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Construction of (n, r)-arcs in PG(2, q)
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Abstract

We construct new (n, r)-arcs in PG(2, q) by prescribing a group of au-
tomorphisms and solving the resulting Diophantine linear system with lat-
tice point enumeration. We can improve the known lower bounds for q =

11, 13, 16, 17, 19 and give the first example of a double blocking set of size
n in PG(2, p) with n < 3p and p prime.
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phisms, lattice point enumeration
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1. Introduction

An (n, r)-arc is a set of n points of PG(2, q) such that at most r of these points
are collinear, but some r of these n points are collinear. We define mr(2, q)

as the maximum n such that an (n, r)-arc does exist. There are many results
[1, 12] concerning these numbers, and for q < 11 the exact values are known.
In this paper we explicitly construct new arcs for 11 ≤ q ≤ 19 which contain
more points than the previously known ones. So we improved the previous
known lower bounds on mr(2, q) in several cases. This method works also well
for higher values of r, so we can also construct multiple blocking sets as these
are complements of arcs.

We first restate the problem of finding arcs as the solution of a system of
Diophantine equations which is formulated using the incidence matrix of the
projective plane PG(2, q). As this system is too large for interesting cases we
prescribe automorphisms on the arcs, so that the dimension of the problem is
no longer the number of points (or lines) but the number of orbits of points
(resp. lines) under the prescribed automorphisms.
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2. Solving Linear Equations

We start with the projective plane PG(2, q) over a finite field GF (q) and with
the set P of q2 + q + 1 points which are the 1-dimensional subspaces of GF (q)3

and the set L of q2+q+1 lines which are the 2-dimensional subspaces ofGF (q)3.

Now, we study the incidence matrix M of PG(2, q): the columns are labeled
by the points and the rows are labeled by the lines. The entry of M indexed by
the two subspaces l ∈ L and p ∈ P is defined as

Ml,p :=

{
1 if p is a subspace of l,

0 otherwise.

Using this incidence matrix we can restate the problem of finding an (n, r)-
arc as follows:

Theorem 2.1. There is an (n, r)-arc in PG(2, q)

⇐⇒

There is a 0/1-solution x = (x1, . . . , x|P |) of the following system of (in)equalities

(1)
∑
xi = n

(2) Mx ≤



r
...
r




and at least one of the lines of the system (2) is an equality.

This comes from the fact that the entries equal to one in a solution vector x
define a selection of points which goes into the arc.

To solve this system for interesting cases we use lattice point enumeration
based on the LLL−algorithm [15]. But to get new results we have to solve
systems of sizes which are too large for the solving algorithm. (e.g. q2 + q+ 1 =

273 for q = 16). To reduce the size of the system we prescribe automorphisms
φ ∈ GL(3, q), so we are looking for arcs S with the additional property that

p ∈ S ⇒ φ(p) ∈ S.

This means for the matrix M of the system that we add up columns which
correspond to points lying in the same orbit. As the defining incidence property
of the matrix M is invariant under the prescribed automorphism, i.e.

p ≤ l⇒ φ(p) ≤ φ(l)
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we get after the fusion of the points in the orbits identical rows in the matrix
for the lines in the orbits if we apply the automorphism to the lines. So we
can also reduce the number of rows of the matrix M. As the number of orbits
is identical on lines and points, the reduced matrix is again a square matrix.
We call this new matrix MG where G is the group generated by the prescribed
automorphisms. The rows are indexed by the orbits Ω1, . . . ,Ωm of the lines, and
the columns are labeled by the orbits ω1, . . . , ωm of the points. An entry of MG

is given by
MG

Ωi,ωj :=
∣∣{p ∈ wj : p is a subspace of l}

∣∣

where l is a representative of Ωi. Now we can restate the above theorem.

Theorem 2.2. There is an (n, r)-arc in PG(2, q) with automorphism-group H

where GL(3, q) ≥ H ≥ G
⇐⇒

There is a 0/1-solution x = (x1, . . . , xm) to the following system of (in)equalities

(1)
∑ |ωi|xi = n

(2) MGx ≤



r
...
r




and at least one of the lines of the system (2) is an equality.

For computational purposes we transform the system of inequalities into a
system of equations. We solve the following system:

MG

−1 0 · · · 0

0 −1
...

...
. . .
−1 0

0 · · · 0 −1

×

x1

...
xm
y1

...
ym

=

0
...
0

0
...
0

|ω1| . . . . . . |ωm| 0 · · · · · · 0 n

The additional variables y = (y1, . . . , ym) in a solution may have values in
{0, 1, . . . , r}. From these values we obtain the intersection numbers between an
arc and the lines in the projective plane, so we easily get the secant distribution
of an arc from these values. This is the system of Diophantine equations we
finally solve to get new arcs.
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3. Related Work

It is well known [11] that there is an equivalence between the existence of
a projective linear [n, 3]-code over GF (q) with minimum distance d and the
existence of an (n, n − d)-arc over PG(2, q). This equivalence comes from the
fact that both problems can be formulated using the incidence matrix between
subspaces of GF (q)3. Previously, we applied the same method successfully in
the construction of linear codes [3, 4] .

The construction of discrete objects using incidence preserving group actions
[13] is a general approach that works in many other cases like designs [2, 14],
q-analogs of designs [6], parallelisms in projective geometries [5] .

4. Two Examples

4.1. Construction of a (32, 4)-arc in PG(2, 11)

We will show in the case of a (32, 4)-arc in GF (11) how our method works.
Without prescribing automorphisms the size of the incidence matrix is 133 ×
133. We reduce the size by prescribing a randomly chosen cyclic subgroup G ≤
GL(3, 11). We started with the generator

g :=




50 5

96 2

3410




over GF (11) = Z11. The next step is the computation of the orbits. For example
the lexicographically first orbit of the column labeling 1-dimensional subspaces
is

ω1 = G(〈0, 0, 1〉) =




〈0, 0, 1〉 , 〈1, 7, 2〉 ,
〈1, 0, 10〉 , 〈0, 1, 10〉 ,

〈1, 8, 10〉



 .

Altogether there are 29 orbits which is a reduction of a factor of about 5 in rows
and columns. The orbits in the rows which are orbits of lines are labeled by the
1-dimensional orthogonal spaces. The first orbit is

Ω1 = G(〈0, 0, 1〉⊥) =





〈0, 0, 1〉⊥ , 〈1, 5, 7〉⊥ ,
〈1, 5, 6〉⊥ , 〈1, 5, 10〉⊥ ,

〈1, 5, 9〉⊥




.

To compute the reduced incidence matrix we take one representative of the
lines, e.g. 〈1, 5, 10〉⊥ and compute the number of entries in the orbits of the
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lines which are orthogonal, i.e. which are collinear. In the example there are no
orthogonal pairs, which says MG

Ω1,ω1
= 0. The complete matrix is given below:

MG =




01000100000011111000011010101

12211100001100101000000000000

00011010011011002000000012000

02000010011011000210000000110

10000111111111110000000000000

01010000000220010011110001000

00110200020010000010101010010

10011010001010100000021000020

10101000200020001100101000100

00101100000011110101000101010

10100010001010100012000020100

00000100101100012011000000120

00001000020100201101110000100

01100001000000001101111011010

00110020000000121110101000000

20010100000002001111110000000

11000010110100001010011110000

21001000010000020000100011110

00050001000000000000000100500

10000100001100100110002002100

01001220100000000001110001100

00200000111001010010020001100

00101010000202000000101010110

01011000111001010002002000000

01010000200001200010100011010

10110010110100000101000001011

00000000005000000000500100001

00005001000000000050000000001

00011100101100010200010020000




Together with the sizes of the point orbits

w = (|ω1|, . . . , |ω29|) =

(
55555551555555555555555155551

)
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we can state the system of equations

(1) wx = 32

(2) MGx≤




4
...
4




which we solved within seconds using the LLL-Algorithm and got the solution

x =
(
11000101000010000001000000011

)

which also has the requested property of reaching the bound 4 for some 4-set of
points. From this solution we can read off the orbits whose union gives the arc.
As x1 = 1 we know for example that ω1 is part of the arc, altogether we get the
arc

ω1 ∪ ω2 ∪ ω6 ∪ ω8 ∪ ω13 ∪ ω20 ∪ ω28 ∪ ω29 =



0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

0 1 0 7 8 1 0 6 9 9 5 7 8 9 10 10 1 1 3 4 10 2 4 4 7 8 1 0 2 3 3 2

1 10 10 2 10 5 3 10 0 7 2 5 8 6 0 2 0 7 8 2 7 8 3 7 6 3 9 8 6 6 10 0




where each column is the generator of one point of the arc. The first 5 columns
are the 5 points in the first orbit. To get the secant distribution we have to study
the second part of the solution:

y =
(

4 4 1 4 4 4 4 4 3 4 4 4 1 4 0 4 2 4 1 2 4 0 1 3 2 4 1 2 1
)

together with the size of the line orbits
(

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 1 1 5
)
.

Now we can see from y1 = 4 that the 5 lines in the first orbit are incident with 4

points. On the other hand we get from y15 = 0 that the 5 lines in orbit number
15 do not intersect with the points from the arc. Altogether we get for the
i−secant numbers τi, where τi is the number of lines meeting the arc in exactly
i points:

τ = (τ0, . . . , τ4) = (10, 22, 16, 10, 75).

4.2. Construction of the first double blocking set with 38 points
in PG(2, 13)

Using the above method with the prescribed group

G =

〈


0 0 1

1 0 0

0 1 0


 ,




1 0 0

0 1 0

0 0 −1



〉
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we found a (145, 12)-arc. The complement of this arc is a double blocking set
with 38 points, which is given below (one generator of a point per column):



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 12 12 2 2 4 4 5 5 8 8 9 9 11 11 3 3 10

1 12 1 12 3 10 5 8 6 7 6 7 5 8 3 10 4 9 4

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1

10 3 3 5 5 6 6 7 7 8 8 10 10 1 1 0 0 3 10

9 5 8 2 11 4 9 4 9 2 11 5 8 3 10 4 9 0 0




This is the first example of a double blocking set in PG(2, p) of size n with
n < 3p and p prime.

5. Results

Using the above method we improved lower bounds on the values mr(2, q).

Tables with upper bounds on q up to 13 can be found in [1, 8, 12]. Tables for
q = 17 can be found in [7, 9, 10]. The following table contains the sizes of the
arcs we constructed with our method. With an upper index + we denote if the
entry is the exact value formr(2, q). The lower index ∗ denotes an improvement
against the published tables. In the cases q = 16, 19 we found no published
tables.

r\q 11 13 16 17 19

2 12+ 14+ 18+ 18+ 20+

3 21 23 28 28∗ 31

4 32∗ 38∗ 52+ 48∗ 52

5 43 49∗ 65 61∗ 68

6 56+ 64∗ 78 78∗ 86

7 67+ 79+ 93 94∗ 105

8 77 92+ 120+ 114∗ 124

9 89 105+ 128 137+ 147

10 100 118∗ 142 154+ 172+

11 132∗ 159 166∗ 191+

12 145∗ 180 204

13 195 204∗ 225

14 210 219 242

15 231 239 262

16 256 285

17 304

18 324
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