go on to give a brief sample of the
literature on the problem and discuss variations.

4.1 The word problem

The first classical decision problem which was solved for 3–manifold groups was the
word problem.

Theorem 4.1 The word problem is uniformly solvable in the class of fundamental
groups of 3–manifolds.

It is conceptually easiest to prove the theorem by appealing to the following theorem, a
consequence of the geometrization theorem and work of Hempel [40].

Theorem 4.2 The fundamental group of each 3–manifold is residually finite.

Theorem 4.1 is now an immediate consequence of the following well-known observation
of Dyson [24] and Mostowski [79], which in essence goes back to McKinsey [67];
see [26].

Lemma 4.3 The word problem is uniformly solvable in the class of finitely presented
residually finite groups.

Proof Let � D hA jRi be a finite presentation for a residually finite group and let w
be a word in A. Systematically enumerate all words which are products of conjugates of
elements in R and check whether w is one of them, and simultaneously also enumerate
all morphisms ˛W� ! G to finite groups G and test whether the element g of �
represented by w is in the kernel of ˛ . If w represents the identity element of � ,
then our first procedure eventually detects this; on the other hand, if w represents an
element g ¤ 1 of � , then by residual finiteness there exists a morphism ˛W�!G to
a finite group with ˛.g/¤ 1, and our second procedure will detect this after finitely
many steps.
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Although this approach gives a clean and uniform solution to the word problem, it has
the disadvantage that it gives a very poor upper bound for its computational complexity.
Another approach, which gives much better estimates of the complexity of the algorithm
involved, uses the notion of automaticity. We refer to [25] for the definition of an
automatic group and for further details.

For our purposes, the key fact is that the elements of an automatic group can efficiently
be put into a canonical form [25, Theorem 2.3.10]; in particular, the word problem is
(efficiently) solvable in automatic groups.

Theorem 4.4 [25, Theorem 12.4.7] Let N be an orientable 3–manifold such that no
prime factor admits Nil or Sol geometry. Then �1N is automatic.

By another result of [25], there is an algorithm that finds automatic structures on groups,
and it follows that this solution to the word problem is uniform.

One way to quantify the efficiency of this solution to the word problem uses the notion
of the Dehn function of a group. Given a finite presentation hA jRi of a group � and
word w 2 F.A/ that represents the identity element in � , the area of w is defined to
be the minimal n such that

w D

nY
iD1

gir
˙1
i g�1

i ; where gi 2 F.A/ and ri 2R.

The Dehn function ıhA jRiWN!N of the presentation hA jRi is defined by

ıhA jRi.n/DmaxfArea.w/ W lA.w/� n; w D� 1g;

where lA.w/ is the length of the word w in F.A/; that is, ı.n/ is the maximal area
among all words of length at most n in F.A/ which represent the identity element of
� . Although this definition depends on the presentation hA jRi of � , it turns out that
the growth type of ıhA jRi only depends on � , and so we will often write ı� instead.
The word problem in � is solvable if and only if its Dehn function is computable (by a
Turing machine). Roughly speaking, the Dehn function of � measures the difficulty of
solving the word problem in � .

Definition 4.5 The group � is said to satisfy a linear (respectively sub-quadratic,
quadratic, exponential) isoperimetric inequality if ı� is bounded above by a linear
(respectively sub-quadratic, quadratic, exponential) function.

The terminology refers to a beautiful filling theorem which, for a compact Riemannian
manifold N , relates the growth type of ı�1N to solutions to Plateau’s problem in the
universal cover of N (see [14]).
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The connection to automaticity is given by [25, Theorem 2.3.12]:

Theorem 4.6 Every automatic group satisfies a quadratic isoperimetric inequality.

The combination of Theorems 4.4 and 4.6 now gives the following corollary.

Corollary 4.7 Let N be an orientable 3–manifold such that no prime factor admits
Nil or Sol geometry. Then �1N satisfies a quadratic isoperimetric inequality.

This result is optimal, as demonstrated by the following consequence of the geometriza-
tion theorem and a theorem of Gromov [29, 2.3.F] (see also [84]).

Theorem 4.8 For an irreducible 3–manifold N , the following are equivalent:

� �1N satisfies a sub-quadratic isoperimetric inequality.

� �1N satisfies a linear isoperimetric inequality.

� N is hyperbolic.

The Nil and Sol cases are also known: Nil-manifolds have cubic Dehn functions and
Sol manifolds have exponential Dehn functions; see Example 8.1.1 and Theorem 8.1.3
of [25], respectively.

A third approach to the word problem is provided by non-positive curvature: if N

admits a non-positively curved metric then, by the filling theorem alluded to above,
�1N admits a quadratic isoperimetric inequality. By Theorem 3.16 this gives a solution
to the word problem for a very large class of 3–manifolds.

We note some consequences of the solvability of the uniform word problem for 3–
manifold groups:

Corollary 4.9 There is an algorithm which upon input of a finite presentation of a
3–manifold group � , decides whether � is trivial, respectively abelian.

Proof A finitely generated group G is trivial if and only if each generator is trivial,
and G is abelian if and only if each pair of generators commutes. Both conditions can
be effectively verified using an algorithm for the word problem.
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4.2 The conjugacy problem

The second of Dehn’s decision problems also has a positive solution for 3–manifold
groups:

Theorem 4.10 The conjugacy problem is uniformly solvable in the class of fundamen-
tal groups of 3–manifolds.

Préaux, extending Sela’s work on knot groups [102], proved that the conjugacy problem
is solvable, first for the fundamental groups of orientable 3–manifolds [90], and then
also for the fundamental groups of non-orientable 3–manifolds [91]. (Note that, in
contrast to many other group properties, solvability of the conjugacy problem does
not automatically pass to finite extensions.) Although he does not explicitly state it,
Préaux’s solution to the conjugacy problem for 3–manifold groups is uniform.

For orientable 3–manifolds we can also give a proof of this theorem which is analogous
to the first proof in the previous section. More precisely, building on the virtually com-
pact special theorem and work of Minasyan [74] it was shown in [35, Theorem 1.3] that
the fundamental group of any orientable 3–manifold N is conjugacy separable. This
means that given any non-conjugate g; h2 �1N there exists a morphism ˛W�1N !G

to a finite group G such that ˛.g/ and ˛.h/ are non-conjugate. It now follows from an
argument similar to the proof of Lemma 4.3 that the conjugacy problem is uniformly
solvable for fundamental groups of orientable 3–manifolds.

As in the last section, if a 3–manifold N admits a non-positively curved metric, then
[15, Theorem III.� .1.12] gives another solution to the conjugacy problem for �1N .
However, as the constants involved in this theorem depend on the non-positively curved
metric on N , this does not a priori give a uniform solution.

Finally, the conjugacy problem is not known to be solvable for automatic groups [25,
Open Question 2.5.8]. The conjugacy problem is known to be solvable for biautomatic
groups, but it is unknown whether automatic 3–manifold groups are biautomatic [8,
Question 9.33].

4.3 The membership problem

The following theorem was recently proved in [28]. It should be contrasted with the
fact that the membership problem is not solvable even for fairly simple groups like the
direct product F2 �F2 of two copies of the free group F2 on two generators [68; 70].

Theorem 4.11 The membership problem is uniformly solvable in the class of funda-
mental groups of 3–manifolds.
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In Theorem 3.20 we saw that fundamental groups of hyperbolic 3–manifolds are
subgroup separable. Using the argument of the proof of Lemma 4.3 we then obtain a
solution to the uniform membership problem for fundamental groups of hyperbolic 3–
manifolds. This approach works also for fundamental groups of Seifert fibered spaces,
which are subgroup separable by work of Scott [98]. The argument can also be used for
special classes of subgroups, eg subgroups carried by embedded surfaces [92], but this
approach does not work in general. For example, Niblo and Wise [81, Theorem 4.2]
showed that the fundamental groups of most graph manifolds are not subgroup separable.
We thus see that we cannot hope to prove Theorem 4.11 in the general case by appealing
to separability properties only.

In the following we will summarize the proof of Theorem 4.11. We refer to [28] for
full details and for a careful discussion of the fact that we can give a uniform solution
to the membership problem.

In the proof of Theorem 4.11 we employ the following useful lemma.

Lemma 4.12 Let G be a class of finitely presentable groups, and let R be a set of
finite presentations of groups. Suppose that every group in G is virtually isomorphic to
a group presented by some element of R. If
� the membership problem is uniformly solvable in the class of groups presented

by elements of R, and
� R is recursively enumerable,

then the membership problem is also uniformly solvable in G .

Proof Consider a group � in G . Using the Reidemeister–Schreier procedure, we may
enumerate all subgroups of finite index in � . Because R is recursively enumerable,
we will eventually find one, �0 say, that we may confirm is in R, using Lemma 1.4.

Let H be a finitely generated subgroup of � , specified by a finite set of elements. By
Lemma 1.5, we may compute a generating set for H0 D H \ �0 and a set of (left)
coset representatives h1; : : : ; hk for H0 in H . Now, let g 2 � be given. For each
i , we may determine whether h�1

i g 2 �0 , since membership in subgroups of finite
index is always decidable. If there is no such i then evidently g 62 H . Otherwise,
if h�1

i g 2 �0 then, using the solution to the membership problem in �0 , we may
determine whether h�1

i g 2H0 . Since g 2H if and only if h�1
i g 2H0 for some i ,

this solves the membership problem in � .

Solvability of the membership problem in fundamental groups of graphs of groups
was addressed by Kapovich, Miasnikov and Weidmann [51], who gave the following
definition. See [7, Section 1.2] or [105] for the definition of a graph of groups.
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Definition 4.13 Consider a graph of finitely generated groups. In the following, Gv
is a vertex group and Ge is an incident edge group. Such a graph of finitely generated
groups is benign if:

(B1) For each vertex v there is an algorithm to test membership of double cosets of
the form HGe in Gv , where e is an incident edge and H is a finitely generated
subgroup of Gv .

(B2) For each edge e the group Ge is slender, meaning that every subgroup of Ge is
finitely generated.

(B3) For each edge e there is an algorithm to solve the membership problem in the
edge group Ge .

(B4) For each vertex v and incident edge e , there is an algorithm to compute gener-
ating sets for intersections H \Ge , where H is a finitely generated subgroup
of Gv .

Theorem 4.14 (Kapovich, Miasnikov and Weidmann [51, Theorem 5.13]) The mem-
bership problem is solvable for fundamental groups of benign graphs of groups in which
every vertex group has solvable membership problem.

Remark 4.15 The given solution is not a priori uniform. However, it depends only
on the graph of groups and the algorithms guaranteed by the hypotheses. If these can
be found uniformly, then the solution to the membership problem is indeed uniform.

For future reference we record the following immediate corollary first proved by
Mihaı̆lova [69; 71]; see also [51, Corollary 5.16].

Corollary 4.16 Solvability of the membership problem is preserved under taking free
products.

We now argue that the JSJ graph of groups of a closed 3–manifold is benign.

Condition (B1) follows from an argument as in Lemma 4.3 and the fact that given a
fundamental group of a Seifert fibered space or a hyperbolic 3–manifold, any product of
two finitely generated subgroups is separable. In the Seifert fibered case this was proved
by Niblo [80] building on the aforementioned work of Scott [98]. In the hyperbolic
case this is an extension of Theorem 3.20, which follows from work of Wise [116,
Theorem 16.23] combined with work of Hruska [43, Corollary 1.6].

Condition (B2) is immediate, and (B3) follows from the fact that the membership
problem in Z2 can be solved easily using basic algebra.
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Therefore, to prove the solvability of the membership problem in 3–manifold groups,
it now remains to address (B4). We deal with the Seifert fibered and hyperbolic cases
separately, in the following two lemmas.

Lemma 4.17 Let N be a hyperbolic 3–manifold with toroidal boundary. Let P be a
cusp subgroup of � D �1N . There is an algorithm, uniform in � and P , that takes
as input a finite set of elements that generate a subgroup � of � , and computes a
generating set for � \P .

Proof By Theorem 3.20, one of the following happens:

(1) There exists a finite-index subgroup �0 of � and a retraction �W�0! � .

(2) There exists a finite-index subgroup �0 and a morphism pW�0! Z such that
� D Ker p .

We now run two algorithms simultaneously: A naive search using the Reidemeister–
Schreier algorithm to find �0 and � as in Case (1), and a naive search using the
Reidemeister–Schreier algorithm and the algorithm used in the proof of Lemma 1.4
looking for �0 and p as in Case (2). Since Case (1) or (2) hold, one of these algorithms
will terminate. By Lemma 1.5, in either case we can compute generators for P0 D

�0\P .

In Case (2), �\P D .Ker p/\P0 , which can be computed by standard linear algebra.

Suppose that we are in Case (1). We note that �\P D �.P0/\P0 . Using the solution
to the word problem in � we can determine whether all generators of �.P0/ and P0

commute, ie whether Œ�.P0/;P0�D 1.

First suppose that Œ�.P0/;P0� D 1. It follows from the well-known fact that P0 is
maximal abelian in �0 (see [8, Theorem 3.1]) that then �.P0/� P0 , which implies
that � \P D �.P0/.

Now suppose that Œ�.P0/;P0� ¤ 1. The fact that N is hyperbolic implies by [8,
Corollary 3.11] that the centralizer of any non-identity element in �0 is abelian. It now
follows that �.P0/\P0 D 1 and so � \P D 1.

A similar argument deals with the case of a product manifold:

Lemma 4.18 Let N be a compact Seifert-fibered manifold with boundary and let P

be a cusp subgroup of � D �1N . There is an algorithm, uniform in � and P , that
takes as input a finite set of elements that generate a subgroup � of � , and computes a
generating set for � \P .
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Proof Since N is finitely covered by a product †�S1 (where † is a compact surface
with boundary), one quickly reduces to the case N D†�S1 (see [28, Lemma 26] for
full details).

The case that † is a disk or an annulus is trivial. We therefore henceforth assume
that �.†/ < 0. Note that, since every finitely generated subgroup of a surface group
�1† is a virtual retract (this is implicit in [98]), it follows easily that every finitely
generated subgroup of �1†�Z is a virtual retract. Therefore, a naive search using
the Reidemeister–Schreier algorithm will find a finite-index subgroup �0 of � and a
retraction �W�0! � . As in the proof of Lemma 4.17, we can compute generators for
P0 D �0\P .

Again, we note that � \P D �.P0/\P0 . As before, an explicit computation again
determines whether Œ�.P0/;P0�D 1. If so then, just as before, because P0 is maximal
abelian we have �.P0/� P0 and so �.P0/D � \P . If not, then by the commutative
transitivity of �1†, we deduce that � \P D �.P0/\P0 is contained in the center
Z0 of �0 and so it suffices to compute �.P0/ \Z0 . (Here recall that a group is
commutative transitive if Œa; b� D 1 and Œb; c� D 1 imply that Œa; c� D 1.) But now
�.P0/ \ Z0 can be seen in the abelianization of �0 , and so can be computed by
elementary linear algebra.

We are now ready to prove that the membership problem is solvable.

Proof of Theorem 4.11 We start out by showing that it suffices to show that the
membership problem is uniformly solvable for the class of fundamental groups of
orientable 3–manifolds. To see this, let � be the fundamental group of a 3–manifold
N . Then � 0 WD Ker.� ! H1.� IF2// is the fundamental group of an orientable 3–
manifold. By Lemma 1.5, we can determine a presentation for � 0 . Moreover, by
Lemma 4.12, a solution to the membership problem for � 0 also gives a solution to the
membership problem for � . This concludes the proof of the claim.

By the claim and Lemma 3.7, we may now assume that � is the fundamental group
of a closed orientable 3–manifold N and that we furthermore have a triangulation
for N available. By Theorem 3.9 we can determine the prime decomposition of N .
By Corollary 4.16 it thus suffices to consider the prime components of N . We can
henceforth assume that N is irreducible.

Using Theorem 3.15 we determine whether N is Seifert fibered. As mentioned before,
in this case, � is subgroup separable by [98]; this immediately gives a uniform solution
to the membership problem. If N is not Seifert fibered, then we use Theorem 3.14
to determine the JSJ decomposition of N . The corresponding graph of groups de-
composition of � is benign by Lemmas 4.17 and 4.18. So the result follows from
Theorem 4.14.
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Remark 4.19 As a further consequence of [51, Theorem 5.8(b)], we also get that
the uniform finite presentation problem for closed, orientable 3–manifold groups is
solvable. That is, there is an algorithm that takes as input a finite set S of elements
of a fundamental group � of a closed, orientable 3–manifold and outputs a finite
presentation for the subgroup hSi of � , and this algorithm is uniform in � .

4.4 The isomorphism problem

Much of the material in this section derives from [103, Section 10]. We refer to [11]
for further details.

Theorem 4.20 The isomorphism problem for the class of fundamental groups of
closed, orientable 3–manifolds is solvable.

In the remainder of this section we will sketch the proof of Theorem 4.20. First, it
follows from Lemma 3.3 together with Theorems 3.9 and 3.11 that it suffices to solve
the isomorphism problem for fundamental groups of closed, orientable and irreducible
3–manifolds.

At this stage, the argument divides into the cases in which N is Haken and N is
non-Haken. First, we need to be able to determine which case we are in. That we can
follows from [46, Theorem 4.3].

Theorem 4.21 (Jaco and Oertel) There is an algorithm to determine whether a given
closed, irreducible 3–manifold N is Haken.

The Haken case is dealt with by the following theorem of Haken [34], Waldhausen [113],
Hemion [38] and Matveev [66].

Theorem 4.22 (Haken) There is an algorithm that determines whether an input pair
of orientable Haken 3–manifolds are homeomorphic.

By Theorem 3.17, this gives rise to a group-theoretic analogue.

Corollary 4.23 The isomorphism problem for the class of fundamental groups of
closed, orientable, Haken 3–manifolds is solvable.

It remains to deal with the non-Haken case which, by geometrization, divides into three
cases: spherical, small Seifert fibered with infinite fundamental group and hyperbolic.
The next theorem asserts that these can be recognized algorithmically.
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Theorem 4.24 There is an algorithm to determine whether a given closed, orientable,
non-Haken 3–manifold is spherical, small Seifert fibered with infinite fundamental
group, or hyperbolic.

See [103, Theorem 10.5] for the proof. The main ingredient is Papasoglu’s algorithm
for finding word-hyperbolic structures on a group [85]. Alternatively, one could use
Manning’s algorithm [63].

It now remains to solve the isomorphism problem in these three cases. The isomorphism
problem is easily solvable for finite groups: given finite presentations hA jRi and
hA0 jR0i for groups � , � 0 , respectively, first use the Todd–Coxeter algorithm (see
[106]) to construct multiplication tables for � , � 0 , using which it is straightforward to
determine whether � Š � 0 . The remaining two cases are dealt with by the following
theorems of Sela.

Theorem 4.25 (Sela) The isomorphism problem is solvable for the infinite groups
which are fundamental groups of small Seifert fibered manifolds.

The proof of this theorem is the content of [103, pages 280–281]. The problem quickly
reduces to the isomorphism problem for triangle groups. Using more heavy machinery,
one could instead invoke Dahmani and Guirardel’s solution to the isomorphism problem
for word-hyperbolic groups with torsion [22].

Theorem 4.26 (Sela) The isomorphism problem is solvable for fundamental groups
of closed, orientable hyperbolic 3–manifolds.

This is an immediate corollary of the main theorem of [103]. Scott and Short [101]
gave an alternative proof using Manning’s algorithm [63].

This completes the proof of Theorem 4.20.

4.5 The homeomorphism problem

In several places in the literature, it is stated that an affirmative solution to the homeomor-
phism problem for all closed, orientable 3–manifolds follows from the geometrization
theorem and the aforementioned work of Sela [103]. In fact, we have:

Theorem 4.27 The homeomorphism problem is solvable for orientable, irreducible
3–manifolds with only incompressible boundary components.
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Note that by Theorem 3.1, two 3–manifolds are diffeomorphic if and only if they are
homeomorphic. A solution to the homeomorphism problem is thus also a solution to
the Diffeomorphism problem.

Proof Let N and N 0 be orientable, irreducible 3–manifolds. It is well-known how
to compute the first Betti numbers b1N , b1N 0 of N respectively N 0 .

First assume that b1N � 1 or b1N 0� 1, say b1N � 1. Evidently N 0 is homeomorphic
to N only if b1N 0 � 1, so we may also assume b1N 0 � 1. Since the boundary
components of N and N 0 are incompressible it follows from a standard argument (see
[8, (C.18)]) that N and N 0 are Haken. A solution to the homeomorphism problem for
Haken manifolds has been given by Matveev [66, Theorem 6.1.1], building on earlier
work of Hemion [38] and Haken [34].

We now suppose that b1N D b1N 0 D 0. Since N is irreducible it follows that N is
either the 3–ball or closed, and similarly for N 0 . Since connected closed orientable
surfaces are classified by their Euler characteristics one can easily determine whether
the boundaries of N and N 0 are homeomorphic to S2 . Hence we can now restrict to
the case that N and N 0 are closed.

By Theorem 4.20 we can determine whether �1N and �1N 0 are isomorphic. If they
are, then Theorem 3.17 implies that N and N 0 are either homeomorphic or they are both
lens spaces. Suppose that N and N 0 are lens spaces with fundamental group Z=pZ.
By the classification of lens spaces we can provide a complete, necessarily finite, list
of pairwise non-homeomorphic triangulated lens spaces L1; : : : ;Lk with fundamental
group Z=pZ. Since N and N 0 are PL–isomorphic to precisely one of the Li we
can now determine whether or not N and N 0 are homeomorphic. Alternatively, one
can use Reidemeister’s original approach [94] via the torsion invariant to determine
whether N and N 0 are homeomorphic.

We do not doubt that the hypotheses of Theorem 4.27 can be relaxed; in particular, most
experts agree that a solution to the homeomorphism problem among closed, orientable
3–manifolds that are not necessarily irreducible is within the reach of current techniques.
However, the details of such an algorithm do not, as far as we know, appear in the
literature.1

In order to deal with the reducible case, one needs to address the oriented nature of
the uniqueness part of the Kneser–Milnor decomposition. Specifically, a proof of the
following statement is required:

1While this paper was in publication, a detailed treatment of the oriented homeomorphism problem
appeared [58].
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There is an algorithm that determines whether a closed, orientable, irreducible
3–manifold admits an orientation-reversing self-homeomorphism.

In the case of a hyperbolic manifold M of finite volume, this fact can be deduced from
published results. By Mostow rigidity, any automorphism of �1M is induced by a
self-homeomorphism. The extension of Sela’s results by Dahmani and Groves [20]
makes it possible to list the elements f˛ig of the (finite) outer automorphism group of
�1M , and computing the action on H3 determines whether or not each ˛i reverses
orientation. Alternatively, one can attempt to modify the Scott–Short algorithm [101]
(cf [58]).

In order to complete the solution to the homeomorphism problem in the closed case,
one needs to analyze the remaining Seifert fibered and Haken cases. Perhaps a variation
of the Haken–Hemion–Matveev algorithm [66, Theorem 6.1.1] can be used to solve the
oriented homeomorphism problem in the Haken case. Alternatively, using the canonical
properties of the JSJ decomposition, it should be possible to reduce the question to the
hyperbolic and Seifert fibered cases.

In our opinion, a detailed solution of the above problem would be a great service to the
community, and fill an important gap in the literature.

Another problem that has attracted a lot of attention is the problem of deciding whether
a given 3–manifold is homeomorphic to a particular kind of 3–manifold (eg spheres,
handlebodies etc). For example, Rubinstein [96] gave an algorithm that determines
whether a 3–manifold is homeomorphic to a 3–sphere, whose correctness was shown
in [109]. Later, Ivanov [44] and Schleimer [97] showed that this problem is the
complexity class NP, that is, decidable in nondeterministic polynomial time (in size
of the triangulation). In his paper [44], Ivanov also gave another proof of the result
of Hass, Lagarias and Pippenger [36] that the problem of detecting whether a knot
(represented by a triangulation of its complement) is the unknot, which was first shown
to be decidable by Haken [33], is in NP. Kuperberg [57], using a theorem of Koiran [56],
has shown that modulo the generalized Riemann hypothesis, unknot detection is also
in co-NP, so (assuming also standard conjectures in complexity theory) not NP–hard.
For some NP–complete decision problems in knot theory, see [6].

5 Open problems

We conclude this survey paper with a list of problems and conjectures. As we saw in
Theorem 4.20, the isomorphism problem for the class of fundamental groups of closed,
orientable 3–manifolds has an algorithmic solution. It is natural to ask whether the
restriction to closed 3–manifolds is necessary.
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Question 5.1 Is there an algorithm which determines whether two fundamental groups
of 3–manifolds are isomorphic?

The equation problem asks for a solution to the problem whether any set of “equations”
over a group has a solution. It generalizes both the word problem and the conjugacy
problem, and has been solved for torsion-free hyperbolic groups by Makanin [62] and
Rips and Sela [95], for hyperbolic groups with torsion by Dahmani and Guirardel [21]
and for fundamental groups of Seifert fibered spaces by Liang [60]. The following
question thus arises.

Question 5.2 Is the equation problem solvable for the fundamental group of any
3–manifold?

Even more ambitiously, one may ask about the decidability of the full elementary
theory of each 3–manifold group viewed as a structure in the language of groups, in
the sense of model theory; see [64, Example 1.2.5].

Question 5.3 Let � be a 3–manifold group. Is the first-order theory of � decidable?

See [52; 54] for work on this problem in the case where � is a free group respectively
a torsion-free hyperbolic group, but see also [53; 104].

Finally, we return to topological decision problems. A 3–manifold pair is a pair
.N;S/, where N is a 3–manifold and S is a subsurface in @N . For example, let
LDL1[� � �[Ln be an oriented link in a 3–manifold Y . Pick a tubular neighborhood
�L in Y and denote by �1; : : : ; �n the meridians of L1; : : : ;Ln , respectively. The
diffeomorphism class of .Y;L/ is then determined by the diffeomorphism class of the
3–manifold pair .Y n�L; �1�I [� � �[�n�I/. Sutured manifolds give naturally rise
to 3–manifold pairs.

Question 5.4 Is there a solution to the homeomorphism problem for 3–manifold
pairs?
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