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On the thin regular geometries of rank four
for the Janko group J1
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Abstract

The Janko group J1 acts regularly on six rank four thin residually con-
nected geometries. Two of them are polytopes of type {5, 3, 5} and {5, 6, 5}.
In this paper, we show that starting from the {5, 3, 5} polytope, the five
other thin geometries may be constructed in a simple manner.
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1 Introduction

In [6], Dimitri Leemans used a series of MAGMA programs in order to classify
for some groups all thin residually connected geometries on which these groups
act regularly (see Section 2 for definitions). At that time, such a classification
for the first Janko group was accessible but Leemans did not include it in the
paper since the number of rank three geometries was too vast. In Figure 1, we
give the diagrams of the six rank four geometries obtained (there are none of
rank higher than four).

Geometries Γ1 and Γ2 have a linear diagram and therefore are abstract poly-
topes. The first one was discovered independently by Michael Hartley and led to
the discovery of the universal locally projective polytope of type {5, 3, 5} whose
group of automorphisms is J1 × L2(19) (see [5] for more details).

In this paper we give constructions of all six thin residually connected ge-
ometries mentioned above. We show that, starting from Γ1, we may reconstruct
the five other geometries. The reconstruction is done via two operations that
are examples of the general “mixing” operations mentioned in Section 7A of
McMullen and Schulte’s book on polytopes [8]. In a mixing operation, a new
polytope or geometry is constructed from another by selecting certain products
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of generators of the automorphism group of the original, and taking these as
the generators for the new automorphism group. The constructions used here
bear only a superficial similarity to any of the specific examples of mixing given
by Schulte and McMullen.

As we already mentioned above, the classification of the thin regular geome-
tries of J1 has been obtained using a computer program. One may think of
writing a complete proof of the classification without help of the computer but
this is a quite lengthy task which we do not think would attract the reader.

In Section 2, we recall some basic definitions and fix some notation. In Sec-
tion 3, we give a construction of Γ1 which was used in [5]. In Section 4, we
use a construction studied in more details in [4] to construct Γ2 from Γ1. In
Section 5, we show how to obtain Γ3 and Γ4 from Γ1 and in Section 6, we give
a way to construct Γ5 from either Γ3 or Γ4. In Section 7, we use the same con-
struction used in the previous two sections to construct Γ6 from Γ2. Finally, in
Section 8, we give some comments on the two constructions used in this paper.

2 Definitions and notation

Most of the following ideas arise from [11] (see also [2], chapter 3 or [9]). Let
I be a finite set. An incidence structure over a finite set I is a triple Γ = (X, t, ∗)
where X is a set of objects, t : X → I is a type function and ∗ is a symmetric
incidence relation on X such that two objects of the same type are incident if
and only if they are equal. A flag is a set of pairwise incident elements of Γ and
a chamber is a flag of type I . An incidence structure Γ is a geometry if every flag
is contained in a chamber. Moreover, we say that Γ is thin provided that every
flag of corank 1 is contained is exactly two chambers.

LetG be a group and (Gi)i∈I a family of subgroups ofG. Define Γ(G; (Gi)i∈I )
to be the incidence structure over I such that for each i ∈ I the set of elements
of type i is the coset spaceGi\G, and withGig∗Gjh if and only ifGig∩Gjh 6= ∅.
We say that G acts flag-transitively on Γ (or that Γ is flag-transitive) provided
that G acts transitively on all chambers of Γ, hence also on all flags of any given
type J where J is a subset of I . Moreover, if the action of G on Γ has a trivial
kernel, we say that G acts regularly on Γ. If G acts flag-transitively on Γ, then
every flag of type J ⊆ I is conjugate to the flag F := {Gj : j ∈ J}. The residue
of F is the geometry ΓF := Γ(GJ ; (GJ ∩ Gi)i∈I\J ) where GJ = ∩j∈JGj . Let
Γ(G; (Gi)i∈I ) be a flag-transitive geometry. We say that Γ is residually connected
provided that the incidence graph of each residue of rank at least two of Γ is a
connected graph. The subgroup GI is often denoted by B(Γ). It is the stabilizer
of a maximal flag of Γ. We refer to [2], chapter 3, for the definition of diagram
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of a geometry.

3 A construction of Γ1

Let G = 〈σ0, σ1, σ2, σ3〉 where σ0, σ1, σ2 and σ3 are involutions. Let Gi =

〈σj | j ∈ {0, 1, 2, 3} \ {i}〉 for i ∈ {0, 1, 2, 3}. Assume Γ := Γ(G; (Gi)i∈{0,1,2,3})
is a thin residually connected geometry on which G acts regularly. Moreover,
suppose that Γ has a linear diagram. Then it is well known that Γ is isomorphic
to an abstract regular polytope.

We call the subgroups Gi the maximal parabolic subgroups of Γ.

Geometry Γ1 may be constructed in the following way. LetG = 〈σ0, σ1, σ2, σ3〉
where σ2

0 = σ2
1 = σ2

2 = σ2
3 = (σ0σ1)5 = (σ0σ2)2 = (σ0σ3)2 = (σ1σ2)3 =

(σ1σ3)2 = (σ2σ3)5 = (σ0σ1σ2)5 = ((σ3σ2σ1)5σ0)3 = 1. As mentioned in [5],
the group G is isomorphic to J1. Let Gi = 〈σj | j ∈ {0, 1, 2, 3} \ {i}〉 for
i ∈ {0, 1, 2, 3}. Then Γ1

∼= Γ(G; (Gi)i∈{0,1,2,3}). Moreover, G0
∼= 2 × A5,

G1
∼= G2

∼= C2 × D10 and G3
∼= A5. Finally, by looking at the subgroup lat-

tice of J1 (see [3] for instance), we may deduce that NG(G3) = G3. Observe
that the polytope corresponding to Γ1 has icosahedral vertex-figures and hemi-
dodecahedral facets.

Theorem 3.1. [1] Let G be a group, I a finite set, and F = (Gi)i∈I a family of
subgroups of G. Assume :

(i) for each subset J of I of corank at least 2, GJ = 〈GJ∪{i} : i ∈ I \ J〉 , and

(ii) the connected components of the diagram of Γ = Γ(G, (Gi)i∈I ) are strings.

Then

(1) G is flag-transitive on Γ;

(2) Γ is residually connected.

Theorem 3.2. Γ1 is a thin residually connected geometry on which the Janko
group J1 acts regularly.

Proof. Straightforward by Theorem 3.1.

4 Constructing Γ2 from Γ1

We now apply a construction which is described with more details in [4].
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In G0, there is a non-trivial center of order 2. It is the group {1, (σ1σ2σ3)5}.
Let ω = (σ1σ2σ3)5. Let τi = σi for i = 0, 2 or 3 and τ1 = ωσ1. Clearly, τ1 is an
involution.

Let H = 〈τ0, τ1, τ2, τ3〉 and Hi = 〈τj | j ∈ {0, 1, 2, 3} \ {i}〉 for i ∈ {0, 1, 2, 3}.

Lemma 4.1. H = G.

Proof. Let us first show that σ1 ∈ 〈ωσ1, σ2〉. Indeed, since (σ1σ2)3 = 1 we
have σ1 = σ2σ1σ2σ1σ2. Moreover ω ∈ Z(〈σ1, σ2, σ3〉) and ω2 = 1 implies that
σ1 = ω2σ2σ1σ2σ1σ2 = σ2(ωσ1)σ2(ωσ1)σ2 ∈ 〈ωσ1, σ2〉. Thus we have H ≥ G.
On the other hand, we have ω ∈ 〈σ1, σ2, σ3〉 and therefore H ≤ G.

Theorem 4.2. Γ2 = Γ(H ; (Hi)i∈{0,1,2,3}) is a thin residually connected geometry
on which J1 acts regularly.

Proof. One may easily check that ωσ1σi has order 5 (resp. 6, 2) for i = 0 (resp.
2, 3).

It is obvious that H1 = G1. Since σ1 ∈ 〈ωσ1, σ2〉, we have that H3 > G3.
Therefore,H3

∼= L2(11) or J1. The latter is not possible since σ3 /∈ H3. With the
same reasoning, we get H0 = G0.

The subgroup H2 = 〈σ0, ωσ1, σ3〉 contains 〈σ0σ3, ωσ1〉 which is a dihedral
group of order 20. Since σ3 = (σ0σ3ωσ1)5, we have H2

∼= C2 ×D10.

Combining these results with Lemma 4.1, we know the full sublattice of Γ2.
By Theorem 3.1, H is flag-transitive on Γ2. Moreover Γ2 is residually connected
and thin. Since B(Γ2) = ∩i∈{0,1,2,3}Hi = 1, we have that H acts regularly on
Γ2.

The diagram of Γ2 is obviously the one depicted in Figure 1.

5 Constructing Γ3 and Γ4 from Γ1

As in the previous section, let G = 〈σ0, σ1, σ2, σ3〉 where σ0, σ1, σ2 and σ3 are
involutions. Let Gi = 〈σj | j ∈ {0, 1, 2, 3} \ {i}〉 for i ∈ {0, 1, 2, 3}.

The subgroupG2 has a non-trivial center of order 2. It is the group {1, (σ0σ1σ3)5}.
Let ω = (σ0σ1σ3)5. Since σ0 and σ1 commute with σ3, we have ω = (σ0σ1)5σ5

3 =

σ3. We set τi = σi for i = 0, 1 or 2 and τ3 = σσ3
2 .

Let H = 〈τ0, τ1, τ2, τ3〉 and Hi = 〈τj | j ∈ {0, 1, 2, 3} \ {i}〉 for i ∈ {0, 1, 2, 3}.

Lemma 5.1. H = G.
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Proof. Since H = 〈σ0, σ1, σ2, σ
σ3
2 〉 and σ3 ∈ G we have H ≤ G. On the

other hand, since (σ2σ3)5 = 1 we have σ2σ3σ2σ3σ2 = σ3σ2σ3σ2σ3. Therefore,
σ2σ3σ2 = σσ3

2 σ2σ
σ3
2 . Hence σ2σ3σ2 ∈ H and σ3 ∈ H .

Theorem 5.2. Γ3 = Γ(H ; (Hi)i∈{0,1,2,3}) is a thin residually connected geometry
on which J1 acts regularly.

The proof of this theorem is very similar to the one of Theorem 4.2. There-
fore, we leave it as an exercise for the interested reader.

The diagram of Γ3 is obviously the one depicted in Figure 1.

Observe that this construction gives the same geometry we would get by ap-
plying the doubling construction described in corollary 4.1 of [7] (see also [10])
to geometry Γ1.

Instead of looking at the center of G2, we may look at the center of G1 which
is also non-trivial. Indeed, Z(G1) = {1, (σ0σ2σ3)5}. Let µ = (σ0σ2σ3)5. As in
the previous case, we have µ = σ5

0(σ2σ3)5 = σ0.

We set νi = σi for i = 1, 2 or 3 and ν0 = σσ0
1 .

Let H ′ = 〈ν0, ν1, ν2, ν3〉 and H ′i = 〈νj | j ∈ {0, 1, 2, 3}\{i}〉 for i ∈ {0, 1, 2, 3}.
We have similar results as the two previous theorems.

Lemma 5.3. H ′ = G.

Proof. Similar to that of Lemma 5.1

Theorem 5.4. Γ4 = Γ(H ′; (H ′i)i∈{0,1,2,3}) is a thin residually connected geometry
on which J1 acts regularly.

We leave the proof of this theorem as an easy exercise to the reader since it
is pretty similar to the proof of Theorem 4.2.

The diagram of Γ4 is obviously the one depicted in Figure 2.

Observe that, again, this construction gives the same geometry we would
get by applying the doubling construction described in corollary 4.1 of [7] (see
also [10]) to geometry Γ1.

6 Construction Γ5 from either Γ3 or Γ4

We may reapply the same construction to Γ3 or Γ4 in the following way.

We start from Γ3 and H = 〈τ0, τ1, τ2, τ3〉. The center of H1 = G1 is still
non-trivial. Indeed, Z(H1) = {1, µ}.
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We set ηi = τi for i = 1, 2 or 3 and η0 = τµ1 .

If we start from Γ4 and H ′ = 〈ν0, ν1, ν2, ν3〉, the center of H ′2 = G2 is also
still non-trivial. Indeed, Z(H ′2) = {1, ω}. One may easily check that ηi = νi for
i = 0, 1 or 2 and η3 = νω2 .

LetH ′′ = 〈η0, η1, η2, η3〉 andH ′′i = 〈ηj | j ∈ {0, 1, 2, 3}\{i}〉 for i ∈ {0, 1, 2, 3}.
Again, we have similar results as the previous theorems and we leave their

proofs as exercises to the interested reader.

Lemma 6.1. H ′′ = G.

Theorem 6.2. Γ5 = Γ(H ′′; (H ′′i )i∈{0,1,2,3}) is a thin residually connected geome-
try on which J1 acts regularly.

The diagram of Γ5 is obviously the one depicted in Figure 2.

Observe that, again, this construction gives the same geometry we would
get by applying the doubling construction described in corollary 4.1 of [7] (see
also [10]) to geometry Γ3 or geometry Γ4.

7 Constructing Γ6 from Γ2

We start with H , Hi and τi (i ∈ {0, 1, 2, 3}), ω defined as in Section 4. We recall
that H0

∼= 2×A5, H1
∼= H2

∼= C2 ×D10 and H3
∼= L2(11).

As in Sections 5 and 6, we may look at the centers of H1 and H2. The center
of H1 is {1, (σ0σ2σ3)5} and we set µ = (σ0σ2σ3)5 as in Section 5.

We set νi = τi for i = 1, 2 or 3 and ν0 = τµ1 .

Let H ′ = 〈ν0, ν1, ν2, ν3〉 and H ′i = 〈νj | j ∈ {0, 1, 2, 3}\{i}〉 for i ∈ {0, 1, 2, 3}.
We have similar results as the two previous theorems. We leave the proofs as

exercises to the interested reader.

Lemma 7.1. H ′ = G.

Theorem 7.2. Γ6 = Γ(H ′; (H ′i)i∈{0,1,2,3}) is a thin residually connected geometry
on which J1 acts regularly.

The diagram of Γ6 is obviously the one depicted in Figure 2.

Observe that, again, this construction gives the same geometry we would
get by applying the doubling construction described in corollary 4.1 of [7] (see
also [10]) to geometry Γ2.

Observe finally that we cannot apply this construction to the dual of Γ2 as we
did in Section 5 to obtain Γ4 from Γ1 in a similar way that we got Γ3 from Γ1.
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This is due to the fact that the geometry we would obtain is not thin anymore.
One easy way to check that the construction cannot be applied in this case is
to look at the thin geometries of 2 × A5 available in [6] and see that there is
no rank three geometry with a diagram having three edges labelled respectively
with 5, 6 and 6.

8 Final comments

Let G be a group generated by four involutions σ0, σ1, σ2 and σ3, and let Gi =

〈σj | j ∈ {0, 1, 2, 3} \ {i}〉.
The two constructions used in this paper are based on the following ideas.

If for some i ∈ {0, 1, 2, 3}, the subgroup Gi has a non-trivial center, take ω 6= 1

in that center. Then use ω to modify one of the generating involutions σj by
either replacing it by ωσj or σωk where k ∈ {0, 1, 2, 3} and k 6= j. One may check
that the only thin regular geometries we get when starting with G, Gi and σi
(i ∈ {0, 1, 2, 3}) as in Section 3, are those mentioned in this paper. Most of the
time, what goes wrong is that either the group generated by the transformed
involutions is a proper subgroup of G and therefore, we do not obtain geome-
tries for the group we started with or that some Gi becomes the full group G.
Sometimes, however, we do get geometries but they are not thin anymore. Such
an example is obtained, for instance, by taking the σi’s as in Section 3 and ap-
plying the following construction : take 1 6= ω ∈ 〈σ1, σ2, σ3〉 and σ0, σ1, σ2, ωσ3

as generating involutions.
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Figure 1: The rank four thin regular residually connected geometries of J1 (I)
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Figure 2: The rank four thin regular residually connected geometries of J1 (II)


