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Abstract

The main result of this paper is that point sets in PG(n, q), q = p2h,
q ≥ 81, p > 2, of size less than 3(qn−k + 1)/2 and intersecting each k-space
in 1 modulo

√
q points (such point sets are always minimal blocking sets

with respect to k-spaces) are either (n−k)-spaces or certain Baer cones. The
latter ones are cones with vertex a t-space, where max{−1, n − 2k − 1} ≤
t < n − k − 1, and with a 2((n − k) − t − 1)-dimensional Baer subge-
ometry as a base. Bokler showed that non-trivial minimal blocking sets in
PG(n, q) with respect to k-spaces and of size at most (qn−k+1 − 1)/(q − 1)+√
q(qn−k − 1)/(q − 1) are such Baer cones. The corollary of the main result

is that we improve on Bokler’s bound. The improvement depends on the
divisors of h; for example, when q is a prime square, we get that the non-
trivial minimal blocking sets of PG(n, q) with respect to k-spaces and of size
less than 3(qn−k + 1)/2 are Baer cones.
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1 Introduction

In this paper, PG(n, q) will denote the n-dimensional Desarguesian projective
space over the Galois field of order q, where q = pm, p prime. When q is a
square, a projective space PG(n′,

√
q) embedded in PG(n, q) (0 < n′ ≤ n) is

called a Baer subgeometry. If n′ = 1, it is called a Baer subline; when n′ = 2, it
is called a Baer subplane.
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A blocking set B with respect to k-spaces in PG(n, q) is a set of points which
intersects every k-dimensional subspace. To exclude the trivial cases we will
always suppose that 0 < k < n. The smallest blocking sets with respect to k-
spaces are (n−k)-spaces [6]. A blocking set containing an (n−k)-space is called
trivial, otherwise it is said to be non-trivial. The blocking set B is minimal if for
any point P of B, B\{P} does not meet every k-space. This means that through
each point of B there is a k-space intersecting B in P only. Such a subspace will
be called a tangent of B at P . Finally, B is small if |B| < 3(qn−k + 1)/2.

Small minimal blocking sets are of special interest, since there is hope to
characterize them. When n = 2 (and so k = 1) blocking sets are called planar
and in some cases the small ones have already been determined, see Blokhuis
[2], Szőnyi [21], Polverino [16], and Polverino and Storme [17]. For a survey
on planar blocking sets the reader is referred to Hirschfeld [10], Blokhuis [3] or
Szőnyi, Gács and Weiner [23]. Concerning blocking sets in higher dimensions,
there are much less results. For a survey, see Hirschfeld and Storme [11], and
Metsch [13]. Beutelspacher [1] and Heim [9] showed that the smallest non-
trivial blocking sets in PG(n, q), q > 2, with respect to k-spaces are cones with
an (n−k−2)-dimensional vertex and a non-trivial planar blocking set of minimal
cardinality as a base. In Section 2, we collected the results on blocking sets that
are used throughout this paper.

Szőnyi [21] proved that in PG(2, pm) a small minimal blocking set B inter-
sects each line in 1 modulo p points and the possible size of B is from certain
intervals. In [22], this result was generalized to higher dimensions (see Re-
sult 2.1) and it was also observed that point sets of size less than 3(qn−k + 1)/2

(small point sets) and intersecting each k-space in 1 modulo p points are exactly
the small minimal blocking sets.

In PG(n, q), small point sets intersecting each k-space in 1 modulo q points are
(n−k)-spaces. The main result of this paper (Theorem 3.2) is that we show that
when q is a square, 81 ≤ q, q = p2h and 2 < p, the small point sets intersecting
each k-space in 1 modulo

√
q points are either (n − k)-spaces or certain Baer

cones. These are cones with vertex a t-space, where max{−1, n − 2k − 1} ≤
t < n − k − 1, and a 2((n − k) − t − 1)-dimensional Baer subgeometry as a
base (Example 3.1). The motivation to prove Theorem 3.2 is a result of Bokler
(Result 3.3), where he shows that the smallest non-trivial minimal blocking
sets with respect to k-spaces are such Baer cones, that is non-trivial minimal
blocking sets of size at most (qn−k+1−1)/(q−1)+

√
q(qn−k−1)/(q−1) are Baer

cones. As a consequence of Theorem 3.2 and the interval result we get different
improvements on Bokler’s bound depending on the divisors of h (Corollary 3.5).
For example, when q is a prime square (so h = 1), we prove that non-trivial
minimal blocking sets with respect to k-spaces and of size less than 3(qn−k+1)/2
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are Baer cones (Theorem 3.4).

2 Small blocking sets in PG(n, q)

In this section, the properties of small minimal blocking sets of PG(n, q) are col-
lected, which will be essential to prove our main result. For blocking sets in
PG(2, q), Szőnyi [21] proved Blokhuis’ 1 modulo p conjecture. This was gener-
alized to higher dimensions in [22].

Result 2.1. Let B be a minimal blocking set in PG(n, q), q = pm, p prime, with
respect to k-dimensional subspaces and of size less than 3(qn−k + 1)/2.

(1) ([21], [22]) Then each k-space intersects B in 1 modulo p points.

(2) (Sziklai [20]) Let e be the largest integer such that B intersects each k-space
in 1 modulo pe points, then e|m.

There are several constructions (see [18], [12], [15]) showing that the re-
verse of Result 2.1 (2) is also true: if e is a divisor of m then there exists a small
minimal blocking set in PG(n, q) with respect to k-spaces, so that e is the largest
integer such that each k-space intersects it in 1 modulo pe points. These results
assure the correctness of the following notation.

Notation 2.2. Let q = pm, p prime, and let e be a divisor of m. Denote by
uq(n, k, e) (lq(n, k, e)) the size of the largest (smallest) small minimal blocking set
of PG(n, q) with respect to k-spaces, for that e is the largest integer such that each
k-space intersects it in 1 modulo pe points.

In [21] and [22] it was shown that the intervals [lq(n, k, e), uq(n, k, e)] are
pairwise disjoint.

Result 2.3. ([21], [22]) Let q = pm, 2 < p prime and let e be a divisor of
m. Suppose that B is a minimal blocking set in PG(n,q) with respect to k-spaces
and assume that |B| lies in the interval [lq(n, k, e), uq(n, k, e)]. Then each k-space
intersects B in 1 modulo pe points.

Furthermore, if e′|m and e′ < e, then uq(n, k, e) < lq(n, k, e
′).

The best bounds for lq(2, 1, e) and uq(2, 1, e) are due to Blokhuis and Polverino.
The case n > 2 was studied in [22].

Result 2.4. Assume that pe 6= 2, 4, 8, then

(1) (Blokhuis [3]) q + 1 + ped(q/pe + 1)/(pe + 1)e ≤ lq(2, 1, e).
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(2) (Polverino [16]) uq(2, 1, e) ≤ 1+(pe+1)(q+1)−
√

[1+(pe+1)(q+1)]2−4(pe+1)(q2+q+1)

2 .

(3) ([22]) lq(n, k, e) ≥ lqn−k(2, 1, e) and uq(n, k, e) ≤ uqn−k(2, 1, e).

The next statement summarizes some corollaries of the 1 modulo p result.

Result 2.5. ([22]) Assume that B is a point set in PG(n, q), q = pm, 2 < p prime.
Let e and k be integers, so that 0 < k < n and suppose that |B| < 3

2 (qn−k + 1).
Then the following statements are equivalent:

(i) B is a minimal blocking set with respect to k-spaces and |B| ≤ uq(n, k, e).
(ii) B intersects each k-space in 1 modulo pe points.

(iii) Every subspace with dimension at least k intersects B; and any subspace that
intersects B intersects it in 1 modulo pe points.

3 The main result and the consequences

The smallest minimal blocking sets of PG(n, q), q = pm, with respect to k-spaces
are the trivial ones, the (n − k)-dimensional subspaces [6]. So they are the
only small point sets of PG(n, q) intersecting each k-space in 1 modulo q points.
Hence lq(n, k,m) = uq(n, k,m) = (qn−k+1 − 1)/(q − 1).

When q is a square, so m = 2h for some integer h ≥ 1, then by Result
2.1 (2) and by Result 2.3 the next interval contains those point sets that inter-
sect each k-space in 1 modulo

√
q points. The aim of this paper is to determine

these point sets, that is to determine the minimal blocking sets of the interval
[lp2h(n, k, h), up2h(n, k, h)].

It is easy to see that the next examples give minimal blocking sets of this
interval.

Example 3.1. Let n, k, t be integers so that 0 < k < n and max{−1, n− 2k − 1} ≤
t < n−k−1. In PG(n, q), q square, let V be a t-space andB∗ be a 2((n− k)− t− 1)-
dimensional Baer subgeometry disjoint from V . Then the cone C with vertex V
and base B∗ intersects each k-space in 1 modulo

√
q points and |C| = qn−k+1−1

q−1 +
√
q q

n−k−qt+1

q−1 (hence, by Result 2.5, it is a minimal blocking set with respect to
k-spaces).

Note that when t = −1, we get a 2(n − k)-dimensional Baer subgeometry.
This subgeometry has qn−k +

√
qqn−k−1 + qn−k−1 + · · · + √q + 1 points and

it is the largest one among the blocking sets of Example 3.1. Throughout this
paper, an (m,s)-Baer cone will denote a cone with vertex an m-space and an
s-dimensional Baer subgeometry as a base.
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The following theorem is the main result of this paper.

Theorem 3.2. Let B be a point set in PG(n, q), q = p2h, 2 < p prime, 81 ≤
q. Assume that each k-space intersects B in 1 modulo

√
q points and suppose

that |B| < 3
2 (qn−k + 1). Then B is either an (n − k)-dimensional subspace or a

(t, 2((n− k)− t− 1))-Baer cone, where max{−1, n− 2k − 1} ≤ t < n− k − 1.

The motivation for proving Theorem 3.2 was a result of Bokler.

Result 3.3. (Bokler [4]) Let B be a non-trivial minimal blocking set of PG(n, q)

with respect to k-dimensional subspaces, where 16 ≤ q is a square. Suppose that
|B| ≤ qn−k+1−1

q−1 +
√
q q

n−k−1
q−1 , then B is a (t, 2((n− k)− t− 1))-Baer cone, where

max{−1, n− 2k − 1} ≤ t < n− k − 1.

Hence, Bokler proved that up to a certain value (the size of a 2(n − k)-
dimensional Baer subgeometry) the second interval contains the Baer cones
only. Theorem 3.2 shows that this is the upper end of the second interval. Note
that some special cases of Result 3.3 have already been done by Beutelspacher
[1], Bokler and Metsch [5], and by Metsch and Storme [14].

In PG(2, p2), p prime, Szőnyi [21] showed that the non-trivial minimal block-
ing sets with size less than 3(p2 + 1)/2 are Baer subplanes. The situation is
similar in higher dimensions. Theorem 3.2 and Result 2.1 (1) yield the follow-
ing characterization of small minimal blocking sets.

Theorem 3.4. A non-trivial minimal blocking set of PG(n, p2), 11 ≤ p prime, with
respect to k-spaces and of size less than 3

2 ((p2)n−k+1) is a (t, 2((n−k)−t−1))-Baer
cone, where max{−1, n− 2k − 1} ≤ t < n− k − 1.

When q is a prime square, then Theorem 3.4 is an improvement on Bokler’s
bound (see Result 3.3). In the general case, as a corollary of Theorem 3.2,
Result 2.1, 2.3 and 2.4 (1), we get the following improvement.

Corollary 3.5. Let q = p2h, 2 < p prime, 1 < h, 81 ≤ q and let s be the greatest
integer so that s < h and s|2h hold. Then a non-trivial minimal blocking set B
of PG(n, q) with respect to k-spaces is either a (t, 2((n − k) − t − 1))-Baer cone,
where max{−1, n − 2k − 1} ≤ t < n − k − 1, or has size at least lq(n, k, s) ≥
qn−k + 1 + psd q

n−k/ps+1
ps+1 e.

Note that any improvement on the bound of the lower end of the third in-
terval yields an improvement on Corollary 3.5. Note also that in Corollary 3.5,
s can be at most 2

3h. Hence there for the cardinality of B, we get at least

qn−k +1+p2h/3d q
n−k/p2h/3+1
p2h/3+1

e. So when p > 2, our main result improves on the
second term (that is

√
qqn−k−1) of Bokler’s bound. But depending on the prime
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divisors of h, we may get better improvements. For example, when h is a prime
then s = 2, hence we get at least qn−k + 1 + p2d q

n−k/p2+1
p2+1 e.

Finally, a cone with an (n− k − 2)-dimensional vertex and a planar blocking
set of cardinality q + q/ps + 1 as a base (for the existence of such blocking set,
see [18]) shows that Blokhuis’ bound yields the correct order of magnitude (for
the second term).

4 Proof of Theorem 3.2

This section is devoted to proving Theorem 3.2. The special case of Corollary
3.5, when k = n− 1 and p > 3, was proved in [19] without using the 1 modulo
p result of [22]. Now we give a short proof using the results of [22].

Lemma 4.1. Let B be a point set of PG(n, q), q = p2h, 2 < p prime, with cardinal-
ity less than 3

2 (q + 1) and assume that B intersects each hyperplane in 1 modulo√
q points. Then B is a line or a Baer subplane.

Proof. Bruen ([7], [8]) showed that the smallest non-trivial blocking sets with
respect to hyperplanes have size q +

√
q + 1 and they are Baer subplanes. On

the other hand, Result 2.4 (2) and (3) give that B has less than q +
√
q + 3/2

points.

From now on, instead of using the bound of Result 2.4 (2), we will use a
weaker, but simpler bound, which will still be strong enough for our purposes.

Lemma 4.2. Let B be a point set of PG(n, q), q = p2h, 81 ≤ q, k < n−1. Suppose
that each k-space intersects B in 1 modulo

√
q points and that |B| < 3

2 (qn−k + 1).
Then |B| < qn−k +

√
qqn−k−1 + 3

2q
n−k−1 −√qqn−k−2.

Proof. The lemma follows from Result 2.4 (2) and (3).

Our first aim is to prove the theorem for k = n − 2. Then we handle the
general case.

Lemma 4.3. Let B be a point set of PG(n, q), q = p2h, 81 ≤ q, 2 < p prime, of
size less than 3

2 (q2 + 1) and intersecting each (n− 2)-space in 1 modulo
√
q points.

Then B is either a 4-dimensional Baer subgeometry or through each point of B
there exists a line fully contained in B.

Proof. Assume that B is not a 4-dimensional Baer subgeometry and suppose
that there exists a point P in B, so that none of the lines through P is contained
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in B. Since by Result 2.5, B is a minimal blocking set with respect to (n − 2)-
spaces, there exists an (n − 2)-space LP through P and tangent to B. If a
hyperplane H through LP contains less than 3(q + 1)/2 points, then by Lemma
4.1 and by our assumption on P , B ∩H is a Baer subplane. On the other hand,
each hyperplane through LP contains less than 3(q + 1)/2 points: otherwise
summing up the points of B on the hyperplanes through LP , we would count
at least q2 +

√
qq + 3(q + 1)/2 points, which is a contradiction (by Lemma 4.2).

Hence the hyperplanes on LP intersect B in Baer subplanes, from which |B| =
(q + 1)(q +

√
q) + 1 and so Result 3.3 finishes our proof.

Proposition 4.4. Let B be a point set in PG(n, q), q = p2h, 81 ≤ q, 2 < p prime, of
size less than 3

2 (q2 + 1) and intersecting each (n− 2)-space in 1 modulo
√
q points.

Then B is a plane or a (0, 2)-Baer cone or a 4-dimensional Baer subgeometry.

Proof. Assume that B is not a 4-dimensional Baer subgeometry, then by Lemma
4.3, B is a union of lines. We show that any two lines of B must intersect.
On the contrary, suppose that there exist two lines e and f , so that e ∩ f = ∅.
Let P1 be a point of e and Q1 a point of f . Then the line 〈P1, Q1〉 contains at
least

√
q + 1 points of B. Furthermore, for any two points P2 ∈ e, P2 6= P1, and

Q2 ∈ f , Q2 6= Q1, the line 〈P2, Q2〉 is skew to 〈P1, Q1〉. (Otherwise e and f were
coplanar and they would intersect.) So counting the points of B on the lines
intersecting both e and f , we see at least (q + 1)((q + 1)(

√
q − 1) + 1) + (q + 1)

points of B, which is a contradiction.

Hence, the lines contained in B are either coplanar or concurrent. In the first
case, B must be a plane. In the second case, let V be the common point of the
lines of B and choose a hyperplane H not through V . Note that |B ∩ H | <
3(q + 1)/2, otherwise summing up the points of B on the lines through V , we
get that |B| > 3q(q + 1)/2 + 1. The result follows from Lemma 4.1.

Lemma 4.5. Let B be a point set of PG(n, q), q = p2h, 2 < p prime, 81 ≤ q and
let k be an integer less than n− 2. Assume that |B| < 3

2 (qn−k + 1) and that each
k-space intersects B in 1 modulo

√
q points. Let P and Q be two points of B, then

there exists an (n− 2)-dimensional subspace containing P and Q, and intersecting
B in less than 3

2 (qn−2−k + 1) points.

Proof. Let ` be the line spanned by P and Q and note that |`∩B| ≥ √q+ 1. We
will find the (n− 2)-space of the lemma in three steps.

First we show that there is a k-space K through `, so that K ∩ B = ` ∩ B.
To obtain this, it is enough to show that if there is a t-space T , 1 ≤ t ≤ (k − 1),
through ` with the property above, then there exists a (t + 1)-dimensional
subspace through T with the same property. Indeed, if all the (t + 1)-spaces
through T would contain a point of B \ T , then each would contain at least
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(
√
q + 1)(

√
q − 1) + 1 = q points of B \ T , hence B would have at least

qqn−(t+1) ≥ qqn−k points.

Next we show that through K, there exists a (k + 1)-space intersecting B

in at most 3(q + 1)/2 points. If each (k + 1)-space through K intersects B
in at least 3(q + 1)/2 points then, when |` ∩ B| =

√
q + 1, we count at least

(3q/2−√q)qn−k−1 points of B, which is a contradiction by Lemma 4.2. When
|`∩B| ≥ 2

√
q+ 1, then there exists a (k+ 1)-space through K intersecting B in

|`∩B| only, hence in at most q+ 1 points. Otherwise, a (k+ 1)-space through K
would contain at least (

√
q− 1)(2

√
q+ 1) + 1 > 2q−√q points of B \K. Hence,

|B| > 2qqn−(k+1) −√qqn−k−1 + 2
√
q + 1; which is again a contradiction.

Finally, suppose that an r-space, k + 1 ≤ r(≤ n− 3), through ` contains less
than 3(qr−k + 1)/2 points of B. Then there is an (r + 1)-space through this
subspace (and so through `) containing less than 3(qr+1−k + 1)/2 points from
B, otherwise |B| > qn−(r+1)(3(qr+1−k+1)/2−3(qr−k+1)/2). Hence, the result
follows.

Proof of Theorem 3.2. The proof goes by induction on n. The case n = 2 (and so
k = 1) and the case n = 3 and k = 2 are Lemma 4.1; the case n = 3 and k = 1

is a special case of Proposition 4.4. From now on, we assume that the theorem
is true for n − 1, n ≥ 4, (and for any k) and we show it for n. By Proposition
4.4 and by Lemma 4.1, we may assume that k < n− 2.

Lemma 4.5 yields that there exists an (n−2)-dimensional subspace L, so that
|L ∩ B| < 3(qn−2−k + 1)/2. Hence, by the inductional hypothesis, L ∩ B is an
(n−2−k)-space or a (t′, 2((n−2−k)−t′−1))-Baer cone, max{−1, n−2−2k−1} ≤
t′ < n− 2− k − 1.

Suppose that B ∩ L is not an (n − 2 − k)-space. Let H be a hyperplane
through L and assume that |B∩H | < 3(qn−1−k + 1)/2. Then by the inductional
hypothesis, B∩H is a subspace or a Baer cone. Since B∩L is a (t′, 2(n−2−k)−
t′ − 1)-Baer cone, B ∩ H is either a (t′ + 1, 2((n − 1 − k) − (t′ + 1) − 1))-
or a (t′, 2((n − 1 − k) − t′ − 1))-Baer cone. Hence, (B \ L) ∩ H has either
(qn−k−1 +

√
qqn−k−2) or (qn−1−k +

√
qqn−k−2 −√qqt′+1) points.

Using this and Lemma 4.2 (and t′ ≤ n − 4 − k), again by summing up the
points of B in the hyperplanes through L, we get that each hyperplane through
L contains less than 3(qn−1−k + 1)/2 points from B. Hence from above, |B| ≤
qn−k+1−1

q−1 + qt
′+1√q qn−k−t

′−1−1
q−1 and so Result 3.3 finishes our proof.

Finally, suppose that each (n−2)-space that intersectsB in less than 3
2 (qn−2−k+

1) points, intersects it in an (n − 2 − k)-space. Then, by Lemma 4.5, through
any two points of B there is an (n − 2)-space contained in B. Hence the line
spanned by these two points lies in B and so B is a subspace.
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