On dimensional dual hyperovals S_{d+1}^{d+1}

Hiroaki Taniguchi Satoshi Yoshiara

Abstract

A d-dimensional dual hyperoval S_{d+1}^{d+1} inside $PG(2d + 1, 2)$ ($d \geq 2$) is constructed in [5], for a generator σ of $\text{Gal}(GF(q)/GF(2))$ and an o-polynomial $\phi(X)$ of $GF(q)[X]$ ($q = 2^{d+1}$). There, its automorphism group is determined and a criterion is given for these dimensional dual hyperovals to be isomorphic, assuming that the map ϕ on $GF(q)$ induced by $\phi(X)$ lies in $\text{Gal}(GF(q)/GF(2))$. In this paper, we extend these results for a monomial o-polynomial ϕ. We show that $\text{Aut}(S_{d+1}^{d+1}) \cong GL_3(2)$ or $Z_{q^1} : Z_{d+1}$ according as $d = 2$ or $d \geq 3$, if $\phi(X)$ is monomial but $\phi \notin \text{Gal}(GF(q)/GF(2))$. In particular, a special member $X(0)$ of S_{d+1}^{d+1} is always fixed by any automorphism of S_{d+1}^{d+1}. Furthermore, $S_{d+1}^{d+1} \cong S_{d+1}^{d+1}$ if and only if either $(\sigma, \phi) = (\sigma', \phi')$ or $\sigma \sigma' = \phi \phi' = \text{id}$.

Keywords: dimensional dual hyperoval, o-polynomial

MSC 2000: 51,12,20

1 Introduction

A d-dimensional dual hyperoval with ambient space $PG(n, q)$ is defined to be a family S of $((q^{d+1} - 1)/(q - 1)) + 1$ d-subspaces of $PG(n, q)$ enjoying the following properties:

(1) any two distinct members of S intersect in a projective point.
(2) any three mutually distinct members of S intersect trivially.
(3) the members of S span $PG(n, q)$.

For a generator σ of $\text{Gal}(GF(q)/GF(2))$ and an o-polynomial $\phi(X)$ over $GF(q)$ ($q = 2^{d+1}$), one can construct a d-dimensional dual hyperoval S_{d+1}^{d+1}.
inside $PG(2d + 1, 2)$ by [5, Lemma 1]. (See also Proposition 2.1). When the permutation ϕ on $GF(q)$ induced by $\phi(X)$ lies in $\text{Gal}(GF(q)/GF(2))$, its automorphism group is determined [5, Proposition 7]. Furthermore, for $\sigma, \sigma', \phi, \phi'$ generating $\text{Gal}(GF(q)/GF(2))$, it is shown that $S_{\sigma, \phi}^{d + 1}$ is isomorphic to $S_{\sigma', \phi'}^{d + 1}$ if and only if either $(\sigma, \phi) = (\sigma', \phi')$ or $\sigma\phi' = \phi\sigma' = \text{id}$ [5, Proposition 11]. In this paper we extended these results to the case when ϕ and ϕ' are induced by monomial o-polynomials. We always assume that $d \geq 2$.

Theorem 1.1. Let ϕ be a bijection on $GF(q)$ induced by a monomial o-polynomial which is not contained in $\text{Gal}(GF(q)/GF(2))$. Then $G = \text{Aut}(S_{\sigma, \phi}^{d + 1})$ stabilizes $X(0)$. We have $G \cong GL_3(2)$ if $d = 2$, while $G \cong Z_{q-1} : Z_{d+1}$ for $d \geq 3$.

Theorem 1.2. Let σ and σ' be generators of $\text{Gal}(GF(q)/GF(2))$, and let $\phi(X)$ and $\phi'(X)$ be monomial o-polynomials in $GF(q)[X]$ such that neither ϕ nor ϕ' is contained in $\text{Gal}(GF(q)/GF(2))$.

Then two dimensional dual hyperovals $S_{\sigma, \phi}^{d + 1}$ and $S_{\sigma', \phi'}^{d + 1}$ are isomorphic if and only if either $(\sigma, \phi) = (\sigma', \phi')$ or $\sigma\phi' = \phi\sigma' = \text{id}_{GF(q)}$.

Recall that two d-dimensional dual hyperovals S and S' with common ambient space $PG(V)$, where V is a vector space over $GF(2)$, are called isomorphic if there is a $GF(2)$-linear map f of V sending every member of S to a member of S'.

Theorem 1.1 shows that $S_{\sigma, \phi}^{d + 1}$ is never isomorphic to $S_{\sigma', \phi'}^{d + 1}$ if ϕ' is contained in $\text{Gal}(GF(q)/GF(2))$ but ϕ is not, because $\text{Aut}(S_{\sigma, \phi}^{d + 1})$ fixes the special member $X(0)$, while $\text{Aut}(S_{\sigma', \phi'}^{d + 1})$ is doubly transitive on the members of $S_{\sigma', \phi'}^{d + 1}$ [5, Proposition 7]. Thus Theorem 1.2 together with [5, Proposition 11] gives a criterion for two dimensional dual hyperovals $S_{\sigma, \phi}^{d + 1}$ and $S_{\sigma', \phi'}^{d + 1}$ to be isomorphic, if both ϕ and ϕ' are multiplicative o-polynomials.

The subsidiary aim of this paper is to supply a corrected proof for [5, Lemma 6]. The original proof does not work, as it confuses the trace function for $GF(q)/GF(2)$ with that for $GF(2^k)/GF(2)$. Step 3 and Step 4 of the proof of Theorem 1.1 provide a proof for [5, Lemma 6], as they do not assume that $\phi \not\in \text{Gal}(GF(q)/GF(2))$. When $\phi \in \text{Gal}(GF(q)/GF(2))$, we have an explicit group T of translations [5, Section 4]. One can also establish Step 3 by showing that T is normal in G, because then $C_V(T) = X(\infty)$ is G-invariant.

Two new ideas are used to establish Theorem 1.1. One is to exploit a classical result [2] on a group with a split BN-pair of rank one, namely a doubly transitive group in which one point stabilizer contains a normal subgroup acting regularly on the remaining points. The other is to show the invariance of a certain subspace $X(\infty)$ of the ambient space under some automorphism groups, using Lemma 2.3.
The proof of Theorem 1.2 is along the same line with the proof of [5, Proposition 11]. However, we are required more careful treatment because \(GF(q) \) is not necessarily generated by \(b^{(\sigma \phi - 1)/(\phi - 1)} \) (\(b \in GF(q)^\times \)) (compare Step 3 with the third paragraph of the proof of [5, proposition 11]). We exploit a polynomial representation of a certain function to overcome this difficulty (see Step 4). Furthermore, Lemma 2.3 is used to simplify reduction arguments in Step 1.

The next section provides the definition of \(S_{d+1}^d \) with the description of its ambient space (Proposition 2.1). It also supplies the notation used throughout the paper and Lemma 2.3. Sections 3 and 4 are respectively devoted to the proofs of Theorems 1.1 and 1.2. In the last section, Proposition 5.1 is given which explains why we require that \(\sigma \) is a generator of \(Gal(GF(q)/GF(2)) \) and \(\phi(X) \) is an o-polynomial in the definition of \(S_{\sigma,\phi} \).

2 Preliminaries

Throughout this paper, let \(q = 2^{d+1} \) be a power of 2 with \(d \geq 2 \). Let \(\sigma \) be an automorphism of \(GF(q) \) over \(GF(2) \) defined by

\[
\sigma^m = x^m \quad \text{for some integer } m \in \{1, \ldots, d\} \text{ with } (m, d+1) = 1.
\]

Then \(\sigma \) is a generator of the Galois group for an extension \(GF(q)/GF(2) \), whence the map

\[
\sigma - 1 : GF(q)^\times \ni x \mapsto x^\sigma/x \in GF(q)^\times
\]

is a bijection preserving each subfield of \(GF(q) \). The inverse map of \(\sigma - 1 \) is denoted \(1/(\sigma - 1) \).

Choose an o-polynomial \(\phi(X) \) in \(GF(q)[X] \), namely, \(\phi(X) \) is a permutation polynomial with \(\phi(0) = 0 \) and \(\phi(1) = 1 \), and the polynomial \(\phi_s \), defined by

\[
\phi_s(X) := (\phi(X+s) - \phi(s))/X \quad \text{for every } s \in GF(q)
\]

is a permutation polynomial. If \(\phi \) is a monomial polynomial, that is, \(\phi(X) = X^N \) for some integer \(N \) in \(\{2, \ldots, q-2\} \), it is an o-polynomial if and only if the following three conditions are satisfied:

\[
(N, q-1) = (N-1, q-1) = 1 \quad \text{and} \quad \phi_1(X) \text{ is a permutation polynomial}.
\]

We use the same letter \(\phi \) to denote the bijection on \(GF(q) \) induced by \(\phi(X) \): \(x^\phi = \phi(x) \) for all \(x \in GF(q) \). Then the map

\[
\phi - 1 : GF(q)^\times \ni x \mapsto x^\phi/x \in GF(q)^\times
\]

is a bijection, because it is induced by the polynomial \(\phi_0(X) \). The inverse map of \(\phi - 1 \) is denoted \(1/(\phi - 1) \). Note that if \(\phi \) is a monomial o-polynomial, then
Lemma 1. This part is also verified in view of the following expression or not, where

Proof. It is well known that every hyperplane of $\mathbb{GF}(q)^\times$, whence it preserves each subfield of $\mathbb{GF}(q)$.

Throughout this paper, we use $\text{Tr} = \text{Tr}_{\mathbb{GF}(q)/\mathbb{GF}(2)}$ to denote the trace function for the field extension $\mathbb{GF}(q)/\mathbb{GF}(2)$. Furthermore, we regard

$$V := \mathbb{GF}(q) \oplus \mathbb{GF}(q) = \{(x, y) \mid x, y \in \mathbb{GF}(q)\}$$

as a $2(d + 1)$-dimensional vector space over $\mathbb{GF}(2)$.

Proposition 2.1. Let σ be a generator of $\text{Gal}(\mathbb{GF}(q)/\mathbb{GF}(2))$ with $q = 2^{d+1}$, $d \geq 2$, and let $\phi(X)$ be an o-polynomial $\phi(X)$ of $\mathbb{GF}(q)[X]$. For each $t \in \mathbb{GF}(q)$, define a subspace $X(t)$ of V by

$$X(t) := \{(x, x^2t + xt^\phi) \mid x \in \mathbb{GF}(q)\}.$$ Then the family $S_{t, \sigma}^{d+1} := \{X(t) \mid t \in \mathbb{GF}(q)\}$ is a d-dimensional dual hyperoval with ambient space $PG(W)$ or $PG(V)$, accordingly as $\sigma \phi$ is the identity on $\mathbb{GF}(q)$ or not, where $W = \{\{(x, y) \mid \text{Tr}(y) = 0\} \}$ is a hyperplane of V.

Proof. Except the statement for the ambient space, Proposition was shown in [5, Lemma 1]. This part is also verified in view of the following expression of intersections of two members.

$$X(0) \cap X(t) = [t^{1/(\sigma-1)}, 0] = [\phi_0(t)^{1/(\sigma-1)}, 0].$$

(1)

$$X(s) \cap X(t) = [\left(\frac{s^\phi + t^\phi}{s + t}\right)^{1/(\sigma-1)}, \left(\frac{s^\phi + t^\phi}{s + t}\right)^{1/(\sigma-1)}(\frac{s^\phi + t^\phi}{s + t})].$$

(2)

We will determine the subspace $U := \langle X(t) \mid t \in \mathbb{GF}(q) \rangle$ of V. For each $t \in \mathbb{GF}(q)^\times$, we set $A(t) := \{x^\sigma t + xt^\phi \mid x \in \mathbb{GF}(q)\}$. It is straightforward to verify that $A(t) = \{x \in \mathbb{GF}(q) \mid \text{Tr}(t^{(1-\sigma)/\sigma-1}x) = 0\}$ for every $t \in \mathbb{GF}(q)^\times$. Consider $A := \langle A(t) \mid t \in \mathbb{GF}(q) \rangle$, the subspace of $\mathbb{GF}(q)$ consisting of sums of elements in $A(t)$’s. As $\{X(0), X(t)\} = \{(x, y) \mid x \in \mathbb{GF}(q), y \in A(t)\}$, we have $U = \{\{(x, y) \mid x \in \mathbb{GF}(q), y \in A\} \}$. As $A(1) = \{x \in \mathbb{GF}(q) \mid \text{Tr}(x) = 0\}$ is a hyperplane of $\mathbb{GF}(q)$, we have either $A = \mathbb{GF}(q)$ or $A = A(1)$. Accordingly we have $U = V$ or $U = W$.

Assume that $U = W$. Then $A = A(1) = A(t)$ for all $t \in \mathbb{GF}(q)^\times$. It is well known that every hyperplane of $\mathbb{GF}(q)$ is uniquely written as the kernel of the $\mathbb{GF}(2)$-linear form $x \mapsto \text{Tr}(ax)$ for some $a \in \mathbb{GF}(q)^\times$. Thus we have $t^{1-\sigma}/(\sigma-1) = 1$, or equivalently $t^{\phi \sigma} = t$ for all $t \in \mathbb{GF}(q)^\times$. Thus $\phi \sigma = \text{id}$ on $\mathbb{GF}(q)$. Conversely if $\phi = \sigma^{-1}$, we have $A(t) = A(1)$ for all $t \in \mathbb{GF}(q)^\times$, whence $A = A(1)$ and $U = W$. \qed
We sometimes denote $S_{d+1}^{d+1}_{\sigma,\phi}$ by $S_{2^m,N}^{d+1}$, where m and N are integers such that $x^\sigma = x^{2^m}$ and $x^\phi = x^N$ for all $x \in \text{GF}(q)$.

The ‘if’ part of Theorem 1.2 holds under mild restriction for o-polynomials ϕ and ϕ'.

Lemma 2.2. Let σ and σ' be generators of $\text{Gal}(\text{GF}(q)/\text{GF}(2))$, and let $\phi(X)$ and $\phi'(X)$ be o-polynomials in $\text{GF}(q)[X]$ with $\phi, \phi' \notin \text{Gal}(\text{GF}(q)/\text{GF}(2))$. Assume that $\sigma'\phi = \phi\sigma'$.

If either $(\sigma, \phi) = (\sigma', \phi')$ or $\sigma\sigma' = \phi\phi' = \text{id}_{\text{GF}(q)}$, then $S_{d+1}^{d+1}_{\sigma,\phi}$ and $S_{d+1}^{d+1}_{\sigma',\phi'}$ are isomorphic.

Proof. If $\sigma = \sigma'$ and $\phi = \phi'$, the dimensional dual hyperovals $S := S_{d+1}^{d+1}_{\sigma,\phi}$ and $S' := S_{d+1}^{d+1}_{\sigma',\phi'}$ are identical. If $\sigma'\phi = \text{id}$, consider the $\text{GF}(2)$-linear bijection τ on V given by $(x, y) \mapsto (x, y^{\sigma'})$. Then a vector $(x, x^{\sigma}t + xt^{\phi})$ of $X(t)$ is sent under τ to a vector $(x, x^{\sigma'}t + x^{\sigma'}t^{\phi\sigma'})$. As $\sigma'\phi = \phi\sigma'$, we have $x^{(t^{\sigma'}t^{\phi\sigma'})} = x^{(t^{\sigma\sigma'}t^{\phi\sigma'})} = xt^{\sigma'}$. Thus $x, x^{\sigma'}t + x^{\sigma'}t^{\phi\sigma'}$ lies in a member $X(t^{\sigma'})$ of $S_{d+1}^{d+1}_{\sigma',\phi'}$. Thus τ sends each $X(t)$ to $X(t^{\sigma'})$, whence it induces an isomorphism of S with S'.

Now we specialize the case when both ϕ and ϕ' are monomial o-polynomials. We introduce important automorphisms m_b and f_θ of $\text{Aut}(S_{d+1}^{d+1})$ defined for $b \in \text{GF}(q)^*$ and $\theta \in \text{Gal}(\text{GF}(q)/\text{GF}(2))$:

$$m_b : (x, y) \mapsto (bx, b^{(\sigma-1)/\phi-1}y)$$

(3)

$$f_\theta : (x, y) \mapsto (x^\theta, y^\theta)$$

(4)

Observe that for $t \in G(q), b \in \text{GF}(q)^*, \theta \in \text{Gal}(\text{GF}(q)/\text{GF}(2))$ we have

$$X(t)^{m_b} = X(b^{(\sigma-1)/\phi-1}t),$$

(5)

$$X(t)^{f_\theta} = X(t^\theta).$$

(6)

In the sequel, we set as follows:

$$S := S_{d+1}^{d+1}_{\sigma,\phi}, G := \text{Aut}(S) \text{ and } A := \text{the stabilizer of } X(0) \text{ in } G.$$

$$M := \{m_b \mid b \in \text{GF}(q)^*\} \text{ and } F := \{f_\theta \mid \theta \in \text{Gal}(\text{GF}(q)/\text{GF}(2))\}.$$

The group M is a cyclic group generated by m_η for a generator η of $\text{GF}(q)^*$, because we have $m_{b^\theta} = m_b m_{b^\theta}$ from Equation (3). The group F of ‘field’ automorphisms, which is isomorphic to the cyclic group of order $d + 1$, normalizes M. We have $A \geq MF \cong \text{Z}_{q-1} : \text{Z}_{d+1}$.

As both σ and ϕ are induced by monomial polynomials, they induce automorphisms of the multiplicative group $\text{GF}(q)^*$. Moreover $\phi-1$ and $1/(\phi-1)$ induce
automorphisms of $GF(q)^\times$. Suppose $b^{(\sigma-1)/(\phi-1)} = 1$ for some $b \in GF(q)^\times$. Then $b^\sigma/b = 1$ and $b^\sigma = b$. Thus $b = 1$, as σ generates $Gal(GF(q)/GF(2))$. Hence it follows from Equation (5) that the cyclic group M is a subgroup of A acting regularly on the members of $S \setminus \{X(0)\}$.

Consider the following map

$$(\sigma\phi - 1)/(\phi - 1): GF(q)^\times \ni x \mapsto x^{(\sigma\phi - 1)/(\phi - 1)} \in GF(q)^\times. \quad (7)$$

It is a multiplicative homomorphism of $GF(q)^\times$. Thus it preserves every subfield of $GF(q)$. The map $(\sigma\phi - 1)/(\phi - 1)$ is not necessarily injective. However, it is never additive, because of the following lemma applied to $GF(q)$ itself.

Lemma 2.3. Let σ be a generator of $Gal(GF(q)/GF(2))$ and let $\phi(X)$ be a monomial o-polynomial in $GF(q)[X]$. Then for every non-prime subfield $GF(2^k)$ of $GF(q)$, the restriction of the map $(\sigma\phi - 1)/(\phi - 1)$ on $GF(2^k)$ does not coincide with any automorphism in $Gal(GF(2^k)/GF(2))$.

Proof. We denote the restriction of σ and ϕ on $GF(2^k)$ by the same letters. Then σ is a generator of $Gal(GF(2^k)/GF(2))$ and ϕ is induced by a monomial o-polynomial in $GF(2^k)[X]$, written also as $\phi(X)$. There exists an integer m with $1 \leq m \leq k - 1$ coprime with k such that $x^m = x^{2^m}$ for all $x \in GF(2^k)$. As $GF(2^k) \neq GF(2)$, σ is not the identity and $\sigma - 1$ is bijective on $GF(2^k)$. Then $(\sigma\phi - 1)/(\phi - 1)$ is not the identity on $GF(2^k)$, for otherwise we would have $(\sigma - 1)\phi = 0$, whence $x^\phi = 1$ for every $x \in GF(q)$, as $\sigma - 1$ is bijective on $GF(2^k)$.

Suppose $(\sigma\phi - 1)/(\phi - 1)$ coincides with $\tau^{-1} \in Gal(GF(2^k)/GF(2))$. By the above remark, $\tau \neq \text{id}$, so that there exists an integer l with $1 \leq l \leq k - 1$ such that $x^\tau = x^{2^l}$ for all $x \in GF(2^k)$. In particular, $2 \leq m + 1 \leq 2(k - 1)$. From $(\sigma\phi - 1)/(\phi - 1) = 1/\tau$,

$$(\sigma\tau - 1) = \phi^{-1}(\tau - 1). \quad (8)$$

Take an integer N with $1 \leq N \leq 2^k - 1$ such that $x^\phi = x^N$ for all $x \in GF(2^k)$. As ϕ is bijective on $GF(q)^\times$, N is prime to $2^k - 1$, whence the inverse of N modulo $2^k - 1$ exists. We denote it by N'. Namely N' is an integer with $1 \leq N' \leq 2^k - 1$ such that $NN' \equiv 1 \pmod{2^k - 1}$. Then Equation (8) is rewritten as

$$2^{m+l} - 1 \equiv N'(2^l - 1) \pmod{2^k - 1}. \quad (9)$$

Recall that $\phi^{-1}(X) = X^{N'}$ is also an o-polynomial (see e.g. [1, Result 8]). It follows from Glynn’s criterion for monomial o-polynomials [1, Theorem A] that for every $d \in \{1, \ldots, 2^k - 2\}$, we have $d \not\equiv (dN' \pmod{2^k - 1})$ with respect to the following ordering \preceq on $\{0, \ldots, 2^k - 1\}$.
For integers $a = \sum_{i=0}^{k-1} a_i 2^i$ and $b = \sum_{i=0}^{k-1} b_i 2^i$ with $a_i, b_i \in \{0,1\}$, we define $a \leq b$ if and only if $a_i \leq b_i$ for all $i = 0, \ldots, k - 1$.

Note that $(dN \pmod{2^k - 1})$ denotes the unique integer M in $\{1, \ldots, 2^k - 1\}$ with $M \equiv dN \pmod{2^k - 1}$. Assume that $2 \leq m + l \leq k$. Then $1 \leq 2^{m+l} - 1 \leq 2^k - 1$, whence we have $((2^l - 1)N \pmod{2^k - 1}) = 2^{m+l} - 1$ by Equation (9). However, as $2^{m+l} - 1 = \sum_{i=0}^{m+l-1} 2^i$ and $2^l - 1 = \sum_{i=0}^{l-1} 2^i$, we have $2^l - 1 \leq 2^{m+l} - 1$, which contradicts Glynn’s criterion. Thus we have $k + 1 \leq m + l \leq 2(k - 1)$. In this case, we consider the equation

$$(2^{m+l} - 1)N \equiv 2^l - 1 \pmod{2^k - 1},$$

equivalent to Equation (9). We have $2^{m+l} - 1 \equiv 2^l - 1$ (modulo $2^k - 1$), where $f := m + l - k$. Then $1 \leq f < l \leq k - 1$, as $m < k$. Since $2^l - 1 \equiv (2^{m+l} - 1)N \equiv (2^l - 1)N$ (modulo $2^k - 1$), we have $((2^l - 1)N \pmod{2^k - 1}) = 2^l - 1$. Then Glynn’s criterion applied to $d = 2^l - 1$ yields that $\sum_{i=0}^{l-1} 2^i = 2^l - 1 \not\equiv 2^l - 1 = \sum_{i=0}^{l-1} 2^i$, which contradicts $f < l$. Hence we have contradiction in any case. □

3 Automorphism group of S_{d+1}^{d+1}

In this section, we prove Theorem 1.1. We first treat the case when $d = 2$.

Step 1. If $d = 2$, G fixes $X(0)$ and $G \cong GL_3(2)$.

Proof. There are three monomial o-polynomials in $GF(8)[X]$: X^2, X^4 and X^6. Thus the only choice for $\phi(X)$ is X^6. As the map $x \mapsto x^4$ is the inverse map of the map $x \mapsto x^2$ on $GF(8)$, we have $S_{2,6}^2 \cong S_{6,2}$ by Lemma 2.2. Thus we may assume that $S = S_{2,6}$.

Let η be a generator of $GF(8)^\times$ with $\eta^3 = \eta + 1$. Consider the following involutive $GF(2)$-linear transformation v on V:

\[
(1,0)^v = (1,0), (\eta,0)^v = (\eta^2,0), (\eta^2,0)^v = (\eta,0); \\
(0,1)^v = (0,1), (0,\eta)^v = (\eta + \eta^2,\eta), (0,\eta^2)^v = (\eta^2,\eta + \eta^2).
\]

Then we can verify that v induces the following permutation on the members of S:

$$\begin{align*}
(X(0))(X(1))(X(\eta))(X(\eta^3))(X(\eta^4))(X(\eta^5))(X(\eta^6))(X(\eta^7));
\end{align*}$$

Now the stabilizer A of $X(0)$ in G is isomorphic to a subgroup of $GL_3(2)$, as A acts faithfully on $X(0)$ [5, Lemma 4(1)]. As A contains $MF \cong Z_7,Z_3$ and
the above involution \(\nu \), we have \(A \cong GL_3(2) \). In particular, \(A \) acts doubly transitively on \(S \setminus \{X(0)\} \).

We can also verify that \((X(1), X(\eta)) \) contains \(X(\eta^5) \) but not \(X(0) \). In particular, \(G \) does not act triply transitively on the members of \(S \). Thus \(G \) does not move \(X(0) \), whence \(G = A \cong GL_3(2) \).

In the following, we consider the generic case with \(d \geq 3 \). We first determine the stabilizer \(A \) in \(G \) of \(X(0) \). From Step 2 to Step 4, we do not assume that \(\phi \notin \text{Gal}(GF(q)/GF(2)) \).

Step 2. One of the following occurs.

1. \(A = MF \).
2. We have \(d + 1 = 2k \) with \(k \geq 2 \) and \(A = LF \), where \(L = Z \times S \) is a normal subgroup of \(A \) isomorphic to \(GL_2(2^k) \) with direct factors \(Z := Z(L) \cong Z_{2k-1} \) and \(S := L' \cong SL_2(2^k) \). We also have \(|L \cap F| = |S \cap F| = 2 \).

Proof. As \(A \) acts on \(X(0) \) faithfully by [5, Lemma 4(1)], \(A \) is isomorphic to a subgroup of \(GL(X(0)) \cong GL_{d+1}(2) \), regarding \(X(0) \) as a \((d + 1)\)-dimensional space over \(GF(2) \). Now \(M \) is a cyclic subgroup of order \(q - 1 \) acting regularly on the nonzero vectors \((X(0) \cap X(t))^{\times} (t \in GF(q)^{\times}) \) of \(X(0) \), whence it is a Singer cycle of \(GL(X(0)) \). As \(A \) is a subgroup of \(GL(X(0)) \) containing a Singer cycle \(M \) on \(X(0) \), it follows from Kantor’s result [4] that \(A \) has a normal subgroup isomorphic to \(GL_{(d+1)/e}(2^e) \) for some divisor \(e \) of \(d + 1 \). If \(e = d + 1 \), this normal subgroup coincides with the Singer cycle \(M \), whence \(A \) is contained in the normalizer of \(M \) in \(GL_{d+1}(2) \). It is easy to verify that the normalizer is \(MF \). Thus in this case we have \(A = MF \). Assume that \(e < d + 1 \). As \(d \geq 3 \), one of the following holds from the arguments in [5, Lemma 5]:

 (a) \(d + 1 = 4 \) and \(A \cong GL_{d+1}(2) \).

 (b) \(d + 1 = 2k \) and \(A \) contains a normal subgroup isomorphic to \(GL_2(2^k) \).

We eliminate Case (a) first. Assume that Case (a) holds. There are only three monomial o-polynomials in \(GF(16)[X] \): \(X^2 \), \(X^8 \) and \(X^{14} \). As \(S_{8,14}^4 \) is isomorphic to \(S_{8,14}^4 \) by Lemma 2.2, we may assume that \(S = S_{8,14}^4 \). Observe that for \(t \in GF(16) \setminus GF(2) \)

\[
\langle X(0), X(1) \rangle \cap X(t) = \{(x, x^7t + xt^6) \mid \text{Tr}(x^7t + xt^6) = 0\},
\]

where \(\text{Tr} \) denotes the trace function for \(GF(16)/GF(2) \). As \(\text{Tr}(x^7t + xt^6) = \text{Tr}(x^7t + t^6) \), the member \(X(t) \) is contained in \(\langle X(0), X(1) \rangle \) if and only if \(t + t^6 = t + t^{-2} = 0 \), namely \(t \in GF(4)^{\times} \). In particular, \(\langle X(0), X(1) \rangle \cap X(t) \) is
of dimension 4 or 3 according as \(t \in GF(4)\times \) or not. However, as \(A \cong GL_4(2) \) is doubly transitive on \(S \setminus \{X(0)\} \), the stabilizer of \(X(1) \) in \(A \) is transitive on \(S \setminus \{X(0), X(1)\} \), whence the dimension of \(\langle X(0), X(1) \rangle \cap X(t) \) does not depend on the choice of \(t \in GF(16) \setminus GF(2) \). This contradiction shows that Case (a) does not occur.

Assume that Case (b) occurs. As \(d \geq 3 \), we have \(k \geq 2 \). Let \(L \) be a normal subgroup of \(A \) isomorphic to \(GL_2(2^k) \). Then \(M \leq L \) and \(L = Z \times S \), where \(S \cong SL_2(2^k) \) and \(Z = Z(L) \cong Z_{2^k-1} \). Let \(\eta \) be a generator of \(GF(q)^\times \). Then \(\zeta := \eta^{2^k+1} \) is a generator of \(GF(2^k)^\times \) and \(m_\zeta \) is a generator of \(Z \). In particular, \(\zeta \leq M \). Moreover, \(M = Z \times (M \cap S) \), as \(|Z| = 2^k - 1 \) is coprime with \(|M : Z| = 2^k + 1 \).

A Singer cycle \(M \) in \(GL(GF(q)) \cong GL_{d+1}(2) \) is self-centralizing. In particular, \(C_A(M) \leq C_A(L) = M = Z \times (M \cap S) \). As \(S \) is simple and so \(C_{M \cap S}(S) = 1 \), we have \(C_A(L) = Z \). Then \(Z \leq C_A(S) \leq C_A(L) = Z \), whence \(C_A(S) = Z \). Now \(A \) normalizes \(S \cong Inn(S) \), and hence \(A/SC_A(S) \) is isomorphic to a subgroup of \(\text{Out}(S) \), which is known to be the group of field automorphisms induced by \(\text{Gal}(GF(2^k)/GF(2)) \). Each element \(f_0 \) of \(F \) induces an automorphism on \(GF(2^k) \). It induces a \(GF(2^k)^\times \)-linear map on \(GF(q) \) if and only if \(\theta \) fixes every element of \(GF(2^k) \), whence \(\theta \in \langle \sigma^k \rangle \). Thus \(F \cap L = \langle f_{\sigma} \rangle \) of order 2, which lies in \(S \), as \(|L : S| = 2^k - 1 \) is odd. Then \(F \cap L = F \cap S = \langle u \rangle \) with \(u = (f_{\sigma})^k \) and \(F/(F \cap S) \) is isomorphic to \(\text{Out}(S) \). Thus \(A/SC_A(S) \cong \text{Out}(S) \cong F/(F \cap S) \), whence \(A = (C_A(S) \times S)F = (Z \times S)F \). \(\square \)

Step 3. \(A \) acts on \(X(\infty) := \{(0, y) \mid y \in GF(q)\} \).

Proof. This is clear if \(A = MF \), as both \(M \) and \(F \) act on \(X(\infty) \) in view of Equations (3) and (4). Thus we may assume that Case (2) occurs in Step 2. We use the notation there.

We first examine the \(Z \)-orbits on \(V^\times := V \setminus \{0\} \). Regard \(GF(q) \) as a 2-dimensional space over \(GF(2^k) \) and let \(\zeta_i \) \((i = 0, \ldots, 2^k)\) be elements of \(GF(q)^\times \) no two of which lie in the same 1-dimensional subspace over \(GF(2^k) \) of \(GF(q) \). For each \(\zeta_i \) \((i = 0, \ldots, 2^k)\) and \(c \in GF(q)^\times \), set

\[
Z(\zeta_i, c) := \{(\zeta_i x, ex^{(\sigma^i-1)/(\phi-1)}) \mid x \in GF(2^k)^\times \}.
\]

As \(Z = \langle m_\zeta \rangle \), each \(Z(\zeta_i, c) \) is a \(Z \)-orbit of length \(2^k - 1 \) from Equation (3). Moreover, it is easy to see that \(X(0)^\times \) is a disjoint union of \(Z(\zeta_i, 0) \) for \(i = 0, \ldots, 2^k \) and that \(V \setminus (X(0) \cup X(\infty)) \) is a disjoint union of \(Z(\zeta_i, c) \) for \(i = 0, \ldots, 2^k \) and \(c \in GF(q)^\times \). On the other hand, each \(Z \)-orbit in \(X(\infty)^\times \) is of the form

\[
Z(c) := \{(0, cy^{(\sigma^i-1)/(\phi-1)}) \mid y \in GF(2^k)^\times \}
\]
for some \(c \in GF(q)^\times \) by Equation (3). In particular, each \(Z \)-orbit in \(X(\infty)^\times \) is of length \(l \), where \(l := \# \{ y^{(\sigma \phi - 1)/(\phi - 1)} \mid y \in GF(2^k)^\times \} \).

Suppose \(l < 2^k - 1 \). Then every \(Z \)-orbit in \(X(\infty)^\times \) has length \(l \), which is different from the length \(2^k - 1 \) of each \(Z \)-orbit in \(V \setminus X(\infty) \). As \(Z \) is normal in \(A \), every element of \(A \) permutes the \(Z \)-orbits in \(V^\times \). Thus \(A \) acts on the union of \(Z \)-orbits of length \(l \), which is \(X(\infty)^\times \). Hence in this case \(A \) acts on \(X(\infty) \).

Thus we may assume that \(l = 2^k - 1 \), that is, the restriction of a map \((\sigma \phi - 1)/(\phi - 1) \) on \(GF(2^k) \) is a (multiplicative) bijection. We denote its inverse map by \((\phi - 1)/(\sigma \phi - 1)\).

Now take any involution \(v \) of \(S \). As \(v \) stabilizes \(X(0) \), there exist \(GF(2) \)-linear maps \(a, c, d \) on \(GF(q) \) such that

\[
(x, y)^v = (x^a + y^c, y^d)
\]

for every \(x, y \in GF(q) \). As \(v \) centralizes \(Z = \{ m_b \mid b \in GF(2^k)^\times \} \), Equations (3) and (10) show that \((x, y)^{mav} = ((bx)^a + (b(\sigma \phi - 1)/(\phi - 1)y^c, (b(\sigma \phi - 1)/(\phi - 1)y^d) \) coincides with \((x, y)^{mav} = (b^x a + b^y c, (b(\sigma \phi - 1)/(\phi - 1)y^d) \) for all \(b \in GF(2^k)^\times \) and \(x, y \in GF(q) \). In particular, we have \(b \cdot y^c = (b(\sigma \phi - 1)/(\phi - 1)y^c \), or equivalently

\[
(by)^c = (b(\sigma \phi - 1)/(\phi - 1)) \cdot y^c
\]

for all \(y \in GF(q) \) and \(b \in GF(2^k)^\times \). From Equation (11) and the linearity of \(c \), we have \((b_1 + b_2)(\phi - 1)/(\sigma \phi - 1) \cdot y^c = ((b_1 + b_2)y^c = (b_1y)^c + (b_2y)^c \), which is equal to \(b_1(\phi - 1)/(\sigma \phi - 1) \cdot y^c + b_2(\phi - 1)/(\sigma \phi - 1) \cdot y^c \). Thus

\[
((b_1 + b_2)(\phi - 1)/(\sigma \phi - 1) + b_1(\phi - 1)/(\sigma \phi - 1) + b_2(\phi - 1)/(\sigma \phi - 1)) \cdot y^c = 0
\]

for all \(b_1 \neq b_2 \in GF(2^k)^\times \) and \(y \in GF(q) \). If there exists \(y \in GF(q) \) with \(y^c \neq 0 \), then we have

\[
(b_1 + b_2)(\phi - 1)/(\sigma \phi - 1) = b_1(\phi - 1)/(\sigma \phi - 1) + b_2(\phi - 1)/(\sigma \phi - 1)
\]

for all \(b_1 \neq b_2 \in GF(2^k)^\times \). Thus the map \((\phi - 1)/(\sigma \phi - 1) \) on \(GF(2^k) \) is \(GF(2) \)-linear. Then its inverse map, which is \((\sigma \phi - 1)/(\phi - 1) \) restricted to \(GF(2^k) \), is both multiplicative and additive on \(GF(2^k) \). Thus it coincides with an automorphism \(\tau \) in \(\text{Gal}(GF(2^k)/GF(2)) \). However, this is impossible by Lemma 2.3, as \(k \geq 2 \). Hence we have \(y^c = 0 \) for all \(y \in GF(q) \). This shows that the involution \(v \) acts on \(X(\infty) \).

As \(S \cong SL_2(2^k) \) is generated by involutions, the above conclusion implies that \(A = (Z \times S)F \) also acts on \(X(\infty) \).

\[\square\]

\textbf{Step 4. Case (2) in Step 2 does not occur.}
Proof. By Step 3, \(X(0) \) and \(X(\infty) \) are \(A \)-invariant subspaces of \(V \). As \(V = X(0) \oplus X(\infty) \), for each \(g \in A \) there are \(GF(2) \)-linear maps \(\overline{f} \) and \(\tilde{g} \) on \(GF(q) \) such that

\[
(x, y)^g = ((x)\overline{f}, (y)\tilde{g})
\]

for all \(x, y \in GF(q) \). On the other hand, \(g \) induces a permutation on \(S \). We denote \(X(t)^g = X(t\tilde{g}) \) for each \(t \in GF(q) \). As \(X(0) \cap X(t) = [(t^\varepsilon, 0)] \) with \(\varepsilon := (\phi-1)/\sigma-1 \), applying \(g \) to this equation we have \(X(0) \cap X(t\tilde{g}) = [(t^\varepsilon)\overline{f}, 0] \), whence \((t\tilde{g})^\varepsilon = (t^\varepsilon)\overline{f} \). Thus we obtain the following relation for all \(t \in GF(q)^\times \):

\[
(t)\tilde{g} = (((t^\varepsilon)\overline{f})^1/\varepsilon.
\]

Each vector \((x, x^\sigma t^{1/\varepsilon} + xt^{\phi/\varepsilon}) \) of \(X(t^{1/\varepsilon}) \) is mapped by \(g \) to the vector \((x\overline{f}, x^\sigma t^{1/\varepsilon} + xt^{\phi/\varepsilon})\tilde{g} \), which lies in \(X((t^{1/\varepsilon})\tilde{g}) = X((t\overline{f})^{1/\varepsilon}) \). Thus for all \(t, x \in GF(q)^\times \) we have

\[
(x^\sigma t^{1/\varepsilon} + xt^{\phi/\varepsilon})\tilde{g} = (x\overline{f})^\sigma ((t\overline{f})^{1/\varepsilon}) + (x\overline{f})(t\overline{f})^{\phi/\varepsilon}.
\]

We now choose any element \(\rho \) from \(GF(q) \setminus GF(2^k) \). Then \((1, \rho) \) forms a basis for a 2-dimensional vector space \(GF(q) \) over \(GF(2^k) \). Consider a \(GF(2^k) \)-linear map \(l(\rho) \) on \(GF(q) \) determined by \(1 \mapsto 1 \) and \(\rho \mapsto 1 + \rho \). Then \(l(\rho) \) is a \(GF(2^k) \)-linear involution on \(GF(q) \) with determinant 1. We denote by \(SL(GF(q)) \) the group of \(GF(2^k) \)-linear bijections on \(GF(q) \) with determinant 1. For every \(a \in GF(2^k)^\times \), the involution \(l(a^{-1}\rho) \) is represented as \(\begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix} \) with respect to a basis \((1, \rho) \) over \(GF(2^k) \) for \(GF(q) \). Thus \(\{ l(a^{-1}\rho) \mid a \in GF(2^k)^\times \} \) generates a Sylow 2-subgroup of \(SL(GF(q)) \cong SL_2(2^k) \).

Now \(S \cong SL_2(2^k) \leq A \) acts faithfully on \(X(0) \), as every nonzero vector of \(X(0) \) is expressed as \((X(0) \cap X(t))^\times \) for some \(t \in GF(q)^\times \). Thus, identifying \(X(0) \) with \(GF(q) \) via \((x, 0) \mapsto x \), the map \(g \mapsto \overline{f} \) gives an isomorphism of \(S \) with \(SL(GF(q)) \). Then the vectors of \(X(0) \) fixed by an involution of \(S \) forms a \(k \)-dimensional subspace of \(X(0) \) over \(GF(2) \). Furthermore, for every \(\rho \in GF(q) \setminus GF(2^k) \), there exists a unique involution \(g = g(\rho) \) of \(S \) such that \(\overline{f} = l(\rho) \). From the definition of \(l(\rho) \), the subspace \(\{ (x, 0) \mid x \in GF(2^k) \} \) of \(X(0) \) coincides with the subspace of vectors of \(X(0) \) fixed by every \(g(\alpha \rho) \) (\(\alpha \in GF(2^k)^\times \)).

The group \(S \) acts on \(X(\infty) \) as well by Step 3. As the involution \(\nu \) in \(F \cap S \) (see Step 2) induces on \(X(\infty) \) the action \((0, y) \mapsto (0, y^2) \) by Equation (4), the action of \(S \) is not trivial. As \(k \geq 2 \), \(S \) is simple, and hence the action of \(S \) on \(X(\infty) \) is faithful as well. Identifying \(X(\infty) \) with \(GF(q) \) via \((0, x) \mapsto x \), the map \(g \mapsto \tilde{g} \) gives an isomorphism from \(S \) to \(SL(GF(q)) \). In particular, there is a \(k \)-dimensional subspace \(K \) of \(X(\infty) \) consisting of vectors fixed by \(g(\alpha \rho) \) for all \(\alpha \in GF(2^k)^\times \). As \(l(\alpha \rho) \) fixes each element of \(GF(2^k) \) and \(\varepsilon \) preserves \(GF(2^k) \), it
follows from Equation (14) that vectors $(0, x^t t^{1/ε} + xt^{0/ε})$ for all $x, t \in GF(2^k)$ lie in K. Note that, if $σφ$ is not the identity on $GF(2^k)$, these vectors span $GF(2^k)$ by the arguments in [5, Lemma 2], whence $K = \{(0, y) \mid GF(2^k)\}$.

We now claim:

$σφ$ is not the identity map on $GF(q)$.

For otherwise, $η^{(σφ^{-1})(φ^{-1})} = 1$ for a generator $η$ of $GF(q)\times$, whence a generator $m_η^{t^{-1}}$ of a Singer cycle $M \cap S$ in S acts trivially on $X(∞)$ from Equation (3). This contradicts the faithfulness of S on $X(∞)$.

Next we claim:

if $σφ$ is not the identity map on $GF(2^k)$, then we have a contradiction.

To show the claim, take any $ρ \in GF(q) \setminus GF(2^k)$ and choose an involution $g ∈ S$ with $ℓ = l(ρ)$. By Equation (14), applying to this $g, x = ρ$ and $t = 1$, we have

$$(ρ^2 + ρ)g = (1 + ρ)^{σ} + (1 + ρ) = ρ^σ + ρ.$$

Thus for every $ρ \in GF(q) \setminus GF(2^k)$, the vector $(0, ρ^σ)$ lies in $K = \{(0, y) \mid y \in GF(2^k)\}$ by the remark above. As $x + x^σ = y + y^σ (x, y \in GF(q))$ occurs exactly when $x + y = (x + y)^σ \in GF(2)$, there are $(q - 2^k)/2 = 2^{k-1} - (2^k - 1)$ elements in the form $ρ + ρ^σ$ for some $ρ \in GF(q) \setminus GF(2^k)$. Hence we have $2^{k-1} - 2^{k-1} ≤ 2^k$, from which $2^k ≤ 2 + 1 = 3$ or equivalently $k = 1$. However, this contradicts that $k ≥ 2$.

Finally we claim:

if $σφ$ is the identity map on $GF(2^k)$, we have a contradiction as well.

In this case, the vectors $(0, x^t t^{1/ε} + xt^{0/ε})$ for all $x, t \in GF(2^k)$ span a hyperplane $H := \{(0, y) \mid y \in GF(2^k), Tr_{GF(2^k)/GF(2)}(y) = 0\}$ of the subspace $\{(0, y) \mid y \in GF(2^k)\}$. The corresponding hyperplane of $GF(2^k)$ is denoted H': $H' := \{y \in GF(2^k) \mid Tr_{GF(2^k)/GF(2)}(y) = 0\}$.

Take any $ρ \in GF(q) \setminus GF(2^k)$. We claim that there are at least $2^{k-1} - 1$ elements $a \in GF(2^k)^\times$ such that $(aρ) + (aρ)^σ \in H'$. If $(aρ) + (aρ)^σ \in H'$ for all $a \in GF(2^k)$, this clearly holds. Thus we may assume that $ρ + ρ^σ \notin H'$, replacing $ρ$ by its suitable multiple by an element of $GF(2^k)^\times$. The subspace of $X(∞)$ fixed by $g(ρ)$ is $\{(0, y) \mid y \in K'\}$, where K' denotes the k-dimensional subspace of $GF(q)$ over $GF(2)$ spanned by $ρ + ρ^σ$ and all $y \in H'$. As we observed before, every vector of $\{(0, y) \mid y \in K'\}$ is fixed by $g(aρ)$ for all $a \in GF(2^k)^\times$. If we replace $ρ$ by $aρ$ at the calculation of $ρ + ρ^σ$ in the proof of the last claim, we conclude that $(0, (aρ) + (aρ)^σ)$ is fixed by $g(aρ)$. Hence

$$(aρ) + (aρ)^σ \in K'$$
for all \(a \in GF(2^k)^\times \). Then we can define a map \(\kappa \) from \(GF(2^k) \) to \(K' \) by
\[
\kappa(a) := (ap) + (ap)^\sigma.
\]
This is a \(GF(2) \)-linear map. It is injective, because \(\kappa(a) = 0 \) implies that \(ap = (ap)^\sigma \in GF(2) \) but \(ap \in GF(q) - GF(2^k) \) unless \(a = 0 \). Then \(\kappa \) is an isomorphism from \(GF(2^k) \) with \(K' \). In particular, there are exactly \(2^{k-1} - 1 \) elements \(a \in GF(2^k)^\times \) with \((ap) + (ap)^\sigma \in H' \).

Let \(\rho_1, \ldots, \rho_m \) \((m = 2^k) \) be a set of representatives for projective points of a projective line \(PG(GF(q)) \), distinct from the projective point \([1] = GF(2^k) \), where we regard \(GF(q) \) as a 2-dimensional vector space over \(GF(2^k) \). The above paragraph shows that for each \(\rho_i \) \((i = 1, \ldots, m) \), there are at least \(2^{k-1} - 1 \) elements \(a \in GF(2^k)^\times \) such that \((ap_i) + (ap_i)^\sigma \in H' \). Remark that \((ap_i) + (ap_i)^\sigma \) lies in \(H' \) implies that it lies in \((H')^\times \), as \((ap_i) = (ap_i)^\sigma \in GF(2) \) would imply that \(\rho_i \in GF(2^k) \).

Thus the number of nonzero vectors \(x \in GF(q) \setminus GF(2^k) \) satisfying \(x + x^\sigma \in (H')^\times \) is at least \((2^{k-1} - 1)2^k \). As \(x + x^\sigma = y + y^\sigma \) if and only if \(x + y \in GF(2) \), we conclude that
\[
2^k(2^{k-1} - 1)/2 \leq |(H')^\times| = 2^{k-1} - 1.
\]
Then \(k \leq 1 \), which is a contradiction. □

Remark 3.1. Up to the above step, we do not use the assumption that \(\phi \) does not lie in \(Gal(GF(q)/GF(2)) \). Thus the conclusion in Step 4 also holds in the case when \(\phi = \tau \) is a generator of \(Gal(GF(q)/GF(2)) \). This corresponds to [5, Lemma 6].

Note that the proof given there is incorrect, as it confuses the trace function for \(GF(q)/GF(2) \) with that for \(GF(2^k)/GF(2) \). Thus Step 2, Step 3, Step 4 provide a correction to the proof of [5, Lemma 6].

We have determined the structure of \(A \) as \(A = MF \). Now suppose that \(G = \text{Aut}(S) \) contains an automorphism which sends \(X(0) \) to a member of \(S \setminus \{X(0)\} \). Then \(G \) is doubly transitive on \(S \), as \(M \) is transitive on \(S \setminus \{X(0)\} \).

Step 5. There is a normal subgroup \(N \) of \(G \) which acts regularly on \(S \). In particular, \(N \) is an elementary abelian 2-group of order \(q = 2^{d+1} \).

Proof. From Step 2, the one point stabilizer \(A \) of a doubly transitive group \(G \) has a normal subgroup \(M \) acting regularly on the remaining members. By a classical result [2] by Hering, Kantor and Seitz, such doubly transitive groups are classified. Thus \(G \) has a normal subgroup \(N \) which either acts regularly on \(S \) or is isomorphic to one of the following simple groups. In each case, the permutation representation of \(G \) on \(S \) is equivalent to its action via conjugation on the set of Sylow \(p \)-subgroups of \(N \), where \(p \) is a prime dividing \(r \):
Thus \(|S| = r + 1, r^2 + 1, r^3 + 1\), according as \(N \cong PSL_2(r), Sz(r), PSU_3(r)\) or a group of Ree type. As \(|S| = 2d+1\), \(N\) is not \(Sz(r)\). If \(N \cong PSU_3(r)\) or a group of Ree type, then \(|S| = 2^d+1 = r^3+1 = (r+1)(r^2-r+1)\), whence both \(r+1\) and \(r^2-r+1\) are power of 2 larger than 1. However, \((r+1, r^2-r+1) = 1\) or 3, which is a contradiction. If \(N \cong PSL_2(r)\) with \(r+1 = 2^d+1\), the two point stabilizer is a cyclic group of order \((r+1)/2\). As the two point stabilizer in \(G\) is a cyclic group of order \(d+1\), we conclude that \((2^d+1) - 2 = 2^d - 1\) divides \(d+1\), which occurs only when \(d = 1\) or \(d = 2\). This contradicts our assumption that \(d \geq 3\).

Thus \(G\) has a regular normal subgroup \(N\). Then \(N\) is an elementary abelian 2-subgroup of order \(2^{d+1}\) by a standard argument.

As \(N\) is a regular normal subgroup on \(S\), the action of \(A\) on \(S \setminus \{X(0)\}\) is equivalent to the action of \(A\) via conjugation on \(N \setminus \{1\}\). In particular, the group \(M\) acts regularly on \(N \setminus \{1\}\) under conjugation. Thus the dimensions of \([V, \tau'] := \{v + v\tau' \mid v \in V\}\) for involutions \(\tau'\) of \(N\) do not depend on the choice of \(\tau'\). We next observe the action of \(N\) on \(V\), specifically the commutator subspace \([V, N] := \{v + v\tau' \mid \tau' \in N\}\). As \(N\) is normalized by \(G\), the subspace \([V, N]\) is invariant under the action of \(G\). By standard arguments for 2-groups, \([V, N]\) is a proper subspace of \(V\).

Step 6. We have \([V, N] = X(\infty)\). In particular, \(X(\infty)\) is \(G\)-invariant.

Proof. For short, we set \(W = [V, N]\) for a while. (The arguments in the few paragraphs below work for any \(G\)-invariant proper subspace \(W\) of \(V\). This fact will be used in Step 1 of the proof of Theorem 1.2.)

Assume that \(W\) contains a point of form \(X(a) \cap X(b)\) for some \(a \neq b \in GF(q)\). As \(G\) is doubly transitive on \(S = \{X(t) \mid t \in GF(q)\}\) and \(W\) is \(G\)-invariant, this implies that \(W\) contains \(X(a) = \{X(a) \cap X(b) \mid b \in GF(q) \setminus \{a\}\}\) for all \(a \in GF(q)\), whence \(W = \{X(a) \mid a \in GF(q)\} = V\), a contradiction. Thus \(W\) does not contain a point of form \(X(a) \cap X(b)\) for any \(a \neq b \in GF(q)\), or equivalently \(W \cap X(a) \neq \{(0, 0)\}\) for all \(a \in GF(q)\).

Assume now that \(W\) contains two vectors \((x, y)\) and \((x', y)\) for some \(x \neq x'\) and \(y \in GF(q)\). Then \(W\) contains \((x-x', 0) = (x, y) - (x', y)\), which is a nonzero vector of \(X(0)\). This contradicts the above conclusion. Thus for each \(y \in GF(q)\), there is at most one element \(x \in GF(q)\) such that \((x, y) \in W\). Hence \(|W| \leq q = 2^{d+1}\).

Now assume that \(W\) is not contained in \(X(\infty)\). Then there is a vector \((x, y)\) in \(W\) with \(x \neq 0\). As \(W\) is invariant under \(M\), it follows from the action of \(m_0\) (see
Equation (3)) that \(W \) contains a vector of form \((x', y')\) for every \(x' \in GF(q)\). Thus \(|W| \geq q\).

Together with the above conclusions, we have either \(W \leq X(\infty) \) or \(\dim W = d+1 \). Assume that \(W \) is not contained in \(X(\infty) \). Then, as \(M \) acts on \(W \), it follows from Equation (3) that \(W = Y(c) := \{ (x, cx^{(\phi \sigma - 1)/(\phi - 1)} / x \in GF(q) \} \) for some \(c \in GF(q)^\times \) (compare the arguments in [5, Lemma 10] with \(\tau \) replaced by \(\phi \)). However, then the map \((\sigma \phi - 1)/(\phi - 1)\) is additive on \(GF(q)^\times \), as \(Y(c) \) is a subspace. This contradicts Lemma 2.3. Thus we have \(W \subseteq X(\infty) \).

Up to here, arguments can be applied to any \(G \)-invariant proper subspace \(W \) of \(V \). Now we specialize to \([V, N]\).

As \(N \) acts regularly on \(S \), there is a unique involution \(\tau(t) \) of \(N \) exchanging \(X(0) \) and \(X(t) \) for each \(t \in GF(q)^\times \). Then \((x, 0) + (x, 0)^{\tau(t)} \in [X(0), \tau(t)] \leq [V, N] \). Notice here that \([V, N] = W \leq X(\infty) = \{ (0, y) \mid y \in GF(q) \}\) by the conclusion in the previous paragraph. Thus \((x, 0)^{\tau(t)} = (x, y)\) for some \(y \in GF(q) \). As \((x, 0)^{\tau(t)} \in X(0)^{\tau(t)} = X(t)\), we have \(y = x^\sigma t + xt^\phi \). Hence
\[
[X(0), \tau(t)] = \{ (0, x^\sigma t + xt^\phi) \mid x \in GF(q) \}.
\]

(15)

The map \(X(0) \ni (x, 0) = v \mapsto v + v^{\tau(t)} \in [X(0), \tau(t)] \) is a \(GF(2) \)-linear surjection with kernel \(C_{X(0)}(\tau(t)) = X(0) \cap X(t) \) of dimension 1. Thus \([X(0), \tau(t)] \) is a subspace of \([V, N]\) of dimension \(d \). On the other hand, \([V, N]\) is contained in the \((d + 1)\)-dimensional subspace \(X(\infty) \) by the conclusion in the above paragraph. Thus we have either \(\dim[V, N] = d \) or \([V, N] = X(\infty) \). In the former case, we have \([V, N] = [X(0), \tau(t)] \) for all \(t \in G(q)^\times \). In particular, \([X(0), \tau(t)] = [X(0), \tau(1)] \). Then it follows from Equation (15) that for every \(x \in GF(q) \) and \(t \in GF(q)^\times \) we have \(x^\sigma t + xt^\phi = y^\sigma + y \) for some \(y \in GF(q) \). Thus \(\text{Tr}(x^\sigma t + xt^\phi) = 0 \) for all \(x \in GF(q) \) and \(t \in GF(q)^\times \), where \(\text{Tr} = \text{Tr}_{GF(q)/GF(2)} \). As \(\text{Tr}(x^\sigma t + xt^\phi) = \text{Tr}(x^\sigma(t + t^\phi)) \), this implies that \(t = t^\phi \) for all \(t \in GF(q)^\times \). Hence \(\phi = \sigma^{-1} \in \text{Gal}(GF(q)/GF(2)) \), which contradicts our hypothesis. Thus we have \([V, N] = X(\infty) \).

\textbf{Step 7.} We have a contradiction, if \(G \) contains an automorphism sending \(X(0) \) to a member distinct from \(X(0) \).

\textbf{Proof.} We denote by \(\tau \) the unique involution of \(N \) which sends \(X(0) \) to \(X(1) \). From regularity of the action of \(N \) on \(S \), such an element uniquely exists. As \(N \) is an elementary abelian 2-group, \(\tau \) is an involution and it exchanges \(X(0) \) and \(X(1) \).

We examine the action of \(\tau \) on \(V \). Since \(\tau \) is \(GF(2) \)-linear on \(V \) and stabilizes \(X(\infty) \) by Step 6, we can display the action of \(\tau \) as follows.
\[
(x, y)^\tau = (x^a, x^b + y^d),
\]
where a, b and d are $GF(2)$-linear maps from $GF(q)$ to itself. They can be determined as follows. We have $(x, y) + (x, y)^T \in [V, \tau] \leq [V, N] = X(\infty)$, whence $x = x^a$ for every $x \in GF(q)$, that is, $a = \text{id}$, the identity map on $GF(q)$. As $(x, 0)^T = (x, x^b) \in X(0)^T = X(1)$, we have $x^b = x^a + x$ for every $x \in GF(q)$. Thus $b = \sigma + \text{id}$. Then we have $(x, x^a + x)^T = (x, x^a + x + (x + x^a)^d)$, which is a vector of $X(1)^T = X(0)$. Hence from the linearity of d we have $x + x^d = x^a + x^a d$ for all $x \in GF(q)$. Now remark that τ commutes with a generator f_σ of F, because both τ and τf_σ are involutions of N which send $X(0)$ to $X(1)$, whence $\tau = \tau f_\sigma$. This implies that $x^d \sigma = x^a d$ for all $x \in GF(q)$ from Equation (16). Then we have $x + x^d = x^a + x^a d = (x + x^d)^\sigma$ for all $x \in GF(q)$. Hence $\varepsilon(x) := x + x^d \in GF(2)$ for all $x \in GF(2)$.

Summarizing, we have

$$(x, y)^T = (x, x^a + x + y + \varepsilon(y))$$

for all $x, y \in GF(q)$, where $\varepsilon(y)$ is an element of $GF(2)$ uniquely determined by y.

We write $X(t)^T = X(t)$ for $t \in GF(q)^\times$. From Equation (17), we have

$$(x, x^a t + xt^\phi)^T = (x, x^a + x + x^a t + xt^\phi + \varepsilon(x^a t + xt^\phi)),$$

which lies in $X(t)^T = X(\overline{t})$. Thus

$$x^a (t + t + 1) + x(\overline{t} + t^\phi + 1) = \varepsilon(x^a t + xt^\phi)$$

for all $t \in GF(q)^\times$ and $x \in GF(q)$. Putting $x = 1$, we have

$$t + t + t^\phi + \overline{t} + 1 = \varepsilon(t + t^\phi).$$

Substituting Equation (19) into Equation (18), we have

$$(1 + t + \overline{t})(x + x^a) = x\varepsilon(t + t^\phi) + \varepsilon(x^a t + xt^\phi).$$

Suppose $\varepsilon(t + t^\phi) = 1$ for some $t \in GF(q)^\times$. Then for every $x \in GF(q) \setminus GF(2)$, we have $x^a + x \neq 0$ and $1 + t + \overline{t} = (x + \varepsilon(x^a t + xt^\phi))/(x^a + x)$ from Equation (20). As this holds for every $x \in GF(q)$, we have

$$x + \varepsilon(x^a t + xt^\phi)$$

for all $x, y \in GF(q) \setminus GF(2)$. Write $\varepsilon(x^a + xt^\phi) = \varepsilon_x$ and $\varepsilon(y^a + yt^\phi) = \varepsilon_y$, elements of $GF(2)$. Then Equation (21) can be rewritten as

$$xy^a + yx^a = \varepsilon_x(y^a + y) + \varepsilon_y(x^a + x),$$

whence

$$\text{Tr}(xy^a + yx^a) = 0$$
for all $x, y \in GF(q) \setminus GF(2)$. Hence we have $0 = \text{Tr}(x^\sigma(y + y^{\sigma^2}))$ for all $x, y \in GF(q)$, from which we have $y = y^{\sigma^2}$ for all $y \in GF(q)$. However, this implies that $d + 1$, the order of a generator σ of $\text{Gal}(GF(q)/GF(2))$, is 2. This contradicts $d \geq 2$.

Hence we have $\varepsilon(t + t^\phi) = 0$ for all $t \in GF(q)$. Then it follows from Equation (20) that $(1 + t + \overline{t})(x + x^\sigma) = \varepsilon(x^\sigma t + xt^\phi)$ for all $x, t \in GF(q)$. Thus

$$1 + t + \overline{t} = \varepsilon_x/(x + x^\sigma)$$

for all $x \in GF(q) \setminus GF(2)$ with $\varepsilon_x = \varepsilon(x^\sigma t + xt^\phi) \in GF(2)$. Suppose $\varepsilon_x = 1$ for all $x \in GF(q) \setminus GF(2)$. As t and \overline{t} are independent of x, then we have $1/(x + x^\sigma) = 1/(y + y^\sigma)$ for every $x, y \in GF(q) \setminus GF(2)$. However, this is equivalent to the condition that $x + y = (x + y)^\sigma \in GF(2)$ for all $x, y \in GF(q)$, which contradicts $q = 2^{d+1} \geq 8$. Hence $\varepsilon_x = 0$ for some $x \in GF(q) \setminus GF(2)$. This implies that for all $t \in GF(q)^\times$ we have

$$\overline{t} = t + 1.$$

From Equation (19) and $\varepsilon(t + t^\phi) = 0$, then we have $1 + t^\phi = (1 + t)^\phi$ for all $t \in GF(q)^\times$. However, as ϕ is multiplicative, this shows that for $s, t \in GF(q)$ with $t \neq 0$ we have

$$(s + t)^\phi = s^\phi((s/t)^\phi + 1)^\phi = s^\phi((s/t)^\phi + 1) = s^\phi + t^\phi.$$

Thus ϕ is additive as well. Hence ϕ is a field automorphism on $GF(q)$, which contradicts our assumption that $\phi \notin \text{Gal}(GF(q)/GF(2))$.

By Step 7, the automorphism group G stabilizes $X(0)$. Hence $G = A = MF$, and Theorem 1.1 is proved.

4 Isomorphism

In this section, we prove Theorem 1.2.

We set $S := S^d_{\sigma,\phi}$ with $S' := S'^{d+1}_{\sigma',\phi'}$. To distinguish members of S from S', we denote members of S and S' as $X(t)$ and $X'(t)$ respectively. The normal subgroup of $\text{Aut}(S)$ acting regularly on $S \setminus \{X(0)\}$ (see Theorem 1.1) is denoted $M_{\sigma,\phi}$. The corresponding group for S' is denoted $M_{\sigma',\phi'}$. To distinguish elements m_b (see Definition 3) of $M_{\sigma,\phi}$ from the corresponding elements in $M_{\sigma',\phi'}$, we denote the latter by m'_b ($b \in GF(q)^\times$).

In view of Lemma 2.2, it suffices to show the ‘only if’ part of Theorem 1.2. In the case when $d = 2$, $S^1_{2,6}$ and $S^3_{4,6}$ are the only candidates for S and S'.
(see Step 1 in the previous section), and there is nothing to prove. Thus we may assume that \(d \geq 3 \). Let \(\tau \) be a \(GF(2) \)-linear bijection on \(V \) inducing an isomorphism of \(S \) with \(S' \).

Step 1. We may assume that \(\tau \) satisfies the following conditions.

\[
X(0)^\tau = X'(0), X(1)^\tau = X'(1), M_{\sigma, \phi}^\tau = M_{\sigma', \phi'} \text{ and } X(\infty)^\tau = X(\infty).
\]

Proof. As \(X(0) \) is the unique member of \(S \) fixed by \(\text{Aut}(S) \) by Theorem 1.1, it is sent by \(\tau \) to the unique member \(X'(0) \) of \(S' = S^\tau \) fixed by \(\text{Aut}(S') \). As \(d \geq 3 \), \(M_{\sigma, \phi}^\tau \) and \(M_{\sigma', \phi'} \) are normal subgroups of \(\text{Aut}(S') \cong Z_{q^{-1}} \cdot Z_{d+1} \) (see Theorem 1.1) acting regularly on \(S' \setminus \{X'(0)\} \). Thus \(M_{\sigma, \phi}^\tau = M_{\sigma', \phi'} \).

The subspace \(X(\infty)^\tau \) is a \((d+1)\)-dimensional subspace of \(V \) which is invariant under \(\text{Aut}(S)^\tau = \text{Aut}(S') \). Thus it follows from the first part of the proof for Step 6 (or [5, Lemma 10] together with Lemma 2.3) that \(X(\infty)^\tau = X(\infty) \). As \(M_{\sigma', \phi'} \) is transitive on \(S' \setminus \{X'(0)\} \), we may furthermore assume that \(X(1)^\tau = X'(1) \), replacing \(\tau \) by \(\tau m' \) for a suitable element \(m' \) of \(M_{\sigma', \phi'} \). \(\square \)

As \(\tau \) stabilizes both \(X(0) = X'(0) = \{(x, 0) \mid x \in GF(q)\} \) and \(X(\infty) = \{(0, y) \mid y \in GF(q)\} \), there exist \(GF(2) \)-linear bijections \(a \) and \(d \) on \(GF(q) \) such that

\[
(x, y)^\tau = (x^a, y^d)
\]

for all \(x, y \in GF(q) \).

Step 2. In Expression (22), we may assume that \(a = \text{id} \), the identity on \(GF(q) \).

Proof. As \(M_{\sigma, \phi}^\tau = M_{\sigma', \phi'} \), there is a positive integer \(i \) with \(m_i^\tau = (m_i')^\tau \), whence \(m_i^\tau = (m_i')^i \) for all \(b \in GF(q) \). Applying \(m_i \tau = \tau (m_i')^i \) to \((x, y) \), we have

\[
(bx)^a = b^i \cdot x^a
\]

\[
(b^j)^{\sigma(\phi-1)/\phi-1}) = (b^j)^{\sigma(\phi-1)/\phi-1}) \cdot y^d
\]

for all \(b \in GF(q)^\times, x, y \in GF(q) \). From Equation (23) and the linearity of \(a \), we have \((b_1 + b_2)^i = b_1^i + b_2^i \) for every \(b_1 \neq b_2 \in GF(q)^\times \). Hence the map \(GF(q) \ni x \mapsto x^i \in GF(q) \) is both additive and multiplicative, whence \(x^i = x^d \) for some \(\theta \in \text{Gal}(GF(q)/GF(2)) \). Then all the conditions in Step 1 are satisfied with \(\tau \) replaced by \(\tau' = \tau f_{\phi-1}' \), where \(f_{\phi-1}' \) denotes the field automorphism of \(\text{Aut}(S') \) corresponding to \(\phi^{-1} \). Moreover, we have \(m_i \tau' = \tau' m_i' \). Thus replacing \(\tau \) by \(\tau' \), we may assume that \((bx)^a = b \cdot x^a \) for all \(b, x \in GF(q) \). As \(X(0) \cap X(1) = [(1, 0)] \) is mapped by \(\tau \) to \(X'(0) \cap X'(1) = [(1, 0)] \) by Step 1, we have \(1^a = 1 \). Thus \(b^a = b \cdot 1^a = b \) for all \(b \in GF(q) \). Hence we conclude that \(a = \text{id} \), whence \(i = 1 \) in Equations (23),(24). \(\square \)
Step 3. There is a non-prime subfield F of $GF(q)$ such that in Expression (22) we have $d = \mu q$ for some $\mu \in \text{Gal}(GF(q)/GF(2))$ and an F-linear bijection g on $GF(q)$. Furthermore, $((\sigma \phi) - 1)/(\phi - 1))\mu \nu' = (\sigma' \phi' - 1)/(\phi' - 1)$ on $GF(q)^\times$ for every $\nu' \in \text{Gal}(GF(q)/F)$.

Proof. Let $I := \{b(\sigma \phi - 1)/(\phi - 1) \mid b \in GF(q)\}$ and $I' := \{b(\sigma' \phi' - 1)/(\phi' - 1) \mid b \in GF(q)\}$. From Equation (24), for $b \in GF(q)^\times$ we have $b(\sigma \phi - 1)/(\phi - 1) = 1$ if and only if $b(\sigma' \phi' - 1)/(\phi' - 1)$. Thus the endomorphisms $(\sigma \phi - 1)/(\phi - 1)$ and $(\sigma' \phi' - 1)/(\phi' - 1)$ of $GF(q)^\times$ have the same kernel. As I and I' are images of these endomorphisms, they are subgroups of a cyclic group $GF(q)^\times$ of the same order, whence $I = I'$.

Let F be the set of sums of elements of $I = I'$. As I is closed under multiplication, F is closed under both addition and multiplication. Thus F is a subfield of $GF(q)$. If F is $GF(2)$, then $I = \{1\}$, whence $x^{\sigma \phi - 1} = 1$ for all $x \in GF(q)^\times$. However, this implies that $\sigma \phi = \text{id}$ on $GF(q)$, which contradicts our assumption that ϕ is not contained in $\text{Gal}(GF(q)/GF(2))$. Thus F properly contains $GF(2)$.

Then it follows from Equation (24) (with $i = 1$ by Step 2) and the linearity of d that there exists an additive map μ on F such that

$$(fy)^d = f^\mu \cdot y^d$$

(25)

for all $f \in F$, $b \in GF(q)^\times$ and $y \in GF(q)$. From Equation (26), μ is multiplicative on I, whence μ is multiplicative on F, as every element of F is a sum of elements in I. Thus μ is an automorphism in $\text{Gal}(F/GF(2))$. We also denote by μ an automorphism in $\text{Gal}(GF(q)/GF(2))$ whose restriction on F is μ. Then it follows from Equation (25) that $(fy)^d \mu^{-1} = f(y^d \mu^{-1})$ for all $f \in F$ and $y \in GF(q)$. Hence $d \mu^{-1} = h$ is an F-linear bijection on $GF(q)$. Thus $d = h\mu = \mu g$, where $g := \mu^{-1} h\mu$ is an F-linear bijection.

As $b(\sigma \phi - 1)/(\phi - 1) \in F$ for all $b \in GF(q)^\times$, the last claim in Step follows from Equation (26).

Step 4. Let $F \cong GF(2^r)$ with $sr = d + 1$, and let ν be an automorphism of $GF(q)$ defined by $x^\nu = x^{x^2}$. There exists some i with $0 \leq i \leq r - 1$ such that one of the following occurs, where μ is the element of $\text{Gal}(GF(q)/GF(2))$ in Step 3.

(a) $\sigma = \sigma'$ and $\mu \nu^i = \text{id}$.
(b) $\sigma \sigma' = \text{id}$ and $\mu \nu^i = \sigma'$.

Proof. For $t \in GF(q)$, we write $X(t) = X'(t)$. As a vector $(x, x^\sigma t + xt^\phi)$ of $X(t)$ is mapped by τ to a vector $(x, (x^\sigma t + xt^\phi)^\nu)$ of $X'(t)$ by Step 2 and Step 3,
we have
\[(x^{\sigma^m} + x^m t^{\phi m})^q = x^{\sigma^r} + x(t)^{\phi r}\] (27)
for all \(x, t \in GF(q)\). Putting \(t = 1\), for all \(x \in GF(q)\) we have
\[(x^{\sigma^m} + x^m)^q = x^{\sigma^r} + x.\] (28)

Now there is a unique polynomial \(g(X)\) in \(GF(q)[X]\) of degree at most \(q - 1\) such that \(g(x) = x^q\) for all \(x \in GF(q)\). As \(g\) is \(F\)-linear for \(F = GF(2^n)\), we have
\[g(X) = \sum_{i=0}^{r-1} b_i X^{2^i}\]
for some \(b_i \in GF(q)\) \((i = 0, \ldots, r - 1)\). Recall that there are positive integers \(m, k\) with \(1 \leq m, k \leq d\) coprime with \(d + 1\) so that \(x^m = x^2i\) and \(x^k = x^{2^m}\) for all \(x \in GF(q)\). We also define \(a\) with \(0 \leq a \leq d\) by \(x^a = x^2i\) for all \(x \in GF(q)\). Then it follows from Equation (28) that
\[\sum_{i=0}^{r-1} b_i x^{2^m + ai + s i} + \sum_{i=0}^{r-1} b_i x^{2^m + si} = x^{2^k} + x\] (29)
for all \(x \in GF(q)\). Choose integers \(\alpha_i\) and \(\beta_i\) with \(0 \leq \alpha_i, \beta_i \leq q - 1\) so that
\[X^{\alpha_i} = X^{2^{m + ai + si}}, X^{\beta_i} = X^{2^{m + si}} \text{ modulo } X^q - X\]
\((i = 0, \ldots, r - 1)\). Then the left hand side of Equation (29) is given as \(L(x)\) \((x \in GF(q))\) for a polynomial \(L(X) := \sum_{i=0}^{r-1} b_i X^{\alpha_i} + \sum_{i=0}^{r-1} b_i X^{\beta_i}\) of degree at most \(q - 1\), while the right hand side is \(R(x)\) \((x \in GF(q))\) for \(R(X) = X^{2^k} + X\) of degree at most \(q - 1\). Thus Equation (29) implies that \(L(X) = R(X)\) as polynomials of \(GF(q)[X]\), that is,
\[\sum_{i=0}^{r-1} b_i X^{\alpha_i} + \sum_{i=0}^{r-1} b_i X^{\beta_i} = X^{2^k} + X.\] (30)

Now it is easy to verify that \(\alpha_i \neq \alpha_j\) and \(\beta_i \neq \beta_j\) if \(0 \leq i \neq j \leq r - 1\). If \(\alpha_i = \beta_j\) for some \(i, j\), then \(X^{2^{m + ai + si}} \equiv X^{2^{m + j}} \text{ modulo } X^q - X\). This implies that \(m \equiv (j - i)s\) \(\text{ modulo } d + 1\). However, \(s\) is a divisor of \(d + 1\) with \(s \geq 2\), as \(GF(2)\) is a proper subfield of \(F = GF(2^n)\) by Step 3. This contradicts that \(m\) is coprime with \(d + 1\). Hence \(\alpha_i \neq \beta_j\) for every \(0 \leq i, j \leq q - 1\).

Thus the monomials in the left hand side of Equation (30) are distinct from each other. As \(X^{\alpha_i}\) and \(X^{\beta_i}\) has the same coefficient \(b_i\), we conclude that there exists a unique \(i\) with \(0 \leq i \leq r - 1\) such that \(b_i = 1\), \(b_j = 0\) for every \(j \neq i\), and that either \(X^{\alpha_i} = X^{2^k}\) and \(X^{\beta_i} = X\) or \(X^{\alpha_i} = X\) and \(X^{\beta_i} = X^{2^k}\). Accordingly, we have Case (a) or Case (b) in the claim of this Step. \(\Box\)
Step 5. We have either $(\sigma, \phi) = (\sigma', \phi')$ or $\sigma \sigma' = \text{id} = \phi \phi'$.

Proof. Note that $\nu' := \nu^i$ in Step 4 lies in $\text{Gal}(GF(q)/F)$ as $F = GF(2^s)$. Then it follows from the last remark in Step 3 that we have

$$(\sigma \phi - 1) \mu \nu' (\phi' - 1) = (\sigma' \phi' - 1)(\phi - 1).$$

If Case (a) in Step 4 holds, then $(\sigma \phi - 1)(\phi' - 1) = (\sigma \phi' - 1)(\phi - 1)$, from which we have $(\sigma - 1)(\phi - \phi') = 0$. Thus $\phi = \phi'$ as $\sigma - 1$ is bijective. If Case (b) in Step 4 holds, then we have $(\sigma \phi - 1)\sigma'(\phi' - 1) = (\sigma' \phi' - 1)(\phi - 1)$. Multiplying both sides by σ and using $\sigma \sigma' = \text{id}$, we have $(\sigma \phi - 1)(\phi' - 1) = (\phi' - \sigma)(\phi - 1)$. It follows that $(\sigma - 1)(\phi \phi' - 1) = 0$, whence $\phi \phi' = \text{id}$ as $\sigma - 1$ is bijective. \qed

This completes the proof of the ‘only if’ part of Theorem 1.2. Thus Theorem 1.2 is established by Lemma 2.2.

5 Some general setting

In the definition of $S_{a,\phi}^{d+1}$, we only consider a generator σ of $\text{Gal}(GF(q)/GF(2))$. In fact, this is naturally required, as the following proposition shows.

Proposition 5.1. For any polynomials $a(X)$ and $b(X)$ in $GF(q)[X]$, we define $S_{a,b}^{d+1}$ to be the collection of $X(t)$ over $t \in GF(q)$, where

$$X(t) := \{(x, a(x)t + xb(t)) \mid x \in GF(q)\}.$$

Assume that $S_{a,b}^{d+1}$ is a d-dimensional dual hyperoval. Then there exist $\alpha, \beta \in GF(q)^\times$, $\gamma \in GF(q)$, a generator σ of $\text{Gal}(GF(q)/GF(2))$ and an α-polynomial $\phi(X)$ of $GF(q)[X]$ such that $a'(x) = \alpha x^\sigma$ and $b'(x) = \beta x^\phi + \gamma$ for all $x \in GF(q)$ and $S_{a,b}^{d+1} = S_{a',\phi'}^{d+1}$.

In particular, $S_{a,b}^{d+1}$ is isomorphic to $S_{a,\phi}^{d+1}$.

We first prepare a lemma.

Lemma 5.2. Let $c(X)$ be a polynomial of $GF(q)[X]$ such that

$$\frac{(c(t_1) + c(t_2))}{(t_1 + t_2)} \neq \frac{(c(t_1) + c(t_3))}{(t_1 + t_3)}$$

for every mutually distinct elements t_1, t_2, t_3 of $GF(q)$. Then there exist $\lambda \in GF(q)$ and an α-polynomial $f(X)$ such that for all $t \in GF(q)$ we have

$$c(t) = (c(0) + c(1) + \lambda)f(t) + \lambda t + c(0),$$

where λ is the unique value of $GF(q)$ which cannot be written as $(c(t_1) + c(t_2))/(t_1 + t_2)$ for any $t_1 \neq t_2 \in GF(q)$.

Proof. Recall that three points \([a_{i1}, a_{i2}, a_{i3}]\) \((i = 1, 2, 3)\) of \(PG(2,q)\) are not in a line in common if and only if \(\det(a_{ij}) \neq 0\). Thus no three distinct points of \(A := \{[1, t, c(t)] \mid t \in GF(q)\} \cup \{[0, 0, 1]\}\) are collinear from the hypothesis. Then \(A\) is uniquely extended to a hyperoval \(O\) of \(PG(2,q)\). As the nucleus does not lie on any line through two distinct points of \(A\), it is of form \([0, 1, \lambda]\), where \(\lambda\) is the unique value of \(GF(q)\) which cannot be written as \((c(t_1) + c(t_2))/(t_1 + t_2)\) for some \(t_1 \neq t_2 \in GF(q)\).

As \((1, 0, c(0)), (1, 1, c(1))\) and \((0, 1, \lambda)\) are linearly independent, there is a unique \(GF(q)\)-linear bijection \(F\) on \(GF(q)^3\) for which \(F(1, 0, 0) = (1, 0, c(0)), F(1, 1, 1) = (1, 1, c(1))\) and \(F(0, 1, 0) = (0, 1, \lambda)\). Then

\[
F(0, 0, 1) = (0, 0, c(0) + c(1) + \lambda),
\]

and the hyperoval \(F^{-1}(O)\) of \(PG(2,q)\) contains four points \([1, 0, 0], [1, 1, 1], [0, 0, 1]\) and \([0, 1, 0]\). Thus \(F^{-1}(O)\) has a canonical description \(\{(1, t, f(t)) \mid t \in GF(q)\} \cup \{[0, 0, 1], [0, 1, 0]\}\) with an o-polynomial \(f(X)\). As \(F(1, t, f(t)) = F(1, 0, 0) + tF(0, 1, 0) + f(t)F(0, 0, 1) = (1, t, (c(0) + c(1) + \lambda)f(t) + \lambda t + c(0))\) corresponds to a point of \(O\), we have \(c(t) = (c(0) + c(1) + \lambda)f(t) + \lambda t + c(0)\) for every \(t \in GF(q)\) □

Now we prove Proposition 5.1. As each \(X(t) = \{(x, a(x)t + xb(t)) \mid x \in GF(q)\}\) is a subspace over \(GF(2)\), \(a(X)\) is additive: \(a(x_1 + a_2) = a(x_1) + a(x_2)\) for all \(x_1, x_2 \in GF(q)\). Take any mutually distinct values \(t_i \ (i = 1, 2, 3)\) of \(GF(q)\). As \(S\) is a dimensional dual hyperoval, \(X(t_1) \cap X(t_2)\) contains a unique nonzero vector, but \(X(t_1) \cap X(t_2) \cap X(t_3) = \{(0, 0)\}\). This implies that \(a(x)/x = (b(t_1) + b(t_2))/(t_1 + t_2)\) has a unique solution \(x\) in \(GF(q)^\times\), while \((b(t_1) + b(t_2))/(t_1 + t_2) \neq (b(t_1) + b(t_3))/(t_1 + t_3)\). In particular, \(b(X)\) satisfies the hypothesis of Lemma 5.2, and the map \(t \mapsto (bt_1 + b(t))/(t_1 + t)\) is a bijection of \(GF(q) \setminus \{t_1\}\) with \(GF(q) \setminus \{\lambda\}\). Thus the map \(x \mapsto a(x)/x\) gives a bijection of \(GF(q)^\times\) with \(GF(q) \setminus \{\lambda\}\). Then

\[
a(x_1) + a(x_2) = a(x_1 + x_2) \neq a(x_1 + x_3) = a(x_1) + a(x_3)
\]

for all triple of distinct elements \(x_i \ (i = 1, 2, 3)\) of \(GF(q)\). Hence the polynomial \(a(X)\) also satisfies the hypothesis of Lemma 5.2. Then there exist \(\lambda, \lambda' \in GF(q)\) and o-polynomials \(\pi\) and \(\phi\) in \(GF(q)[X]\) such that \(a(t) = (a(0) + a(1) + \lambda)\pi(t) + \lambda t + a(0)\) and \(b(t) = (b(0) + b(1) + \lambda')\phi(t) + \lambda't + b(0)\) for all \(t \in GF(q)\).

Note that we have \(\lambda = \lambda'\), because the above argument also shows that the values \((a(x_1) + a(x_2))/(x_1 + x_2)\) for \(x_1 \neq x_2 \in GF(q)\) form a set \(GF(q) \setminus \{\lambda\}\). We set \(a := a(0) + a(1) + \lambda\) and \(b := b(0) + b(1) + \lambda\), which are nonzero elements of \(GF(q)\).
As \(a(X) \) is additive, \(a(0) = 0 \) and \(\pi(X) \) is an additive o-polynomial. Thus it follows from [3, Theorem 8.41] that \(\pi(X) = X^{2^n} \) for some generator \(\sigma \) of \(\text{Gal}(GF(q)/GF(2)) \). Then \(a(x) = \alpha x^\sigma + \lambda x \) for all \(x \in GF(q) \). However, as \(a(x)t + xb(t) = (\alpha x^\sigma + \lambda x)t + x(\beta t^\sigma + \lambda t + b(0)) = \alpha x^\sigma t + x(\beta t^\sigma + b(0)) \), we have \(a(x)t + xb(t) = a'(x)t + xb'(t) \), where \(a'(t) := \alpha x^\sigma \) and \(b'(t) := \beta t^\sigma + \gamma \) with \(\gamma := b(0) \). Thus \(X(t) \) in \(S_{a,b}^{d+1} \) is identical with \(X(t) \) in \(S_{a',b'}^{d+1} \).

Finally, define \(GF(2) \)-linear transformations \(G, H \) and \(I \) by \(G : (x, y) \mapsto (x, \gamma x + y), \) \(H : (x, y) \mapsto (\delta x, \delta^\sigma y) \) for \(\delta \in GF(q)^\times \) with \(\delta^{q-1} = \alpha/\beta \) and \(I : (x, y) \mapsto (x, \alpha^{-1}y) \). As \(X(t) = \{(x, \alpha x^\sigma t + x(\beta t^\sigma + \gamma)) \mid x \in GF(q) \} \), we can easily see that \(X(t)^{GHI} = \{(x, x^\sigma t + x t^\sigma \mid x \in GF(q) \} \). Thus \(S_{a,b}^{d+1} \)^{GHI} = \(S_{a',b'}^{d+1} \).

References

Hiroaki Taniguchi
TAKUMA NATIONAL COLLEGE OF TECHNOLOGY, 551 TAKUMA, KAGAWA 769-1192, JAPAN
e-mail: taniguchi@dg.takuma-ct.ac.jp

Satoshi Yoshiara
DEPARTMENT OF MATHEMATICS, TOKYO WOMAN’S CHRISTIAN UNIVERSITY, 2-6-1 ZEMPUKUJI, SUGINAMI-KU, TOKYO 167-8585, JAPAN
e-mail: yoshiara@lab.twcu.ac.jp