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On dimensional dual hyperovals ngq;l

Hiroaki Taniguchi Satoshi Yoshiara

Abstract

A d-dimensional dual hyperoval ng; inside PG(2d + 1,2) (d > 2) is
constructed in [5], for a generator o of Gal(GF(q)/GF(2)) and an o-poly-
nomial ¢(X) of GF(q)[X] (¢ = 2*T"). There, its automorphism group is
determined and a criterion is given for these dimensional dual hyperovals to
be isomorphic, assuming that the map ¢ on GF'(q) induced by ¢(X) lies in
Gal(GF(q)/GF(2)). In this paper, we extend these results for a monomial
o-polynomial ¢. We show that Aut(SZE") = GL3(2) or Z,—1.Z441 accord-
ingas d = 2 ord > 3, if ¢(X) is monomial but ¢ ¢ Gal(GF(q)/GF(2)).
In particular, a special member X (0) of Sffj; is always fixed by any au-
tomorphism of S7%'. Furthermore, S74' = SZ%, if and only if either

(0,9) = (c/,¢") or oo’ = ¢’ = id.

Keywords: dimensional dual hyperoval, o-polynomial

MSC 2000: 51,12,20

1. Introduction

A d-dimensional dual hyperoval with ambient space PG(n, q) is defined to be
a family S of ((¢?*t! — 1)/(q — 1)) + 1 d-subspaces of PG(n,q) enjoying the
following properties:

(1) any two distinct members of S intersect in a projective point.
(2) any three mutually distinct members of S intersect trivially.

(3) the members of S span PG(n,q).

For a generator o of Gal(GF(q)/GF(2)) and an o-polynomial ¢(X) over
GF(q) (¢ = 2%*1), one can construct a d-dimensional dual hyperoval 851;1
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inside PG(2d + 1,2) by [5, Lemma 1]. (See also Proposition 2.1). When the
permutation ¢ on GF'(q) induced by ¢(X) lies in Gal(GF(q)/GF(2)), its auto-
morphism group is determined [5, Proposition 7]. Furthermore, for o, o', ¢, ¢’
generating Gal(GF(q)/GF(2)), it is shown that S*! is isomorphic to S5}, if
and only if either (o,¢) = (0/,¢’) or o0’ = ¢¢' = id [5, Proposition 11]. In
this paper we extended these results to the case when ¢ and ¢’ are induced by
monomial o-polynomials. We always assume that d > 2.

Theorem 1.1. Let ¢ be a bijection on GF'(q) induced by a monomial o-polynomial
which is not contained in Gal(GF(q)/GF(2)). Then G = Aut(Sgi;l) stabilizes
X (0). We have G = GL3(2) ifd =2, while G = Z,_; : Z444 for d > 3.

Theorem 1.2. Let o and o’ be generators of Gal(GF(q)/GF(2)), and let $(X)
and ¢'(X) be monomial o-polynomials in GF(q)[X]| such that neither ¢ nor ¢ is
contained in Gal(GF(q)/GF(2)).

Then two dimensional dual hyperovals Sffj;l and nglb are isomorphic if and
only if either (o, $) = (0',¢') or 00’ = ¢¢’ = idgp(q).

Recall that two d-dimensional dual hyperovals S and S’ with common ambi-
ent space PG(V'), where V is a vector space over GF'(2), are called isomorphic
if there is a GF'(2)-linear map f of V' sending every member of S to a member
of §'.

Theorem 1.1 shows that Sg:;l is never isomorphic to Sfj”; if ¢ is contained
in Gal(GF(q)/GF(2)) but ¢ is not, because Aut(Sg:;l) fixes the special member

X(0), while Aut(SZ},) is doubly transitive on the members of S/, [5, Propo-
sition 7]. Thus Theorem 1.2 together with [5, Proposition 11] gives a criterion
for two dimensional dual hyperovals S¢ ' and S7,", to be isomorphic, if both

¢ and ¢’ are multiplicative o-polynomials.

The subsidiary aim of this paper is to supply a corrected proof for [5, Lemma
6]. The original proof does not work, as it confuses the trace function for
GF(q)/GF(2) with that for GF(2*)/GF(2). Step 3 and Step 4 of the proof
of Theorem 1.1 provide a proof for [5, Lemma 6], as they do not assume that
¢ ¢ Gal(GF(q)/GF(2)). When ¢ € Gal(GF(q)/GF(2)), we have an explicit
group 7 of translations [5, Section 4]. One can also establish Step 3 by showing
that 7" is normal in G, because then Cy (T') = X (00) is G-invariant.

Two new ideas are used to establish Theorem 1.1. One is to exploit a classical
result [2] on a group with a split BN-pair of rank one, namely a doubly tran-
sitive group in which one point stabilizer contains a normal subgroup acting
regularly on the remaining points. The other is to show the invariance of a cer-
tain subspace X (co) of the ambient space under some automorphism groups,
using Lemma 2.3.
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The proof of Theorem 1.2 is along the same line with the proof of [5, Propo-
sition 11]. However, we are required more careful treatment because GF'(q) is
not necessarily generated by b(?¢=1/(¢=1) (h € GF(q)*) (compare Step 3 with
the third paragraph of the proof of [5, proposition 11]). We exploit a polyno-
mial representation of a certain function to overcome this difficulty (see Step
4). Furthermore, Lemma 2.3 is used to simplify reduction arguments in Step 1.

The next section provides the definition of Sd+1 with the description of its
ambient space (Proposition 2.1). It also supphes the notation used throughout
the paper and Lemma 2.3. Sections 3 and 4 are respectively devoted to the
proofs of Theorems 1.1 and 1.2. In the last section, Proposition 5.1 is given
which explains why we require that o is a generator of Gal(GF'(q)/GF(2)) and
¢(X) is an o-polynomial in the definition of Sg:;l.

2. Preliminaries

Throughout this paper, let ¢ = 29! be a power of 2 with d > 2. Let o be an
automorphism of GF(q) over GF'(2) defined by

2% = x?" for some integer m € {1,...,d} with (m,d +1) = 1.

Then o is a generator of the Galois group for an extension GF(q)/GF(2),
whence the map

oc—1:GF(q)* 2z 27 /v € GF(q)*

is a bijection preserving each subfield of GF'(¢q). The inverse map of o — 1 is
denoted 1/(c — 1).

Choose an o-polynomial ¢(X) in GF(q)[X], namely, ¢(X) is a permutation
polynomial with ¢(0) = 0 and ¢(1) = 1, and the polynomial ¢, defined by
ds(X) = ((X+s)—¢(s))/X forevery s € GF(q) is a permutation polynomial.
If ¢ is a monomial polynomial, that is, ¢(X) = X% for some integer N in
{2,...,q— 2}, it is an o-polynomial if and only if the following three conditions
are satisfied:

(N,g—1)=(N—-1,¢—1) =1and ¢;(X) is a permutation polynomial.

We use the same letter ¢ to denote the bijection on GF(q) induced by ¢(X):
x? = ¢(z) for all z € GF(q). Then the map

¢—1:GF(q)* 3z z®/x € GF(q)*

is a bijection, because it is induced by the polynomial ¢y(X). The inverse map
of ¢ — 1 is denoted 1/(¢ — 1). Note that if ¢ is a monomial o-polynomial, then
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¢ — 1 is multiplicative, whence it induces an automorphism of a multiplicative
group GF(q)*. In particular, it preserves the order of each element of GF'(q)*,
whence it preserves each subfield of GF'(q).

Throughout this paper, we use Tr = Trgr(q)/ar(2) to denote the trace func-
tion for the field extension GF'(q)/GF(2). Furthermore, we regard

Vi=GF(q) @ GF(q) = {(z,y) | 2,y € GF(q)}

as a 2(d + 1)-dimensional vector space over GF'(2).

Proposition 2.1. Let o be a generator of Gal(GF(q)/GF(2)) with ¢ = 24+,
d > 2, and let ¢(X) be an o-polynomial ¢(X) of GF(q)|X]. For each t € GF(q),
define a subspace X (t) of V by

X(t) := {(x, 2t + 2t?) | x € GF(q)}.

Then the family ng;l ={X(t) | t € GF(q)} is a d-dimensional dual hyperoval
with ambient space PG(W') or PG(V), according as o¢ is the identity on GF(q)
or not, where W = {(xz,y) | Tr(y) = 0} is a hyperplane of V.

Proof Except the statement for the ambient space, Proposition was shown in
[5, Lemma 1]. This part is also verified in view of the following expression of
intersections of two members.

X(O) N X (@) = (140, 0)] = [(60()/ 7, 0)]. ®
b 1t s® 4 19 st + t%s
x(e) nx() = (e (CER e )L @

We will determine the subspace U := (X (t) |t € GF(q)) of V. For each
t € GF(q)*, we set A(t) := {a°t + xt® | x € GF(q)}. It is straightforward to
verify that A(t) = {x € GF(q) | Tr(t(=92)/(e=1z) = 0} for every t € GF(q)*.
Consider A := (A(t) | t € GF(q)), the subspace of GF'(q) consisting of sums of
elements in A(t)’s. As (X(0), X (t)) = {(z,y) | z € GF(q),y € A(t)}, we have
U={(z,y) | v € GF(q),y € A}. As A(1) = {x € GF(q) | Tr(x) =0} isa
hyperplane of GF'(q), we have either A = GF(q) or A = A(1). Accordingly we
have U =V orU =W.

Assume that U = W. Then A = A(1) = A(t) for all t € GF(q)*. Itis
well known that every hyperplane of GF'(q) is uniquely written as the kernel
of the GF(2)-linear form x — Tr(ax) for some a € GF(q)*. Thus we have
t(=¢9)/(e=1) — 1  or equivalently t*° =t for all t € GF(q)*. Thus ¢o = id on
GF(q). Conversely if ¢ = 01, we have A(t) = A(1) for all t € GF(q)*, whence
A=A(l)and U = W. O
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We sometimes denote Sff;l by SStt,, where m and N are integers such that

2% = 22" and 2% = 2V for all z € GF(q).

The ‘i’ part of Theorem 1.2 holds under mild restriction for o-polynomials ¢
and ¢'.

Lemma 2.2. Let o and o’ be generators of Gal(GF(q)/GF(2)), and let $(X ) and
¢'(X) be o-polynomials in GF(q)[X] with ¢,¢’ ¢ Gal(GF(q)/GF(2)). Assume
that o'¢ = ¢o’.

If either (0,¢) = (0/,¢') or oo’ = ¢¢' = idgr(y), then Sgi;l and Sg,f;, are
isomorphic.

Proof. If o = ¢’ and ¢ = ¢’, the dimensional dual hyperovals S := ng;l and
S = Sj?f;, are identical. If oo’ = id = ¢¢’, consider the GF'(2)-linear bijection
7 on V given by (z,y) — (z,y° ). Then a vector (z, 27t + xt?) of X (t) is sent
under 7 to a vector (z,zt% + 27 t%7). As o’'¢ = ¢o’, we have z(¢%7 )¢ =
z(t7'??") = xt°". Then (x,xt” + z° t%°") lies in a member X (t%°) of §%'!

G'/,d)/.
Thus 7 sends each X(¢) to X (¢%°"), whence it induces an isomorphism of S
with §’. O

Now we specialize the case when both ¢ and ¢’ are monomial o-polynomials.
We introduce important automorphisms m; and fy of Aut(ng;) defined for
be GF(q)* and 0 € Gal(GF(q)/GF(2)) :

my : (@,y) = (b, b7V 07Dy (3)
fo: (z.y) = (2% y°) (4)
Observe that for t € G(q), b € GF(q)*, 0 € Gal(GF(q)/GF(2)) we have

X ()™ = X(b(a—l)/w—l)t), (5)
X () = X (¢%). (6)

In the sequel, we set as follows:

S = ng;l, G := Aut(S) and A := the stabilizer of X (0) in G.
M :={mpy |be GF(q)*}and F :={fy | 0 € Gal(GF(q)/GF(2))}.

The group M is a cyclic group generated by m,, for a generator n of GF'(q)*,
because we have my,, = mym; from Equation (3). The group F' of ‘field’ auto-
morphisms, which is isomorphic to the cyclic group of order d + 1, normalizes
M.Wehave A> MF =7, 1: Zg;1.

As both ¢ and ¢ are induced by monomial polynomials, they induce automor-
phisms of the multiplicative group GF'(q)*. Moreover ¢—1 and 1/(¢—1) induce
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automorphisms of GF(q)*. Suppose b(®~1)/(¢=1) = 1 for some b € GF(q)*.
Then b /b = 1 and b = b. Thus b = 1, as o generates Gal(GF(q)/GF(2)).
Hence it follows from Equation (5) that the cyclic group M is a subgroup of A
acting regularly on the members of S\ {X(0)}.

Consider the following map
(0 —1)/(¢—1): GF(q)* 3 2 > 20?7V~ € GF(g)*. (7)

It is a multiplicative homomorphism of GF(¢)*. Thus it preserves every subfield
of GF(q). The map (c¢ — 1)/(¢ — 1) is not necessarily injective. However, it is
never additive, because of the following lemma applied to GF'(q) itself.

Lemma 2.3. Let o be a generator of Gal(GF(q)/GF(2)) and let (X ) be a mono-
mial o-polynomial in GF(q)[X]. Then for every non-prime subfield GF(2%) of
GF(q), the restriction of the map (c¢ — 1)/(¢ — 1) on GF(2%) does not coincide
with any automorphism in Gal(GF(2F)/GF(2)).

Proof. We denote the restriction of o and ¢ on GF(2F) by the same letters.
Then o is a generator of Gal(GF(2*)/GF(2)) and ¢ is induced by a monomial
o-polynomial in GF(2%)[X], written also as ¢(X). There exists an integer m
with 1 < m < k — 1 coprime with & such that 27 = 22" for all z € GF(2F). As
GF(2%) # GF(2), o is not the identity and o — 1 is bijective on GF(2¥). Then
(0 —1)/(¢ — 1) is not the identity on GF(2%), for otherwise we would have
(0 —1)¢ = 0, whence z? = 1 for every x € GF(q), as ¢ — 1 is bijective on
GF(2").

Suppose (0¢ — 1)/(¢ — 1) coincides with 7=! € Gal(GF(2¥)/GF(2)). By the
above remark, 7 # id, so that there exists an integer [ with 1 <[ < k — 1 such
that 27 = 22 forall z € GF(2%). In particular, 2 < m + 1 < 2(k — 1). From
(06— 1)/(6—1) = 1/,

(o1 —1)=¢ " (r—1). (8)

Take an integer N with 1 < N < 2¥—1such that ¢ = 2V forall z € GF(2F). As
¢ is bijective on GF(q)*, N is prime to 2¥ — 1, whence the inverse of N modulo
2% 1 exists. We denote it by N’. Namely N’ is an integer with 1 < N’ < 2F —1
such that NN’ = 1 (modulo 2* — 1). Then Equation (8) is rewritten as

2mH _1=N'(2" —1) (mod 2F —1). 9

Recall that ¢~ }(X) = XV " is also an o-polynomial (see e.g. [1, Result 8]). It
follows from Glynn’s criterion for monomial o-polynomials [1, Theorem A] that
for every d € {1,...,2% — 2}, we have d A (dN’ (mod 2% — 1)) with respect to
the following ordering < on {0, ...,2% — 1}.
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For integers a = > 11 a;2" and b = > b;2¢ with a;,b; € {0,1},
we define ¢« < bif and onlyif a; < b; foralli =0,...,k — 1.

Note that (dN’ (mod 2% — 1)) denotes the unique integer M in {1,...,2% — 1}
with M = dN’ (modulo 2F — 1).

Assume that 2 < m +1 < k. Then 1 < 2™+t — 1 < 2F — 1, whence we
have ((2! — 1)N’ (mod 2¥ — 1)) = 2™+l — 1 by Equation (9). However, as
gmtl 1 = S 9iand 28 — 1 = S'71 27, we have 2! — 1 < 2%+ — 1, which
contradicts Glynn’s criterion. Thus we have k +1 < m + [ < 2(k — 1). In this
case, we consider the equation

2mTT _1)N=2"—1 (mod 2~ —1),

equivalent to Equation (9). We have 2™+ — 1 = 2/ — 1 (modulo 2* — 1), where
fi=m+l—k Thenl1 < f<l<k—1,asm < k. Since2! -1 = (2" —~1)N =
(27 —1)N (modulo 2% — 1), we have ((2/ — 1)N (mod 2* — 1)) = 2! — 1. Then
Glynn’s criterion applied to d = 2 — 1 yields that >3/} 2i =2/ —1 22/ —1 =
Zé;é 2¢, which contradicts f < I. Hence we have contradiction in any case. [

. d+1
3. Automorphism group of 50, o

In this section, we prove Theorem 1.1. We first treat the case when d = 2.
Step 1. If d = 2, G fixes X (0) and G = GL3(2).

Proof. There are three monomial o-polynomials in GF(8)[X]: X2, X* and X°.
Thus the only choice for ¢(X) is X°. As the map x — z* is the inverse map of
the map 2 — 22 on GF(8), we have S5 ; = S} ; by Lemma 2.2. Thus we may
assume that S = S3 .

Let 7 be a generator of GF(8)* with 3 = n + 1. Consider the following
involutive GF'(2)-linear transformation v on V:

- 170): (nv O)U = (77270)7 (77270)U = (7770);
(07 1)1; = (07 1): (07 77)” - (77 + 7727 77)7 (07 772)U - (7727 n+ 772)'

—~
—_
@)

~—

S
|

—~

Then we can verify that v induces the following permutation on the members
of S:

((0)) (X (1)) (X () (X () (X () X (n) (X (17%) X (n°)).

Now the stabilizer A of X (0) in G is isomorphic to a subgroup of GL3(2), as
A acts faithfully on X (0) [5, Lemma 4(1)]. As A contains M F = Z;.Z3 and
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the above involution v, we have A = GL3(2). In particular, A acts doubly
transitively on S \ { X (0)}.

We can also verify that (X (1), X (n)) contains X (n°) but not X (0). In partic-
ular, G does not act triply transitively on the members of S. Thus G does not
move X (0), whence G = A = GL3(2). O

In the following, we consider the generic case with d > 3. We first determine
the stabilizer A in G of X (0). From Step 2 to Step 4, we do not assume that

¢ ¢ Gal(GF(q)/GF(2)).

Step 2. One of the following occurs.

(1) A= MF.

(2) We haved+1=2kwithk >2and A = LF, where L = Z x S is a normal
subgroup of A isomorphic to GLo(2F) with direct factors Z = Z(L) =
Zyk_y and S := L' = SLy(2%). We also have |[LNF| = |SNF| = 2.

Proof. As A acts on X (0) faithfully by [5, Lemma 4(1)], A is isomorphic to a
subgroup of GL(X(0)) = GL4+1(2), regarding X (0) as a (d + 1)-dimensional
space over GF'(2). Now M is a cyclic subgroup of order ¢— 1 acting regularly on
the nonzero vectors (X (0) N X (¢))* (t € GF(q)*) of X(0), whence it is a Singer
cycle of GL(X(0)). As A is a subgroup of GL(X (0)) containing a Singer cycle
M on X(0), it follows from Kantor’s result [4] that A has a normal subgroup
isomorphic to GL441)/(2°) for some divisor e of d + 1. If e = d + 1, this
normal subgroup coincides with the Singer cycle M, whence A is contained in
the normalizer of M in GL441(2). It is easy to verify that the normalizer is M F'.
Thus in this case we have A = MF'. Assume thate < d + 1. As d > 3, one of
the following holds from the arguments in [5, Lemma 5]:

(@ d+1=4and A ¥ GL411(2).

(b) d+1 =2k and A contains a normal subgroup isomorphic to G'Ly(2*).

We eliminate Case (a) first. Assume that Case (a) holds. There are only
three monomial o-polynomials in GF(16)[X]: X2, X® and X'. As S3 , is
isomorphic to Sg 1, by Lemma 2.2, we may assume that S = S3 ;. Observe that
fort € GF(16) \ GF(2)

(X(0),X(1))NX(t) = {(x, 2t + xt®) | Tr(zt + xt?) = 0},
where Tr denotes the trace function for GF(16)/GF(2). As Tr(z°t + xt?) =

Tr(z? (t + t?7), the member X (¢) is contained in (X (0), X (1)) if and only if
t+1t% =t+t2 =0, namely t € GF(4)*. In particular, (X (0), X (1)) N X () is
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of dimension 4 or 3 according as t € GF(4)* or not. However, as A = GL,(2)
is doubly transitive on S \ {X(0)}, the stabilizer of X (1) in A is transitive on
S\{X(0), X(1)}, whence the dimension of (X (0), X (1))NX (¢) does not depend
on the choice of ¢t € GF(16) \ GF(2). This contradiction shows that Case (a)
does not occur.

Assume that Case (b) occurs. As d > 3, we have k£ > 2. Let L be a normal
subgroup of A isomorphic to GLy(2%). Then M < L and L = Z x S, where
S = SLy(2¥)and Z = Z(L) = Zyr_,. Let 1 be a generator of GF(q)*. Then
(= n2k+1 is a generator of GF(2%)* and m, is a generator of Z. In particular,
Z < M. Moreover, M = Z x (M NS), as |Z| = 2¥ — 1 is coprime with [M : Z] =
2k 4+ 1.

A Singer cycle M in GL(GF(q)) = GL4+1(2) is self-centralizing. In particu-
lar, C4(L) < Cy(M) =M = Z x (M NS). As S is simple and so Cpns(S) = 1,
wehave C4(L) = Z. Then Z < C4(S) < Ca(L) = Z, whence C4(S) = Z. Now
A normalizes S = Inn(S), and hence A/SC4(5) is isomorphic to a subgroup
of Out(S), which is known to be the group of field automorphisms induced
by Gal(GF(2¥)/GF(2)). Each element fy of F induces an automorphism on
GF(2%). It induces a GF(2%)-linear map on GF(q) if and only if ¢ fixes every
element of GF(2"), whence § € (o*). Thus FN L = (f¥) of order 2, which lies
inS,as[L:S]=2%—-1isodd. Then FNL = FNS = (u) withu = (f,)*, and
F/(F N S) is isomorphic to Out(S). Thus A/SC4(S) = Out(S) = F/(FNS),
whence A = (C4(S) x S)F = (Z x S)F. O

Step 3. A acts on X (o) :={(0,y) |y € GF(q)}.

Proof. This is clear if A = MF, as both M and F' act on X(c0) in view of
Equations (3) and (4). Thus we may assume that Case (2) occurs in Step 2. We
use the notation there.

We first examine the Z-orbits on V> := V \ {0}. Regard GF(q) as a 2-
dimensional space over GF(2¥) and let ¢; (i = 0, ..., 2%) be elements of GF(g)*
no two of which lie in the same 1-dimensional subspace over GF(2%) of GF(q).
Foreach ¢; (i =0,...,2%) and c € GF(q)*, set

Z(Ciy¢) i= {(Gw, cx @D/ (@D | 1 ¢ GF(2F)% ).

As Z = {m¢), each Z((;,c) is a Z-orbit of length 2¥ — 1 from Equation (3).
Moreover, it is easy to see that X (0)* is a disjoint union of Z((;,0) for i =
0,...,2% and that V \ (X(0)U X (c0)) is a disjoint union of Z((;,c) for i =
0,...,2% and ¢ € GF(q)*. On the other hand, each Z-orbit in X (c0)* is of the
form

Z(c) = {(0,ey@?~ V@7V |y € GF(2%)"}
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for some ¢ € GF(q)* by Equation (3). In particular, each Z-orbit in X (co0)* is
of length I, where [ := # {y(@?=D/(¢=1) | y ¢ GF(2F)*}.

Suppose [ < 2¥ — 1. Then every Z-orbit in X (c0)* has length I, which is
different from the length 2% — 1 of each Z-orbitin V' \ X (c0). As Z is normal in
A, every element of A permutes the Z-orbits in V' *. Thus A acts on the union
of Z-orbits of length /, which is X (c0)*. Hence in this case A acts on X (o).

Thus we may assume that [ = 2* — 1, that is, the restriction of a map (o¢—1)/
(¢ — 1) on GF(2*%) is a (multiplicative) bijection. We denote its inverse map by

(¢—1)/(0p—1).
Now take any involution v of S. As v stabilizes X (0), there exist GF'(2)-linear
maps a, ¢, d on GF(q) such that

(z,9)" = (=" + y°, y%) (10)

for every x,y € GF(q). As v centralizes Z = {m;, | b € GF(2*)*}, Equations (3)
and (10) show that (z,y)™" = ((bz)*+ (ble?=D/(@=1y)e (pled=1)/(¢=1)y)d) co-
incides with (z,y)"™ = (b-z®+b-y°, (b@¢~V/(¢=1).yd) forall b € GF(2*)* and
x,y € GF(q). In particular, we have b - y¢ = (b(e?~1)/(¢=1)y))¢_or equivalently

(by)¢ = (b(¢—1)/(0¢—1)) L y° (11)

for ally € GF(q) and b € GF(2*)*. From Equation (11) and the linearity of
¢, we have (by + by) @~ 1/70= 1 e = ((by + ba)y)® = (biy)° + (b2y)°, which is
equal to bg¢)_1)/(‘7¢_1) . yc + bgﬁ—l)/(‘ﬂf’_l) X yc- Thus

(bt + by)(@=D/(@6=1) 4 6=D/(6=1) | j6-1/(6=1)) e

forall by # by, € GF(2%)* and y € GF(q). If there exists y € GF(q) with y¢ # 0,
then we have

(by + by)(@=D/(08=1) _ p(6=D/(06=1) | y(6=1)/(79-1)

for all b; # by € GF(2F)*. Thus the map (¢ — 1)/(c¢ — 1) on GF(2%) is
GF(2)-linear. Then its inverse map, which is (¢¢p — 1)/(¢ — 1) restricted to
GF(2%), is both multiplicative and additive on GF(2*). Thus it coincides with
an automorphism 7 in Gal(GF(2%)/GF(2)). However, this is impossible by
Lemma 2.3, as k > 2. Hence we have y¢ = 0 for all y € GF'(q). This shows that
the involution v acts on X (00).

As S = SL,(2%) is generated by involutions, the above conclusion implies
that A = (Z x S)F also acts on X (c0). O

Step 4. Case (2) in Step 2 does not occur.
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Proof. By Step 3, X(0) and X (oco) are A-invariant subspaces of V. As V =
X(0) ® X(c0), for each g € A there are GF(2)-linear maps g and § on GF(q)
such that

(z,9)? = ((x)g, (y)9) (12)

for all x,y € GF(q). On the other hand, g induces a permutation on S. We
denote X ()9 = X (tg) for each t € GF(q). As X(0) N X(t) = [(t%,0)] with
e:= (¢p—1)/(oc—1), applying g to this equation we have X (0)NX (tg) = [(¢°)g, 0],
whence (¢§)¢ = (t°)g. Thus we obtain the following relation for all t € GF'(¢)*:

(t)g = ((t°)g)"/". (13)

Each vector (z,z7t'/¢ + xt?/¢) of X (t'/¢) is mapped by ¢ to the vector (zg,
(z7t'/* + xt%/%)g), which lies in X ((t'/)g) = X ((tg)'/¢). Thus for all ¢,z €
GF(q)* we have

(a7t + wt?/%)§ = (x9)° (tg)"/* + (x7)(tg)*/*. (14)

We now choose any element p from GF(q)\GF(2*%). Then (1, p) forms a basis
for a 2-dimensional vector space GF(q) over GF(2%). Consider a GF(2F)-linear
map I(p) on GF(q) determined by 1 — 1 and p — 1+ p. Then [(p) is a GF(2F)-
linear involution on GF'(q) with determinant 1. We denote by SL(GF'(q)) the
group of GF(2F)-linear bijections on GF(q) with determinant 1. For every a €
GF(2%)*, the involution I(a~!p) is represented as (! ) with respect to a basis
(1, p) over GF(2%) for GF(q). Thus {I(a~'p) | a € GF(2*)*} generates a Sylow
2-subgroup of SL(GF(q)) = SLy(2%).

Now S = SL,(2F) (< A) acts faithfully on X (0), as every nonzero vector of
X (0) is expressed as (X (0) N X (t))* for some t € GF(q)*. Thus, identifying
X (0) with GF(q) via (x,0) — =z, the map g — g gives an isomorphism of S with
SL(GF(q)). Then the vectors of X (0) fixed by an involution of S forms a k-
dimensional subspace of X (0) over GF'(2). Furthermore, for every p € GF(q) \
GF(2F), there exists a unique involution g = g(p) of S such that g = I(p). From
the definition of I(p), the subspace {(x,0) | z € GF(2*)} of X(0) coincides with
the subspace of vectors of X (0) fixed by every g(ap) (a € GF(2F)*).

The group S acts on X (oo) as well by Step 3. As the involution w in F N S
(see Step 2) induces on X (c0) the action (0,y) — (0, ka) by Equation (4), the
action of S is not trivial. As k& > 2, S is simple, and hence the action of S on
X (00) is faithful as well. Identifying X (co) with GF(q) via (0, ) — z, the map
g — ¢ gives an isomorphism from S to SL(GF(q)). In particular, there is a
k-dimensional subspace K of X (co) consisting of vectors fixed by g(ap) for all
a € GF(2%)*. Asl(ap) fixes each element of GF(2*) and ¢ preserves GF(2%), it
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follows from Equation (14) that vectors (0, zt'/¢ 4 2t®/¢) for all z,t € GF(2¥)
lie in K. Note that, if 0¢ is not the identity on GF(2%), these vectors span
GF(2%) by the arguments in [5, Lemma 2], whence K = {(0,y) | GF(2%)}.

We now claim:
o¢ is not the identity map on GF(q).

For otherwise, (??~1)/(¢=1) — 1 for a generator 1 of GF(q)*, whence a gener-
ator m%k_l of a Singer cycle M N S in S acts trivially on X (co) from Equation
(3). This contradicts the faithfulness of S on X (o).

Next we claim:
if 0¢ is not the identity map on GF (2%), then we have a contradiction.

To show the claim, take any p € GF(q)\ GF(2*) and choose an involution g € S
with g = [(p). By Equation (14), applying to this g, x = p and ¢t = 1, we have

(p” +p)g=1+p)7+ (1+p)=p7+p.

Thus for every p € GF(q) \ GF(2%), the vector (0, p + p°) lies in K = {(0,y) |
y € GF(2F)} by the remark above. As z + 2° = y +y° (z,y € GF(q)) occurs
exactly when z +vy = (z +y)° € GF(2), there are (q — 2%)/2 = 22k=1 _ 2k~—1
elements in the form p + p° for some p € GF(q) \ GF(2%). Hence we have
22k=1 _ ok—1 < 9F from which 2¥ < 2 + 1 = 3 or equivalently k¥ = 1. However,
this contradicts that k£ > 2.

Finally we claim:
if o¢ is the identity map on GF(2%), we have a contradiction as well.

In this case, the vectors (0,z7t'/¢ + xt#/¢) for all z,t € GF(2*) span a hy-
perplane H := {(0,y) | y € GF(2%), Trgp(ar)/ar2)(y) = 0} of the subspace
{(0,y) | y € GF(2%)}. The corresponding hyperplane of GF(2%) is denoted H':
H :={y¢€ GF(Qk) | TTGF(%)/GF(Q)(ZJ) = 0}.

Take any p € GF(q) \ GF(2%). We claim that there are at least 2"~ — 1
elements a € GF(2%)* such that (ap) + (ap)° € H'. If (ap) + (ap)° € H' for all
a € GF(2%), this clearly holds. Thus we may assume that p+p° ¢ H’, replacing
p by its suitable multiple by an element of GF(2%)*. The subspace of X (co)
fixed by g(p) is {(0,y) | y € K'}, where K’ denotes the k-dimensional subspace
of GF(q) over GF'(2) spanned by p+ p? and all y € H’'. As we observed before,
every vector of {(0,y) | y € K'} is fixed by g(ap) for all a € GF(2%)*. If we
replace p by ap at the calculation of p + p? in the proof of the last claim, we
conclude that (0, (ap) + (ap)?) is fixed by g(ap). Hence

(ap) + (ap)” € K’
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for all a € GF(2F)*. Then we can define a map x from GF(2*) to K’ by
k(a) := (ap)+(ap)?. This is a GF(2)-linear map. It is injective, because x(a) = 0
implies that ap = (ap)’ € GF(2) butap € GF(q)—GF(2%) unless a = 0. Then x
is an isomorphism from GF(2*) with K. In particular, there are exactly 2*=! —1
elements a € GF(2F)* with (ap) + (ap)® € H'.

Let p1, ..., pm (m = 2F) be a set of representatives for projective points of
a projective line PG(GF(q)), distinct from the projective point [1] = GF(2%),
where we regard GF(q) as a 2-dimensional vector space over GF(2F). The
above paragraph shows that for each p; (i = 1, ..., m), there are at least 2 =1 —1
elements a € GF(2%)* such that (ap;) + (ap;)° € H'. Remark that (ap;)+(ap;)°
lies in H' implies that it lies in (H')*, as (ap;) = (ap;)? € GF(2) would imply
that p; € GF(2F).

Thus the number of nonzero vectors z in GF(q) \ GF(2F) satisfying = + 27 €
(H')* is at least (2*~! —1)2k. Asz + 27 =y +y° ifand only if x + y € GF(2),
we conclude that

2k(2F=1 —1)/2 < |(H')*| =21 — 1.
Then k& < 1, which is a contradiction. ]

Remark 3.1. Up to the above step, we do not use the assumption that ¢ does
not lie in Gal(GF(q)/GF(2)). Thus the conclusion in Step 4 also holds in the
case when ¢ = 7 is a generator of Gal(GF(q)/GF(2)). This corresponds to [5,
Lemma 6].

Note that the proof given there is incorrect, as it confuses the trace function
for GF(q)/GF(2) with that for GF(2%)/GF(2). Thus Step 2, Step 3, Step 4
provide a correction to the proof of [5, Lemma 6].

We have determined the structure of A as A = M F. Now suppose that G =
Aut(S) contains an automorphism which sends X (0) to a member of S\ {X(0)}.
Then G is doubly transitive on S, as M is transitive on S \ {X (0)}.

Step 5. There is a normal subgroup N of G which acts regularly on S. In partic-
ular; N is an elementary abelian 2-group of order ¢ = 291,

Proof. From Step 2, the one point stabilizer A of a doubly transitive group G
has a normal subgroup M acting regularly on the remaining members. By a
classical result [2] by Hering, Kantor and Seitz, such doubly transitive groups
are classified. Thus G has a normal subgroup N which either acts regularly
on S or is isomorphic to one of the following simple groups. In each case, the
permutation representation of G on S is equivalent to its action via conjugation
on the set of Sylow p-subgroups of NV, where p is a prime dividing 7:
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N = PSLy(r), Sz(r) (r = 22¢t1), PSU3(r), or a group of Ree type
(®Ga(r)) with r = 32+,

Thus |[S| = r + 1, 72+ 1, r® + 1 or 73 + 1, according as N = PSLsy(r), Sz(r),
PSUs(r) or a group of Ree type. As |S| = 29+! N isnot Sz(r). If N = PSU3(r)
or a group of Ree type, then |S| = 29+! = y341 = (r+1)(r2—r+1), whence both
r+1and r2 —r + 1 are power of 2 larger than 1. However, (r+1,72—r+1) = 1
or 3, which is a contradiction. If N = PSLy(r) with 7 + 1 = 2¢+1 the two point
stabilizer is a cyclic group of order (r — 1)/2. As the two point stabilizer in G is
a cyclic group of order d + 1, we conclude that (2¢+1 — 2)/2 = 2¢ — 1 divides
d + 1, which occurs only when d = 1 or d = 2. This contradicts our assumption
that d > 3.

Thus G has a regular normal subgroup N. Then NV is an elementary abelian
2-subgroup of order 2¢*! by a standard argument. O

As N is a regular normal subgroup on S, the action of A on S\ {X(0)} is
equivalent to the action of A via conjugation on N \ {1}. In particular, the
group M acts regularly on N \ {1} under conjugation. Thus the dimensions
of [V,7] :== {v+v" | v € V} for involutions 7’ of N do not depend on the
choice of /. We next observe the action of NV on V, specifically the commutator
subspace [V, N] := (v +v” | 7/ € N). As N is normalized by G, the subspace
[V, N] is invariant under the action of G. By standard arguments for 2-groups,
[V, N]is a proper subspace of V.

Step 6. We have [V, N| = X (o0). In particular, X (c0) is G-invariant.

Proof. For short, we set W = [V, N] for a while. (The arguments in the few
paragraphs below work for any G-invariant proper subspace W of V. This fact
will be used in Step 1 of the proof of Theorem 1.2.)

Assume that W contains a point of form X (a)N.X (b) for some a # b € GF(q).
As G is doubly transitive on S = {X(¢) | t € GF(q)} and W is G-invariant,
this implies that W contains X(a) = (X(a)NX(b) | b€ GF(q) \ {a}) for all
a € GF(q), whence W = (X (a)|a € GF(q)) = V, a contradiction. Thus
W does not contain a point of form X (a) N X (b) for any a # b € GF(q), or
equivalently W N X (a) = {(0,0)} for all a € GF(q).

Assume now that W contains two vectors (z,y) and (z',y) for some x # 2’
and y € GF(q). Then W contains (z — z/,0) = (z,y) — («’,y), which is a
nonzero vector of X (0). This contradicts the above conclusion. Thus for each
y € GF(q), there is at most one element x € GF'(q) such that (x,y) € W. Hence
W] < g =20

Now assume that W is not contained in X (co). Then there is a vector (x, y) in
W with z # 0. As W is invariant under M, it follows from the action of m; (see
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Equation (3)) that W contains a vector of form (z’,y’) for every 2’ € GF(q).
Thus |W| > q.

Together with the above conclusions, we have either W < X (o0) or dim W =
d+1. Assume that IV is not contained in X (c0). Then, as M acts on W, it follows
from Equation (3) that W = Y (¢) := {(z, cx(¢7=1/(®=1)) | 1 € GF(q)} for some
¢ € GF(q)* (compare the arguments in [5, Lemma 10] with 7 replaced by ¢).
However, then the map (oc¢ — 1)/(¢ — 1) is additive on GF(q)*, as Y(c) is a
subspace. This contradicts Lemma 2.3. Thus we have W C X (c0).

Up to here, arguments can be applied to any G-invariant proper subspace W
of V. Now we specialize to [V, N].

As N acts regularly on S, there is a unique involution 7(¢) of N exchanging
X (0) and X (t) for each t € GF(¢q)*. Then (z,0) + (x,0)™® € [X(0),7(t)] <
[V, N]. Notice here that [V,N] = W < X(0) = {(0,y) | y € GF(q)} by
the conclusion in the previous paragraph. Thus (z,0)"® = (z,y) for some
y € GF(q). As (2,0)™® € X(0)™™® = X(t), we have y = 27t + xt®. Hence

[X(0), 7(t)] = {(0, 2t + xt®) | = € GF(q)}. (15)

The map X (0) > (2,0) = v — v+ v™® € [X(0), 7(t)] is a GF(2)-linear sur-
jection with kernel C'y o)(7(t)) = X (0) N X (¢) of dimension 1. Thus [X(0), 7(t)]
is a subspace of [V, N] of dimension d. On the other hand, [V, N] is con-
tained in the (d + 1)-dimensional subspace X (oco) by the conclusion in the
above paragraph. Thus we have either dim[V, N] = d or [V, N] = X(o0). In
the former case, we have [V, N] = [X(0),7(¢)] for all ¢t € G(¢)*. In partic-
ular, [X(0),7(t)] = [X(0),7(1)]. Then it follows from Equation (15) that for
every v € GF(q) and t € GF(q)* we have 27t + xt* = y° + y for some
y € GF(q). Thus Tr(z°t + 2t?) = 0 for all z € GF(q) and t € GF(q)*, where
Tr = Trgr(g)/cre)- As Tr(z7t+at?) = Tr(2° (t4197)), this implies that ¢ = ¢%°
forall t € GF(q)*. Hence ¢ = 07! € Gal(GF(q)/GF(2)), which contradicts
our hypothesis. Thus we have [V, N] = X (oc0). O

Step 7. We have a contradiction, if G contains an automorphism sending X (0) to
a member distinct from X (0).

Proof. We denote by 7 the unique involution of N which sends X (0) to X (1).
From regularity of the action of N on S, such an element uniquely exists. As N
is an elementary abelian 2-group, 7 is an involution and it exchanges X (0) and
X(1).

We examine the action of 7 on V. Since 7 is GF'(2)-linear on V and stabilizes
X (o00) by Step 6, we can display the action of 7 as follows.

(z,9)7 = (2, 2" + y%), (16)
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where a, b and d are GF'(2)-linear maps from GF'(q) to itself. They can be
determined as follows. We have (z,y) + (z,y)” € [V,7] < [V,N] = X(00),
whence x = z® for every x € GF(q), thatis, a = id, the identity map on GF'(q).
As (2,0)" = (z,2°%) € X(0)” = X (1), we have 2° = 27 + x for every x € GF(q).
Thus b = o +id. Then we have (z,2° +2)" = (x,2° + 2+ (v +2°)%), which is a
vector of X (1)™ = X (0). Hence from the linearity of d we have z+1¢ = 27 +2°¢
for all x € GF(q). Now remark that 7 commutes with a generator f, of F,
because both 7 and 7/ are involutions of N which send X (0) to X (1), whence
T = 7/-. This implies that % = z°? for all + € GF(q) from Equation (16).
Then we have z + ¢ = 27 + 2% = (z + 2%)° for all z € GF(q). Hence
e(x) =2z +2% € GF(2) for all z € GF(2).

Summarizing, we have
(z,y)" = (@, 2° +z+y+ey)) 17)

forall x,y € GF(q), where £(y) is an element of GF'(2) uniquely determined by
Y.

We write X (¢)” = X (¢) for t € GF(¢q)*. From Equation (17), we have
(z,2t+at?)" = (1, 2° +x+at+at®+e(x°t+2t?)), which lies in X ()7 = X (7).
Thus

27T+t + 1) +2(D)?+t° +1) = e(zt + 2t?) (18)
forallt € GF(q)* and x € GF(q). Putting z = 1, we have
tHT 4+t + ()P =e(t +12). (19)
Substituting Equation (19) into Equation (18), we have
(1+t4+8)(x+2°) = ze(t + %) + (2t + xt?). (20)

Suppose (t +t?) = 1 for some t € GF(q)*. Then for every x € GF(q) \
GF(2),wehave 2° + z # 0and 1 +t +t = (x + (2t + 2t?))/(2° + x) from
Equation (20). As this holds for every x € GF(q), we have

z4e(@t+at?)  y+e(yTt+yt?)
T YTty

(21)

for all z,y € GF(q) \ GF(2). Write e(z° + xt?) = ¢, and e(y° + yt?) = ¢,
elements of GF'(2). Then Equation (21) can be rewritten as

zy’ +yx’ = ex(y” +y) +ey(27 + ),

whence
Tr(zy? +yz°) =0
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for all z,y € GF(q) \ GF(2). Hence we have 0 = Tr(z(y + y"2)) for all
z,y € GF(q), from which we have y = y°" for all y € GF(q). However, this
implies that d + 1, the order of a generator o of Gal(GF(q)/GF(2)), is 2. This
contradicts d > 2.

Hence we have ¢(t +t?) = 0 for all t € GF(q). Then it follows from Equation
(20) that (1 +t +t)(x + 27) = e(xt + xt?) for all z,t € GF(q). Thus

l+t+t=c/(x+27)

for all z € GF(q) \ GF(2) with e, = (27t + 2t?) € GF(2). Suppose ¢, = 1
for all x € GF(q) \ GF(2). Ast and t are independent of x, then we have
1/(x +27) = 1/(y + y?) for every x,y € GF(q) \ GF(2). However, this is
equivalent to the condition that x + y = (v + y)? € GF(2) for all z,y € GF(q),
which contradicts ¢ = 29! > 8. Hence ¢, = 0 for some 2 € GF(q) \ GF(2).
This implies that for all t € GF(¢q)* we have

t=1t+1.

From Equation (19) and (¢ + t?) = 0, then we have 1 + t® = (1 +¢)? for all
t € GF(q)*. However, as ¢ is multiplicative, this shows that for s,t € GF(q)
with ¢ # 0 we have

(s +1)? = 5%((s/t)? + 1)? = s2((s/1)? + 1) = 5% + 7.

Thus ¢ is additive as well. Hence ¢ is a field automorphism on GF'(g), which
contradicts our assumption that ¢ ¢ Gal(GF(q)/GF(2)). O

By Step 7, the automorphism group G stabilizes X (0). Hence G = A = M F,
and Theorem 1.1 is proved.

4. Isomorphism

In this section, we prove Theorem 1.2.

We set S := S7H! with &' := 877 .. To distinguish members of S from &', we
denote members of S and S’ as X (¢) and X'(t) respectively. The normal sub-
group of Aut(S) acting regularly on S \ {X(0)} (see Theorem 1.1) is denoted
M, 4. The corresponding group for S’ is denoted M, 4. To distinguish ele-
ments m;, (see Definition 3) of M, 4 from the corresponding elements in M, 4,
we denote the latter by m; (b € GF(q)*).

In view of Lemma 2.2, it suffices to show the ‘only if ’ part of Theorem 1.2.
In the case when d = 2, S5 and S} are the only candidates for S and &’
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(see Step 1 in the previous section), and there is nothing to prove. Thus we
may assume that d > 3. Let 7 be a GF'(2)-linear bijection on V inducing an
isomorphism of S with §’.

Step 1. We may assume that 7 satisfies the following conditions.
X(0)"=X"(0),X(1)" = X'(1),M] , = My ¢ and X (o0)” = X (00).

Proof. As X (0) is the unique member of S fixed by Aut(S) by Theorem 1.1, it
is sent by 7 to the unique member X'(0) of S’ = S” fixed by Aut(S’). Asd > 3,
M7 , and M, 4 are normal subgroups of Aut(S’) = Z;_1.Z441 (see Theorem
1.1) acting regularly on " \ {X'(0)}. Thus M , = My 4.

The subspace X (c0)™ is a (d+1)-dimensional subspace of V' which is invariant
under Aut(S)” = Aut(S’). Thus it follows from the argument in the first part of
the proof for Step 6 (or [5, Lemma 10] together with Lemma 2.3) that X (c0)” =
X (00). As M, 4 is transitive on S’ \ {X’(0) }, we may furthermore assume that
X (1)" = X'(1), replacing 7 by 7m/ for a suitable element m’ of M,/ 4. ]

As 7 stabilizes both X (0) = X'(0) = {(#,0) | = € GF(q)} and X(o0) =
{(0,y) | y € GF(q)}, there exist GF(2)-linear bijections a and d on GF'(¢) such
that

(z,y)" = (2,y7) (22)
forall x,y € GF(q).

Step 2. In Expression (22), we may assume that a = id, the identity on GF'(q).

Proof. As M , = My 4, there is a positive integer ¢ with m; = (my,)’, whence

m] = (my)" for all b € GF(q)*. Applying m,T = 7(m})" to (z,y), we have

(bx)® = b' - z° (23)
(o= D/ (6= )d — ((p?) (@' =1/ (1)) . yyd (24)

forall b € GF(q)*, z,y € GF(q). From Equation (23) and the linearity of a,
we have (by + be)* = bt + by for every by # by € GF(q)*. Hence the map
GF(q) > z — 2' € GF(q) is both additive and multiplicative, whence z° =
2% (z € GF(q)) for some § € Gal(GF(q)/GF(2)). Then all the conditions
in Step 1 are satisfied with 7 replaced by 7' := 7f/_,, where f;_, denotes
the field automorphism of Aut(S’) corresponding to #—!. Moreover, we have
mp7’ = 7'my. Thus replacing 7 by 7/, we may assume that (bx)* = b- 2 for all
b,r € GF(q). As X(0)nX (1) = [(1,0)] is mapped by 7 to X’(0)NX"'(1) = [(1,0)]
by Step 1, we have 1* = 1. Thus b* = b-1* = b for all b € GF(q). Hence we
conclude that a = id, whence i = 1 in Equations (23),(24). O
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Step 3. There is a non-prime subfield F' of GF(q) such that in Expression (22)
we have d = ug for some p € Gal(GF(q)/GF(2)) and an F-linear bijection g on
GF(q). Furthermore, ((c¢p—1)/(¢—1))uv' = (o'¢' —1)/(¢' — 1) on GF(q)* for
every V' € Gal(GF(q)/F).

Proof Let I := {b(0®=D/(®=1) | p ¢ GF(q)} and I := {p(0'¢'~D/(¢'=1) | p ¢
GF(q)}. From Equation (24), for b € GF(q)* we have p(@¢~D/(¢=1) — 1 if
and only if b(°'¢'~1/(¢'=1) " Thus the endomorphisms (c¢) — 1)/(¢ — 1) and
(c'¢' —1)/(¢' — 1) of GF(q)* have the same kernel. As I and I’ are images of
these endomorphisms, they are subgroups of a cyclic group GF'(q)* of the same
order, whence I = I'.

Let F' be the set of sums of elements of I = I’. As I is closed under multipli-
cation, F' is closed under both addition and multiplication. Thus F' is a subfield
of GF(q). If F is GF(2), then I = {1}, whence z°?~! = 1 for all x € GF(q)*.
However, this implies that 0¢ = id on GF'(q), which contradicts our assumption
that ¢ is not contained in Gal(GF(q)/GF(2)). Thus F properly contains GF'(2).

Then it follows from Equation (24) (with ¢ = 1 by Step 2) and the linearity
of d that there exists an additive map p on F' such that

(fy)? = f -yt (25)
(bled=D/(e=Dym — plo’e’=1)/(¢"-1) (26)

forall f € F,b € GF(¢)* and y € GF(q). From Equation (26), p is mul-
tiplicative on I, whence p is multiplicative on F', as every element of F' is a
sum of elements in /. Thus p is an automorphism in Gal(F/GF(2)). We also
denote by 1 an automorphism in Gal(GF'(q)/GF(2)) whose restriction on F' is
1. Then it follows from Equation (25) that (fy)™ = f(y® )forall f € F
and y € GF(q). Hence du~! =: h is an F-linear bijection on GF(q). Thus
d = hu = pg, where g := p~'hyu is an F-linear bijection.

As ble¢=1/(#=1) ¢ F for all b € GF(q)*, the last claim in Step follows from
Equation (26). O

Step 4. Let F' = GF(2°) with sr = d+ 1, and let v be an automorphism of GF(q)
defined by z¥ = 2. There exists some i with 0 < i < r — 1 such that one of the
following occurs, where p is the element of Gal(GF(q)/GF(2)) in Step 3.

(@) 0 =o' and pvt = id.

(b) oo’ =id and 't = o'

Proof. Fort € GF(q), we write X (t)™ = X'(f). As a vector (x, 2%t + xt?) of X (t)
is mapped by 7 to a vector (z, ((z°t + xt?)*)9) of X'() by Step 2 and Step 3,
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we have
(27HH 4 ph9)9 = 27 F + 2 (F)? 27)
for all z,t € GF(q). Putting t = 1, for all x € GF(q) we have

(27" + )9 = 27 + . (28)

Now there is a unique polynomial ¢(X) in GF(q)[X]| of degree at most ¢ — 1
such that g(z) = x9 forallx € GF(q). As g is F-linear for F' = GF'(2®), we have

r—1
g(X) =) b;x*
=0

for some b; € GF(q) (i = 0,...,r —1). Recall that there are positive integers
m, k with 1 < m, k < d coprime with d + 1 so that 2° = 22" and 27 = 22" for
all z € GF(q). We also define a with 0 < a < d by z* = 22" for all z € GF(q).
Then it follows from Equation (28) that

r—1 r—1
Z bix2m+a+1s + Z bian-Hs _ ka + - (29)
=0 =0

for all x € GF(q). Choose integers «; and 3; with 0 < a;, 8; < ¢ — 1 so that

2m+a+is 2a+is

X% =X JXPi=X modulo X? — X

(i =0,...,7 —1). Then the left hand side of Equation (29) is given as L(x)
(z € GF(q)) for a polynomial L(X) := Z;:Ol b X + 22;01 b; X% of degree at
most ¢ — 1, while the right hand side is R(z) (z € GF(q)) for R(X) = X2 + X
of degree at most ¢ — 1. Thus Equation (29) implies that L(X) = R(X) as
polynomials of GF'(¢q)[X], that is,

r—1 r—1
ST hx Y X5 = X 4 X (30)
1=0 =0

Now it is easy to verify that o; # o and 3; # (; if 0 < i # j < r —1. If
a; = f3; for some i, j, then X2™ """ = X2""" (modulo X9 — X). This implies
that m = (j — i)s (modulo d + 1). However, s is a divisor of d + 1 with s > 2, as
GF(2) is a proper subfield of F' = GF'(2®) by Step 3. This contradicts that m is
coprime with d 4+ 1. Hence «; # (3, for every 0 <i,j < ¢ — 1.

Thus the monomials in the left hand side of Equation (30) are distinct from
each other. As X% and X? has the same coefficient b;, we conclude that there
exists a unique ¢ with 0 <4 < r — 1 such that b; = 1, b; = 0 for every j # i, and
that either X* = X2" and X% = X or X% = X and X% = X?2". Accordingly,
we have Case (a) or Case (b) in the claim of this Step. O
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Step 5. We have either (o,¢) = (o/,¢') or oo’ =id = ¢¢'.

Proof. Note that v/ := v in Step 4 lies in Gal(GF(q)/F) as F = GF(2°). Then
it follows from the last remark in Step 3 that we have
(09— Du/'(¢' = 1) = (¢'¢' — 1)(¢ — 1).

If Case (a) in Step 4 holds, then (c¢p—1)(¢' —1) = (0¢’ — 1)(¢ — 1), from which
we have (0 — 1)(¢ — ¢') = 0. Thus ¢ = ¢’ as o — 1 is bijective. If Case (b) in
Step 4 holds, then we have (¢ — 1)o’(¢/ — 1) = (0'¢/ — 1)(¢ — 1). Multiplying
both sides by o and using oo’ = id, we have (o¢ — 1)(¢' — 1) = (¢' —0)(¢p — 1).
It follows that (o — 1)(¢¢’ — 1) = 0, whence ¢¢’ = id as o — 1 is bijective. =~ [

This completes the proof of the ‘only if’ part of Theorem 1.2. Thus Theorem
1.2 is established by Lemma 2.2.

5. Some general setting

In the definition of Sji;l, we only consider a generator o of Gal(GF(q)/GF(2)).
In fact, this is naturally required, as the following proposition shows.

Proposition 5.1. For any polynomials a(X) and b(X) in GF(q)[X], we define
Sjjzl to be the collection of X (t) over t € GF(q), where

X(t) :={(z,a(z)t+xb(t)) | x € GF(q)}.

Assume that Si“gl is a d-dimensional dual hyperoval. Then there exist o, 3 €
GF(q)*, v € GF(q), a generator o of Gal(GF(q)/GF(2)) and an o-polynomial
#(X) of GF(q)[X] such that o/ (z) = az® and V' (x) = Bx® + + for all x € GF(q)
and Sd+1 _ Sd+1

a,b a’,b’*

In particular, S} is isomorphic to Sji;l.
We first prepare a lemma.
Lemma 5.2. Let ¢(X) be a polynomial of GF(q)[X] such that
(c(tr) + c(t2))/(t1 + t2) # (c(t1) + c(t3))/(t1 + t3)

for every mutually distinct elements t1, t2, t3 of GF(q). Then there exist A\ € GF(q)
and an o-polynomial f(X) such that for all t € GF(q) we have

c(t) = (c(0) + (1) + A) f£(t) + At + ¢(0),

where ) is the unique value of GF(q) which cannot be written as (c(t1) + c(t2))/
(t1 +t2) for any t1 # t2 € GF(q).
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Proof. Recall that three points [a;1, a2, a;3] (i = 1,2,3) of PG(2,q) are not in
a line in common if and only if det(a;;) # 0. Thus no three distinct points of
A :={[1,t,¢(t)] | t € GF(q)}U{[0,0,1]} are collinear from the hypothesis. Then
A is uniquely extended to a hyperoval O of PG(2,q). As the nucleus does not
lie on any line through two distinct points of A, it is of form [0, 1, \], where X is
the unique value of GF'(¢q) which cannot be written as (¢(t1) + ¢(t2))/(t1 + t2)
for some t; # t2 € GF(q).

As (1,0,¢(0)), (1,1,¢(1)) and (0,1, A) are linearly independent, there is a
unique G F(q)-linear bijection F on GF(q)? for which F(1,0,0) = (1,0,¢c(0)),
F(1,1,1) = (1,1,¢(1)) and F(0,1,0) = (0,1, \). Then

F(0,0,1) = (0,0,c(0) + ¢(1) + A),

and the hyperoval F~1(0) of PG(2,q) contains four points [1,0,0], [1,1,1],
[0,0,1] and [0,1,0]. Thus F~1(O) has a canonical description {[1,¢, f(¢)] |
t € GF(q)} U {[0,0,1],]0,1,0]} with an o-polynomial f(X). As F(1,t, f(t)))

F(1,0,0) +tF(0,1,0) + f(¢t)F(0,0,1) = (1,¢,(c(0) + (1) + A) f(t) + At + ¢(0))
corresponds to a point of O, we have ¢(t) = (¢(0) +¢(1) + ) f(t) + At + ¢(0) for
every t € GF(q). ]

Now we prove Proposition 5.1. As each X (t) = {(z,a(z)t + zb(t)) | = €
GF(q)} is a subspace over GF(2), a(X) is additive: a(x; + az) = a(z1) +
a(z9) for all x1,z2 € GF(q). Take any mutually distinct values ¢; (i = 1,2,3)
of GF(q). As S is a dimensional dual hyperoval, X (¢;) N X (¢2) contains a
unique nonzero vector, but X (¢;) N X (t2) N X (¢3) = {(0,0)}. This implies that
a(z)/z = (b(t1) + b(t2))/(t1 + t2) has a unique solution z in GF(q)*, while
(b(t1) + b(t2))/(t1 + t2) # (b(t1) + b(t3))/(t1 + t3). In particular, b(X) satisfies
the hypothesis of Lemma 5.2, and the map ¢ — (b(t1)+b(t))/(t1+t) is a bijection
of GF(q) \ {t1} with GF(q) \ {\}. Thus the map = — a(x)/z gives a bijection
of GF(q)* with GF(q) \ {\}. Then

a(z1) +a(xze)  alzy +x2) , alri+3)  a(w)+a(zs)

1+ 22 T+ T2 T+ T3 1+ 3

for all triple of distinct elements x; (i = 1,2, 3) of GF'(q). Hence the polynomial
a(X) also satisfies the hypothesis of Lemma 5.2. Then there exist A\, \' € GF(q)
and o-polynomials 7 and ¢ in GF(q)[X] such that a(t) = (a(0) +a(1)+ \)7(¢) +
At + a(0) and b(t) = (b(0) +b(1) + N)o(t) + Nt + b(0) for all t € GF(q).

Note that we have A = )/, because the above argument also shows that the
values (a(x1) 4+ a(x2))/(x1 + x2) for x1 # x5 € GF(q) form a set GF(q) \ {\}.
We set o« := a(0)+a(1l)+Xand 3 := b(0) +b(1)+ A\, which are nonzero elements
of GF(q).



As a(X) is additive, a(0) = 0 and 7(X) is an additive o-polynomial. Thus

<« " it follows from [3, Theorem 8.41] that n(X) = X 2” for some generator o of
p " Gal(GF(q)/GF(2)). Then a(x) = az® + Az for all x € GF(q). However, as
a(z)t + xb(t) = (az® + o)t + z(Bt? + M + b(0)) = azt + x(Bt? + b(0)), we
page 23/ 23 hr:}ve a(z)t + zb(t) = o’ (x)t —|— xb’glt),l V.vh.ere a’.(t) = az’ anq b’(tg{ :1: Bt? + v
with 4 := b(0). Thus X(¢) in S;}" is identical with X (¢) in S, whence
go back 53},1 = Sﬁbl/-
Finally, define GF(2)-linear transformations G, H and I by G : (z,y) —
full screen (x,vz +y), H : (x,y) — (6x,0%) for § € GF(q)* with 6°~! = a/f and
I:(2,9) — (z,071y). As X(t) = {(z, 027t + 2(3t* + 7)) | © € GF(q)}, we
close can easily see that X (t)%#! = {(z, 27t + 2t® | € GF(q)}. Thus (S}")%H! =
Sd,_H, GHI _ Sd+1.
quit (Sa b ) o:¢
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