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Charts, signatures, and stabilizations
of Lefschetz fibrations
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We employ a certain labeled finite graph, called a chart, in a closed oriented surface to
describe the monodromy of a(n achiral) Lefschetz fibration over the surface. Applying
charts and their moves with respect to Wajnryb’s presentation of mapping class groups,
we first generalize a signature formula for Lefschetz fibrations over the 2–sphere
obtained by Endo and Nagami to that for Lefschetz fibrations over arbitrary closed
oriented surface. We then prove two theorems on stabilization of Lefschetz fibrations
under fiber summing with copies of a typical Lefschetz fibration as generalizations of
a theorem of Auroux.

57M15; 57N13

1 Introduction

Matsumoto [31] proved that every Lefschetz fibration of genus one over a closed
oriented surface is isomorphic to a fiber sum of copies of a holomorphic elliptic
fibration on CP2 # 9CP2 and a trivial torus bundle over the surface if it has at least
one critical point. This result played a crucial role in completing the classification of
diffeomorphism types of elliptic surfaces (see Gompf and Stipsicz [13, Section 8.3]).
Although such a classification has not been established for Lefschetz fibrations of higher
genus, Auroux [1] proved a stabilization theorem for Lefschetz fibrations of genus two,
which states that every Lefschetz fibration of genus two over the 2–sphere becomes
isomorphic to a fiber sum of copies of three typical fibrations after fiber summing
with a holomorphic fibration on CP2 # 13CP2 . Auroux [2] gave a generalization of
this theorem for Lefschetz fibrations of higher genus, which states that two Lefschetz
fibrations of the same genus over the 2–sphere which have the same signature, the
same numbers of singular fibers of each type, and admit sections of the same self-
intersection number become isomorphic after fiber summing the same number of copies
of a “universal” Lefschetz fibration.
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Kamada [17; 18] introduced charts, which are labeled finite graphs in a disk, to
describe monodromies of surface braids (see also a textbook of Kamada [19]). Kamada,
Matsumoto, Matumoto, and Waki [22] considered a variant of charts for Lefschetz
fibrations of genus one to give a remarkably simple proof of the above result of
Matsumoto. Furthermore, Kamada [21] and Endo and Kamada [6; 5] made use of
generalized charts to give a simple proof of the above theorem of Auroux for Lefschetz
fibrations of genus two, and to investigate a stabilization theorem and an invariant of
hyperelliptic Lefschetz fibrations of arbitrary genus. See also Baykur and Kamada [4],
and Hayano [16] for applications of charts to broken Lefschetz fibrations.

In this paper we introduce a chart description for Lefschetz fibrations of genus greater
than two over closed oriented surfaces of arbitrary genus to show a signature formula and
two theorems on stabilization for such fibrations. In Section 2 we introduce charts and
chart moves with respect to Wajnryb’s presentation of mapping class groups to examine
monodromies of Lefschetz fibrations. After a short survey of Meyer’s signature cocycle,
we generalize a signature formula of Endo and Nagami [8] for Lefschetz fibrations over
the 2–sphere to that for Lefschetz fibrations over a closed oriented surface of arbitrary
genus in Section 3. Section 4 is devoted to proofs of two theorems on stabilization
of Lefschetz fibrations under fiber summing with copies of a “universal” Lefschetz
fibration. In particular the first of our stabilization theorems is a generalization of the
theorem of Auroux [2]. We make several comments on variations of chart description
and propose some possible directions for future research in Section 5.

2 Chart description for Lefschetz fibrations

In this section we review a definition and properties of Lefschetz fibrations and introduce
a chart description for Lefschetz fibrations of genus greater than two.

2.1 Lefschetz fibrations and their monodromies

In this subsection we review a precise definition and basic properties of Lefschetz
fibrations. More details can be found in Matsumoto [32] and Gompf and Stipsicz [13].

Let †g be a connected closed oriented surface of genus g .

Definition 2.1 Let M and B be connected closed oriented smooth 4–manifold and
2–manifold, respectively. A smooth map f W M ! B is called a Lefschetz fibration of
genus g if it satisfies the following conditions:

(i) The set �� B of critical values of f is finite and f is a smooth fiber bundle
over B �� with fiber †g .
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(ii) For each b 2 �, there exists a unique critical point p in the singular fiber
Fb WD f

�1.b/ such that f is locally written as f .z1; z2/D z1z2 or xz1z2 with
respect to some local complex coordinates around p and b which are compatible
with the orientations of M and B .

(iii) No fiber contains a ˙1–sphere.

We call M the total space, B the base space, and f the projection. We call p

a critical point of positive type (resp. of negative type) and Fb a singular fiber of
positive type (resp. of negative type) if f is locally written as f .z1; z2/D z1z2 (resp.
f .z1; z2/D xz1z2 ) in (ii). For a regular value b 2 B of f , f �1.b/ is often called a
general fiber.

Remark 2.2 A Lefschetz fibration in this paper is called an achiral Lefschetz fibration
in many other papers.

Let f W M ! B and f 0W M 0! B be Lefschetz fibrations of genus g over the same
base space B . We say that f is isomorphic to f 0 if there exist orientation-preserving
diffeomorphisms H W M !M 0 and hW B! B which satisfy f 0 ıH D h ıf . If we
can choose such an h isotopic to the identity relative to a given base point b0 2 B , we
say that f is strictly isomorphic to f 0 .

Let Mg be the mapping class group of †g , namely, the group of all isotopy classes
of orientation-preserving diffeomorphisms of †g . We assume that Mg acts on the
right: the symbol ' means that we apply ' first and then  for '; 2Mg . We
denote the mapping class group of †g acting on the left by M�g . Hence the identity
map Mg!M�g is an anti-isomorphism.

Let f W M ! B be a Lefschetz fibration of genus g as in Definition 2.1. Take a base
point b0 2B and an orientation-preserving diffeomorphism ˆW †g!F0 WD f

�1.b0/.
Since f restricted over B �� is a smooth fiber bundle with fiber †g , we can define
a homomorphism

�W �1.B ��; b0/!Mg;

called the monodromy representation of f with respect to ˆ. Let 
 be the loop based
at b0 consisting of the boundary circle of a small disk neighborhood of b 2� oriented
counterclockwise and a simple path connecting a point on the circle to b0 in B ��.
It is known that �.Œ
 �/ is a Dehn twist along some essential simple closed curve c

on †g , which is called the vanishing cycle of the critical point p on f �1.b/. If p

is of positive type (resp. of negative type), then the Dehn twist is right-handed (resp.
left-handed).
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A singular fiber is said to be of type I if the vanishing cycle is non-separating and
of type IIh for h D 1; : : : ; Œg=2� if the vanishing cycle is separating and it bounds a
genus-h subsurface of †g . A singular fiber is said to be of type IC (resp. type I� and
type IIC

h
, type II�

h
) if it is of type I and of positive type (resp. of type I and of negative

type, of type IIh and of positive type, of type IIh and of negative type). We denote
by nC

0
.f /, n�

0
.f /, nC

h
.f /, and n�

h
.f /, the numbers of singular fibers of f of type

IC , I� , IIC
h

, and II�
h

, respectively. A Lefschetz fibration is called irreducible if every
singular fiber is of type I. A Lefschetz fibration is called chiral if every singular fiber is
of positive type.

Suppose that the cardinality of � is equal to n. A system AD .A1; : : : ;An/ of arcs on
B is called a Hurwitz arc system for � with base point b0 if each Ai is an embedded
arc connecting b0 with a point of � in B such that Ai \Aj D fb0g for i ¤ j , and
they appear in this order around b0 (see Kamada [19]). When B is a 2–sphere, the
system A determines a system of generators of �1.B ��; b0/, say .a1; : : : ; an/. We
call .�.a1/; : : : ; �.an// a Hurwitz system of f .

2.2 Chart description and Wajnryb’s presentation

In this subsection we introduce a chart description for Lefschetz fibrations of genus
greater than two by employing Wajnryb’s finite presentation [40] of mapping class
groups. General theories of charts for presentations of groups were developed indepen-
dently by Kamada [20] and Hasegawa [15]. We use the terminology of chart description
in Kamada [20].

c1

c2
c3 c4

c0

c2g

c2 c2h c2hC2 c2g

sh

Figure 1: Simple closed curves on †g

We first review a finite presentation of the mapping class group of a closed oriented
surface due to Wajnryb. For i D 0; 1; : : : ; 2g , let �i be a right-handed Dehn twist along
the simple closed curve ci on †g depicted in Figure 1.
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Theorem 2.3 (Wajnryb [40; 41]) Suppose that g is greater than two. The mapping
class group Mg is generated by the elements �0; �1; �2; : : : ; �2g and has the following
defining relations:

� (Far commutation)

�i�j D �j�i .1� i < j � 1� 2g� 1/;

�0�j D �j�0 .j D 1; 2; 3; 5; : : : ; 2g/:

� (Braid relation)

�i�iC1�i D �iC1�i�iC1 .i D 1; : : : ; 2g� 1/;

�0�4�0 D �4�0�4:

� (3–chain relation)

.�3�2�1/
4
D �0�

�1
4 ��1

3 ��1
2 ��2

1 ��1
2 ��1

3 ��1
4 �0�4�3�2�

2
1�2�3�4:

� (Lantern relation)

ı3�1�3�5 D �0�2�0�
�1
2 �1�2�0�

�1
2 ��1

1 ;

where

�1 WD �2�3�1�2; �2 WD �4�5�3�4; � WD �5�6�2�0�
�1
2 ��1

6 ��1
5 ;

� WD �1�2�3�4�0�
�1
4 ��1

3 ��1
2 ��1

1 ; ı3 WD �
�1
6 ��1

5 ��1
4 ��1

3 ��1
2 ��1���2�3�4�5�6:

� (Hyperelliptic relation)

�2g � � � �3�2�
2
1�2�3 � � � �2gıg D ıg�2g � � � �3�2�

2
1�2�3 � � � �2g;

where

�1 WD �2�3�1�2; �i WD �2i�2i�1�2iC1�2i ;

�1 WD �
�1
4 ��1

3 ��1
2 ��2

1 ��1
2 ��1

3 ��1
4 �0�4�3�2�

2
1�2�3�4; �i WD �i�1�i�i�1�

�1
i ��1

i�1;

�1 WD �2�3�4�1�
�1
1 ��1

2 ��1
3 ��1

4 ;

�i WD �2i�2iC1�2iC2�i�
�1
2i�1�

�1
2i �
�1
2iC1�

�1
2iC2;

ıg WD �
�1
g�1 � � ��

�1
2 ��1

1 �1�1�2 � � ��g�1;

for i D 2; : : : ;g� 1.
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We make use of the presentation above to introduce a notion of chart which gives a
graphic description of monodromy representations of Lefschetz fibrations. We set

X WD f�0; �1; : : : ; �2gg;

R WD frF .i; j / j 1� i < j � 1� 2g� 1g[ frF .0; j / j j D 1; 2; 3; 5; : : : ; 2gg

[ frB.i/ j i D 0; 1; : : : ; 2g� 1g[ frC ; rL; rH g;

S WD f`0.i/
˙1
j i D 0; 1; : : : ; 2gg[ f`˙1

h j hD 1; : : : ; Œg=2�g;

for g � 3, where

rF .i; j / WD �i�j�
�1
i ��1

j ;

rB.0/ WD �0�4�0�
�1
4 ��1

0 ��1
4 ;

rB.i/ WD �i�iC1�i�
�1
iC1�

�1
i ��1

iC1 .i D 1; : : : ; 2g� 1/;

rC WD .�3�2�1/
4��1

4 ��1
3 ��1

2 ��2
1 ��1

2 ��1
3 ��1

4 ��1
0 �4�3�2�

2
1�2�3�4�

�1
0 ;

rL WD ı3�1�3�5�1�2�
�1
0 ��1

2 ��1
1 �2�

�1
0 ��1

2 ��1
0 ;

rH WD �2g � � � �3�2�
2
1�2�3 � � � �2gıg�

�1
2g � � � �

�1
3 ��1

2 ��2
1 ��1

2 ��1
3 � � � �

�1
2g ı
�1
g ;

`0.i/ WD �i .i D 0; 1; : : : ; 2g/;

`h WD .�1�2 � � � �2h/
4hC2 .hD 1; : : : ; Œg=2�/;

and ı3; �1; �2; ıg are defined as in Theorem 2.3.

Let B be a connected closed oriented surface and � a finite graph in B such that each
edge of � is oriented and labeled with an element of X . We denote the label �i by i

for short. Choose a simple path 
 which intersects with edges of � transversely and
does not intersect with vertices of � . For such a path 
 , we obtain a word w�.
 / in
X [X�1 by reading off the labels of intersecting edges along 
 with exponents as
in Figure 2(a). We call the word w�.
 / the intersection word of 
 with respect to � .
Conversely, we can specify the number, orientations, and labels of consecutive edges
in � by indicating a (dashed) arrow intersecting the edges transversely together with
the intersection word of the arrow with respect to � (see Figure 2(b) and (c)).




1 2 1 3 2

(a)

w

(b)

w

(c)

Figure 2: Intersection word w�.
 /D w D �1�
�1
2
��1

1
�3�2
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For a vertex v of � , a small simple closed curve surrounding v in the counterclockwise
direction is called a meridian loop of v and denoted by mv . The vertex v is said to
be marked if one of the regions around v is specified by an asterisk. If v is marked,
the intersection word w�.mv/ of mv with respect to � is well-defined. If not, it is
determined up to cyclic permutation. See Kamada [20] for details.

Definition 2.4 A chart in B is a finite graph � in B (possibly being empty or having
hoops that are closed edges without vertices) whose edges are labeled with an element
of X , and oriented so that the following conditions are satisfied (see Figures 3–5):

(1) The vertices of � are classified into two families: white vertices and black
vertices.

(2) If v is a white vertex (resp. a black vertex), the word w�.mv/ is a cyclic
permutation of an element of R[R�1 (resp. of S ).

A white vertex v is said to be of type r (resp. of type r�1 ) if w�.mv/
�1 is a cyclic

permutation of r 2R (resp. of r�1 2R�1 ). A black vertex v is said to be of type s

if w�.mv/ is a cyclic permutation of s 2 S . A chart � is said to be marked if each
white vertex (resp. black vertex) v is marked and w�.mv/ is exactly an element of
R[R�1 (resp. of S ). If a base point b0 of B is specified, we always assume that
a chart � is disjoint from b0 . A chart consisting of two black vertices and one edge
connecting them is called a free edge.

i

j i

j i

iC1

i iC1

i

iC1

3 2 1 3 2 1 3 2 1 3 2 1

432112340432112340

Figure 3: Vertices of type rF .i; j / , rB.i/ .i ¤ 0/ , rC

ı3
1 3 5

�1 �2

0
��12��11

�20
��12

0

2g 1 1 2g

ıg

2g112g

ı�1
g

Figure 4: Vertices of type rL and rH
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i

i

12h12h12h

Figure 5: Vertices of type `0.i/
˙1 and `h

Remark 2.5 It is worth noting that the intersection word of a “clockwise” meridian
of a white vertex of type r is equal to r , while that of a “counterclockwise” meridian
of a black vertex of type s is equal to s in this paper. This notation is different from
those of Kamada [20] and Hasegawa [15], who always consider “counterclockwise”
meridians for both white and black vertices.

We next introduce several moves for charts. Let � and � 0 be two charts on B and b0

a base point of B .

Let D be a disk embedded in B�fb0g. Suppose that the boundary @D of D intersects
� and � 0 transversely.

Definition 2.6 We say that � 0 is obtained from � by a chart move of type W if
�\.B� Int D/D� 0\.B� Int D/ and both �\D and � 0\D have no black vertices.
We call chart moves of type W shown in Figure 6(a)–(c) a channel change, a birth/death
of a hoop, and a birth/death of a pair of white vertices, respectively.

i

i

i

i

(a)
i

empty
(b)

r r�1
(c)

Figure 6: Chart moves of type W

Let s and s0 be elements of S . Suppose that there exists a word w in X [X�1 such
that two words s0 and wsw�1 determine the same element of Mg .

Definition 2.7 If a chart � contains a black vertex of type s , then we can change a
part of � near the vertex by using a local replacement depicted in Figure 7 to obtain
another chart � 0 . We say that � 0 is obtained from � by a chart move of transition.
Note that the blank labeled with T can be filled only with edges and white vertices.

Geometry & Topology Monographs, Volume 19 (2015)



Charts, signatures, and stabilizations of Lefschetz fibrations 245

s s0 w

w

s

T

Figure 7: Chart move of transition

Definition 2.8 We say that � 0 is obtained from � by a chart move of conjugacy type
if � 0 is obtained from � by a local replacement depicted in Figure 8.

b0 b0 i b0 b0 i

Figure 8: Chart moves of conjugacy type

Let � be a chart in B with base point b0 and �� the set of black vertices of � . For a
loop 
 in B��� based at b0 , the element of Mg determined by the intersection word
w�.
 / of 
 with respect to � does not depend on a choice of representative of the
homotopy class of 
 . Thus we obtain a homomorphism �� W �1.B ��� ; b0/!Mg ,
which is called the homomorphism determined by � .

We now state a classification of Lefschetz fibrations in terms of charts and chart moves.
Let B be a connected closed oriented surface.

Proposition 2.9 Suppose that g is greater than two.

(1) Let f be a Lefschetz fibration of genus g over B and � a monodromy represen-
tation of f . Then there exists a chart � in B such that the homomorphism ��
determined by � is equal to � .

(2) For every chart � in B , there exists a Lefschetz fibration f of genus g over B

such that a monodromy representation of f is equal to the homomorphism ��
determined by � .

We call such � as in Proposition 2.9(1) a chart corresponding to f , and such f as in
Proposition 2.9(2) a Lefschetz fibration described by � .

Instead of giving a proof of Proposition 2.9, we show an example of a chart and describe
the correspondence of the chart to a Hurwitz system of a Lefschetz fibration.
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Example 2.10 Let B be a 2–sphere. We consider a chart � in B with base point b0

and a system .
1; 
2; 
3; 
4/ of loops based at b0 , which is determined by a Hurwitz
arc system A for the set �� of black vertices of � , as in Figure 9. The intersection
words of the loops with respect to � are

w�.
1/D �
�1
1 ��1

2 �1�2�1; w�.
2/D �
�1
1 �3�1;

w�.
3/D �
�1
2 ��1

3 ��1
2 �3�2; w�.
4/D �

�1
2 ;

each of which represents the image ��.ai/ of the homotopy class ai of 
i under
the homomorphism �� W �1.B ��� ; b0/!Mg . Since the group �1.B ��� ; b0/

has a presentation ha1; a2; a3; a4 j a1a2a3a4 D 1i, �� is determined by the system
.��.a1/; ��.a2/; ��.a3/; ��.a4//, which is a Hurwitz system of a certain Lefschetz
fibration of genus g over B because each ��.ai/ is a Dehn twist. Note that the product
w�.
1/w�.
2/w�.
3/w�.
4/ of the intersection words represents the identity of Mg .

b0

1

2

1 2

1

3 3

3

2

2


1


2


3


4

Figure 9: Monodromy of a chart �

Theorem 2.11 Suppose that g is greater than two. Let f and f 0 be Lefschetz
fibrations of genus g over B , and � and � 0 charts corresponding to f and f 0 ,
respectively. Then f is strictly isomorphic to f 0 if and only if � is transformed to � 0

by a finite sequence of chart moves of type W, chart moves of transitions, chart moves
of conjugacy type, and ambient isotopies of B relative to b0 .

Proposition 2.9 and Theorem 2.11 follow from a classification theorem of Lefschetz
fibrations due to Kas [23] and Matsumoto [32] together with fundamental theorems on
charts and chart moves by Kamada [20, Sections 4–8].

We end this subsection with a definition and chart description of fiber sums of Lefschetz
fibrations. Let f W M !B and f 0W M 0!B0 be Lefschetz fibrations of genus g . Take
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regular values b0 2 B and b0
0
2 B0 of f and f 0 , and small disks D0 � B �� and

D0
0
� B ��0 near b0 and b0

0
, respectively. Consider general fibers F0 WD f

�1.b0/

and F 0
0
WD f 0�1.b0

0
/ and orientation-preserving diffeomorphisms ˆW †g! F0 and

ˆ0W †g! F 0
0

, respectively.

Definition 2.12 Let ‰W †g!†g be an orientation-preserving diffeomorphism and
r W @D0! @D0

0
an orientation-reversing diffeomorphism. The new manifold M #F M 0

obtained by gluing M �f �1.Int D0/ and M 0�f 0�1.Int D0
0
/ by .ˆ0 ı‰ ıˆ�1/� r

admits a Lefschetz fibration f #‰ f 0W M #F M 0 ! B # B0 of genus g . We call
f #‰ f 0 the fiber sum of f and f 0 with respect to ‰ . Although the diffeomorphism
type of M #F M 0 and the isomorphism type of f #‰ f 0 depend on a choice of the
diffeomorphism ‰ in general, we often abbreviate f #‰ f 0 as f #f 0 .

Let � and � 0 be charts corresponding to f and f 0 , and D0 and D0
0

small disks
near b0 and b0

0
disjoint from � and � 0 , respectively. Connecting B � Int D0 with

B0 � Int D0
0

by a tube, we have a connected sum B # B0 of B and B0 . Let w be a
word in X [X�1 which represents the mapping class of ‰ in Mg . Let � #w � 0 be
the union of � , � 0 , and hoops on the tube representing w (see Figure 10). Then the
fiber sum f #‰ f 0 is described by this new chart � #w � 0 in B # B0 with base point
b0 . If the word w is trivial, then the chart � #w � 0 is denoted also by �˚� 0 , which
is called a product of � and � 0 .

b0 b00

B B0

w

� � 0

Figure 10: Chart � #w � 0 in B # B0

3 Signature of Lefschetz fibrations

In this section we review the signature cocycle discovered by Meyer and prove a
signature theorem for Lefschetz fibrations.

3.1 Meyer’s signature cocycle

In this subsection we give a brief survey on Meyer’s signature cocycle. We begin with
the definition of the signature cocycle. Let g be a positive integer.
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Definition 3.1 (Meyer [33]) For A;B 2 Sp.2g;Z/, we consider the vector space

VA;B WD f.x;y/ 2R2g
�R2g

j .A�1
� I2g/xC .B � I2g/y D 0g

and the bilinear form h ; iA;BW VA;B �VA;B!R defined by

h.x1;y1/; .x2;y2/iA;B WD .x1Cy1/ �J.I2g �B/y2;

where � is the standard inner product of R2g and J D
� 0 Ig

�Ig 0

�
. Since h ; iA;B is

symmetric, we can define an integer �g.A;B/ to be the signature of .VA;B; h ; iA;B/.
The map �gW Sp.2g;Z/�Sp.2g;Z/! Z is called the signature cocycle.

Let P be a compact connected oriented surface of genus 0 with three boundary
components and � W E! P a fiber bundle over P with fiber †g and structure group
DiffC†g . The fundamental group �1.P;�/ of P with base point � is a free group
generated by two loops a and b depicted in Figure 11. If we take an orientation-
preserving diffeomorphism †g! ��1.�/, we obtain the monodromy representation
�1.P;�/!Mg which sends a to ˛ and b to ˇ . Since M�g acts on H WDH1.†gIZ/
and preserves the intersection form, we have a representation M�g ! Sp.2g;Z/ by
fixing a symplectic basis on H . Let A and B denote matrices corresponding to ˛ and
ˇ , respectively.

P1 P2
�

a b

Figure 11: Pair of pants P

Meyer closely studied the signature of the total space E to obtain the following theorem.

Theorem 3.2 (Meyer [33]) The signature �.E/ of E is equal to ��g.A;B/.

Theorem 3.2 and Novikov’s additivity implies that �g is a 2–cocycle of Sp.2g;Z/.

We recall the Maslov index of a triple of Lagrangian subspaces and Wall’s non-additivity
theorem, which are used in the proof of Theorem 3.2.

Let V be a real vector space of dimension 2n, ! 2ƒ2V � a symplectic form on V ,
and ƒ.V; !/ the Lagrangian Grassmannian of .V; !/, which is the set of Lagrangian
subspaces of .V; !/. For L1;L2;L3 2ƒ.V; !/, the bilinear form

‰W .L3CL1/\L2 � .L3CL1/\L2!R; .v; w/ 7! !.v;w3/;
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where v;w 2 .L3CL1/\L2 and w D w1Cw3 .w1 2L1; w3 2L3/, is symmetric.
We define an integer i.L1;L2;L3/ to be the signature of ..L3CL1/\L2; ‰/, which
is called the ternary Maslov index of the triple .L1;L2;L3/.

Let M1;M2 be compact oriented smooth 4–manifolds, X1;X2;X3 compact oriented
smooth 3–manifolds, and † a closed oriented smooth 2–manifold. We assume that
M DM1[M2; @M1 DX1[X2; @M2 DX2[X3; @X1 D @X2 D @X3 D†, and the
orientations of these manifolds satisfy

ŒM �D ŒM1�C ŒM2�; @�ŒM1�D ŒX2�� ŒX1�; @�ŒM2�D ŒX3�� ŒX2�;

@�ŒX1�D @�ŒX2�D @�ŒX3�D Œ†�:

Let !W V � V ! R be the intersection form on V WD H1.†IR/ and Li the kernel
of the homomorphism V ! H1.Xi IR/ induced by the inclusion †! Xi for i D

1; 2; 3. Since Li 2 ƒ.V; !/ for i D 1; 2; 3, we can define the ternary Maslov index
i.L1;L2;L3/ of the triple .L1;L2;L3/.

Theorem 3.3 (Wall [42]) �.M /D �.M1/C �.M2/� i.L1;L2;L3/.

Gambaudo and Ghys [10] (and independently the first author) made use of Theorem 3.3
to give the following proof of Theorem 3.2. See also Gilmer and Masbaum [12].

Proof of Theorem 3.2 Consider P to be a boundary sum of two annuli P1 and
P2 (see Figure 11). We set M WD E , Mi WD �

�1.Pi/.i D 1; 2/, X2 WDM1 \M2 ,
X1 WD @M1� Int X2 , X3 WD @M3� Int X2 , and † WD @X2 . Applying Theorem 3.3 to
these manifolds, we have

�.E/D �.M1/C �.M2/� i.L1;L2;L3/D�i.L1;L2;L3/

because each of M1 and M2 is a product of a mapping torus with an interval, which
has signature zero. Since the bordered component of Xi is diffeomorphic to I �†g

for i D 1; 2; 3, we put V WDH ˚H , ! WD �˚ .��/, and obtain

L1 D f.��; ˛
�1
� .�// 2 V j � 2H g;

L2 D f.��; �/ 2 V j � 2H g;

L3 D f.��; ˇ�.�// 2 V j � 2H g;

where H is the first homology H1.†gIR/ of †g and �W H�H!R is the intersection
form of †g . It is easily seen that the subspace .L1CL3/\L2 is written as

.L1CL3/\L2Df.����; ˛
�1
� .�/Cˇ�.�//2V j �C�D˛�1

� .�/Cˇ�.�/.�; �2H /g
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and the symmetric bilinear form ‰ on .L1CL3/\L2 is written as

‰
�
.����; ˛�1

� .�/Cˇ�.�//; .��
0
��0; ˛�1

� .� 0/Cˇ�.�
0//
�
D�

�
�C�; .id�ˇ�/.�0/

�
:

We consider the vector space

U˛;ˇ WD f.�; �/ 2 V j .˛�1
� � id/.�/C .ˇ�� id/.�/D 0g

and the symmetric bilinear form h ; i˛;ˇ on U˛;ˇ defined by

h.�; �/; .� 0; �0/i˛;ˇ WD �.�C �; .id�ˇ�/.�
0// ..�; �/; .� 0; �0/ 2 U˛;ˇ/:

Since the linear map U˛;ˇ! .L1CL3/\L2W .�; �/ 7! .����; �C�/ is compatible
with the bilinear forms, the signature of ..L1 C L3/ \ L2; ‰/ is equal to that of
.U˛;ˇ; h ; i˛;ˇ/, which is isomorphic to .VA;B; h ; iA;B/ under a choice of a symplectic
basis of H . Therefore we conclude that i.L1;L2;L3/D �g.A;B/.

Remark 3.4 It is known that �g is a normalized, symmetric 2–cocycle of Sp.2g;Z/
and invariant under conjugation. The cohomology class Œ�g� 2 H 2.Sp.2g;Z/IZ/
corresponds to �4c1 under the homomorphisms

H 2.Sp.2g;Z/IZ/ H 2.B Sp.2g;R/IZ/ŠH 2.BU.g/IZ/Š Z:

For more details, see Meyer [33], Turaev [39], Barge and Ghys [3], and Kuno [27].

3.2 A signature formula

In this subsection we describe the signature of a Lefschetz fibration of genus greater
than two in terms of charts. Let g be an integer greater than two.

Let B be a connected closed oriented surface and � a chart in B . We denote the
number of white vertices of type rF .i; j / (resp. rB.i/; rC ; rL; rH ) minus the number
of white vertices of type rF .i; j /

�1 (resp. rB.i/
�1; r�1

C
; r�1

L
; r�1

H
) included in �

by nF .i; j /.�/ (resp. nB.i/.�/; nC .�/; nL.�/; nH .�/). Similarly, we denote the
number of black vertices of type `0.i/

˙1 (resp. `˙1
h

) included in � by n˙
0
.i/.�/ (resp.

n˙
h
.�/), and set n0.i/.�/ WD nC

0
.i/.�/� n�

0
.i/.�/ (resp. nh.�/ WD nC

h
.�/� n�

h
.�/)

and n˙
0
.�/ WD

P2g
iD0

n˙
0
.i/.�/.

Definition 3.5 The number

�.�/ WD �6nC .�/� nL.�/C

Œg=2�X
hD1

.4h.hC 1/� 1/nh.�/

is called the signature of � .
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Let f W M !B be a Lefschetz fibration of genus g and � a chart in B corresponding
to f . The purpose of this subsection is to show the following theorem.

Theorem 3.6 The signature �.M / of M is equal to �.�/.

Remark 3.7 It immediately follows from Theorem 3.6 that �.�/ is invariant under
chart moves of type W and chart moves of transition. Although any combinatorial proof
of this fact does not seem to be known, Hasegawa [15] proved that �.�/ is invariant
under chart moves of transitions by a purely combinatorial method on the assumption
that it is invariant under chart moves of type W.

Let zX be the set of right-handed Dehn twists along simple closed curves in †g and
zR the set of words in zX [ zX�1 representing an element of the kernel of the natural
epimorphism from the free group generated by zX to Mg .

Definition 3.8 For a word w D ˛1 � � �˛n 2 zR, we define an integer

Ig.w/ WD �

n�1X
jD1

�g.˛n�j ; ˛n�jC1 � � �˛n/� s.w/;

where �g is the signature cocycle (Definition 3.1), ˛ is the image of ˛ 2 zX [ zX�1

under the composition of the natural map zX [ zX�1!Mg and a natural epimorphism
M�g ! Sp.2g;Z/, and s.w/ is the number of Dehn twists along separating simple
closed curves included in w .

Suppose that B is a 2–sphere. If we choose a monodromy representation � and
a Hurwitz arc system A for � with base point b0 , we have a Hurwitz system
.˛1; : : : ; ˛n/ 2 .Mg/

n of f . Since ˛1; : : : ; ˛n are Dehn twists and ˛1 � � �˛n D 1

in Mg , we think .˛1; : : : ; ˛n/ as a word w WD ˛1 � � �˛n in zR. Theorem 3.2 and
Novikov’s additivity for signature imply the next theorem.

Theorem 3.9 (Endo and Nagami [8]) The signature �.M / of M is equal to Ig.w/.

We are now ready to prove Theorem 3.6.

Proof of Theorem 3.6 Choose a base point b0 2 B � � and a disk D in B � �

centered at b0 . We denote the set of edges of � by E.�/. For each e 2 E.�/, we
choose a point be in a region of B�� adjacent to e , and a simple path 
e from be to
b0 which intersects with edges of � transversely and does not intersect with vertices
of � . Let we be the intersection word of 
e with respect to � and ie 2 f0; 1; : : : ; 2gg
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w�1
e ie

Figure 12: Chart �e

the label of e . We choose a family fDege2E.�/ of mutually disjoint disks included in
D and put the chart �e depicted in Figure 12 in De for each e .

Taking the union of � with �e for all e 2E.�/, we obtain a new chart �1 in B , which
describes a fiber sum f1W M1! B of f with Lefschetz fibrations over S2 described
by a free edge. For each e 2E.�/, we apply channel changes as in Figure 13 to let a
free edge pass through the edges intersecting with 
e . We then apply a channel change
as in Figure 14 to “cut” e into two edges. Thus we obtain a new chart �2 in B .

e

be

ie


e

we

w�1eb0

ie
�e

e

ie we

ie

w�1e

Figure 13: Channel change
e

ie

ie

ie

ie

Figure 14: Channel change

Since each component of �2 is a tree, a Lefschetz fibration f2W M2!B corresponding
to �2 is a fiber sum of a Lefschetz fibration f3W M3! S2 with a trivial †g –bundle

Geometry & Topology Monographs, Volume 19 (2015)



Charts, signatures, and stabilizations of Lefschetz fibrations 253

over B . Drawing a copy of �2 in S2 , we have a chart �3 corresponding to f3 . The
signature of a Lefschetz fibration over S2 described by a free edge is equal to zero
because �g.A;A

�1/D 0 for any A 2 Sp.2g;Z/ (see Meyer [33, Section 2]). Hence
we have

�.M /D �.M1/D �.M2/D �.M3/C �.†g �B/D �.M3/

by Theorem 2.11 and Novikov’s additivity. Since we did not change the numbers of
white vertices and black vertices of type `˙

h
to make �3 from � , we see �.�3/D�.�/.

Hence we only have to show �.M3/D �.�3/ in order to conclude �.M /D �.�/.

Applying chart moves of transition to each component of �3 as in Figure 15, we
remove white vertices of type rF .i; j /

˙1; rB.i/
˙1; r˙1

H
to obtain a union of copies

of L0.i/;Lh;L
�
h
;RC ;R

�
C
;RL;R

�
L

, where L0.i/;Lh;RC ;RL are charts depicted
in Figure 16 and Figure 17, and L�

h
(resp. R�

C
, R�

L
) is the mirror image of Lh (resp.

RC , RL ) with edges orientation reversed. For the proof of �.M3/ D �.�3/, it is
enough to show that the signature of a Lefschetz fibration described by each of these
charts coincides with the signature of the chart.

j i

i j

j i

j

i iC1

iC1 i

i iC1

i iC1

iC1
i

iC1

2g 1 1 2g

u�1

1

u

2g112g

u�1

1

u
1

u 2g 1 1 2g u�1

Figure 15: Chart moves of transition

i

12h12h12h

Figure 16: Charts L0.i/ and Lh
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123123123123

0 4 3 2 1 1 2 3 4 0 4 3 2 1 1 2 3 4

ı3
1 3 5

�1 �2

0
��1

2
��1

1
�20

��1
2

0

Figure 17: Charts RC and RL

Let �4 be one of L0.i/;Lh;L
�
h
;RC ;R

�
C
;RL;R

�
L

drawn in S2 and f4W M4! S2

a Lefschetz fibration described by �4 . If �4 is equal to L0.i/, it is easily seen that
�.M4/ D �.�4/. If �4 is equal to Lh , the word `�1

h
�h corresponds to a Hurwitz

system of f4 (see Figure 16), where �h is a right-handed Dehn twist along the curve
sh depicted in Figure 1. Thus we have

�.M4/D Ig.`
�1
h �h/D 4h.hC 1/� 1D �.�4/

from Definition 3.5, Theorem 3.9, and explicit computations for Ig due to Endo and
Nagami [8, Lemma 3.5, Proposition 3.9]. If �4 is equal to RC (resp. RL ), the word
rC (resp. rL ) corresponds to a Hurwitz system of f4 (see Figure 17). Thus we have

�.M4/D Ig.rC /D�6D �.�4/ .resp: �.M4/D Ig.rL/D�1D �.�4//

from Definition 3.5, Theorem 3.9, and formulas of Endo and Nagami [8, Lemma 3.5,
Remark 3.7, Propositions 3.9 and 3.10]. Suppose that �4 is equal to one of L�

h
;R�

C
;R�

L
.

The mirror image ��
4

of �4 with edges orientation reversed corresponds to the Lefschetz
fibration f4W �M4! S2 with total space orientation reversed. Hence we have

�.M4/D��.�M4/D��.�
�
4 /D �.�4/

because we have already shown that �.M4/D �.�4/ is valid for �4 DLh;RC ;RL .
This completes the proof of Theorem 3.6.

4 Stabilization theorems

In this section we prove two theorems on stabilization of Lefschetz fibrations under
taking fiber sums with copies of a fixed Lefschetz fibration.

Following Auroux [2], we first introduce a notion of universality for Lefschetz fibrations.
Suppose that g is greater than two.
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Definition 4.1 A Lefschetz fibration of genus g over S2 is called universal if it is
irreducible, chiral, and it contains 2gC 1 singular fibers of type IC whose vanishing
cycles a0; a1; : : : ; a2g �†g satisfy the following conditions:

(i) ai and aiC1 intersect transversely at one point for every i 2 f1; : : : ; 2g� 1g.

(ii) a0 and a4 intersect transversely at one point.

(iii) ai and aj does not intersect for other pairs .i; j /.

A Lefschetz fibration over S2 is universal if and only if it is described by a chart �0

depicted in Figure 18 by virtue of Proposition 2.9, where the blank labeled by T0 is
filled only with edges, white vertices, and black vertices of type `0.i/.

0 1 2g

T0

The order of edges is arbitrary

Figure 18: Universal chart �0

Remark 4.2 A universal Lefschetz fibration exists for every g greater than two. For
example, the Lefschetz fibrations f 0

g ; f
A

g ; f
B

g ; f
C

g ; f
D

g constructed by Auroux [2]
are universal except f D

g for g D 3. There are many universal Lefschetz fibrations of
genus g for a fixed g .

We now state the first of our main theorems. Let B be a connected closed oriented
surface and f0W M0! S2 a universal Lefschetz fibration of genus g .

Theorem 4.3 Let f W M ! B and f 0W M 0! B be Lefschetz fibrations of genus g .
There exists a non-negative integer N such that f # Nf0 is isomorphic to f 0 # Nf0 if
and only if the following conditions hold:

(i) n˙
0
.f /D n˙

0
.f 0/.

(ii) n˙
h
.f /D n˙

h
.f 0/ for every hD 1; : : : ; Œg=2�.

(iii) �.M /D �.M 0/.

Remark 4.4 Auroux [2] proved the “if” part of Theorem 4.3 for chiral Lefschetz
fibrations over S2 under the assumption that f and f 0 have sections with the same
self-intersection number. Hasegawa [15] gave another proof of Auroux’s theorem
by using chart descriptions. Moreover, he removed the assumption on existence and
self-intersection number of sections in Auroux’s theorem.
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Remark 4.5 The isomorphism class of a fiber sum f #‰ f0 of a Lefschetz fibration f
with a universal Lefschetz fibration f0 does not depend on a choice of an orientation-
preserving diffeomorphism ‰ (see the proof of Theorem 4.3).

Proof of Theorem 4.3 We first prove the “if” part. Assume that f and f 0 satisfy
the conditions (i), (ii), and (iii). Let � and � 0 be charts in B corresponding to f and
f 0 , respectively. We suppose that f0 is described by a chart �0 depicted in Figure 18.
Since every edge has two adjacent vertices, the sum of the signed numbers of adjacent
edges for all vertices of � is equal to zero:

10nC .�/C nL.�/�

2gX
iD0

n0.i/.�/� 4

Œg=2�X
hD1

h.2hC 1/ � nh.�/D 0:

A similar equality for � 0 also holds. Interpreting the conditions (i) and (ii) as condi-
tions on � and � 0 , we have

P2g
iD0

n0.i/.�/D
P2g

iD0
n0.i/.�

0/ and nh.�/D nh.�
0/

for hD 1; : : : ; Œg=2�. Thus we obtain

10nC .�/C nL.�/D 10nC .�
0/C nL.�

0/:

On the other hand, we have

�6nC .�/� nL.�/D�6nC .�
0/� nL.�

0/

by the condition (iii), Theorem 3.6, and nh.�/D nh.�
0/ for hD 1; : : : ; Œg=2�. Hence

nC .�/D nC .�
0/ and nL.�/D nL.�

0/.

Let N be an integer larger than both of the number of edges of � and that of � 0 .
Choose a base point b0 2B� .�[� 0/. The fiber sum f # Nf0 is described by a chart
.� � � ..� #w1

�0/#w2
�0/ � � � /#wN

�0 for some words w1; : : : ; wN in X [X�1 . Since
hoops surrounding �0 can be removed by use of the edges of �0 as in Figure 19, the
chart is transformed into a product �˚N�0 by channel changes. Similarly, the fiber
sum f 0 # Nf0 is described by a product � 0˚N�0 .

i

0 i 2g

T0

i

0 2g

T0

0 i 2g

T0

Figure 19: Removing a hoop
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We choose and fix 2gC1 edges of �0 which are labeled with 0; 1; : : : ; 2g and adjacent
to black vertices. We apply chart moves only to these edges in the following. Since �0

can pass through any edge of � as shown in Figure 20, we can move �0 to any region
of B �� by channel changes.

i

0 i 2g

T0

i i

0 2g

T0

i i

2g 0

T0

i

2g i 0

T0

(a) (b) (c) (d)

Figure 20: Passing through an edge

For each edge of � , we move a copy of �0 to a region adjacent to the edge and
apply a channel change to the edge and �0 as in Figure 20(a) and (b). Applying
chart moves of transition to each component of the chart as in Figure 15, we re-
move white vertices of type rF .i; j /

˙1; rB.i/
˙1; r˙1

H
to obtain a union of copies

of L0.i/; zLh;L
�
h
; zRC ; yRC ; zRL; yRL; �0 shown in Figures 21–23, where we use a

simplification of diagrams as in Figure 24.

12h12h12h

Figure 21: Chart zLh

123123123123

0 4 3 2 1 1 2 3 4 0 4 3 2 1 1 2 3 4

1 2 3 1 2 3 1 2 3 1 2 3

043211234043211234

Figure 22: Charts zRC and yRC
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ı3
1 3 5

�1 �2

0
��1

2
��1

1
�20

��1
2

0 0�20
��1

2
�1�20

��1
2

��1
1 5 3 1

ı�1
3

Figure 23: Charts zRL and yRL

i
0

i
2g

T0

D

Figure 24: Simplification of diagram

If there is a pair of zRC and yRC , we remove them by a death of a pair of white vertices
to obtain many copies of �0 . Similarly, we remove a pair of zRL and yRL . Since there
is at least one �0 , any copy of L0.i/ can be transformed into L0.1/ as in Figure 25.

j

0
i

2g

T0

j
i

0

j
2g

T0

j i
j

0 j 2g

T0

i

j
i

j

0 j 2g

T0

i

j
i

0 j 2g

T0

i

0 j 2g

T0

Figure 25: Changing a label (j D i C 1 or .i; j /D .4; 0/)

Thus we have a union �1 of n�
0
.�/ copies of L0.1/, nC

h
.�/ copies of zLh , n�

h
.�/

copies of L�
h

, jnC .�/j copies of zRC (or yRC ), jnL.�/j copies of zRL (or yRL ), and
k copies of �0 for some k . A similar argument implies that � 0˚N�0 is transformed
into a union � 0

1
of n�

0
.� 0/ copies of L0.1/, nC

h
.� 0/ copies of zLh , n�

h
.� 0/ copies

of L�
h

, jnC .�
0/j copies of zRC (or yRC ), jnL.�

0/j copies of zRL (or yRL ), and k 0
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copies of �0 for some k 0 by chart moves of type W and chart moves of transition. By
virtue of the conditions (i) and (ii) together with nC .�/D nC .�

0/, nL.�/D nL.�
0/,

nC
0
.� ˚N�0/D nC

0
.�1/, and nC

0
.� 0˚N�0/D nC

0
.� 0

1
/, we conclude that k D k 0

because of nC
0
.�0/¤ 0. Hence �1 is transformed into � 0

1
by an ambient isotopy of

B relative to b0 , which means that �˚N�0 is transformed into � 0˚N�0 by chart
moves of type W, chart moves of transition, and ambient isotopies of B relative to b0 .
Therefore f # Nf0 is (strictly) isomorphic to f 0 # Nf0 by Theorem 2.11.

We next prove the “only if” part. Take a non-negative integer N so that f # Nf0

is isomorphic to f 0 # Nf0 . Since an isomorphism preserves numbers and types of
vanishing cycles and signatures, we have

n˙0 .f # Nf0/D n˙0 .f
0 # Nf0/; n˙h .f # Nf0/D n˙h .f

0 # Nf0/

for every hD 1; : : : ; Œg=2�, and

�.M #F NM0/D �.M
0 #F NM0/:

The conditions (i), (ii), (iii) follow from additivity of n˙
0
; n˙

h
; � under fiber sum.

Definition 4.6 A Lefschetz fibration of genus g over S2 is called elementary if it
contains exactly two singular fibers of type IC and of type I� which have the same
vanishing cycles. A chart L0.i/ in S2 corresponds to an elementary Lefschetz fibration.

Remark 4.7 Two elementary Lefschetz fibrations of genus g are isomorphic to each
other. The total space of an elementary Lefschetz fibration of genus g is diffeomorphic
to †g�1 �S2 # S1 �S3 .

We state the second of our main theorems. Let B be a connected closed oriented
surface and f?W M?! S2 an elementary Lefschetz fibration of genus g .

Theorem 4.8 Let f W M ! B and f 0W M 0! B be Lefschetz fibrations of genus g .
There exists a non-negative integer N such that a fiber sum f # Nf? is isomorphic to a
fiber sum f 0 # Nf? if and only if the following conditions hold:

(i) n˙
0
.f /D n˙

0
.f 0/.

(ii) n˙
h
.f /D n˙

h
.f 0/ for every hD 1; : : : ; Œg=2�.

(iii) �.M /D �.M 0/.

Remark 4.9 In contrast to Theorem 4.3, the isomorphism class of a fiber sum f #‰f?
of a Lefschetz fibration f with an elementary Lefschetz fibration f? depends on a
choice of an orientation-preserving diffeomorphism ‰ in general.
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Proof of Theorem 4.8 We only show the “if” part. The “only if” part is the same as
that of the proof of Theorem 4.3.

Assume that f and f 0 satisfy the conditions (i), (ii), and (iii). Let � and � 0 be charts
in B corresponding to f and f 0 , respectively. It follows from the same argument as
in the proof of Theorem 4.3 that nC .�/D nC .�

0/ and nL.�/D nL.�
0/. Let N be an

integer larger than both of the number of edges of � and that of � 0 . We construct the
chart �e in B for each e 2E.�/ as in the proof of Theorem 3.6. Taking the union of
� with �e for all e 2E.�/ and with N � #E.�/ copies of L1.1/, we obtain a new
chart �1 in B , which describes a fiber sum f # Nf? . Applying channel changes as in
the proof of Theorem 3.6 and deaths of pairs of white vertices appropriately, we obtain
a union �2 of nC

h
.�/ copies of Lh , n�

h
.�/ copies of L�

h
, jnC .�/j copies of RC (or

R�
C

), jnL.�/j copies of RL (or R�
L

), and ki copies of L0.i/ for some ki , Similarly,
� 0 is transformed into � 0

1
, which describes a fiber sum f 0 # Nf? , and then a union

� 0
2

of nC
h
.� 0/ copies of Lh , n�

h
.� 0/ copies of L�

h
, jnC .�

0/j copies of RC (or R�
C

),
jnL.�

0/j copies of RL (or R�
L

), and k 0i copies of L0.i/ for some k 0i .

A similar argument on the number nC
0

as in the proof of Theorem 4.3 implies that
k0Ck1C� � �Ck2g D k 0

0
Ck 0

1
C� � �Ck 0

2g
. Adding jki�k 0i j copies of L0.i/ to either

�2 or � 0
2

if necessary, we may assume that ki D k 0i for every i 2 f0; 1; : : : ; 2gg. Hence
�2 is transformed into � 0

2
by an ambient isotopy of B relative to b0 , which means

that f # Nf? is (strictly) isomorphic to f 0 # Nf? by Theorem 2.11.

Let g be an integer greater than two and B1; : : : ;Br connected closed oriented surfaces.
We consider a Lefschetz fibration fi W Mi ! Bi of genus g for each i 2 f1; : : : ; rg,
and a universal Lefschetz fibration f0W M0! S2 of genus g .

Proposition 4.10 For (possibly different) fiber sums f and f 0 of f1; : : : ; fr , fiber
sums f #f0 and f 0 #f0 are isomorphic to each other.

Proof Let � and � 0 be charts corresponding to f and f 0 . Since hoops surrounding
a component of � (and � 0 ) can be removed by use of the edges of �0 as in Figure 19,
� #�0 and � 0 #�0 are transformed into the same chart.

Remark 4.11 Proposition 4.10 implies that there are many examples of non-iso-
morphic Lefschetz fibrations with the same base, the same fiber, and the same numbers
of singular fibers of each type which become isomorphic after one stabilization. For
example, the Lefschetz fibration on E.n/K constructed by Fintushel and Stern [9,
Theorem 14] (see also Park and Yun [37]) for a fibered knot K becomes isomorphic to
that on E.n/K 0 for another fibered knot K0 of the same genus after one stabilization.
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Similar results hold for Lefschetz fibrations on Y .nIK1;K2/ constructed by Fintushel
and Stern [9, Section 7] (see also Park and Yun [38]) as well as fiber sums of (general-
izations of) Matsumoto’s fibration studied by Ozbagci and Stipsicz [36], Korkmaz [24;
25], and Okamori [35].

5 Variations and problems

In this section we discuss possible variations of chart description for Lefschetz fibrations.

If we replace the triple .X ;R;S/ defined in Section 2 with other triples, we obtain
various chart descriptions for Lefschetz fibrations (see Kamada [20] and Hasegawa [15]).

We first choose large X ;R, and S . Let X be the set of right-handed Dehn twists along
simple closed curves in †g and S the set of Dehn twists along non-trivial simple
closed curves in †g . By virtue of a theorem of Luo [29], hX j Ri gives an infinite
presentation of Mg for the set R of the following four kinds of words:

(0) Trivial relator rT WD a, where a is the Dehn twist along a trivial simple closed
curve on †g .

(1) Primitive braid relator rP WD b�1abc�1 , where a; b; c 2 X and the curve for c

is the image of the curve for a by b .

(2) 2–chain relator rC WD .c2c1/
6d�1 , where c1; c2; d 2 X and the curves for c1

and c2 intersect transversely at one point and the curve for d is the boundary
curve of a regular neighborhood of the union of the curves for c1 and c2 .

(3) Lantern relator rL WD cbad�1
4

d�1
3

d�1
2

d�1
1

, where a; b; c; d1; d2; d3; d4 2 X
and the curves for a and b intersect transversely at two points with algebraic
intersection number zero, the curve for c is obtained by resolving the intersections
of these two curves, and the curves for d1; d2; d3; d4 are the boundary curves
of a regular neighborhood of those for a; b; c .

Let B be a connected closed oriented surface. Charts in B for the triple .X ;R;S/
defined above have white vertices of type r˙1

T
; r˙1

P
; r˙1

C
; r˙1

L
(see Figure 26). For a

chart � in B , we denote the number of white vertices of type rX minus the number of
white vertices of type r�1

X
included in � by nX .�/, where X D T;P;C;L.

Proposition 5.1 The signature �.M / of the total space M of a Lefschetz fibration
f W M ! B described by � is equal to �nT .�/� 7nC .�/C nL.�/.

Proof It is seen by a similar argument to the proof of Theorem 3.6.
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a
a b

b c

c2 c1 c2 c1 c2 c1 c2 c1 c2 c1 c2 c1

d

c b a

d1 d2 d3 d4

Figure 26: Vertices of type rT , rP , rC , rL

Example 5.2 Let B be a connected closed oriented surface of genus 2 and .X ;R;S/
the triple defined above for gD 3. Let a; b; c; d1; d2; d3; d4; c1; c2; c3 be right-handed
Dehn twists along simple closed curves of the same names on †3 depicted in Figure 27.
We present B as an octagon with opposite sides identified and consider a chart � and
loops 
1; 
2; 
3; 
4; 
5 based at b0 in B as in Figure 28. We use a simplification of
diagrams as in Figure 29(a) if the curves for x;y 2 X intersect transversely at one
point, and that as in Figure 29(b) if the curves for x and y are disjoint.

Since the intersection words of 
1; 
2; 
3; 
4; 
5 with respect to � are

w�.
1/D d�1
2 ; i w�.
2/D c�1

3 c�1d�1
2 c�1

3 ;

w�.
3/D c�1
1 b�1c�1

2 d�1
3 a�1c�1

2 d�1
4 c�1

1 ;

w�.
4/D d4a�1; w�.
5/D d1;

a Lefschetz fibration f WM ! B of genus 3 described by � is isomorphic to the
Lefschetz fibration constructed by Korkmaz and Ozbagci [26, Theorem 1.2]. f has
only one singular fiber and it is of type IC . We can compute the signature �.M / of
the total space M by Proposition 5.1 as

�.M /D nL.�/D�1;

which coincides with the value computed in [7, Proposition 14].

d1 d4 d3 d2

a

b

c1 c2 c3

c

Figure 27: Simple closed curves on †3
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b0
1


2


1


2

3


4


3


4


5

d2

d1

c

b

a

d4

d3

c3

c

d2

c3
c3

d2

c3

c

d2

c3

c1 b

c2 d3

a
c2

d4

c1

a

c2

d3
a

c2
c2

c1

c1

b

d4

c1

d4

r�1
L

Figure 28: Chart for Lefschetz fibration of Korkmaz and Ozbagci

x y x

y x y

WD

x y x

y x y

z

(a)

x y

y x

WD

x y

y x

(b)

Figure 29: Simplification of vertices

Problem 5.3 Study various properties of Lefschetz fibrations by using chart descrip-
tions of the triple .X ;R;S/ defined above.
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We next mention chart descriptions for Lefschetz fibrations with bordered base and
fiber. Kamada [20] gave a general theory for charts in a compact oriented surface with
boundary. Various presentations of mapping class groups of surfaces with boundary
have been investigated by researchers including Gervais [11], Labruère and Paris [28],
Margalit and McCammond [30]. Combining these two kinds of studies, one can
immediately obtain a chart description for Lefschetz fibrations with bordered base
and fiber.

Problem 5.4 Make use of chart descriptions to study PALFs and Stein surfaces.

It would be worth considering compositions of monodromy representations with appro-
priate homomorphisms and charts corresponding to the compositions. For example,
Hasegawa [14; 15] adopted a homomorphism from the m–string braid group Bm to
the semi-direct product .Z2/

m � Sm , while Endo and Kamada [6] used a standard
epimorphism from the hyperelliptic mapping class group of a closed oriented surface
of genus g to the mapping class group of a sphere with 2gC 2 marked points.

Problem 5.5 Consider chart descriptions for “nice” representations of mapping class
groups to study invariants and classifications of Lefschetz fibrations.

Theorem 4.3 and Theorem 4.8 tell us that the numbers of singular fibers of all types
and the signature of the total space completely determine the stable isomorphism class
of a Lefschetz fibration with given base and fiber. Thus any numerical invariant of
Lefschetz fibrations which is additive under fiber sum is determined by these invariants
in principle.

Problem 5.6 Construct numerical invariants of Lefschetz fibrations which are not
additive under fiber sum.

Nosaka [34] has recently defined an invariant which is not additive under fiber sum.
Non-numerical invariants such as monodromy group would be also useful (see Mat-
sumoto [32] and Park and Yun [37; 38]).
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