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Detecting tightness via open book decompositions

ANDY WAND

This article is an expository overview of work by the author characterizing tightness
of a closed contact 3–manifold in terms of arbitrary open book decompositions
thereof. The intent is to provide a “user’s guide” of the theory.

53D10; 57M25, 57R65

1 Introduction

As the title indicates, the setting is the world of contact structures on, and open
book decompositions of, three-manifolds. Throughout, M will refer to a smooth,
closed, orientable three-manifold, and � a contact structure on M ; that is to say that
� D ker.˛/, where ˛ is a globally defined 1–form satisfying the condition that ˛^d˛

is a volume form on M . An open book decomposition of M is a pair .B; �/, where
B is an oriented link embedded in M , and � a fibration of the complement over
S1 , with the property that each fiber is the interior of a Siefert surface for B . As is
standard in such discussions, we observe that such a decomposition is determined, up
to a diffeomorphism of M , by the topological information of the surface type (the
page), and the isotopy class of the return map of the fibration (the monodromy). In
particular then we will denote an open book decomposition by .†; '/, where † is
a surface with boundary, and ' an element of its mapping class group MCG.†/ D
�0 DiffC.†; @/. The relation between these objects is given most completely by the
Giroux correspondence theorem:

Theorem 1.1 (Giroux correspondence [11]) There is a 1–1 correspondence between
the set of contact structures on M up to isotopy, and the set of open book decomposi-
tions of M up to stabilization.

The stabilization operation referred to in the above theorem is just the plumbing of a
Hopf band to the surface. More precisely:

Definition 1.2 Let .†; '/ be an open book decomposition of M , and ˛ a properly
embedded arc in †. Denote by †0 the result of adding a 1–handle to † with attaching
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sphere @˛ , and by �s the Dehn twist about the simple closed curve s in †0 given by
extending the core of this handle over ˛ . Then the pair .†0; �s ı '/ is an open book
decomposition of M , referred to as a stabilization of .†; '/ (via ˛ ).

�s

Figure 1: A stabilization

The Giroux correspondence thus reduces the study of contact structures to that of sur-
faces and mapping classes, though of course this reduction is balanced by the complexity
of the stabilization classes. Ideally then, to utilize the correspondence theorem as a
classification tool, one would like to understand properties of surface diffeomorphisms
in a stabilization-invariant sense; unfortunately most (if not all) previously studied
properties (eg the Thurston classification, positive factorizability, right-veering) fail to be
stabilization invariant, and as such do not completely characterize any contact property.

For the purpose of this article, the property on the contact side we are interested in
detecting is that of tightness. Recall that � is called overtwisted if there is an embedded
disc such that at each point p on the boundary the tangent plane is just �p . Otherwise
we call � tight. The dichotomy between the two is of fundamental import in the
field, as, by Eliashberg [5], an overtwisted structure is determined up to isotopy by its
homotopy class as a plane field. In particular, if a contact structure is to keep track of
any geometric information (a main motivation for their study), it must be tight. As such,
it is of interest on the one hand to determine if a given structure is tight, and further
to understand how tightness behaves under geometric (Stein/symplectic) cobordisms
and so on.

Historically, there are two main directions of approach to the problem, which we may
classify as on the one hand using global geometry to obstruct overtwisted discs, and on
the other using local topology to detect them. The geometric approach is mainly due to
work of Gromov [13], Eliashberg [6], and Giroux, more or less in chronological order of
their contributions; the main result is that, if a given mapping class admits a composition
into positive Dehn twists, then we may use this factorization to build a Lefschetz
fibration of a 4–dimensional Stein domain, such that our 3–fold is the boundary, and
our contact structure is given by the complex tangencies, ie � D TM \J.TM /. From
the previous paragraph, we might hope that such structures, known as Stein-fillable,
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are not overtwisted, and indeed this is the case. It turns out however that neither of
these implications go the other way. In particular, Eliashberg [8] first demonstrated
examples of tight structures with no Stein filling, the study of which has since become
something of a cottage industry, while in [23] we demonstrated examples of open books
which, while supporting Stein fillable structures, admit no positive factorization (similar
examples were independently discovered by Baker, Etnyre, and Van Horn-Morris [1]).
This latter result can be restated as saying that the property of admitting a positive
factorization is not stabilization invariant.

The second, “local” approach is due to work of Goodman [12], further generalized
through completely different methods (and packaged into its more well-known form)
by Honda, Kazez, and Matic [16]. The basic idea here is to generate invariants of
the monodromy by considering properly embedded arcs in the surface. In particular,
consider the image of such an arc, isotoped to have minimal intersection with the arc; we
then have a well defined notion of the arc being mapped to the right/left at an endpoint.
The main result then is that, if ' maps some arc to the left at some endpoint, then one
can cook up an overtwisted disk in the manifold. Again, the opposite implication fails,
and in fact it is straightforward to show that any stabilization equivalence class of open
book decompositions contains elements in which no arc is mapped to the left (see [16]
for an explicit construction).

The main purpose of this paper then is to describe an approach to constructing invariants
which uses global data to detect overtwisted discs, and does so in a stabilization-
invariant way. In particular, we define a notion of “consistency” for a mapping class
(or, equivalently, an open book decomposition), and show:

Theorem 1.3 [22; 24] Let M be a closed 3–manifold, � a contact structure. Then
the following are equivalent:

(1) � is tight.

(2) Some open book decomposition supporting .M; �/ is consistent.

(3) Each open book decomposition supporting .M; �/ is consistent.

Returning to the connection with 4–dimensional complex/symplectic geometry, a
particularly well-motivated view of a contact structure is exactly as the “boundary
information” of a Stein/symplectic 4–manifold. Following the advances of Donaldson
theory [4] (and later the Seiberg–Witten equations and Taubes’s Gromov invariants;
see eg Taubes [21]), there is great interest in understanding cut-and-paste operations in
the symplectic/Stein categories. There are indeed contact/symplectic versions of many
of the fundamental smooth low-dimensional theorems, particularly concerning surgery
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and handle decompositions. For various reasons, the most interesting of these is the
case of a (symplectic/Stein) 2–handle attachment. It was shown by Eliashberg [7] and
Weinstein [25] that, if the handle is attached along a curve in the contact boundary
everywhere tangent to the contact structure, with a framing coefficient one less than
that determined by the contact structure, we may extend the geometric structure in a
unique way over the handle. The trace of this operation on the contact boundary is
referred to as a Legendrian surgery, and is a fundamental tool for constructing fillable
contact manifolds. Less understood however is the tight/overtwisted dichotomy in this
context. Indeed the only known result, due to Honda [15], was an example of an open
tight contact manifold which becomes overtwisted through Legendrian surgery. Our
methods provide tools to fill in this gap, and show that:

Theorem 1.4 [24] Tightness of a closed contact 3–manifold is preserved under
Legendrian surgery.

It is worth noting that the assumption that M be closed is necessary, as Honda demon-
strated with specific examples in [15].

The specific aim of this paper is to “unpackage” consistency, in particular showing
how it can be detected from the data of an arbitrary open book, without reference to
the stabilization equivalence class (in contrast with the approach of [24]). As such, the
paper should be thought of as a sort of “user’s guide” of the theory. Details of the main
theorems will only be sketched, their full forms left to [24] and [22].

Section 2 is dedicated to introducing the vocabulary of consistency, while in Section 3
we sketch its main properties, and proofs of the main theoretical applications. Section 4
describes several explicit constructions used in these proofs. Finally, in Section 5, we
illustrate the theory with a classification of a family of contact structures given by
Legendrian surgery diagrams.

Acknowledgements This paper is based on talks given by the author at the conference
“Interactions between low dimensional topology and mapping class groups” at the Max
Plank Institute for Mathematics in July 2013; we would like to thank the organizers
for the opportunity. We would also like to thank the anonymous referees for many
helpful comments and suggestions, and John Baldwin for pointing out an error in a
previous version.

2 Definitions

Let .†; '/ be an open book decomposition. We will refer to a set � of disjoint,
(oriented) properly embedded arcs in † as an (oriented) arc collection.
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A main object of study in the paper will be “augmented” open books .†; '; �/, for
� an arc collection. Given oriented arc collection � , images of arcs will be given
the reverse orientation, while a point p of � \'.�/ will be called positive if the pair
consisting of a tangent vector along the element of � at p followed by that along the
image arc gives the usual basis for Tp†; otherwise p is negative (Figure 2). We will
assume throughout the paper that we are working with a representative of ' such that
each point of @� is positive, and further that any bigon in � [ '.�/ has a corner in
@� (we refer to such a representative as right-efficient).

p



'. /

q

 '. /

Figure 2: To the left, a right-efficient representative of the identity. Each
endpoint of  is a positive point of intersection, while the point p D int†\
 \ '. / is negative. To the right, q is positive. This figure introduces the
conventions, which will hold throughout the paper, that elements of a given
arc collection are drawn as straight lines, their images under a mapping class
are curved, and in any figure with multiple line weights, the thickest lines are
reserved for @† .

Our main tool for keeping track of ' will be regions in .†; '; �/:

Definition 2.1 Let � be an oriented arc collection in .†; '/. A region in .†; '; �/
is the image of an immersion f W D# †, where D is a 2n–gon, whose edges we
label e1; e2; : : : ; e2n in counter-clockwise order, and such that:

(1) For j even, f jej
is an embedding to some  2 � , while for j odd, f jej

is an
embedding to some '. /, for  2 � .

(2) Each corner of f .D/ is acute.

(3) The orientations of � and '.�/ orient @f .D/.

We say that � supports each such region.

We refer to a region as positive if the boundary orientation gotten from its supporting
collection agrees with the standard (counter-clockwise) orientation, negative otherwise.
Note then that corners alternate in sign as we travel around the boundary of a region. To
keep track of these, throughout the paper we will refer to positive corners as �–points
and negative corners as ı–points (figures will be decorated accordingly). We will also
denote the set of positive (negative) corners of a given region A as Dot.A/ .Circ.A//.

We will be interested in a particular sub-collection of regions:
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Definition 2.2 Given .†; '; �/ as above, we have nested sequences of sub-collections
of regions as follows:

� RC
0
.�/ WD positive regions with all �–points on @†.

� R�
0
.�/ WD negative regions with all ı–points in the ı–point set of RC

0
.�/.

� RCi .�/ WD positive regions with all �–points in @†[f�–points of
S

j<i R
�
j .�/g.

� R�i .�/ WD negative regions with all ı–points in fı–points of
S

j�i R
C
j .�/g.

� R˙.�/ WD
S

i R
˙
i .�/.

Figure 3: A positive region

We will throughout the paper depending on context use R.�/ and R.†; '; �/ to refer
to the full collection. Our main object of study will then be certain sub-collections of
R.�/, which we refer to as towers. To define these, we need the following setup:

Definition 2.3 Let T ˙ � R˙.†; '; �/, and T WD T C [ T � . The graph of T ,
which we denote by G.T /, is the abstract directed edge-labeled multigraph (henceforth
referred to as an adem-graph) whose vertices V correspond to elements of T C , while
for each pair A;B 2 T C , each pair f.v 2Dot.A/;y 2 Circ.B// j v;y are vertices of a
common element of T �g gives a distinct edge from A to B , labeled by v . Figure 4
gives examples.

Observe then that edges strictly decrease level, giving a partial order to RC.†; '; �/,
which extends in the obvious way to R.†; '; �/. We will use the usual symbols <
and > throughout to denote this.

Definition 2.4 A tower in .†; '; �/ is a collection T �R.†; '; �/ where Dot.T /�
.Dot.T �/[ @†/, Circ.T /D Circ.T C/, and for all pairs A;B 2 T , no corner of A is
contained in the interior of B .

We say that � supports T .

Definition 2.5 A tower T is replete if whenever A 2 R�.�/ satisfies Circ.A/ �
Circ.T /, and T [fAg is again a tower, then A 2 T . Throughout the paper, all towers
will be assumed replete.
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Definition 2.6 Let G D .V;E/ be an adem-graph, and s a section of the equivalence
relation generated by the labeling. Then the adem-graph Gs WD .V; s.E// is a skeleton
of G .

Definition 2.7 A tower T is independently supported if each skeleton of G.T / is a
tree.

Definition 2.8 A tower T is completed if it contains some maximal negative region
A; equivalently, one which shares no �–point with any element of T C . Otherwise, T
is incomplete.

B

A

A

(a)

C

B

A
B

C

b

a

a

b

C

A

(b)

E
D

G

F
E

C

B

A
F

B

c

b

a

c

b

a

G

C

A D

(c)

Figure 4: (a) A simple tower containing a single positive region, which
is completed. (b) A tower which is not independently supported. (c) An
independently supported, incomplete tower. In each figure, edge labelings are
by color, so that if edge e is labeled by �–point v , then v and e are illustrated
with the same color.

Definition 2.9 Let .†; '/ be an open book decomposition. We say an oriented arc
collection � is consistent in .†; '/ if each independently supported tower in .†; '; �/
is completed.

Our characterization of tightness (Theorem 1.3) then takes the following form (compare
with [24, Definition 2.6]):
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Definition 2.10 A class ' 2MCG.†/ is inconsistent if there is some inconsistent arc
collection � in .†; '/. Otherwise, ' is consistent.

3 Properties of consistency

The purpose of this section is sketch the arguments required for the proof of Theorem 1.3.
Throughout the section, a basis of a surface will refer to an arc collection which cuts
the surface into a disc, while an arc collection � will be said to be guided by a basis B
if each element of � is isotopic to one of B (note that the definition allows parallel arcs
of distinct orientations). The central idea then is to show that consistency of a mapping
class is determined by any basis of the surface. We will make use of the following
set-up (see eg [17]):

Definition 3.1 Let a and b be elements of some arc collection � in surface †, and
� some arc in @† connecting an endpoint of a to an endpoint of b , and such that �
has no interior intersection with � . Then the pair a; b is summable, while a properly
embedded arc in the isotopy class of a[ � [ b is referred to as a sum of a and b .

Definition 3.2 Let � be an arc collection, a; b 2 � a summable pair. Then the
operation on � consisting of removing a , and adding in a sum of a and b , is an
arc slide (Figure 5).

a

b

1

Figure 5: f1; ag fa; bg is an arc slide

The main result we require is the following:

Lemma 3.3 [17] Any two bases of a given surface are related by arc slides.

In particular then, we want to show that consistency is preserved by an arc slide:

Lemma 3.4 Let B1 and B2 be bases of †, related by a single arc-slide. Then B1

guides an inconsistent arc collection if and only if B2 guides an inconsistent arc
collection.
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b

a

b a

b

a

b a

Figure 6

While Lemma 3.4 does admit a fairly intuitive direct proof, which essentially consists
of “pushing” a given tower in B1 over an arc-slide domain, so (using the notation of
Figure 5) replace 1 with the pair a and b to obtain a tower in B2 (Figure 6), and
then verifying that the operation preserves the properties of independent support and
incompleteness, the combinatorics are quite tricky, and require one to consider a large
number of cases. Accordingly, we will take something of a short-cut by invoking some
terminology and results from [24].

Definition 3.5 Let P be some property of augmented open book decompositions.
Then, given an augmented open book .†; '; �/, we say that .†; '; �/ stably satisfies
P if there is some sequence of positive stabilizations after which the stabilized triple
.†0; '0; �.�// satisfies P (where � is the obvious inclusion of properly embedded arcs
of † into those of †0 ).

We have:

Definition 3.6 An arc collection � is boundary inconsistent in .†; '/ if R.†; '; �/
contains some tower consisting of a single (necessarily positive), embedded, region A,
and further i nt†\�\'.�/DCirc.A/ (such a region is referred to as an “overtwisted
region” in [24]).

Observation 3.7 The reader familiar with the combinatorial versions of Heegaard–
Floer homology will likely notice that existence of such a region implies vanishing
of the Heegaard–Floer “contact class”, and that more generally the regions we are
considering throughout the paper are essentially just those corresponding to genus-0
regions contributing to the differential. As such, one may think of Heegaard–Floer
theory as giving a model for an “algebraization” (and generalization) of consistency;
this is the subject of work in progress.
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We then have a “stable” version of Lemma 3.4:

Lemma 3.8 [24] Stable boundary inconsistency is detected in any basis; ie if some
basis of † guides a stably boundary inconsistent arc collection in .†; '/, then so does
any other basis.

Sketch of proof Again, using Lemma 3.3, it is clearly sufficient to consider a pair
of bases B1 and B2 related by a single arc slide f1; 2g f2; 3g. Let � be a
stably boundary inconsistent arc collection guided by B1 . There is then a sequence
of stabilizations, and inclusion map �, such that �.�/ is boundary inconsistent in the
stabilized open book decomposition. One then observes that we may replace each
element  0

1
of � isotopic to 1 by a pair  0

2
and  0

3
, isotopic to 2 and 3 , in such

a way that f�. 0
1
/; �. 0

2
/g f�. 0

2
/; �. 0

3
/g is again an arc-slide (in the stabilized open

book decomposition). As such, we have reduced the problem to the case of a single
arc-slide in the stabilized book, in which our tower has the particularly simple form
of Definition 3.6. It remains only to verify that such a region can always be “pushed”
over an arc-slide domain to another such region. We refer to [24] for details.

Lemma 3.4 then follows by showing that stable boundary inconsistency is equivalent
to consistency.

Lemma 3.9 Let .†; '; �/ be an augmented open book decomposition. Then � is
stably boundary inconsistent if and only if � is inconsistent (in .†; '/).

Sketch of proof The “if” direction is by far the most combinatorially intensive
argument of the paper; as such it is deferred to the next section. The “only if” part of
the argument then consists of showing that an incomplete, independently supported
tower is “preserved” by destabilization.

3.1 Tightness

We now have the tools to prove Theorem 1.3, whose statement we recall below. The
proof is a slight adaptation of that given in [24], reflecting the slightly different focus
of this paper.

Theorem 1.3 Let M be a closed 3–manifold, � a contact structure. Then the follow-
ing are equivalent:

(1) � is tight.

(2) Some open book decomposition supporting .M; �/ is consistent.

(3) Each open book decomposition supporting .M; �/ is consistent.
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Proof We begin with the equivalence of .2/ and .3/. Let .†; '/  .†0; '0/ be
a stabilization via properly embedded arc ˛ . Following the notation set up in the
introduction, '0 D �s ı' , where s is the extension over ˛ of the core of the stabilizing
1–handle. Let B denote a basis for † with the property that '.B/ \ ˛ D ∅ (for
example, building a handle decomposition of † in which the unique 0–handle is given
by a neighborhood of ˛ , the set of co-cores of the 1–handles gives a basis C such
that C \ ˛ D ∅; setting B D '�1C then satisfies our requirement). We claim then
that R.†; ';B/ D R.†0; '0;B0/, where B0 is obtained by adding the co-core s of
the stabilizing 1–handle to (the obvious inclusion of) B . To see this, note firstly that
our condition on B gives an identification R.†; ';B/DR.†0; '0;B/. On the other
hand, s \ �s.'. //D ∅ for each  2 B , so R.†0; '0;B0/ contains no regions with
edge along s or its image. The result then follows from Lemma 3.4.

To see that (2) implies (1), suppose that � is overtwisted. Using Eliashberg’s homotopy
classification of overtwisted contact structures [5] it is straightforward to find an open
book decomposition .†; '/ supporting � which is a negative stabilization (ie replace
the Dehn twist in Definition 1.2 with its inverse) of some other open book (see [12]
or [16] for a proof). In particular, a right-efficient representative determines a pair
of level-0, incomplete bigon regions supported by the co-core  of the stabilization
handle. In particular then any basis containing  detects inconsistency.

Finally, to see that (1) implies (2), we generalize a construction due to Goodman [12]
to demonstrate an overtwisted disc in .M; �/ whenever a supporting triple .†; '; �/
has an overtwisted region (Definition 3.6); using Lemma 3.9, the result follows. In
particular, suppose A is such a region, supported by � D f1; 2; : : : ; ng, where
i \ '.j / is a corner for A for i < n and j D i C 1, or i D n and j D 1. We then
consider the suspension Si of i in the mapping torus of .†; '/, which we extend over
the binding by attaching a meridional disc along each fpg �S1 , for p 2 @i . We thus
have a collection of embedded discs (one for each element of � ) which we label Di ,
and n positive boundary-intersection points @Di<n\ @DiC1 and @Dn\ @D1 . We then
“resolve”

S
i Di at each intersection point p by adding a pair of small triangles from

the page † through p in the unique way which preserves the boundary orientation.
Smoothing the result via an isotopy relative to the boundary, and then pushing each @i

into †, we obtain an embedded annulus C #M , such that the boundary is contained
in †, and exactly one boundary component of C bounds a disc in †. Finally, then,
“capping off” a boundary component of C via this disc, we obtain a disc D ; following
the arguments of Goodman, which in turn rely on the “Legendrian realization principle”
of Honda [14], we may make @D Legendrian. Moreover, the Thurston–Bennequin
number of @D is just given by the intersection of D with a push-off of the boundary
along †, so is zero. We conclude that D is an overtwisted disc.
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Di

DiC1

A A

C

Figure 7: To the left: above, the discs Di and DiC1 , in a neighborhood of
i , illustrating the foliation of the mapping torus by the pages; below, the
restriction to †� f0g in the mapping torus †� Œ0; 1�=.p; 1/� .'.p/; 0/ . To
the right, the result C of resolving the intersections.

Alternatively, one can simply observe that, assuming A is at least an .n > 2/–gon,
each element of � is in fact the co-core of a stabilizing handle, and moreover that,
destabilizing .†; '/ via any such handle has the effect of turning A into an .n�2/–gon,
again incomplete, and isolated. Thus, by repeating the process we may assume A is a
bigon, at which point the right-veering criterion of [16] implies overtwistedness.

3.2 Applications

Besides the obvious utility of Theorem 1.3 as a straightforward classification tool, it
may of course also be used to generate sufficient conditions for tightness in the language
of more standard frameworks. We gather two such applications in this section.

Theorem 3.10 [22] Let .M; �/ be supported by an open book decomposition with
the property that the fractional Dehn twist coefficient about each boundary component
is greater than 1. Then � is tight.

Sketch of proof Let .†; '/ be such an open book decomposition. Rather than defining
the fractional Dehn twist coefficient (see eg [16]), we simply note that our condition
implies that, for each arc  in †, and each endpoint x of  , the image '. / twists at
least once around the boundary component containing x (Figure 8) (as usual assuming
right-efficiency). One may then verify that for any � guided by a basis, Ri.†; '; �/

is empty for i > 0, and any positive elements of R0 are completed, so ' is consistent.
As an aside, this conclusion does not hold under the weaker assumption that a given �
is such that for each arc  in � , and each endpoint x of  , the image '. / twists at
least once around the boundary component containing x .

It should be noted that Theorem 3.10 was previously known for the case of an open
book decomposition whose pages have a single boundary component by Colin and
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'. /

x

Figure 8

Honda [2], and later independently shown by Ito and Kawamuro [18] to hold under the
added restriction that the open book decomposition have planar pages.

Theorem 1.4 [24] Let .M; �/ be a tight, closed, contact 3–fold, L a Legendrian
knot in .M; �/, and .M 0; � 0/ the result of performing Legendrian surgery on L. Then
.M 0; � 0/ is tight.

Sketch of proof It follows from work of Giroux (see eg [9]) that, if L is a Legendrian
knot in contact .M; �/, then one may find an open book .†; '/ supporting .M; �/

such that L is a homologically non-trivial curve on a page, and furthermore the
contact manifold .M 0; � 0/ obtained by Legendrian surgery along L is supported by
.†; �L ı'/. As such, in light of Theorem 1.3, it is sufficient to show that, whenever
.†; '/ is inconsistent, and L homologically non-trivial in †, then .†; ��1

L
'/ is again

inconsistent.

The verification of this is simplified greatly by the observation that we may chose a
basis B of † with the property that L has non-trivial intersection with exactly one
element of '.B/, which we label '. /, and further that it intersects '. / exactly
once. Using this, along with Lemma 3.9, it follows that we may assume our open
book contains an incomplete level-0 positive region (i.e one in RC

0
), which has no

intersection with L. The region then again is boundary based in .†; ��1
L
'/, while the

assumptions on L allow one to conclude incompleteness.

4 Overtwisted discs from incomplete towers

In this section, we sketch an algorithm from [22] for stabilizing an inconsistent arc
collection into a boundary inconsistent collection (so finishing the “if” direction of
Lemma 3.9). Our construction has two main pieces. We will show that:

Lemma 4.1 (Tower reduction) If .†; '; �/ is inconsistent, then .†; '; �/ stably
supports an incomplete tower with a single element.

Lemma 4.2 (Intersection reduction) If .†; '; �/ stably supports an incomplete tower
with a single element, then stably, each interior point of � \'.�/ is a negative corner
in the tower.
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4.1 Tower reduction

Our goal is to “simplify” a given tower through stabilizations. We have:

Definition 4.3 Let T be a tower. Let c1.T / denote the number of positive regions of
T with at least one corner on @†, and c2.T / WDminfj j T �

0
contains a j –gong (for

the case that T �
0
D∅, we set c2.T /D 0). Then the complexity of T , denoted c.T /, is

the pair .c1.T /; c2.T //. Similarly, for inconsistent ' 2MCG.†/, we define c.'/ to
be the minimal (under the lexicographical order) value of c.T / over all independently
supported incomplete towers in R.†; '; �/.

To prove Lemma 4.1, then, it is sufficient to show that, given inconsistent ' , we may
always find a stabilization such that the stabilized class has smaller complexity; it
follows that we may always find a class with complexity .1; 0/, which is the minimal
possible value, and implies the conclusion of the lemma.

In defining stabilization arcs, a basic construction we will make use of throughout the
sub-section is the following:

Definition 4.4 Let A be a region in .†; '; �/, and let D denote the polygon domain
of A, so AD f .D/ for some immersion f . Let x1 and x2 denote corners of A, and
let yi denote the pre-image of xi for each i . Finally, let �y1;y2

denote a representative
of the unique isotopy class of arcs in D from y1 to y2 . Then the image f .�y1;y2

/ is
a chord of A, which we denote Œx1;x2�A (Figure 9).

x1

x2

x3 x4

Figure 9: An immersed region, with and chords Œx1;x3� and Œx2;x4�

We will go through the proof for an embedded tower, and then sketch the general case
(here embedded simply means that regions intersect only in corners). As such, let T
be an embedded independently supported incomplete tower with c.T / > .1; 0/, and
B in T �

0
a c2.T /�gon. As T is incomplete, there are then A 2 T C

1
and C 2 T C

0

such that A > B > C . Assume for the moment that A has some corner on @†.
Then, for any triple .x; v;y/, where x 2 Dot.A/\ @†, v 2 Dot.A/\Dot.B/, and
y 2 Circ.B/\Circ.C /, we define a pair of arcs in † as follows (Figure 10):
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� Let �1 denote the arc obtained by extending Œx; v�A [v Œv;y�B in '.�/\ @A
to @†, isotoped to intersect the restriction of '.�/ to the boundaries of A;B

and C in exactly 2 points, each in @A.
� Let �2 denote the arc obtained by extending Œx; v�A [v Œv;y�B in � \ @A to
@†, isotoped to intersect the restriction of '.�/ to the boundaries of A;B and
C in exactly 2 points, each in @B .

C y

�1 B

�2 A

v

x

Ds2

Ds1

C B1
1

B1
2

A1
2

A1
1

C B2
2

B2
1

A2
1

A2
2

A

C Ai
2

C

Ai
1

Figure 10

Consider then the corresponding stabilizations, with twists �s1
and �s2

. Letting Dsi

denote a representative of �si
supported in a neighborhood of si , each diffeomor-

phism Dsi
is then the identity on T away from fA;Bg. Moreover, �jfA;Bg and

Dsi
.'.�/jfA;Bg/ bound a chain of 4 regions, which we label fAi

1
;Ai

2
;Bi

1
;Bi

2
g, such

that Ai
2
> Bi

2
>Ai

1
> Bi

1
(Figure 10 illustrates the regions, and also the effect on the

graph of the tower). Note that, as each corner of A;B and C other than v and y is
again a corner of the new collection, we have a new tower in the image, which we label
Dsi

.T /. Clearly, G.Dsi
.T // differs from G.T / by the local modification illustrated in

Figure 10, so in particular is again independently supported and incomplete. Finally,
we let Ti denote the image of Dsi

.T / under a right-efficient isotopy of Dsi
.'.�//.

We then leave as an exercise the following verifications:
� Ai

1
is not a bigon; as such, if Bi

1
is a bigon, the right efficient isotopy “merges”

C and Ai
1

, so that c1.Ti/ < c1.T /.
� If neither Bi

1
is a bigon, then c1.Ti/D c1.T /. However, at least one of the Bi

1

has fewer sides than B , so that c2.Ti/ < c2.T /.
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The case that A has no corner on @† is a straightforward modification; we illustrate
the relevant arcs and stabilizations with Figure 11.

C

B

A
D

E�2

�1

�2

�1

Ds2

Ds1

C B1
1

B1
2

A1
2

A1
1

D1
2

D1
1 E

F

C B2
2

A2
1 D2

1

B2
1 A2

2
D2

2
E

F

A

C E
Ai

1 Ai
2

C E

F

Figure 11

Of course this construction depends heavily on our assumption that T is embedded;
we sketch the steps involved in the more general case:

� Let A 2 R.†; '; �/, and v 2 Dot.A/. Then there is v0 2 Dot.A/ such that
Œv; v0�A is embedded.

� As such, for any A2T C
0

, one may always find an embedded chord with endpoints
on @†.

� Isotoping such a chord so as to intersect @A in two points, both either in � or
'.�/, we have a stabilization arc which preserves G.T /.

� Using such stabilizations, one may “empty” T C
0

; ie stably, 8A 2 T C
0

, int.A/\
.� ['.�//D∅.

Now, let A 2 T C
1

, and v 2Dot.A/ be 2–sided, so there is B 2 T �
0

incident to A at v .
Then one may find:

� v0 2 Dot.A/ such that Œv; v0�A is embedded.

� y 2 Circ.B/ such that Œy; v�B [fvg Œv; v0�A is embedded.

So, if v 2 @†, we have an extension of Œy; v�B [fvg Œv; v0�A to a complexity-reducing
stabilization arc of either of the types illustrated in Figure 10. Otherwise, we may
repeat the same argument to extend over some region D 2 T �

0
incident to A at v0 ,

and then to a complexity-reducing stabilization arc of either of the types illustrated in
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Figure 11. It remains then to verify that core stabilizations in the general case have
the same effect on complexity as in the embedded case. This statement has a “local”
component (that complexity of the local collection fA;B;C g (resp. fA;B;C;D;Eg/
is reduced), and a “global” component (that complexity is not increased away from the
local collection). We leave these verifications to [22].

4.2 Intersection reduction

Let A be a level-0, incomplete region in some .†; '; �/, where � is “minimal” in the
sense that each element  2 � contains an edge of A. Using the results of the previous
sub-section, we may (and will) assume that A is “empty”; ie int.A/\ .�['.�//D∅.
The goal of this sub-section is to show that A is stably isolated in the sense of [24];
ie such that each intersection int†\� \'.�/ is a corner of A.

We will recall a bit of helpful machinery from [23]:

Definition 4.5 Let � be a arc or simple closed curve in †, .†; '; �/ an augmented
open book. An upward triangle in .†; '; �/ (with respect to � ) is the image of an
immersion of a triangle T in †, such that the edges of T are mapped into �; � , and
'.�/ respectively, in counter-clockwise order about T (Figure 12). Any vertex of an
upward triangle is referred to as upward.

T

�

'. 0/



Figure 12

Now, let �s be the Dehn twist associated to a stabilization of .†; '/. We factor
a representative of �s as Is ı Ds , for Ds a twist diffeomorphism supported in a
neighborhood of s , and Is a right-efficient isotopy of Ds.'.�//. It is not difficult
to see (and is shown explicitly in [23]) that the set of upward triangles is in 1–1

correspondence with interior bigons in � and Ds.'.�// (Figure 13(a)–(b)). Thus Is

may be taken to be a sequence of isotopies over such bigons (Figure 13(b)–(c)).

Suppose then that  2 � is such that #js \  j D 1. Thus each upward point of
 \'.�/ is in a unique bigon of  [Ds.'.�//, so the isotopy Is removes two points
of  \Ds.'.�// for each such upward point. In other words, letting t denote the
number of upward points of  \'.�/, we have

(1) 2t � #js\'.�/j D #j \'.�/j � #j \ �s.'.�//j:
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�

'.�/

�
(a)

Ds

(b)

Is

(c)

Figure 13

We will refer to the left side of (1) as the reduction (along  ) associated to �s .

We pause to gather some notation, to be used throughout the remainder of the subsection.
Letting  be an element of � , we label the points  \'.�/\ int.†/ by X WD fxig

n
iD0

,
such that indices decrease along the orientation of  . Then for each i < n, let ei

denote the segment of  from xi to xiC1 , and �i the sub-arc of '.�/ to the right
of xi up to its next intersection with either  or @†. Finally, cutting † along  and
each �i , label the component to the right of ei by Ri (note that these labels are not
necessarily unique).

A

x0

x1

x2



xn

R0

R1

�0

�1

�2

�n

Figure 14

We will also make use of a simple construction for producing properly embedded arcs:
Let †0 denote the result of cutting † along  , and � be an arc properly embedded in
†0 , to the right of  at least one endpoint. We construct an arc �� , properly embedded
in †, as follows: Begin by orienting � away from its endpoint along  (where, if � is
to the right of  at each endpoint, we orient such that @�� > @C� , where > denotes
the ordering given by orientation). Then extend � from @�� , in a neighborhood U of
 , up to a point in @† to the left of @� . Call the extended arc �0 . Finally (Figure 15):

(A) If @C� 2 @†, set �� D �0 .

(B) If � is right of  at each endpoint, extend �0 from @C�0 , in U , to a point of
@† to the right of @� .

(C) If � is left of  at @C� , and @�� > @C� , extend �0 from @C�0 , in U , to a
point of @† to the left of @��0 .
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(D) If � is left of  at @C� , and @C� � @�� , extend �0 from @C�0 in U to a
neighborhood of x0 , then turn left, and continue parallel to @A up to @†.

A A A A

��

�



�

��

�

��

�� �

(A) (B) (C) (D)
Figure 15

We will now describe 4 distinct possibilities for our pair ; '.�/, and for each exhibit an
arc � such that the stabilization �s corresponding to �� is reducing along  (Figure 16).

(1) 9i < n such that Ri contains a path � of type (A). Then if �s denotes the
stabilization determined by �� , using Equation (1) we find that t D #js\'.�/jD
n� i . In particular, �s has reduction 2.n� i/� .n� i/ > 0.

(2) 9i < j such that �i D �j is not parallel to �0 . Thus �i is of type (B). Setting
� D �i , we have t D n� i C 1, #js \ '.�/j D 2n� i � j C 1, and so �s has
reduction i C 1� j > 1.

(3) 9i such that �i terminates to the left of  , at xj>i . Thus �i is of type (C).
Setting �D �i , �s has reduction j � i > 0.

(4) 9i such that �i terminates to the left of  at xj , for j < i , and n�i �j�1. Thus
�i is of type (D). Again setting �D �i , �s has reduction .n�iC1/�.j �1/> 0.

A

xi

tDn�i

��

(1)

A

xi
��

tDn�iC1

xj

(2)

A

xi ��

xj
tDn�i

(3)

A

��
xj

xi

tDn�iC1

(4)
Figure 16

We now come to the proof of Lemma 4.2.
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Proof of Lemma 4.2 We will reproduce the full proof from [22] for the case that A

is a bigon, and then indicate the modifications necessary for the more general case.
Note then that, if A is a bigon, then in each of the above numbered cases, the defined
stabilization curve s is such that no efficient representative of the isotopy class of s

intersects A; as such, A is again an incomplete region is the stabilized open book.
Suppose then that none of the cases hold. Then:

� To avoid case (3), the arc �0 terminates to the right of  .

� Let xj be the other endpoint of �0 . Then j D n, else Rj satisfies case (1).

It follows then that 8i < .n� 1/=2, �i D �n�i is parallel to �0 : Supposing otherwise,
let k Dminfi j �i is not parallel to �iC1g. Then either Rk is as in case (1), or �i is
one of the 3 remaining cases, giving a contradiction.

We claim then that R.n�1/=2 has a unique boundary component (and thus has genus
> 0). Supposing otherwise, there is then some j such that R.n�1/=2 is to the left of
ej . But then a path in R.n�1/=2 from e.n�1/=2 to ej gives a reduction of type (3) (if
j > .n� 1/=2) or (4) (if j > .n� 1/=2).

So, to finish the argument, we need to demonstrate a stabilization whose associated
reduction is zero, such that the in the stabilized open book decomposition one can
find a stabilization whose associated reduction is greater than zero. Let ˛ denote a
homologically non-trivial simple closed curve in R.n�1/=2 , and � the result of connect-
summing a copy  0 of  , perturbed at the endpoints such that  \  0 is a single
negative point, with ˛ (where the connect sum is done in the interior of R.n�1/=2 )
(Figure 17(a)). Then s has reduction 0, but in the stabilized open book, R.n�1/=2 has
multiple boundary components, so is a reducible configuration.

A



(a)

A

A

A

(b)

Figure 17

For the general case, the above argument shows that we may find a reducing stabilization;
it is however no longer necessarily true that A is preserved by the stabilization, or,
even if it is preserved, that it is preserved as an incomplete region. However, with
a bit of case-checking, one can show that indeed, analogous to the bigon case, if
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there is no reducing stabilization which preserves A as an incomplete region, then A

has a “completion-with-genus” (Figure 17(b)), and that in this case we may always
find a stabilization of, and then in the stabilized open book decomposition a further
stabilization whose associated reduction is positive.

Observation 4.6 As an aside, we note that the bigon case of Lemma 4.2 tells us that,
in the terminology of [12] and [16], we may always stabilize an “arc mapped to the left”
into a “sobering arc”. As such, we may recover the full right-veering framework directly
(ie without referring to the Giroux correspondence or consistency) from the construction
of [12]. In fact, a careful look at the sobering arc produced by our construction reveals
that the surface constructed by Goodman’s method in our case is actually an overtwisted
disc, so one does not require the more general Bennequin inequalities.

5 Examples

In this final section, we illustrate the steps involved in using Theorem 1.3 with an
example to check tightness of a contact manifold presented as a Legendrian surgery
diagram. As hinted at in the proof of Theorem 1.4, there is a more-or-less standard
process for transforming such diagrams into open book decompositions. The general
procedure can be described as first using the methods of eg Ding and Geiges [3] to
convert the surgery diagram into one in which each surgery coefficient is ˙1 relative
to the contact framing, secondly using the framework of Giroux to build an open book
decomposition of the standard .S3; �st / in which each component of our link lies on a
page, such that the page framing agrees with the contact framing (a careful proof of this
fact was given by Plamenevskaya in [20]), and finally using the classical construction
of Lickorish [19] to see that an open book decomposition for the resulting .M; �/ is
given by a composition of ' with positive/negative twists about the link components.
Given such an open book decomposition, then, we may check for consistency.

For the specific example we have in mind, we start from the standard Legendrian
unknot K (ie that whose front projection consists of two cusps and no crossings),
which we push off of itself 4 times to obtain 5 copies Ki , i D 1; 2; : : : ; 5. Then,
for a given 6–tuple .a1; a2; a3; b1; b2; b3/ of positive integers, let L.a1;a2;a3;b1;b2;b3/

denote the link obtained by adding ai left cusps, bi right cusps, to Ki . Finally,
let �.a1; a2; a3; b1; b2; b3/, denote the contact 3–fold gotten by surgery on L, with
coefficient tb.Ki/� 1, for i � 3, and tb.Ki/C 1 otherwise (Figure 18(a)).

From this description, it is relatively straightforward to check that the open book
decomposition illustrated in Figure 18(b) supports �.a1; a2; a3; b1; b2; b3/ (here the
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a1

a2

a3

b1

b2

b3

C1
C1

�1

�1

�1

(a)

˛1

˛2

˛3

˛4

a1� 1

a 2
�

1

a
3
�

1

b 2
�

1

b1� 1

b
3 �

1

(b)
Figure 18

page is just the surface indicated, with genus 0 and a1C a2C a3C b1C b2C b3� 4

boundary components, while the monodromy is ��1
˛4
�˛3
�˛2
�˛1
�@ , where �@ is the

composition of a single positive twist around each bracketed boundary component).

�1

0

0
�a1�b1

�a2�b2

�a3�b3

1

1

1
�a1�b1C1

�a2�b2C1

�a3�b3C1

�1

�a1�b1C1

�a2�b2C1

�a3�b3C1

Figure 19

For the curious, we exhibit a topological surgery description of M , and simplifying
Kirby moves thereof, in Figure 19. From this description one sees that M is a small
Seifert manifold (ie the base surface is S2 , and there are exactly three singular fibers).
Thus in (some candidate for) standard notation for such objects,

M DM

�
�1I

1

a1C b1� 1
;

1

a2C b2� 1
;

1

a3C b3� 1

�
:
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For this paper, we will specialize to the case a1 D a2 D b3 D 1, and a3 > 2. It was
shown in [10] (using some combination of convex surface theory with Heegaard–Floer
homology) that �.1; 1;p; 2; 2; 1/ is tight for all p . We will show how to recover this
result with the methods of this paper, and further show that it is optimal, ie that all
other possibilities are overtwisted.

˛1˛2

˛3

˛4

Figure 20:
�

a1 b1

a2 b2

a3 b3

�
D

�
1 2
1 3
3 1

�
We begin with the second claim. Consider firstly the case b1 D 2, b2 D a3 D 3.
The relevant open book decomposition is illustrated in Figure 20, along with an arc
collection � . Note then that the region A 2 RC

0
.†; '; �/ indicated in the figure is

incomplete, and thus the open book decomposition is inconsistent.

The more general situation, that b1 � 2, and b2; a3 � 3, is indicated in Figure 21 (note
that b1 and b2 are interchangeable); again, each monodromy is inconsistent, so each
contact structure overtwisted.

It is left then to recover the above-mentioned result of [10], that �.1; 1;p; 2; 2; 1/ is
tight for all p . We start by defining �p WD �.1; 1;p; 2; 2; 1/, and supporting open book
decomposition .†p; 'p/. Observe firstly that, if p 2 f1; 2g, then 'p has a positive
factorization (for p D 1, ˛3 and ˛4 are isotopic, while for p D 2 this requires the so-
called “lantern relation”), so the structure is tight by the results of Gromov, Eliashberg,
and Giroux discussed in Section 1 (of course Theorem 1.4 gives an independent proof
of this). As an aside, while the curves in our particular case happen to be homologically
non-trivial, it is true in general that if a mapping class admits a factorization into
positive twists, then, using the so-called “chain-relations” of the mapping class group,
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it admits a factorization into positive twists about homologically non-trivial curves, so
in particular can be obtained by Legendrian surgery on the standard (tight) structure
on S3 .

b2� 1

b 3
�

1a
3
�

1

˛1

˛2

˛3

˛4

Figure 21

˛1

˛2

˛3 ˛4

(a)

A

B

(b)

Figure 22: (a) The triple .†3; '3; �3/ . (b) The collection �3 n f g supports
a unique level-0 positive region A , which is completed by B , and such that
fA;Bg is a maximal tower.

For the case p D 3, let �3 denote the arc collection indicated in Figure 22(a). The
configuration is sufficiently simple that one may simply check consistency “by hand”:
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In general, it is not difficult to see that any level-0 positive region which has exactly
one edge along each element of a basis is trivially completed, and not contained in
any other tower. In particular, in the present situation is sufficient to consider those
elements of RC

0
.†3; '3; �3/ which are supported by a proper subset of �3 . One may

then check that, for each  2 �3 , RC
0
.†3; '3; �3 n f g/ has at most one element. It is

then straightforward to verify that each of these is contained in a completed maximal
tower. We illustrate this for a particular choice of  in Figure 22(b).

For p > 3, let �p denote the arc collection indicated in Figure 23(a). We leave as
an exercise that the “collapse” indicated in Figure 23(b) induces an isomorphism on
region collections (ie a 1–1 map which preserves incidences).

p� 1

(a) (b)
Figure 23
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