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Circle geometry and three-dimensional
subregular translation planes

Craig Culbert Gary L. Ebert∗

Abstract

Algebraic pencils of surfaces in a three–dimensional circle geometry are
used to construct several infinite families of non-André subregular transla-
tion planes which are three–dimensional over their kernels. In fact, expo-
nentially many such planes of a given order are constructed for both even
and odd characteristic.
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1. Introduction

In [6] and [7] R. H. Bruck proposed a set of axioms for higher–dimensional cir-
cle geometries, and developed the theory for a specific class of circle geometries
of odd prime dimension. In this paper we concentrate on the three-dimensional
case, namely CG(3, q). Here q is a prime power, and F will denote the un-
derlying finite field GF (q). One can identify the points of CG(3, q) with the
points of the projective line PG(1, q3) over the 3-dimensional extension field
K = GF (q3) of F , or equivalently with the elements of K ∪ {∞}, where one
takes the usual conventions on the symbol ∞. The circles of CG(3, q) then get
identified with the sublines of PG(1, q3) isomorphic to PG(1, q).

In the two–dimensional setting, CG(2, q) is the classical Miquelian inversive
plane, and there is a well–known correspondence [4] between the points/circles
of CG(2, q) and the lines/reguli of a regular spread S of PG(3, q). One obtains
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subregular spreads by replacing a set of mutually disjoint reguli by their op-
posite reguli in the regular spread S. The two–dimensional translation planes
of order q2 associated with the resulting spreads are also called subregular. If
the set of disjoint reguli, or the corresponding set of disjoint circles, is “linear”
in some well-defined way (see [4]), then the resulting translation planes are
two-dimensional André planes.

In the three-dimensional setting the points of CG(3, q) analogously corre-
spond to the planes of a regular 2–spread S of PG(5, q), and the circles corre-
spond to 2–reguli of S. The q + 1 planes of a 2-regulus cover the points of a
Segre variety in PG(5, q), which has no other family of mutually disjoint planes
covering the same set of points. Thus 2–reguli of S cannot be reversed to obtain
“subregular” spreads in PG(5, q). Primarily for this reason, Bruck introduced
the notion of a “cover” in [7]. Namely, the stability group of a circle is defined
to be the subgroup of Aut(CG(3, q)) = PΓL(2, q3) fixing the circle pointwise.
In our case, all stability groups will be isomorphic to Gal(K/F ). Then for two
distinct points P and Q of CG(3, q), let φ(P,Q) denote the group generated by
the stability groups of all circles containing P and Q. Finally, a cover is defined
to be an orbit under φ(P,Q) of any point R not equal to P or Q. In [7] it is
shown that every cover of CG(3, q) has q2 +q+1 points, and every cover can be
represented in one of the following two ways, using our earlier identification of
the points of CG(3, q) with K ∪ {∞}:

(i) {x ∈ K : N(x− a) = f}, for some a ∈ K, some f ∈ F ∗.

(ii) {x ∈ K ∪ {∞} : N(x−ax−b ) = f}, for some a, b ∈ K, some f ∈ F ∗.

Here F ∗ denotes the nonzero elements of F , and N is the norm from K to F ;
that is, N(x) = xq

2+q+1.

For a cover which is the point orbit of the group φ(P,Q) as previously defined,
P and Q are called the carriers of the cover. While it seems conceivable that a
given cover could have more than one pair of carriers, it is shown in [7] that
every cover in CG(3, q) has a unique pair of carriers. The carriers for a cover of
type (i) above are {a,∞}, while the carriers for a cover of type (ii) are {a, b}.
A cover of type (ii) will contain the point ∞ if and only if f = 1. The covers
of type (i) are called spheres in [7], where one thinks of a as the “center” and
f as the “radius”. In analogy with the Miguelian inversive plane CG(2, q), we
call a set of covers linear if every cover in the set has the same pair of carriers.
From the description of types (i) and (ii), it is clear that every pair of carriers
determines a linear set of q−1 covers which partitions all the points of CG(3, q)

other than the two given carriers. Conversely, as pointed out to the authors by
J. C. Fisher, the method used in [8] can be slightly modified to show that any



I I G

JJ II

J I

page 3 / 16

go back

full screen

close

quit

ACADEMIA
PRESS

collection of q−1 mutually disjoint covers (that is, a flock of covers in CG(3, q)),
possibly of mixed types (i) and (ii), must necessarily be a linear set (and hence
all be of the same type). In fact, this result holds in higher dimensions as well.

The connection between covers and replaceable partial spreads contained
in a given regular spread is fully described in [7] (see also [1] for a group–
theoretic description). Let S be the regular 2-spread of PG(5, q) whose planes
correspond to the points of CG(3, q). The points lying on the q2 + q + 1 planes
of S corresponding to any cover of CG(3, q) form what is called a ruled norm-
surface of PG(5, q) in [5]. There are two other families of q2 + q + 1 mutually
disjoint planes that also partition this ruled norm-surface, obtained using the
field automorphisms x 7→ xq and x 7→ xq

2

. These families of ruling planes will
be called hyper-reguli, terminology first coined by Ostrom [16] in a slightly more
general context.

Given any set of mutually disjoint covers in CG(3, q), one can replace each of
the corresponding hyper-reguli of S by either one of the two possible replace-
ment hyper-reguli to obtain a new 2-spread of PG(5, q). Such spreads will be
called subregular in analogy to what happens when disjoint reguli are reversed
in a regular spread of PG(3, q). This terminology was first used in [11]. The
3-dimensional André planes are obtained in this way if one starts with a linear
set of disjoint covers. It is shown in [11] that for q > 2, replacing a nonlinear,
nonempty set of at most q− 2 mutually disjoint hyper-reguli in a regular spread
of PG(5, q) will never produce an André spread. In [11] and [12] infinite fami-
lies of nonlinear pairs and triples of disjoint covers in CG(3, q) are constructed
for various values of q. These are the only examples of nonlinear sets of disjoint
covers currently in print. In this paper we construct nonlinear sets of mutually
disjoint covers of sizes 1

2 (q− 1) and 1
2 (q− 3) for q odd, and of size 1

2 (q− 2) for q
even. The resulting subregular translation planes of order q3 are neither André
nor generalized André.

It should be noted that in our three-dimensional setting, if H1 and H2 are
distinct hyper-reguli partitioning the same ruled norm-surface as previously de-
fined, then every plane of H1 will meet every plane of H2 in precisely one point.
In higher dimensions, say d = 6, it is possible for objects in one hyper-regulus
on a norm-surface to be disjoint from objects in another hyper-regulus on that
norm-surface. Hence one can “mix and match” to create new hyper-reguli as re-
placement sets on a given norm-surface (see [16]). In [15] it is shown that such
“mixed” hyper-reguli exist on a ruled norm-surface whenever the dimension d
is composite, and replacing the regular spread elements on the norm-surface by
these mixed hyper-reguli produces generalized André planes.
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2. Sherk Surfaces

In [17] objects other than circles and covers are studied in CG(3, q). Viewing
K as a 3–dimensional vector space over F , these objects can alternatively be
described in the one–point extended affine 3–space AG(3, q) ∪ {∞}. In this
setting the objects have non–trivial affine parts which are planes, hyperboloids,
cones, cylinders, and certain cubic surfaces. However, for our purposes, we
will view all these objects, which from now on will be called Sherk surfaces, in
CG(3, q), or simply as point sets in K ∪ {∞}. More precisely, these surfaces can
be described as follows. Let f, g ∈ F and α, δ ∈ K, not all four elements being
0. Then

S(f, α, δ, g) = {z ∈ K ∪ {∞} : fN(z) + T (αq
2

zq+1) + T (δz) + g = 0},

where N and T are the norm and trace, respectively, from K to F . That is,
N(x) = xq

2+q+1 and T (x) = x + xq + xq
2

. By convention, ∞ ∈ S(f, α, δ, g) if
and only if f = 0. For convenience, we also define the bitrace B : K 7→ F via
the rule B(x) = T (xq+1).

The group G is defined to be the subgroup of Aut(CG(3, q)) = PΓL(2, q3)

generated by PGL(2, q3) and the semilinear transformation x 7→ xq of order
3. Thus G = PΓL(2, q3) when q is prime. It is shown in [17] that the Sherk
surfaces are partitioned into four orbits under the action ofG, these orbits being
uniquely determined by the size of the surfaces in each orbit. Namely, every
Sherk surface has size 1, q2 − q + 1, q2 + 1, or q2 + q + 1, and all surfaces
of a given size form a G–orbit. The surfaces of size 1 are S(0, 0, 0, 1) = {∞}
and S(1, γ, γq

2+q, N(γ)) = {−γ} for each γ ∈ K. More importantly, for our
purposes, the Sherk surfaces of size q2 + q + 1 are precisely the Bruck covers
previously defined.

We now list the effect of certain automorphisms in G on an arbitrary Sherk
surface, as spelled out in [17]. Consider the automorphisms Φ : x 7→ xq, Ψ :

x 7→ x−1, σγ : x 7→ γx for any γ ∈ K∗, and τλ : x 7→ x+ λ for any λ ∈ K. Then

S(f, α, δ, g)Φ = S(f, αq, δq, g)

S(f, α, δ, g)Ψ = S(g, δ, α, f)

S(f, α, δ, g)σγ = S(f, γα, γq
2+qδ,N(γ)g)

S(f, α, δ, g)τλ = S(f, α− fλ, δ + fλq
2+q − αqλq2 − αq2

λq,

g − fN(λ) + T (αλq
2+q)− T (δλ)).

Next we note that S(f, α, δ, g) = S(tf, tα, tδ, tg) for any t ∈ F ∗. More-
over, taking an F–linear combination of the equations for two Sherk surfaces
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yields an equation for another Sherk surface, whose parameters are the same
F -linear combination of the parameters for the given two surfaces. That is, we
can define an “algebra” on the Sherk surfaces via the rule tS(f1, α1, δ1, g1) +

uS(f2, α2, δ2, g2) := S(tf1 +uf2, tα1 +uα2, tδ1 +uδ2, tg1 +ug2) for any t, u ∈ F ,
not both 0. Hence we can form the algebraic pencil of any two distinct Sherk
surfaces, obtaining q + 1 distinct Sherk surfaces which together contain all the
points of CG(3, q). As with all algebraic pencils of varieties, any two distinct
Sherk surfaces in a given pencil intersect in the same set of points, which is
the intersection of all the Sherk surfaces in that pencil (the so–called base of
the pencil). It is this simple observation which we wish to exploit in this paper.
Namely, our goal is to create various pencils of Sherk surfaces which have an
empty base and contain as many Bruck covers as possible. To do this, we need
to develop some technical lemmas which determine the size of a Sherk surface
from certain algebraic conditions on the parameters of that surface. For conve-
nience, when q is odd, we let �q and 6�q denote the set of nonzero squares and
the set of nonsquares, respectively, in the ground field F .

Lemma 2.1. Let q be an odd prime power, and let u ∈ F . Let S = S(0, 1, 0, u).
Then

|S| =





q2 + q + 1 if u ∈ �q
q2 + 1 if u = 0

q2 − q + 1 if u ∈ 6�q
.

Proof. If u = 0, then |S| = |S(0, 1, 0, 0)| = |S(0, 1, 0, 0)Ψ| = |S(0, 0, 1, 0)|. But
the latter surface has equation T (z) = 0, which has q2 solutions in K plus the
solution∞ by convention. Hence |S| = q2 + 1 and the result holds in this case.

Thus we may assume that u 6= 0, and the equation for S = S(0, 1, 0, u) is
T (zq+1) + u = 0. Take a self–dual normal basis {β, βq, βq2} for K/F ; that is,
T (β2) = 1 and T (βq+1) = 0. Uniquely expressing z ∈ K as z1β + z2β

q + z3β
q2

for z1, z2, z3 ∈ F , straightforward computations show that the equation for S
becomes z1z2 + z1z3 + z2z3 = −u. If z2 + z3 6= 0, then z2 and z3 uniquely
determine z1 and we get q(q − 1) affine solutions. If z2 + z3 = 0, we must have
z2z3 = −u = −z2

2 and thus we get zero or two choices for z2, depending upon
the quadratic character of u in F . As each choice for z2 uniquely determines z3

in this case, and z1 is arbitrary, we get another 2q affine solutions if and only if
u ∈ �q. Adding the infinite solution, the result now follows.

Theorem 2.2. Let q be an odd prime power. Let α, δ ∈ K, not both 0, and let
g ∈ F . Let S = S(0, α, δ, g), and define ∆ = 4N(α)g − B((αδ)q + (αδ)q

2 − αδ),
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where B is the bitrace previously defined. Then

|S| =





q2 + q + 1 if ∆ ∈ �q
q2 + 1 if ∆ = 0

q2 − q + 1 if ∆ ∈ 6�q
.

Proof. If α = 0, then necessarily δ 6= 0 and the equation for S becomes T (δz) +

g = 0, which has q2 solutions in K. Adding the solution∞, we get |S| = q2 + 1.
Since ∆ = 0 in this case, the result holds.

Now assume that α 6= 0, and apply the automorphism σα−1 . Then |S| =

|Sσα−1 | = |S(0, 1, δ′, g′)|, where δ′ = δ/(αq
2+q) and g′ = g/N(α). Next choose

γ = 1
2 ((δ′)q + (δ′)q

2 − δ′), so that γq + γq
2

= δ′. Then |S| = |S(0, 1, δ′, g′)τγ | =

|S(0, 1, δ′ − (γq
2

+ γq), g′ + T (γq
2+q) − T (δ′γ))| = |S(0, 1, 0, g′′)|, where g′′ =

g′ + T (γq
2+q) − T (δ′γ). We now apply the previous lemma with u = g′′. That

is, we must determine the quadratic character of g′′ ∈ F .

Now

g′′ = g′ + γq
2+q + γq

2+1 + γq+1 − δ′γ − (δ′γ)q − (δ′γ)q
2

= g′ + γq
2+q + γq

2+1 + γq+1 − (γq + γq
2

)γ − (γq
2

+ γ)γq − (γ + γq)γq
2

= g′ −B(γ)

= g′ −B( 1
2((δ′)q + (δ′)q

2 − δ′))
= g

N(α) − B( 1
2 ( δq

αq
2+1

+ δq
2

αq+1 − δ
αq

2+q
)).

Multiplying by 4(N(α))2 ∈ �q and using B(tz) = t2B(z) for all t ∈ F , we
see that the quadratic character of g′′ is the same as the quadratic character
of 4N(α)g − B((αδ)q + (αδ)q

2 − (αδ)) = ∆. The result now follows from the
previous lemma.

Theorem 2.3. Let q be an odd prime power, and let S = S(1, α, δ, g) be a Sherk
surface which is not a single point. Define ∆′ = 4N(δ′) + (g′)2, where δ′ =

δ − αq2+q and g′ = g + 2N(α)− T (αδ). Then

|S| =





q2 + q + 1 if ∆′ ∈ �q
q2 + 1 if ∆′ = 0

q2 − q + 1 if ∆′ ∈ 6�q
.

Proof. Applying the automorphism τα, we have

|S| = |Sτα | = |S(1, 0, δ− αq2+q, g + 2N(α)− T (αδ))| = |S(1, 0, δ′, g′)| .

Since S is not a single point, δ′ and g′ cannot both be 0. If δ′ = 0, then necessar-
ily g′ 6= 0 and |S| = |S(1, 0, 0, g′)| = q2 + q + 1, the equation of the last surface
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being N(z) = −g′ 6= 0. The theorem holds in this case as ∆′ = (g′)2 ∈ �q.
Thus we may assume that δ′ 6= 0.

Applying the automorphism σδ′ , we obtain

|S| = |S(1, 0, δ′, g′)σδ′ | = |S(1, 0, N(δ′), N(δ′)g′)| .

Once again, using the fact that |S| 6= 1 and hence |S| ≥ q2 − q + 1 ≥ 2, the
equation of the last surface must have a nonzero solution in K and thus there
must be some γ ∈ K∗ such that

N(γ) +N(δ′)T (γ) +N(δ′)g′ = 0.

Thus, applying the automorphism τ−γ , we obtain

|S| = |S(1, 0, N(δ′), N(δ′)g′)τ−γ | = |S(1, γ,N(δ′) + γq
2+q, 0)| .

Then, using the automorphism Ψ, we have |S| = |S(0, N(δ′) + γq
2+q, γ, 1)|.

From Theorem 2.2, we must now compute the quadratic character of

∆ = 4N(N(δ′) + γq
2+q)

− B
(

(γN(δ′) +N(γ))q + (γN(δ′) +N(γ))q
2 − (γN(δ′) +N(γ))

)
.

We first observe that

N(N(δ′) + γq
2+q) = (N(δ′) + γq

2+q)(N(δ′) + γq
2+1)(N(δ′) + γq+1)

= N(δ′)3 +B(γ)N(δ′)2 + T (γ)N(γ)N(δ′) +N(γ)2 .

Next, we note that the argument for the bitrace in the expression for ∆ above is

(γq
2

+ γq − γ)N(δ′) +N(γ) = T (γ)N(δ′)− 2γN(δ′) +N(γ)

= −2γN(δ′)−N(δ′)g′

= −N(δ′)(2γ + g′) ,

using the earlier equation for γ. Now using B(tz) = t2B(z) for all t ∈ F , we
compute the bitrace term in ∆ to be

N(δ′)2B(2γ + g′) = N(δ′)2
[
(2γ + g′)(2γq + g′) + (2γq + g′)(2γq

2

+ g′)

+ (2γq
2

+ g′)(2γ + g′)
]

= N(δ′)2(4B(γ) + 4T (γ)g′ + 3(g′)2) .



I I G

JJ II

J I

page 8 / 16

go back

full screen

close

quit

ACADEMIA
PRESS

Hence, combining the above computations, we see that

∆ = 4(N(δ′)3 + B(γ)N(δ′)2 + T (γ)N(γ)N(δ′) +N(γ)2)

−N(δ′)2(4B(γ) + 4T (γ)g′ + 3(g′)2)

= 4N(δ′)3 + 4T (γ)N(δ′)(N(γ)−N(δ′)g′) + 4N(γ)2 − 3N(δ′)2(g′)2

= 4N(δ′)3 − 4(N(γ) +N(δ′)g′)(N(γ)−N(δ′)g′) + 4N(γ)2 − 3N(δ′)(g′)2

= 4N(δ′)3 +N(δ′)2(g′)2

= N(δ′)2(4N(δ′) + (g′)2) ,

and hence ∆ has the same quadratic character as 4N(δ′) + (g′)2 = ∆′. The
result now follows from Theorem 2.2.

We now develop similar technical results for even characteristic. That is, we
now assume q = 2m for some integer m ≥ 2. Here it is useful to note that
gcd(q + 1, q3 − 1) = 1 for q even, and thus z 7→ zq+1 is a bijection on K.

Lemma 2.4. Let q = 2m and let u ∈ F = GF (q). If S = S(0, 1, 1, u), then

|S| =
{
q2 + q + 1 if T0(u+ 1) = 0

q2 − q + 1 if T0(u+ 1) = 1
,

where T0 is the absolute trace from F to GF (2).

Proof. Once again take a self–dual normal basis {β, βq, βq2} for K/F ; that is,
T (β2) = 1 and T (βq+1) = 0. Expressing z ∈ K uniquely as z1β + z2β

q + z3β
q2

for z1, z2, z3 ∈ F , the equation for S becomes

T (zq+1) + T (z) + u = z1z2 + z1z3 + z2z3 + z1 + z2 + z3 + u = 0.

If z2 + z3 + 1 6= 0, then z2 and z3 uniquely determine z1 and we get q(q − 1)

affine solutions. If z2 +z3 +1 = 0, we must solve z2z3 +z2 +z3 = u. Substituting
z3 = z2 + 1, we obtain the quadric equation z2

2 + z2 + u + 1 = 0. This has 0 or
2 solutions for z2 accordingly as T0(u+ 1) has value 1 or 0. As each solution for
z2 uniquely determines z3 and then z1 is arbitrary, we obtain 2q(1− T0(u+ 1))

additional affine solutions. Adding the infinite solution, we have |S| = q2 + q +

1− 2qT0(u+ 1) and the result follows.

Theorem 2.5. Let q = 2m. Let α, δ ∈ K, not both 0, and let g ∈ F . Let
S = S(0, α, δ, g). Then |S| = q2 + 1 if and only if T (αδ) = 0. Moreover, if
T (αδ) 6= 0, then

|S| =
{
q2 + q + 1 if T0(c) = 0

q2 − q + 1 if T0(c) = 1
,

where T0 is the absolute trace from F toGF (2) and c = (gN(α)+B(αδ))/T (αδ)2.
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Proof. If α = 0, then necessarily δ 6= 0 and the equation for S = S(0, 0, δ, g)

becomes T (δz) = g, which has q2 affine solutions and one infinite solution.
That is, |S| = q2 + 1 and T (αδ) = T (0) = 0 in this case, in agreement with the
statement of the theorem. Hence we can assume that α 6= 0.

Applying the automorphism σα−1 , we obtain

|S| = |S(0, α, δ, g)σα−1 | = |S(0, 1, δ′, g′)|

where δ′ = δ/(αq
2+q) and g′ = g/N(α). Then applying the automorphism

τδ′ , we have |S| = |S(0, 1, δ′, g′)τδ′ | = |S(0, 1, T (δ′), g′ + B(δ′) + T (δ′)2)|. To
simplify the notation, we let g′′ = g′ + B(δ′) + T (δ′)2. If T (δ′) = 0, then
|S| = |S(0, 1, 0, g′′)| and the latter surface has equation T (zq+1) = g′′. Since q
is even, z 7→ zq+1 is a bijection on K and we get |S| = q2 + 1. This agrees with
the statement of the theorem as T (αδ) = N(α)T (δ′) = 0. Hence we can further
assume that T (δ′) 6= 0.

Let γ = T (δ′) 6= 0 and apply the automorphism σγ−1 to obtain

|S| = |S(0, 1, γ, g′′)σγ−1 | = |S(0, γ−1, γ−1, g′′/γ3)| = |S(0, 1, 1, g′′/γ2)|

after scalar multiplication by the parameter γ ∈ F ∗. We now apply the previous
lemma with u = g′′/γ2. That is, we need to compute T0(u+ 1). But

u+ 1 = (g′ + B(δ′))/T (δ′)2

=

(
g

N(α)
+
B(αδ)

N(α)2

)
/

(
T (αδ)

N(α)

)2

= (gN(α) +B(αδ))/T (αδ)2 = c .

Hence the result follows from Lemma 2.4.

Theorem 2.6. Let q = 2m, and let S = S(1, α, δ, g) be a Sherk surface which is
not a single point. Define δ′ = δ + αq

2+q and g′ = g + T (αδ). Then |S| = q2 + 1

if and only if g = T (αδ). Moreover, if g 6= T (αδ) and hence g′ 6= 0, then

|S| =
{
q2 + q + 1 if T0(c′) = 0

q2 − q + 1 if T0(c′) = 1
,

where again T0 is the absolute trace from F to GF (2) and c′ = N(δ′)/(g′)2.

Proof. As in the proof of Theorem 2.3, we get |S| = |S(1, 0, δ′, g′)|. Since |S| 6= 1,
δ′ and g′ cannot both be 0. If δ′ = 0, then necessarily g′ 6= 0 and S(1, 0, δ′, g′) =

S(1, 0, 0, g′) has equation N(z) = g′ 6= 0, which has q2 + q + 1 solutions. This
agrees with the statement of the theorem as T0(c′) = T0(N(δ′)/(g′)2) = T0(0) =

0 in this case. Thus we can assume that δ′ 6= 0.
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Following the steps in the proof of Theorem 2.3, we get

|S| = |S(0, N(δ′) + γq
2+q, γ, 1)|

for some γ ∈ K with N(γ) +N(δ′)T (γ) +N(δ′)g′ = 0, Then, from Theorem 2.5
we have |S| = q2 + 1 if and only if

0 = T (γN(δ′) +N(γ))

= N(δ′)T (γ) +N(γ)

= N(δ′)g′ .

Since δ′ 6= 0, N(δ′) 6= 0 and thus the necessary and sufficient condition for
|S| = q2 + 1 is g = T (αδ), in agreement with the statement of the theorem.

Now suppose that g 6= T (αδ) and thus g′ 6= 0. From Theorem 2.5, we must
compute the absolute trace of

c = (N(N(δ′) + γq
2+q) + B(γN(δ′) +N(γ)))/T (γN(δ′) +N(γ))2 .

Note first that

B(γN(δ′) +N(γ)) = (γN(δ′) +N(γ))(γqN(δ′) +N(γ))

+ (γqN(δ′) +N(γ))(γq
2

N(δ′) +N(γ))

+ (γq
2

N(δ′) +N(γ))(γN(δ′) +N(γ))

= B(γ)N(δ′)2 +N(γ)2 .

Also, as in the proof of Theorem 2.3,

N(N(δ′) + γq
2+q) = N(δ′)3 +B(γ)N(δ′)2 + T (γ)N(γ)N(δ′) +N(γ)2 .

Hence, using the above two computations and the equation

N(γ) +N(δ′)T (γ) +N(δ′)g′ = 0 ,

we see that

c = (N(δ′)3 + T (γ)N(γ)N(δ′))/(N(δ′)g′)2

=
N(δ′)
(g′)2

+
T (γ)(N(δ′)T (γ) +N(δ′)g′)

N(δ′)(g′)2

= c′ +
T (γ)2 + T (γ)g′

(g′)2

= c′ +
T (γ)

g′
+

(
T (γ)

g′

)2

.

Hence T0(c) = T0(c′) and the result follows from Theorem 2.5.
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3. Pencils

We now discuss the possible shapes for algebraic pencils of Sherk surfaces which
partition CG(3, q) and which contain a nonlinear set of Bruck covers. We first
show that a linear flock of covers is indeed a pencil.

Proposition 3.1. Let q be any prime power. Let S1 = S(1, 0, 0, 0) = {0} and
S2 = S(0, 0, 0, 1) = {∞}. Then the pencil P0 determined by S1 and S2 is a linear
flock of covers with carriers {0,∞}.

Proof. The Sherk surfaces in P0, other than S1 and S2, look like S = S(1, 0, 0, g)

for some g ∈ F ∗. The equation for S is N(z) = −g 6= 0, and hence S is a sphere
with “center” 0 and “radius” −g as previously defined. Thus P0 is a linear flock
of covers with carriers {0,∞}.

Corollary 3.2. Let q be any prime power, and P be any pencil of Sherk surfaces
containing a linear pair {C1, C2} of covers. Then P is a linear flock of covers
together with its two carriers.

Proof. Let {P,Q} denote the carriers of C1 (and hence also the carriers of C2).
Since the previously defined group G acts triply transitively on the points of
CG(3, q) and takes pencils to pencils, without loss of generality we may assume
that {P,Q} = {0,∞}, and thus C1 and C2 are members of the linear flock P0 in
Proposition 3.1. Since any two distinct members of a pencil uniquely determine
that pencil, necessarily P = P0 is a linear flock of covers together with its
carriers.

Theorem 3.3. Let q be an odd prime power, and let P be a pencil of Sherk surfaces
in CG(3, q) with empty base. Assume that P contains some nonlinear set of covers.
Then P contains exactly one surface consisting of a single point, and either 0 or 2

surfaces of size q2 + 1.

Proof. Since the base is empty, the q+ 1 surfaces in P partition the q3 + 1 points
of CG(3, q). Let x1, x2, x3 and x4 denote the number of surfaces in P of size
1, q2−q+1, q2 +1 and q2 +q+1, respectively. Thus we have x1 +x2 +x3 +x4 =

q + 1 and x1 + x2(q2 − q + 1) + x3(q2 + 1) + x4(q2 + q + 1) = q3 + 1. If x1 = 0,
then we get (q + 1)q2 + (x4 − x2)q + q + 1 = q3 + 1 and hence x2 − x4 = q + 1.
This implies that x4 = 0, contradicting the fact that P contains a nonlinear set
of covers.

If x1 = 2, the transitivity of the group G and Proposition 3.1 imply that
P is a linear flock of covers together with its carriers, again contradicting the
assumption that P contains some nonlinear set of covers. Moreover, if x1 > 2,
the partition equations above yield an obvious contradiction.
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Hence we must have x1 = 1 for our conditions to be satisfied. The partition
equations now imply that x2− x4 = 1 and thus x2 = x4 + 1, x3 = q− (2x4 + 1).
Since the surfaces of any given size form a single orbit under G, if x3 6= 0, we
may assume that P contains the surface S1 = S(0, 0, 1, 0) of size q2 + 1. The
unique surface of size 1 looks like S2 = S(1, γ, γq

2+q, N(γ)) = {−γ} for some
γ ∈ K. Note that this singleton point cannot be ∞ since ∞ ∈ S1 and we have
an empty base. For the same reason, we must have T (γ) 6= 0.

Then the surfaces in P \ {S1} look like S = S(1, γ, γq
2+q + t, N(γ)) for some

t ∈ F . To decide how many of these surfaces have size q2 + 1, we apply Theo-
rem 2.3. Using the notation of that theorem, we have δ′ = γq

2+q + t−γq2+q = t

and g′ = N(γ) + 2N(γ)− T (N(γ) + tγ) = −tT (γ). Therefore ∆′ = 4N(δ′) +

(g′)2 = 4t3 + t2T (γ)2 is 0 if and only if t = −T (γ)2

4
or t = 0. As T (γ) 6= 0, we

get x3 = 2 in this case. Hence P must contain exactly one singleton point and
either 0 or 2 surfaces of size q2 + 1.

Theorem 3.4. Let q = 2m, and let P be a pencil of Sherk surfaces in CG(3, q) with
empty base which contains some nonlinear set of Bruck covers. Then P contains
exactly one surface consisting of a single point and exactly one surface of size q2+1.

Proof. Proceeding as in the above proof and using the fact that q is even, we see
that x1 = 1, x3 ≥ 1, and every surface in P \ {S1} looks like

S = S(1, γ, γq
2+q + t, N(γ))

for some t ∈ F , where γ ∈ K satisfies T (γ) 6= 0. Applying Theorem 2.6, we
have |S| = q2 + 1 if and only if N(γ) = T (N(γ) + tγ) = N(γ) + tT (γ); that is,
if and only if t = 0 as T (γ) 6= 0. Hence x3 = 1.

Therefore, when q is odd, there are only two possible shapes for a pencil of
Sherk surfaces that contains a nonlinear set of mutually disjoint Bruck covers:
x1 = 1, x2 = 1

2 (q + 1), x3 = 0, x4 = 1
2(q − 1) or x1 = 1, x2 = 1

2(q − 1), x3 = 2,
x4 = 1

2 (q − 3). For the first possibility we must have q ≥ 5, and for the second
possibility we must have q ≥ 7. When q is even, there is only one possible shape
for such a pencil: x1 = 1, x2 = 1

2
q, x3 = 1, x4 = 1

2
(q − 2). Here we must have

q ≥ 8.

It should be noted that pencils of Sherk surfaces consisting of q + 1 mutually
disjoint surfaces of size q2 − q + 1 do exist, although they are of no interest to
us. This possibility was raised in the above proofs, and their existence has been
verified for q = 4, 5 using the software package MAGMA [9].

We now construct pencils of Sherk surfaces of the above three shapes for all
possible values of q.
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Theorem 3.5. Let q ≥ 7 be an odd prime power, and consider the pencil P1

generated by the Sherk surfaces S(1, 0,−1, 0) and S(0, 0, 0, 1). Then P1 consists of
one singleton point, 1

2
(q− 1) surfaces of size q2− q+ 1, two surfaces of size q2 + 1,

and 1
2(q − 3) surfaces of size q2 + q + 1 which partition the points of CG(3, q). In

particular, we get a set of 1
2 (q − 3) mutually disjoint Bruck covers, no two which

form a linear pair.

Proof. Since S(0, 0, 0, 1) = {∞} and∞ 6∈ S(1, 0,−1, 0), the base of P1 is empty
and hence the q+1 surfaces in P1 partition the points of CG(3, q). Every surface
in P1, other than {∞}, looks like S = S(1, 0,−1, g) for some g ∈ F . Applying
Theorem 2.3 with δ′ = −1, g′ = g, and ∆′ = 4N(δ′) + (g′)2 = −4 + g2, we
see that P1 has precisely one singleton point and two surfaces of size q2 + 1.
The shape of P1 now follows from the partition equations. The fact that no two
covers in P1 form a linear pair follows from Corollary 3.2.

Theorem 3.6. Let q ≥ 5 be an odd prime power, and let u ∈ 6�q. Consider the
pencil P2 generated by the Sherk surfaces S(1, 0,−u, 0) and S(0, 0, 0, 1) = {∞}.
Then P2 consists of one singleton point, 1

2(q + 1) surfaces of size q2 − q + 1, and
1
2 (q − 1) surfaces of size q2 + q + 1 which partition the points of CG(3, q). In
particular, P2 contains a set of 1

2(q − 1) mutually disjoint Bruck covers, no two
which form a linear pair.

Proof. Follows exactly as in the proof of Theorem 3.5, noting that every member
of P2, other than {∞}, looks like S(1, 0,−u, g) for some g ∈ F , where ∆′ =

4N(−u) + g2 = −4u3 + g2 6= 0. Hence P2 has no surfaces of size q2 + 1.

Theorem 3.7. Let q = 2m with m ≥ 3, and let v ∈ F \ {0, 1}. Consider the pencil
P3 generated by the Sherk surfaces S(0, 1, 1, v) and S(1, 0, 0, 0) = {0}. Then P3

consists of one singleton point, 1
2q surfaces of size q2 − q + 1, one surface of size

q2+1, and 1
2(q−2) surfaces of size q2+q+1 which partition the points of CG(3, q).

In particular, P3 contains a set of 1
2
(q − 2) mutually disjoint Bruck covers, no two

which form a linear pair.

Proof. The equation for S(0, 1, 1, v) is T (zq+1) + T (z) + v = 0, and 0 is not a
solution since v 6= 0. Thus the base of P3 is empty and we again have a partition
of CG(3, q). Any surface in P3, other than {0}, looks like S = S(f, 1, 1, v) for
some f ∈ F . Since v 6= 1, such a surface is not a singleton point. If f = 0, we
see that |S| 6= q2 + 1 by Lemma 2.4. If f 6= 0, then S = S(1, f−1, f−1, vf−1) and
|S| = q2 + 1 if and only if vf−1 = T (f−2); that is, if and only if f = v−1. Hence
P3 has exactly one surface of size q2 +1, and then its shape follows immediately
from the partition equations. The fact that no two of the 1

2
(q − 2) Bruck covers

forms a linear pair follows from Corollary 3.2 as before.
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Theorem 3.8. Let S be the regular 2–spread of PG(5, q) corresponding to the
points of CG(3, q), and let H be the set of mutually disjoint hyper–reguli in S
associated with the set of Bruck covers in one of the pencils from Theorems 3.5, 3.6,
or 3.7 above. Then the subregular 2–spreads obtained from S by replacing at
least two of the hyper–reguli in H, in one of two possible ways for each hyper–
regulus, yield 3–dimensional translation planes of order q3 that are neither André
nor generalized André.

Proof. The fact that these translation planes are not André follows from The-
orem 5.3 in [11]. Since the translation planes are 3–dimensional over their
kernels, this further implies that they are not generalized André planes (for
instance, see Proposition 22.3.3 and Proposition 22.4.2 in [3]).

4. Concluding Remarks

In the previous section we constructed three infinite families of subregular trans-
lation planes of order q3. In fact, these constructions are quite robust, produc-
ing roughly

√
3q planes of a given order q3, the vast majority of which are not

André (nor generalized André). The translation complement of these planes
has a natural subgroup of order 3(q3−1) inherited from the Desarguesian plane
(see [10], for instance). This is the semidirect product of the “Bruck kernel” by
a cyclic group of order 3, where the (affine) “Bruck kernel” is the cyclic group
of order q3 − 1 which leaves invariant each plane in the regular spread S. For
many of the planes constructed it appears that this subgroup is most, if not all,
of the translation complement. In this regard it should be noted that the au-
thors have been told recent work of Jha and Johnson [13] may imply that the
full collineation group of these subregular planes is indeed inherited from the
associated Desarguesian plane. The much more challenging issue of sorting out
the isomorphism classes among all these planes has not yet been addressed, but
the methods discussed in [14] could be very useful in this endeavor.

Finally, it is natural to ask if there is an analogue to the hyperbolic fibrations
defined in [2]. Namely, one defines a hyperbolic fibration in PG(3, q) to be a
partition of the points of that space into two skew lines and q − 1 hyperbolic
quadrics. One way to do this is simply to take a pencil of quadrics arising from
a complete linear set of mutually disjoint reguli in a regular spread of PG(3, q).
However, there are many other ways of constructing such hyperbolic fibrations,
where one never obtains a regular spread by choosing one of the two reguli on
each of the hyperbolic quadrics. In fact, it is now known that these hyperbolic
fibrations are intimately connected with q–clans, flocks of a quadratic cone, ela-
tion generalized quadrangles, and so on. Thus one is tempted to try to construct
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analogous fibrations in PG(5, q). That is, we would like a partition of the points
of PG(5, q) into two skew planes and q − 1 ruled norm–surfaces, as previously
defined. Again there is a natural way to do this by starting with a complete
linear set of mutually disjoint hyper–reguli in a regular 2–spread of PG(5, q)

(this was André’s idea in a different context). However, it might be possible to
construct such fibrations that are not related to any particular regular spread.
This appears to be much more difficult than constructing hyperbolic fibrations
in PG(3, q), and so far we have been unable to find any such examples.

Acknowledgment: The authors would like to thank Henk Hollmann and Qing
Xiang for interesting conversations concerning parts of this research, and espe-
cially for the idea of using a self–dual normal basis in the proofs of Lemmas 2.1
and 2.4.
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