

On dimensional dual hyperovals $\mathcal{S}^{d+1}_{\sigma.\phi}$

Hiroaki Taniguchi

Satoshi Yoshiara

Abstract

A d-dimensional dual hyperoval $\mathcal{S}_{\sigma,\phi}^{d+1}$ inside PG(2d+1,2) $(d \geq 2)$ is constructed in [5], for a generator σ of $\operatorname{Gal}(GF(q)/GF(2))$ and an o-polynomial $\phi(X)$ of GF(q)[X] $(q = 2^{d+1})$. There, its automorphism group is determined and a criterion is given for these dimensional dual hyperovals to be isomorphic, assuming that the map ϕ on GF(q) induced by $\phi(X)$ lies in $\operatorname{Gal}(GF(q)/GF(2))$. In this paper, we extend these results for a monomial o-polynomial ϕ . We show that $\operatorname{Aut}(\mathcal{S}_{\sigma,\phi}^{d+1}) \cong GL_3(2)$ or $Z_{q-1}.Z_{d+1}$ according as d = 2 or $d \geq 3$, if $\phi(X)$ is monomial but $\phi \notin \operatorname{Gal}(GF(q)/GF(2))$. In particular, a special member X(0) of $\mathcal{S}_{\sigma,\phi}^{d+1}$ is always fixed by any automorphism of $\mathcal{S}_{\sigma,\phi}^{d+1}$. Furthermore, $\mathcal{S}_{\sigma,\phi}^{d+1} \cong \mathcal{S}_{\sigma',\phi'}^{d+1}$ if and only if either $(\sigma, \phi) = (\sigma', \phi')$ or $\sigma\sigma' = \phi\phi' = \operatorname{id}$.

Keywords: dimensional dual hyperoval, o-polynomial MSC 2000: 51,12,20

1. Introduction

A *d*-dimensional dual hyperoval with ambient space PG(n,q) is defined to be a family S of $((q^{d+1} - 1)/(q - 1)) + 1$ *d*-subspaces of PG(n,q) enjoying the following properties:

- (1) any two distinct members of S intersect in a projective point.
- (2) any three mutually distinct members of S intersect trivially.
- (3) the members of S span PG(n,q).

For a generator σ of $\operatorname{Gal}(GF(q)/GF(2))$ and an o-polynomial $\phi(X)$ over GF(q) $(q = 2^{d+1})$, one can construct a *d*-dimensional dual hyperoval $\mathcal{S}^{d+1}_{\sigma,\phi}$

inside PG(2d + 1, 2) by [5, Lemma 1]. (See also Proposition 2.1). When the permutation ϕ on GF(q) induced by $\phi(X)$ lies in $\operatorname{Gal}(GF(q)/GF(2))$, its automorphism group is determined [5, Proposition 7]. Furthermore, for $\sigma, \sigma', \phi, \phi'$ generating $\operatorname{Gal}(GF(q)/GF(2))$, it is shown that $\mathcal{S}_{\sigma,\phi}^{d+1}$ is isomorphic to $\mathcal{S}_{\sigma',\phi'}^{d+1}$ if and only if either $(\sigma, \phi) = (\sigma', \phi')$ or $\sigma\sigma' = \phi\phi' = \operatorname{id}$ [5, Proposition 11]. In this paper we extended these results to the case when ϕ and ϕ' are induced by monomial o-polynomials. We always assume that $d \geq 2$.

Theorem 1.1. Let ϕ be a bijection on GF(q) induced by a monomial o-polynomial which is not contained in Gal(GF(q)/GF(2)). Then $G = Aut(\mathcal{S}_{\sigma,\phi}^{d+1})$ stabilizes X(0). We have $G \cong GL_3(2)$ if d = 2, while $G \cong Z_{q-1} : Z_{d+1}$ for $d \ge 3$.

Theorem 1.2. Let σ and σ' be generators of Gal(GF(q)/GF(2)), and let $\phi(X)$ and $\phi'(X)$ be monomial o-polynomials in GF(q)[X] such that neither ϕ nor ϕ is contained in Gal(GF(q)/GF(2)).

Then two dimensional dual hyperovals $S_{\sigma,\phi}^{d+1}$ and $S_{\sigma',\phi'}^{d+1}$ are isomorphic if and only if either $(\sigma,\phi) = (\sigma',\phi')$ or $\sigma\sigma' = \phi\phi' = \mathrm{id}_{GF(q)}$.

Recall that two *d*-dimensional dual hyperovals S and S' with common ambient space PG(V), where V is a vector space over GF(2), are called *isomorphic* if there is a GF(2)-linear map f of V sending every member of S to a member of S'.

Theorem 1.1 shows that $S_{\sigma,\phi}^{d+1}$ is never isomorphic to $S_{\sigma',\phi'}^{d+1}$ if ϕ' is contained in $\operatorname{Gal}(GF(q)/GF(2))$ but ϕ is not, because $\operatorname{Aut}(S_{\sigma,\phi}^{d+1})$ fixes the special member X(0), while $\operatorname{Aut}(S_{\sigma',\phi'}^{d+1})$ is doubly transitive on the members of $S_{\sigma',\phi'}^{d+1}$ [5, Proposition 7]. Thus Theorem 1.2 together with [5, Proposition 11] gives a criterion for two dimensional dual hyperovals $S_{\sigma,\phi}^{d+1}$ and $S_{\sigma',\phi'}^{d+1}$ to be isomorphic, if both ϕ and ϕ' are multiplicative o-polynomials.

The subsidiary aim of this paper is to supply a corrected proof for [5, Lemma 6]. The original proof does not work, as it confuses the trace function for GF(q)/GF(2) with that for $GF(2^k)/GF(2)$. Step 3 and Step 4 of the proof of Theorem 1.1 provide a proof for [5, Lemma 6], as they do not assume that $\phi \notin \operatorname{Gal}(GF(q)/GF(2))$. When $\phi \in \operatorname{Gal}(GF(q)/GF(2))$, we have an explicit group *T* of translations [5, Section 4]. One can also establish Step 3 by showing that *T* is normal in *G*, because then $C_V(T) = X(\infty)$ is *G*-invariant.

Two new ideas are used to establish Theorem 1.1. One is to exploit a classical result [2] on a group with a split BN-pair of rank one, namely a doubly transitive group in which one point stabilizer contains a normal subgroup acting regularly on the remaining points. The other is to show the invariance of a certain subspace $X(\infty)$ of the ambient space under some automorphism groups, using Lemma 2.3.

The proof of Theorem 1.2 is along the same line with the proof of [5, Proposition 11]. However, we are required more careful treatment because GF(q) is not necessarily generated by $b^{(\sigma\phi-1)/(\phi-1)}$ ($b \in GF(q)^{\times}$) (compare Step 3 with the third paragraph of the proof of [5, proposition 11]). We exploit a polynomial representation of a certain function to overcome this difficulty (see Step 4). Furthermore, Lemma 2.3 is used to simplify reduction arguments in Step 1.

The next section provides the definition of $S_{\sigma,\phi}^{d+1}$ with the description of its ambient space (Proposition 2.1). It also supplies the notation used throughout the paper and Lemma 2.3. Sections 3 and 4 are respectively devoted to the proofs of Theorems 1.1 and 1.2. In the last section, Proposition 5.1 is given which explains why we require that σ is a generator of Gal(GF(q)/GF(2)) and $\phi(X)$ is an o-polynomial in the definition of $S_{\sigma,\phi}^{d+1}$.

2. Preliminaries

Throughout this paper, let $q = 2^{d+1}$ be a power of 2 with $d \ge 2$. Let σ be an automorphism of GF(q) over GF(2) defined by

 $x^{\sigma} = x^{2^m}$ for some integer $m \in \{1, \ldots, d\}$ with (m, d+1) = 1.

Then σ is a generator of the Galois group for an extension GF(q)/GF(2), whence the map

$$\sigma - 1: GF(q)^{\times} \ni x \mapsto x^{\sigma}/x \in GF(q)^{\times}$$

is a bijection preserving each subfield of GF(q). The inverse map of $\sigma - 1$ is denoted $1/(\sigma - 1)$.

Choose an *o-polynomial* $\phi(X)$ in GF(q)[X], namely, $\phi(X)$ is a permutation polynomial with $\phi(0) = 0$ and $\phi(1) = 1$, and the polynomial ϕ_s defined by $\phi_s(X) := (\phi(X+s) - \phi(s))/X$ for every $s \in GF(q)$ is a permutation polynomial. If ϕ is a *monomial* polynomial, that is, $\phi(X) = X^N$ for some integer N in $\{2, \ldots, q-2\}$, it is an o-polynomial if and only if the following three conditions are satisfied:

(N, q - 1) = (N - 1, q - 1) = 1 and $\phi_1(X)$ is a permutation polynomial.

We use the same letter ϕ to denote the bijection on GF(q) induced by $\phi(X)$: $x^{\phi} = \phi(x)$ for all $x \in GF(q)$. Then the map

$$\phi - 1 : GF(q)^{\times} \ni x \mapsto x^{\phi}/x \in GF(q)^{\times}$$

is a bijection, because it is induced by the polynomial $\phi_0(X)$. The inverse map of $\phi - 1$ is denoted $1/(\phi - 1)$. Note that if ϕ is a monomial o-polynomial, then

 $\phi - 1$ is multiplicative, whence it induces an automorphism of a multiplicative group $GF(q)^{\times}$. In particular, it preserves the order of each element of $GF(q)^{\times}$, whence it preserves each subfield of GF(q).

Throughout this paper, we use $\text{Tr} = \text{Tr}_{GF(q)/GF(2)}$ to denote the trace function for the field extension GF(q)/GF(2). Furthermore, we regard

$$V := GF(q) \oplus GF(q) = \{(x, y) \mid x, y \in GF(q)\}$$

as a 2(d+1)-dimensional vector space over GF(2).

Proposition 2.1. Let σ be a generator of Gal(GF(q)/GF(2)) with $q = 2^{d+1}$, $d \ge 2$, and let $\phi(X)$ be an o-polynomial $\phi(X)$ of GF(q)[X]. For each $t \in GF(q)$, define a subspace X(t) of V by

$$X(t) := \{ (x, x^{\sigma}t + xt^{\phi}) \mid x \in GF(q) \}.$$

Then the family $S_{\sigma,\phi}^{d+1} := \{X(t) \mid t \in GF(q)\}$ is a *d*-dimensional dual hyperoval with ambient space PG(W) or PG(V), according as $\sigma\phi$ is the identity on GF(q) or not, where $W = \{(x, y) \mid \text{Tr}(y) = 0\}$ is a hyperplane of V.

Proof. Except the statement for the ambient space, Proposition was shown in [5, Lemma 1]. This part is also verified in view of the following expression of intersections of two members.

$$X(0) \cap X(t) = [(t^{(\phi-1)/(\sigma-1)}, 0)] = [(\phi_0(t)^{1/(\sigma-1)}, 0)].$$
(1)

$$X(s) \cap X(t) = \left[\left(\left(\frac{s^{\phi} + t^{\phi}}{s+t} \right)^{1/(\sigma-1)}, \left(\frac{s^{\phi} + t^{\phi}}{s+t} \right)^{1/(\sigma-1)} \left(\frac{s^{\phi}t + t^{\phi}s}{s+t} \right) \right) \right].$$
(2)

We will determine the subspace $U := \langle X(t) | t \in GF(q) \rangle$ of V. For each $t \in GF(q)^{\times}$, we set $A(t) := \{x^{\sigma}t + xt^{\phi} | x \in GF(q)\}$. It is straightforward to verify that $A(t) = \{x \in GF(q) | \operatorname{Tr}(t^{(1-\phi\sigma)/(\sigma-1)}x) = 0\}$ for every $t \in GF(q)^{\times}$. Consider $A := \langle A(t) | t \in GF(q) \rangle$, the subspace of GF(q) consisting of sums of elements in A(t)'s. As $\langle X(0), X(t) \rangle = \{(x, y) | x \in GF(q), y \in A(t)\}$, we have $U = \{(x, y) | x \in GF(q), y \in A\}$. As $A(1) = \{x \in GF(q) | \operatorname{Tr}(x) = 0\}$ is a hyperplane of GF(q), we have either A = GF(q) or A = A(1). Accordingly we have U = V or U = W.

Assume that U = W. Then A = A(1) = A(t) for all $t \in GF(q)^{\times}$. It is well known that every hyperplane of GF(q) is uniquely written as the kernel of the GF(2)-linear form $x \mapsto \operatorname{Tr}(ax)$ for some $a \in GF(q)^{\times}$. Thus we have $t^{(1-\phi\sigma)/(\sigma-1)} = 1$, or equivalently $t^{\phi\sigma} = t$ for all $t \in GF(q)^{\times}$. Thus $\phi\sigma = \operatorname{id}$ on GF(q). Conversely if $\phi = \sigma^{-1}$, we have A(t) = A(1) for all $t \in GF(q)^{\times}$, whence A = A(1) and U = W.

We sometimes denote $S_{\sigma,\phi}^{d+1}$ by $S_{2^m,N}^{d+1}$, where m and N are integers such that $x^{\sigma} = x^{2^m}$ and $x^{\phi} = x^N$ for all $x \in GF(q)$.

The 'if' part of Theorem 1.2 holds under mild restriction for o-polynomials ϕ and ϕ' .

Lemma 2.2. Let σ and σ' be generators of $\operatorname{Gal}(GF(q)/GF(2))$, and let $\phi(X)$ and $\phi'(X)$ be o-polynomials in GF(q)[X] with $\phi, \phi' \notin \operatorname{Gal}(GF(q)/GF(2))$. Assume that $\sigma'\phi = \phi\sigma'$.

If either $(\sigma, \phi) = (\sigma', \phi')$ or $\sigma\sigma' = \phi\phi' = id_{GF(q)}$, then $\mathcal{S}^{d+1}_{\sigma,\phi}$ and $\mathcal{S}^{d+1}_{\sigma',\phi'}$ are isomorphic.

Proof. If $\sigma = \sigma'$ and $\phi = \phi'$, the dimensional dual hyperovals $S := S^{d+1}_{\sigma,\phi}$ and $S' := S^{d+1}_{\sigma',\phi'}$ are identical. If $\sigma\sigma' = \mathrm{id} = \phi\phi'$, consider the GF(2)-linear bijection τ on V given by $(x, y) \mapsto (x, y^{\sigma'})$. Then a vector $(x, x^{\sigma}t + xt^{\phi})$ of X(t) is sent under τ to a vector $(x, xt^{\sigma'} + x^{\sigma'}t^{\phi\sigma'})$. As $\sigma'\phi = \phi\sigma'$, we have $x(t^{\phi\sigma'})^{\phi'} = x(t^{\sigma'\phi\phi'}) = xt^{\sigma'}$. Then $(x, xt^{\sigma'} + x^{\sigma'}t^{\phi\sigma'})$ lies in a member $X(t^{\phi\sigma'})$ of $S^{d+1}_{\sigma',\phi'}$. Thus τ sends each X(t) to $X(t^{\phi\sigma'})$, whence it induces an isomorphism of S with S'.

Now we specialize the case when both ϕ and ϕ' are monomial o-polynomials. We introduce important automorphisms m_b and f_θ of $\operatorname{Aut}(\mathcal{S}^{d+1}_{\sigma,\phi})$ defined for $b \in GF(q)^{\times}$ and $\theta \in \operatorname{Gal}(GF(q)/GF(2))$:

$$m_b: (x,y) \mapsto (bx, b^{(\sigma\phi-1)/(\phi-1)}y)$$
(3)

$$f_{\theta}: (x, y) \mapsto (x^{\theta}, y^{\theta}) \tag{4}$$

Observe that for $t \in G(q)$, $b \in GF(q)^{\times}$, $\theta \in Gal(GF(q)/GF(2))$ we have

$$X(t)^{m_b} = X(b^{(\sigma-1)/(\phi-1)}t),$$
(5)

$$X(t)^{f_{\theta}} = X(t^{\theta}).$$
(6)

In the sequel, we set as follows:

$$\mathcal{S} := \mathcal{S}^{d+1}_{\sigma,\phi}, G := \operatorname{Aut}(\mathcal{S}) \text{ and } A := \text{the stabilizer of } X(0) \text{ in } G.$$
$$M := \{m_b \mid b \in GF(q)^{\times}\} \text{ and } F := \{f_\theta \mid \theta \in \operatorname{Gal}(GF(q)/GF(2))\}.$$

The group M is a cyclic group generated by m_{η} for a generator η of $GF(q)^{\times}$, because we have $m_{bb'} = m_b m_{b'}$ from Equation (3). The group F of 'field' automorphisms, which is isomorphic to the cyclic group of order d + 1, normalizes M. We have $A \ge MF \cong Z_{q-1} : Z_{d+1}$.

As both σ and ϕ are induced by monomial polynomials, they induce automorphisms of the multiplicative group $GF(q)^{\times}$. Moreover $\phi - 1$ and $1/(\phi - 1)$ induce

automorphisms of $GF(q)^{\times}$. Suppose $b^{(\sigma-1)/(\phi-1)} = 1$ for some $b \in GF(q)^{\times}$. Then $b^{\sigma}/b = 1$ and $b^{\sigma} = b$. Thus b = 1, as σ generates $\operatorname{Gal}(GF(q)/GF(2))$. Hence it follows from Equation (5) that the cyclic group M is a subgroup of A acting regularly on the members of $S \setminus \{X(0)\}$.

Consider the following map

$$(\sigma\phi - 1)/(\phi - 1) : GF(q)^{\times} \ni x \mapsto x^{(\sigma\phi - 1)/(\phi - 1)} \in GF(q)^{\times}.$$
(7)

It is a multiplicative homomorphism of $GF(q)^{\times}$. Thus it preserves every subfield of GF(q). The map $(\sigma \phi - 1)/(\phi - 1)$ is not necessarily injective. However, it is never additive, because of the following lemma applied to GF(q) itself.

Lemma 2.3. Let σ be a generator of Gal(GF(q)/GF(2)) and let $\phi(X)$ be a monomial o-polynomial in GF(q)[X]. Then for every non-prime subfield $GF(2^k)$ of GF(q), the restriction of the map $(\sigma\phi - 1)/(\phi - 1)$ on $GF(2^k)$ does not coincide with any automorphism in $\text{Gal}(GF(2^k)/GF(2))$.

Proof. We denote the restriction of σ and ϕ on $GF(2^k)$ by the same letters. Then σ is a generator of $\operatorname{Gal}(GF(2^k)/GF(2))$ and ϕ is induced by a monomial o-polynomial in $GF(2^k)[X]$, written also as $\phi(X)$. There exists an integer mwith $1 \leq m \leq k - 1$ coprime with k such that $x^{\sigma} = x^{2^m}$ for all $x \in GF(2^k)$. As $GF(2^k) \neq GF(2)$, σ is not the identity and $\sigma - 1$ is bijective on $GF(2^k)$. Then $(\sigma\phi - 1)/(\phi - 1)$ is not the identity on $GF(2^k)$, for otherwise we would have $(\sigma - 1)\phi = 0$, whence $x^{\phi} = 1$ for every $x \in GF(q)$, as $\sigma - 1$ is bijective on $GF(2^k)$.

Suppose $(\sigma\phi - 1)/(\phi - 1)$ coincides with $\tau^{-1} \in \text{Gal}(GF(2^k)/GF(2))$. By the above remark, $\tau \neq \text{id}$, so that there exists an integer l with $1 \leq l \leq k - 1$ such that $x^{\tau} = x^{2^l}$ for all $x \in GF(2^k)$. In particular, $2 \leq m + l \leq 2(k - 1)$. From $(\sigma\phi - 1)/(\phi - 1) = 1/\tau$,

$$(\sigma\tau - 1) = \phi^{-1}(\tau - 1).$$
(8)

Take an integer N with $1 \le N \le 2^k - 1$ such that $x^{\phi} = x^N$ for all $x \in GF(2^k)$. As ϕ is bijective on $GF(q)^{\times}$, N is prime to $2^k - 1$, whence the inverse of N modulo $2^k - 1$ exists. We denote it by N'. Namely N' is an integer with $1 \le N' \le 2^k - 1$ such that $NN' \equiv 1$ (modulo $2^k - 1$). Then Equation (8) is rewritten as

$$2^{m+l} - 1 \equiv N'(2^l - 1) \pmod{2^k - 1}.$$
(9)

Recall that $\phi^{-1}(X) = X^{N'}$ is also an o-polynomial (see e.g. [1, Result 8]). It follows from Glynn's criterion for monomial o-polynomials [1, Theorem A] that for every $d \in \{1, \ldots, 2^k - 2\}$, we have $d \not\preceq (dN' \pmod{2^k - 1})$ with respect to the following ordering \preceq on $\{0, \ldots, 2^k - 1\}$.


```
For integers a = \sum_{i=0}^{k-1} a_i 2^i and b = \sum_{i=0}^{k-1} b_i 2^i with a_i, b_i \in \{0, 1\}, we define a \leq b if and only if a_i \leq b_i for all i = 0, \ldots, k-1.
```

Note that $(dN' \pmod{2^k - 1})$ denotes the unique integer M in $\{1, \ldots, 2^k - 1\}$ with $M \equiv dN' \pmod{2^k - 1}$.

Assume that $2 \le m+l \le k$. Then $1 \le 2^{m+l}-1 \le 2^k-1$, whence we have $((2^l-1)N' \pmod{2^k-1}) = 2^{m+l}-1$ by Equation (9). However, as $2^{m+l}-1 = \sum_{i=0}^{m+l-1} 2^i$ and $2^l-1 = \sum_{i=0}^{l-1} 2^i$, we have $2^l-1 \le 2^{m+l}-1$, which contradicts Glynn's criterion. Thus we have $k+1 \le m+l \le 2(k-1)$. In this case, we consider the equation

$$(2^{m+l}-1)N \equiv 2^l - 1 \pmod{2^k - 1},$$

equivalent to Equation (9). We have $2^{m+l} - 1 \equiv 2^f - 1 \pmod{2^k - 1}$, where f := m + l - k. Then $1 \leq f < l \leq k - 1$, as m < k. Since $2^l - 1 \equiv (2^{m+l} - 1)N \equiv (2^f - 1)N \pmod{2^k - 1}$, we have $((2^f - 1)N \pmod{2^k - 1}) = 2^l - 1$. Then Glynn's criterion applied to $d = 2^f - 1$ yields that $\sum_{i=0}^{f-1} 2^i = 2^f - 1 \not\leq 2^l - 1 = \sum_{i=0}^{l-1} 2^i$, which contradicts f < l. Hence we have contradiction in any case. \Box

3. Automorphism group of $S^{d+1}_{\sigma,\phi}$

In this section, we prove Theorem 1.1. We first treat the case when d = 2.

Step 1. If d = 2, G fixes X(0) and $G \cong GL_3(2)$.

Proof. There are three monomial o-polynomials in GF(8)[X]: X^2 , X^4 and X^6 . Thus the only choice for $\phi(X)$ is X^6 . As the map $x \mapsto x^4$ is the inverse map of the map $x \mapsto x^2$ on GF(8), we have $S^3_{2,6} \cong S^3_{4,6}$ by Lemma 2.2. Thus we may assume that $S = S^3_{2,6}$.

Let η be a generator of $GF(8)^{\times}$ with $\eta^3 = \eta + 1$. Consider the following involutive GF(2)-linear transformation v on V:

 $\begin{array}{l} (1,0)^v = (1,0), \, (\eta,0)^v = (\eta^2,0), \, (\eta^2,0)^v = (\eta,0); \\ (0,1)^v = (0,1), \, (0,\eta)^v = (\eta+\eta^2,\eta), \, (0,\eta^2)^v = (\eta^2,\eta+\eta^2). \end{array}$

Then we can verify that v induces the following permutation on the members of S:

 $(X(0))(X(1))(X(\eta))(X(\eta^5))(X(\eta^2)X(\eta^4))(X(\eta^3)X(\eta^6)).$

Now the stabilizer A of X(0) in G is isomorphic to a subgroup of $GL_3(2)$, as A acts faithfully on X(0) [5, Lemma 4(1)]. As A contains $MF \cong Z_7.Z_3$ and

the above involution v, we have $A \cong GL_3(2)$. In particular, A acts doubly transitively on $S \setminus \{X(0)\}$.

We can also verify that $\langle X(1), X(\eta) \rangle$ contains $X(\eta^5)$ but not X(0). In particular, G does not act triply transitively on the members of S. Thus G does not move X(0), whence $G = A \cong GL_3(2)$.

In the following, we consider the generic case with $d \ge 3$. We first determine the stabilizer A in G of X(0). From Step 2 to Step 4, we do not assume that $\phi \notin \operatorname{Gal}(GF(q)/GF(2))$.

Step 2. One of the following occurs.

- (1) A = MF.
- (2) We have d + 1 = 2k with $k \ge 2$ and A = LF, where $L = Z \times S$ is a normal subgroup of A isomorphic to $GL_2(2^k)$ with direct factors $Z := Z(L) \cong Z_{2^k-1}$ and $S := L' \cong SL_2(2^k)$. We also have $|L \cap F| = |S \cap F| = 2$.

Proof. As A acts on X(0) faithfully by [5, Lemma 4(1)], A is isomorphic to a subgroup of $GL(X(0)) \cong GL_{d+1}(2)$, regarding X(0) as a (d + 1)-dimensional space over GF(2). Now M is a cyclic subgroup of order q-1 acting regularly on the nonzero vectors $(X(0) \cap X(t))^{\times}$ $(t \in GF(q)^{\times})$ of X(0), whence it is a Singer cycle of GL(X(0)). As A is a subgroup of GL(X(0)) containing a Singer cycle M on X(0), it follows from Kantor's result [4] that A has a normal subgroup isomorphic to $GL_{(d+1)/e}(2^e)$ for some divisor e of d + 1. If e = d + 1, this normal subgroup coincides with the Singer cycle M, whence A is contained in the normalizer of M in $GL_{d+1}(2)$. It is easy to verify that the normalizer is MF. Thus in this case we have A = MF. Assume that e < d + 1. As $d \ge 3$, one of the following holds from the arguments in [5, Lemma 5]:

- (a) d + 1 = 4 and $A \cong GL_{d+1}(2)$.
- (b) d+1 = 2k and A contains a normal subgroup isomorphic to $GL_2(2^k)$.

We eliminate Case (a) first. Assume that Case (a) holds. There are only three monomial o-polynomials in GF(16)[X]: X^2 , X^8 and X^{14} . As $S_{2,14}^4$ is isomorphic to $S_{8,14}^4$ by Lemma 2.2, we may assume that $S = S_{2,14}^4$. Observe that for $t \in GF(16) \setminus GF(2)$

$$\langle X(0), X(1) \rangle \cap X(t) = \{ (x, x^{\sigma}t + xt^{\phi}) \mid \operatorname{Tr}(x^{\sigma}t + xt^{\phi}) = 0 \},\$$

where Tr denotes the trace function for GF(16)/GF(2). As $Tr(x^{\sigma}t + xt^{\phi}) = Tr(x^{\sigma}(t + t^{\phi\sigma}))$, the member X(t) is contained in $\langle X(0), X(1) \rangle$ if and only if $t + t^{\phi\sigma} = t + t^{-2} = 0$, namely $t \in GF(4)^{\times}$. In particular, $\langle X(0), X(1) \rangle \cap X(t)$ is

of dimension 4 or 3 according as $t \in GF(4)^{\times}$ or not. However, as $A \cong GL_4(2)$ is doubly transitive on $S \setminus \{X(0)\}$, the stabilizer of X(1) in A is transitive on $S \setminus \{X(0), X(1)\}$, whence the dimension of $\langle X(0), X(1) \rangle \cap X(t)$ does not depend on the choice of $t \in GF(16) \setminus GF(2)$. This contradiction shows that Case (a) does not occur.

Assume that Case (b) occurs. As $d \ge 3$, we have $k \ge 2$. Let L be a normal subgroup of A isomorphic to $GL_2(2^k)$. Then $M \le L$ and $L = Z \times S$, where $S \cong SL_2(2^k)$ and $Z = Z(L) \cong Z_{2^k-1}$. Let η be a generator of $GF(q)^{\times}$. Then $\zeta := \eta^{2^k+1}$ is a generator of $GF(2^k)^{\times}$ and m_{ζ} is a generator of Z. In particular, $Z \le M$. Moreover, $M = Z \times (M \cap S)$, as $|Z| = 2^k - 1$ is coprime with $[M : Z] = 2^k + 1$.

A Singer cycle M in $GL(GF(q)) \cong GL_{d+1}(2)$ is self-centralizing. In particular, $C_A(L) \leq C_A(M) = M = Z \times (M \cap S)$. As S is simple and so $C_{M \cap S}(S) = 1$, we have $C_A(L) = Z$. Then $Z \leq C_A(S) \leq C_A(L) = Z$, whence $C_A(S) = Z$. Now A normalizes $S \cong \text{Inn}(S)$, and hence $A/SC_A(S)$ is isomorphic to a subgroup of Out(S), which is known to be the group of field automorphisms induced by $\text{Gal}(GF(2^k)/GF(2))$. Each element f_θ of F induces an automorphism on $GF(2^k)$. It induces a $GF(2^k)$ -linear map on GF(q) if and only if θ fixes every element of $GF(2^k)$, whence $\theta \in \langle \sigma^k \rangle$. Thus $F \cap L = \langle f_\sigma^k \rangle$ of order 2, which lies in S, as $[L:S] = 2^k - 1$ is odd. Then $F \cap L = F \cap S = \langle u \rangle$ with $u = (f_\sigma)^k$, and $F/(F \cap S)$ is isomorphic to Out(S). Thus $A/SC_A(S) \cong \text{Out}(S) \cong F/(F \cap S)$, whence $A = (C_A(S) \times S)F = (Z \times S)F$.

Step 3. *A acts on* $X(\infty) := \{(0, y) \mid y \in GF(q)\}.$

Proof. This is clear if A = MF, as both M and F act on $X(\infty)$ in view of Equations (3) and (4). Thus we may assume that Case (2) occurs in Step 2. We use the notation there.

We first examine the Z-orbits on $V^{\times} := V \setminus \{0\}$. Regard GF(q) as a 2dimensional space over $GF(2^k)$ and let ζ_i $(i = 0, ..., 2^k)$ be elements of $GF(q)^{\times}$ no two of which lie in the same 1-dimensional subspace over $GF(2^k)$ of GF(q). For each ζ_i $(i = 0, ..., 2^k)$ and $c \in GF(q)^{\times}$, set

$$Z(\zeta_i, c) := \{ (\zeta_i x, cx^{(\sigma\phi-1)/(\phi-1)}) \mid x \in GF(2^k)^{\times} \}.$$

As $Z = \langle m_{\zeta} \rangle$, each $Z(\zeta_i, c)$ is a Z-orbit of length $2^k - 1$ from Equation (3). Moreover, it is easy to see that $X(0)^{\times}$ is a disjoint union of $Z(\zeta_i, 0)$ for $i = 0, \ldots, 2^k$ and that $V \setminus (X(0) \cup X(\infty))$ is a disjoint union of $Z(\zeta_i, c)$ for $i = 0, \ldots, 2^k$ and $c \in GF(q)^{\times}$. On the other hand, each Z-orbit in $X(\infty)^{\times}$ is of the form

$$Z(c) := \{ (0, cy^{(\sigma\phi-1)/(\phi-1)} \mid y \in GF(2^k)^{\times} \}$$

for some $c \in GF(q)^{\times}$ by Equation (3). In particular, each *Z*-orbit in $X(\infty)^{\times}$ is of length *l*, where $l := \#\{y^{(\sigma\phi-1)/(\phi-1)} \mid y \in GF(2^k)^{\times}\}$.

Suppose $l < 2^k - 1$. Then every *Z*-orbit in $X(\infty)^{\times}$ has length l, which is different from the length $2^k - 1$ of each *Z*-orbit in $V \setminus X(\infty)$. As *Z* is normal in *A*, every element of *A* permutes the *Z*-orbits in V^{\times} . Thus *A* acts on the union of *Z*-orbits of length l, which is $X(\infty)^{\times}$. Hence in this case *A* acts on $X(\infty)$.

Thus we may assume that $l = 2^k - 1$, that is, the restriction of a map $(\sigma \phi - 1)/(\phi - 1)$ on $GF(2^k)$ is a (multiplicative) bijection. We denote its inverse map by $(\phi - 1)/(\sigma \phi - 1)$.

Now take any involution v of S. As v stabilizes X(0), there exist GF(2)-linear maps a, c, d on GF(q) such that

$$(x,y)^{v} = (x^{a} + y^{c}, y^{d})$$
(10)

for every $x, y \in GF(q)$. As v centralizes $Z = \{m_b \mid b \in GF(2^k)^{\times}\}$, Equations (3) and (10) show that $(x, y)^{m_b v} = ((bx)^a + (b^{(\sigma\phi-1)/(\phi-1)}y)^c, (b^{(\sigma\phi-1)/(\phi-1)}y)^d)$ coincides with $(x, y)^{vm_b} = (b \cdot x^a + b \cdot y^c, (b^{(\sigma\phi-1)/(\phi-1)}) \cdot y^d)$ for all $b \in GF(2^k)^{\times}$ and $x, y \in GF(q)$. In particular, we have $b \cdot y^c = (b^{(\sigma\phi-1)/(\phi-1)}y)^c$, or equivalently

$$(by)^c = (b^{(\phi-1)/(\sigma\phi-1)}) \cdot y^c$$
 (11)

for all $y \in GF(q)$ and $b \in GF(2^k)^{\times}$. From Equation (11) and the linearity of c, we have $(b_1 + b_2)^{(\phi-1)/(\sigma\phi-1)} \cdot y^c = ((b_1 + b_2)y)^c = (b_1y)^c + (b_2y)^c$, which is equal to $b_1^{(\phi-1)/(\sigma\phi-1)} \cdot y^c + b_2^{(\phi-1)/(\sigma\phi-1)} \cdot y^c$. Thus

$$((b_1 + b_2)^{(\phi-1)/(\sigma\phi-1)} + b_1^{(\phi-1)/(\sigma\phi-1)} + b_2^{(\phi-1)/(\sigma\phi-1)}) \cdot y^c = 0$$

for all $b_1 \neq b_2 \in GF(2^k)^{\times}$ and $y \in GF(q)$. If there exists $y \in GF(q)$ with $y^c \neq 0$, then we have

$$(b_1 + b_2)^{(\phi-1)/(\sigma\phi-1)} = b_1^{(\phi-1)/(\sigma\phi-1)} + b_2^{(\phi-1)/(\sigma\phi-1)}$$

for all $b_1 \neq b_2 \in GF(2^k)^{\times}$. Thus the map $(\phi - 1)/(\sigma\phi - 1)$ on $GF(2^k)$ is GF(2)-linear. Then its inverse map, which is $(\sigma\phi - 1)/(\phi - 1)$ restricted to $GF(2^k)$, is both multiplicative and additive on $GF(2^k)$. Thus it coincides with an automorphism τ in $Gal(GF(2^k)/GF(2))$. However, this is impossible by Lemma 2.3, as $k \geq 2$. Hence we have $y^c = 0$ for all $y \in GF(q)$. This shows that the involution v acts on $X(\infty)$.

As $S \cong SL_2(2^k)$ is generated by involutions, the above conclusion implies that $A = (Z \times S)F$ also acts on $X(\infty)$.

Step 4. Case (2) in Step 2 does not occur.

GENI

Proof. By Step 3, X(0) and $X(\infty)$ are A-invariant subspaces of V. As $V = X(0) \oplus X(\infty)$, for each $g \in A$ there are GF(2)-linear maps \overline{g} and \tilde{g} on GF(q) such that

$$(x,y)^g = ((x)\overline{g},(y)\tilde{g}) \tag{12}$$

for all $x, y \in GF(q)$. On the other hand, g induces a permutation on S. We denote $X(t)^g = X(t\hat{g})$ for each $t \in GF(q)$. As $X(0) \cap X(t) = [(t^{\varepsilon}, 0)]$ with $\varepsilon := (\phi-1)/(\sigma-1)$, applying g to this equation we have $X(0) \cap X(t\hat{g}) = [(t^{\varepsilon})\overline{g}, 0]$, whence $(t\hat{g})^{\varepsilon} = (t^{\varepsilon})\overline{g}$. Thus we obtain the following relation for all $t \in GF(q)^{\times}$:

$$(t)\hat{g} = ((t^{\varepsilon})\overline{g})^{1/\varepsilon}.$$
(13)

Each vector $(x, x^{\sigma}t^{1/\varepsilon} + xt^{\phi/\varepsilon})$ of $X(t^{1/\varepsilon})$ is mapped by g to the vector $(x\overline{g}, (x^{\sigma}t^{1/\varepsilon} + xt^{\phi/\varepsilon})\tilde{g})$, which lies in $X((t^{1/\varepsilon})\hat{g}) = X((t\overline{g})^{1/\varepsilon})$. Thus for all $t, x \in GF(q)^{\times}$ we have

$$(x^{\sigma}t^{1/\varepsilon} + xt^{\phi/\varepsilon})\tilde{g} = (x\overline{g})^{\sigma}(t\overline{g})^{1/\varepsilon} + (x\overline{g})(t\overline{g})^{\phi/\varepsilon}.$$
(14)

We now choose any element ρ from $GF(q) \setminus GF(2^k)$. Then $(1, \rho)$ forms a basis for a 2-dimensional vector space GF(q) over $GF(2^k)$. Consider a $GF(2^k)$ -linear map $l(\rho)$ on GF(q) determined by $1 \mapsto 1$ and $\rho \mapsto 1 + \rho$. Then $l(\rho)$ is a $GF(2^k)$ linear involution on GF(q) with determinant 1. We denote by SL(GF(q)) the group of $GF(2^k)$ -linear bijections on GF(q) with determinant 1. For every $a \in$ $GF(2^k)^{\times}$, the involution $l(a^{-1}\rho)$ is represented as $\begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix}$ with respect to a basis $(1, \rho)$ over $GF(2^k)$ for GF(q). Thus $\{l(a^{-1}\rho) \mid a \in GF(2^k)^{\times}\}$ generates a Sylow 2-subgroup of $SL(GF(q)) \cong SL_2(2^k)$.

Now $S \cong SL_2(2^k)$ ($\leq A$) acts faithfully on X(0), as every nonzero vector of X(0) is expressed as $(X(0) \cap X(t))^{\times}$ for some $t \in GF(q)^{\times}$. Thus, identifying X(0) with GF(q) via $(x, 0) \mapsto x$, the map $g \mapsto \overline{g}$ gives an isomorphism of S with SL(GF(q)). Then the vectors of X(0) fixed by an involution of S forms a k-dimensional subspace of X(0) over GF(2). Furthermore, for every $\rho \in GF(q) \setminus GF(2^k)$, there exists a unique involution $g = g(\rho)$ of S such that $\overline{g} = l(\rho)$. From the definition of $l(\rho)$, the subspace $\{(x, 0) \mid x \in GF(2^k)\}$ of X(0) coincides with the subspace of vectors of X(0) fixed by every $g(a\rho)$ ($a \in GF(2^k)^{\times}$).

The group S acts on $X(\infty)$ as well by Step 3. As the involution u in $F \cap S$ (see Step 2) induces on $X(\infty)$ the action $(0, y) \mapsto (0, y^{2^k})$ by Equation (4), the action of S is not trivial. As $k \ge 2$, S is simple, and hence the action of S on $X(\infty)$ is faithful as well. Identifying $X(\infty)$ with GF(q) via $(0, x) \mapsto x$, the map $g \mapsto \tilde{g}$ gives an isomorphism from S to SL(GF(q)). In particular, there is a k-dimensional subspace K of $X(\infty)$ consisting of vectors fixed by $g(a\rho)$ for all $a \in GF(2^k)^{\times}$. As $l(a\rho)$ fixes each element of $GF(2^k)$ and ε preserves $GF(2^k)$, it

CADEMIZ

follows from Equation (14) that vectors $(0, x^{\sigma}t^{1/\varepsilon} + xt^{\phi/\varepsilon})$ for all $x, t \in GF(2^k)$ lie in K. Note that, if $\sigma\phi$ is not the identity on $GF(2^k)$, these vectors span $GF(2^k)$ by the arguments in [5, Lemma 2], whence $K = \{(0, y) \mid GF(2^k)\}$. We now claim:

 $\sigma\phi$ is not the identity map on GF(q).

For otherwise, $\eta^{(\sigma\phi-1)/(\phi-1)} = 1$ for a generator η of $GF(q)^{\times}$, whence a generator $m_{\eta}^{2^k-1}$ of a Singer cycle $M \cap S$ in S acts trivially on $X(\infty)$ from Equation (3). This contradicts the faithfulness of S on $X(\infty)$.

Next we claim:

if $\sigma \phi$ is not the identity map on $GF(2^k)$, then we have a contradiction.

To show the claim, take any $\rho \in GF(q) \setminus GF(2^k)$ and choose an involution $g \in S$ with $\overline{g} = l(\rho)$. By Equation (14), applying to this $g, x = \rho$ and t = 1, we have

$$(\rho^{\sigma} + \rho)\tilde{g} = (1+\rho)^{\sigma} + (1+\rho) = \rho^{\sigma} + \rho.$$

Thus for every $\rho \in GF(q) \setminus GF(2^k)$, the vector $(0, \rho + \rho^{\sigma})$ lies in $K = \{(0, y) \mid$ $y \in GF(2^k)$ } by the remark above. As $x + x^{\sigma} = y + y^{\sigma}$ ($x, y \in GF(q)$) occurs exactly when $x + y = (x + y)^{\sigma} \in GF(2)$, there are $(q - 2^k)/2 = 2^{2k-1} - 2^{k-1}$ elements in the form $\rho + \rho^{\sigma}$ for some $\rho \in GF(q) \setminus GF(2^k)$. Hence we have $2^{2k-1} - 2^{k-1} \le 2^k$, from which $2^k \le 2 + 1 = 3$ or equivalently k = 1. However, this contradicts that $k \geq 2$.

Finally we claim:

if $\sigma \phi$ is the identity map on $GF(2^k)$, we have a contradiction as well.

In this case, the vectors $(0, x^{\sigma}t^{1/\varepsilon} + xt^{\phi/\varepsilon})$ for all $x, t \in GF(2^k)$ span a hyperplane $H := \{(0, y) \mid y \in GF(2^k), \operatorname{Tr}_{GF(2^k)/GF(2)}(y) = 0\}$ of the subspace $\{(0,y) \mid y \in GF(2^k)\}$. The corresponding hyperplane of $GF(2^k)$ is denoted H': $H' := \{ y \in GF(2^k) \mid \operatorname{Tr}_{GF(2^k)/GF(2)}(y) = 0 \}.$

Take any $\rho \in GF(q) \setminus GF(2^k)$. We claim that there are at least $2^{k-1} - 1$ elements $a \in GF(2^k)^{\times}$ such that $(a\rho) + (a\rho)^{\sigma} \in H'$. If $(a\rho) + (a\rho)^{\sigma} \in H'$ for all $a \in GF(2^k)$, this clearly holds. Thus we may assume that $\rho + \rho^{\sigma} \notin H'$, replacing ρ by its suitable multiple by an element of $GF(2^k)^{\times}$. The subspace of $X(\infty)$ fixed by $g(\rho)$ is $\{(0, y) \mid y \in K'\}$, where K' denotes the k-dimensional subspace of GF(q) over GF(2) spanned by $\rho + \rho^{\sigma}$ and all $y \in H'$. As we observed before, every vector of $\{(0, y) \mid y \in K'\}$ is fixed by $g(a\rho)$ for all $a \in GF(2^k)^{\times}$. If we replace ρ by $a\rho$ at the calculation of $\rho + \rho^{\sigma}$ in the proof of the last claim, we conclude that $(0, (a\rho) + (a\rho)^{\sigma})$ is fixed by $g(a\rho)$. Hence

$$(a\rho) + (a\rho)^{\sigma} \in K'$$

for all $a \in GF(2^k)^{\times}$. Then we can define a map κ from $GF(2^k)$ to K' by $\kappa(a) := (a\rho) + (a\rho)^{\sigma}$. This is a GF(2)-linear map. It is injective, because $\kappa(a) = 0$ implies that $a\rho = (a\rho)^{\sigma} \in GF(2)$ but $a\rho \in GF(q) - GF(2^k)$ unless a = 0. Then κ is an isomorphism from $GF(2^k)$ with K'. In particular, there are exactly $2^{k-1} - 1$ elements $a \in GF(2^k)^{\times}$ with $(a\rho) + (a\rho)^{\sigma} \in H'$.

Let ρ_1, \ldots, ρ_m $(m = 2^k)$ be a set of representatives for projective points of a projective line PG(GF(q)), distinct from the projective point $[1] = GF(2^k)$, where we regard GF(q) as a 2-dimensional vector space over $GF(2^k)$. The above paragraph shows that for each ρ_i $(i = 1, \ldots, m)$, there are at least $2^{k-1}-1$ elements $a \in GF(2^k)^{\times}$ such that $(a\rho_i) + (a\rho_i)^{\sigma} \in H'$. Remark that $(a\rho_i) + (a\rho_i)^{\sigma}$ lies in H' implies that it lies in $(H')^{\times}$, as $(a\rho_i) = (a\rho_i)^{\sigma} \in GF(2)$ would imply that $\rho_i \in GF(2^k)$.

Thus the number of nonzero vectors x in $GF(q) \setminus GF(2^k)$ satisfying $x + x^{\sigma} \in (H')^{\times}$ is at least $(2^{k-1} - 1)2^k$. As $x + x^{\sigma} = y + y^{\sigma}$ if and only if $x + y \in GF(2)$, we conclude that

$$2^{k}(2^{k-1}-1)/2 \le |(H')^{\times}| = 2^{k-1}-1.$$

Then $k \leq 1$, which is a contradiction.

Remark 3.1. Up to the above step, we do not use the assumption that ϕ does not lie in Gal(GF(q)/GF(2)). Thus the conclusion in Step 4 also holds in the case when $\phi = \tau$ is a generator of Gal(GF(q)/GF(2)). This corresponds to [5, Lemma 6].

Note that the proof given there is incorrect, as it confuses the trace function for GF(q)/GF(2) with that for $GF(2^k)/GF(2)$. Thus Step 2, Step 3, Step 4 provide a correction to the proof of [5, Lemma 6].

We have determined the structure of A as A = MF. Now suppose that G = Aut(S) contains an automorphism which sends X(0) to a member of $S \setminus \{X(0)\}$. Then G is doubly transitive on S, as M is transitive on $S \setminus \{X(0)\}$.

Step 5. There is a normal subgroup N of G which acts regularly on S. In particular, N is an elementary abelian 2-group of order $q = 2^{d+1}$.

Proof. From Step 2, the one point stabilizer A of a doubly transitive group G has a normal subgroup M acting regularly on the remaining members. By a classical result [2] by Hering, Kantor and Seitz, such doubly transitive groups are classified. Thus G has a normal subgroup N which either acts regularly on S or is isomorphic to one of the following simple groups. In each case, the permutation representation of G on S is equivalent to its action via conjugation on the set of Sylow p-subgroups of N, where p is a prime dividing r:

 $N \cong PSL_2(r)$, Sz(r) $(r = 2^{2e+1})$, $PSU_3(r)$, or a group of Ree type (${}^2G_2(r)$) with $r = 3^{2e+1}$.

Thus $|\mathcal{S}| = r + 1$, $r^2 + 1$, $r^3 + 1$ or $r^3 + 1$, according as $N \cong PSL_2(r)$, Sz(r), $PSU_3(r)$ or a group of Ree type. As $|\mathcal{S}| = 2^{d+1}$, N is not Sz(r). If $N \cong PSU_3(r)$ or a group of Ree type, then $|\mathcal{S}| = 2^{d+1} = r^3 + 1 = (r+1)(r^2 - r + 1)$, whence both r+1 and $r^2 - r + 1$ are power of 2 larger than 1. However, $(r+1, r^2 - r + 1) = 1$ or 3, which is a contradiction. If $N \cong PSL_2(r)$ with $r+1 = 2^{d+1}$, the two point stabilizer is a cyclic group of order (r-1)/2. As the two point stabilizer in G is a cyclic group of order d+1, we conclude that $(2^{d+1} - 2)/2 = 2^d - 1$ divides d+1, which occurs only when d = 1 or d = 2. This contradicts our assumption that $d \ge 3$.

Thus *G* has a regular normal subgroup *N*. Then *N* is an elementary abelian 2-subgroup of order 2^{d+1} by a standard argument.

As *N* is a regular normal subgroup on *S*, the action of *A* on $S \setminus \{X(0)\}$ is equivalent to the action of *A* via conjugation on $N \setminus \{1\}$. In particular, the group *M* acts regularly on $N \setminus \{1\}$ under conjugation. Thus the dimensions of $[V, \tau'] := \{v + v^{\tau'} \mid v \in V\}$ for involutions τ' of *N* do not depend on the choice of τ' . We next observe the action of *N* on *V*, specifically the commutator subspace $[V, N] := \langle v + v^{\tau'} \mid \tau' \in N \rangle$. As *N* is normalized by *G*, the subspace [V, N] is invariant under the action of *G*. By standard arguments for 2-groups, [V, N] is a proper subspace of *V*.

Step 6. We have $[V, N] = X(\infty)$. In particular, $X(\infty)$ is *G*-invariant.

Proof. For short, we set W = [V, N] for a while. (The arguments in the few paragraphs below work for any *G*-invariant proper subspace *W* of *V*. This fact will be used in Step 1 of the proof of Theorem 1.2.)

Assume that W contains a point of form $X(a) \cap X(b)$ for some $a \neq b \in GF(q)$. As G is doubly transitive on $S = \{X(t) \mid t \in GF(q)\}$ and W is G-invariant, this implies that W contains $X(a) = \langle X(a) \cap X(b) \mid b \in GF(q) \setminus \{a\} \rangle$ for all $a \in GF(q)$, whence $W = \langle X(a) \mid a \in GF(q) \rangle = V$, a contradiction. Thus W does not contain a point of form $X(a) \cap X(b)$ for any $a \neq b \in GF(q)$, or equivalently $W \cap X(a) = \{(0,0)\}$ for all $a \in GF(q)$.

Assume now that W contains two vectors (x, y) and (x', y) for some $x \neq x'$ and $y \in GF(q)$. Then W contains (x - x', 0) = (x, y) - (x', y), which is a nonzero vector of X(0). This contradicts the above conclusion. Thus for each $y \in GF(q)$, there is at most one element $x \in GF(q)$ such that $(x, y) \in W$. Hence $|W| \leq q = 2^{d+1}$.

Now assume that W is not contained in $X(\infty)$. Then there is a vector (x, y) in W with $x \neq 0$. As W is invariant under M, it follows from the action of m_b (see

Equation (3)) that W contains a vector of form (x', y') for every $x' \in GF(q)$. Thus $|W| \ge q$.

Together with the above conclusions, we have either $W \leq X(\infty)$ or dim W = d+1. Assume that W is not contained in $X(\infty)$. Then, as M acts on W, it follows from Equation (3) that $W = Y(c) := \{(x, cx^{(\phi\sigma-1)/(\phi-1)}) \mid x \in GF(q)\}$ for some $c \in GF(q)^{\times}$ (compare the arguments in [5, Lemma 10] with τ replaced by ϕ). However, then the map $(\sigma\phi - 1)/(\phi - 1)$ is additive on $GF(q)^{\times}$, as Y(c) is a subspace. This contradicts Lemma 2.3. Thus we have $W \subseteq X(\infty)$.

Up to here, arguments can be applied to any *G*-invariant proper subspace W of *V*. Now we specialize to [V, N].

As N acts regularly on S, there is a unique involution $\tau(t)$ of N exchanging X(0) and X(t) for each $t \in GF(q)^{\times}$. Then $(x,0) + (x,0)^{\tau(t)} \in [X(0), \tau(t)] \leq [V,N]$. Notice here that $[V,N] = W \leq X(\infty) = \{(0,y) \mid y \in GF(q)\}$ by the conclusion in the previous paragraph. Thus $(x,0)^{\tau(t)} = (x,y)$ for some $y \in GF(q)$. As $(x,0)^{\tau(t)} \in X(0)^{\tau(t)} = X(t)$, we have $y = x^{\sigma}t + xt^{\phi}$. Hence

$$[X(0), \tau(t)] = \{ (0, x^{\sigma}t + xt^{\phi}) \mid x \in GF(q) \}.$$
(15)

The map $X(0) \ni (x,0) = v \mapsto v + v^{\tau(t)} \in [X(0), \tau(t)]$ is a GF(2)-linear surjection with kernel $C_{X(0)}(\tau(t)) = X(0) \cap X(t)$ of dimension 1. Thus $[X(0), \tau(t)]$ is a subspace of [V, N] of dimension d. On the other hand, [V, N] is contained in the (d + 1)-dimensional subspace $X(\infty)$ by the conclusion in the above paragraph. Thus we have either dim[V, N] = d or $[V, N] = X(\infty)$. In the former case, we have $[V, N] = [X(0), \tau(t)]$ for all $t \in G(q)^{\times}$. In particular, $[X(0), \tau(t)] = [X(0), \tau(1)]$. Then it follows from Equation (15) that for every $x \in GF(q)$ and $t \in GF(q)^{\times}$ we have $x^{\sigma}t + xt^{\phi} = y^{\sigma} + y$ for some $y \in GF(q)$. Thus $\operatorname{Tr}(x^{\sigma}t + xt^{\phi}) = 0$ for all $x \in GF(q)$ and $t \in GF(q)^{\times}$, where $\operatorname{Tr} = \operatorname{Tr}_{GF(q)/GF(2)}$. As $\operatorname{Tr}(x^{\sigma}t + xt^{\phi}) = \operatorname{Tr}(x^{\sigma}(t + t^{\phi\sigma}))$, this implies that $t = t^{\phi\sigma}$ for all $t \in GF(q)^{\times}$. Hence $\phi = \sigma^{-1} \in \operatorname{Gal}(GF(q)/GF(2))$, which contradicts our hypothesis. Thus we have $[V, N] = X(\infty)$.

Step 7. We have a contradiction, if G contains an automorphism sending X(0) to a member distinct from X(0).

Proof. We denote by τ the unique involution of N which sends X(0) to X(1). From regularity of the action of N on S, such an element uniquely exists. As N is an elementary abelian 2-group, τ is an involution and it exchanges X(0) and X(1).

We examine the action of τ on V. Since τ is GF(2)-linear on V and stabilizes $X(\infty)$ by Step 6, we can display the action of τ as follows.

$$(x,y)^{\tau} = (x^a, x^b + y^d),$$
 (16)

where a, b and d are GF(2)-linear maps from GF(q) to itself. They can be determined as follows. We have $(x, y) + (x, y)^{\tau} \in [V, \tau] \leq [V, N] = X(\infty)$, whence $x = x^a$ for every $x \in GF(q)$, that is, $a = \operatorname{id}$, the identity map on GF(q). As $(x, 0)^{\tau} = (x, x^b) \in X(0)^{\tau} = X(1)$, we have $x^b = x^{\sigma} + x$ for every $x \in GF(q)$. Thus $b = \sigma + \operatorname{id}$. Then we have $(x, x^{\sigma} + x)^{\tau} = (x, x^{\sigma} + x + (x + x^{\sigma})^d)$, which is a vector of $X(1)^{\tau} = X(0)$. Hence from the linearity of d we have $x + x^d = x^{\sigma} + x^{\sigma d}$ for all $x \in GF(q)$. Now remark that τ commutes with a generator f_{σ} of F, because both τ and $\tau^{f_{\sigma}}$ are involutions of N which send X(0) to X(1), whence $\tau = \tau^{f_{\sigma}}$. This implies that $x^{d\sigma} = x^{\sigma d}$ for all $x \in GF(q)$ from Equation (16). Then we have $x + x^d = x^{\sigma} + x^{d\sigma} = (x + x^d)^{\sigma}$ for all $x \in GF(q)$. Hence $\varepsilon(x) := x + x^d \in GF(2)$ for all $x \in GF(2)$.

Summarizing, we have

$$(x,y)^{\tau} = (x, x^{\sigma} + x + y + \varepsilon(y)) \tag{17}$$

for all $x, y \in GF(q)$, where $\varepsilon(y)$ is an element of GF(2) uniquely determined by y.

We write $X(t)^{\tau} = X(\overline{t})$ for $t \in GF(q)^{\times}$. From Equation (17), we have $(x, x^{\sigma}t + xt^{\phi})^{\tau} = (x, x^{\sigma} + x + x^{\sigma}t + xt^{\phi} + \varepsilon(x^{\sigma}t + xt^{\phi}))$, which lies in $X(t)^{\tau} = X(\overline{t})$. Thus

$$x^{\sigma}(\overline{t}+t+1) + x((\overline{t})^{\phi} + t^{\phi} + 1) = \varepsilon(x^{\sigma}t + xt^{\phi})$$
(18)

for all $t \in GF(q)^{\times}$ and $x \in GF(q)$. Putting x = 1, we have

$$t + \overline{t} + t^{\phi} + (\overline{t})^{\phi} = \varepsilon(t + t^{\phi}).$$
(19)

Substituting Equation (19) into Equation (18), we have

$$(1+t+\overline{t})(x+x^{\sigma}) = x\varepsilon(t+t^{\phi}) + \varepsilon(x^{\sigma}t+xt^{\phi}).$$
(20)

Suppose $\varepsilon(t + t^{\phi}) = 1$ for some $t \in GF(q)^{\times}$. Then for every $x \in GF(q) \setminus GF(2)$, we have $x^{\sigma} + x \neq 0$ and $1 + t + \overline{t} = (x + \varepsilon(x^{\sigma}t + xt^{\phi}))/(x^{\sigma} + x)$ from Equation (20). As this holds for every $x \in GF(q)$, we have

$$\frac{x + \varepsilon (x^{\sigma}t + xt^{\phi})}{x^{\sigma} + x} = \frac{y + \varepsilon (y^{\sigma}t + yt^{\phi})}{y^{\sigma} + y}$$
(21)

for all $x, y \in GF(q) \setminus GF(2)$. Write $\varepsilon(x^{\sigma} + xt^{\phi}) = \varepsilon_x$ and $\varepsilon(y^{\sigma} + yt^{\phi}) = \varepsilon_y$, elements of GF(2). Then Equation (21) can be rewritten as

$$xy^{\sigma} + yx^{\sigma} = \varepsilon_x(y^{\sigma} + y) + \varepsilon_y(x^{\sigma} + x),$$

whence

$$\operatorname{Tr}(xy^{\sigma} + yx^{\sigma}) = 0$$

for all $x, y \in GF(q) \setminus GF(2)$. Hence we have $0 = \text{Tr}(x^{\sigma}(y + y^{\sigma^2}))$ for all $x, y \in GF(q)$, from which we have $y = y^{\sigma^2}$ for all $y \in GF(q)$. However, this implies that d + 1, the order of a generator σ of Gal(GF(q)/GF(2)), is 2. This contradicts $d \ge 2$.

Hence we have $\varepsilon(t+t^{\phi}) = 0$ for all $t \in GF(q)$. Then it follows from Equation (20) that $(1+t+\overline{t})(x+x^{\sigma}) = \varepsilon(x^{\sigma}t+xt^{\phi})$ for all $x, t \in GF(q)$. Thus

$$1 + t + \overline{t} = \varepsilon_x / (x + x^{\sigma})$$

for all $x \in GF(q) \setminus GF(2)$ with $\varepsilon_x = \varepsilon(x^{\sigma}t + xt^{\phi}) \in GF(2)$. Suppose $\varepsilon_x = 1$ for all $x \in GF(q) \setminus GF(2)$. As t and \overline{t} are independent of x, then we have $1/(x + x^{\sigma}) = 1/(y + y^{\sigma})$ for every $x, y \in GF(q) \setminus GF(2)$. However, this is equivalent to the condition that $x + y = (x + y)^{\sigma} \in GF(2)$ for all $x, y \in GF(q)$, which contradicts $q = 2^{d+1} \ge 8$. Hence $\varepsilon_x = 0$ for some $x \in GF(q) \setminus GF(2)$. This implies that for all $t \in GF(q)^{\times}$ we have

$$\overline{t} = t + 1.$$

From Equation (19) and $\varepsilon(t + t^{\phi}) = 0$, then we have $1 + t^{\phi} = (1 + t)^{\phi}$ for all $t \in GF(q)^{\times}$. However, as ϕ is multiplicative, this shows that for $s, t \in GF(q)$ with $t \neq 0$ we have

$$(s+t)^{\phi} = s^{\phi}((s/t)^{\phi} + 1)^{\phi} = s^{\phi}((s/t)^{\phi} + 1) = s^{\phi} + t^{\phi}.$$

Thus ϕ is additive as well. Hence ϕ is a field automorphism on GF(q), which contradicts our assumption that $\phi \notin \operatorname{Gal}(GF(q)/GF(2))$.

By Step 7, the automorphism group G stabilizes X(0). Hence G = A = MF, and Theorem 1.1 is proved.

4. Isomorphism

In this section, we prove Theorem 1.2.

We set $S := S_{\sigma,\phi}^{d+1}$ with $S' := S_{\sigma',\phi'}^{d+1}$. To distinguish members of S from S', we denote members of S and S' as X(t) and X'(t) respectively. The normal subgroup of Aut(S) acting regularly on $S \setminus \{X(0)\}$ (see Theorem 1.1) is denoted $M_{\sigma,\phi}$. The corresponding group for S' is denoted $M_{\sigma',\phi'}$. To distinguish elements m_b (see Definition 3) of $M_{\sigma,\phi}$ from the corresponding elements in $M_{\sigma',\phi'}$, we denote the latter by m'_b ($b \in GF(q)^{\times}$).

In view of Lemma 2.2, it suffices to show the 'only if ' part of Theorem 1.2. In the case when d = 2, $S_{2.6}^3$ and $S_{4.6}^3$ are the only candidates for S and S'

(see Step 1 in the previous section), and there is nothing to prove. Thus we may assume that $d \ge 3$. Let τ be a GF(2)-linear bijection on V inducing an isomorphism of S with S'.

Step 1. We may assume that τ satisfies the following conditions.

$$X(0)^{\tau} = X'(0), X(1)^{\tau} = X'(1), M_{\sigma,\phi}^{\tau} = M_{\sigma',\phi'} \text{ and } X(\infty)^{\tau} = X(\infty).$$

Proof. As X(0) is the unique member of S fixed by $\operatorname{Aut}(S)$ by Theorem 1.1, it is sent by τ to the unique member X'(0) of $S' = S^{\tau}$ fixed by $\operatorname{Aut}(S')$. As $d \geq 3$, $M_{\sigma,\phi}^{\tau}$ and $M_{\sigma',\phi'}$ are normal subgroups of $\operatorname{Aut}(S') \cong Z_{q-1}.Z_{d+1}$ (see Theorem 1.1) acting regularly on $S' \setminus \{X'(0)\}$. Thus $M_{\sigma,\phi}^{\tau} = M_{\sigma',\phi'}$.

The subspace $X(\infty)^{\tau}$ is a (d+1)-dimensional subspace of V which is invariant under $\operatorname{Aut}(S)^{\tau} = \operatorname{Aut}(S')$. Thus it follows from the argument in the first part of the proof for Step 6 (or [5, Lemma 10] together with Lemma 2.3) that $X(\infty)^{\tau} =$ $X(\infty)$. As $M_{\sigma',\phi'}$ is transitive on $S' \setminus \{X'(0)\}$, we may furthermore assume that $X(1)^{\tau} = X'(1)$, replacing τ by $\tau m'$ for a suitable element m' of $M_{\sigma',\phi'}$. \Box

As τ stabilizes both $X(0) = X'(0) = \{(x,0) \mid x \in GF(q)\}$ and $X(\infty) = \{(0,y) \mid y \in GF(q)\}$, there exist GF(2)-linear bijections a and d on GF(q) such that

$$(x,y)^{\tau} = (x^a, y^d) \tag{22}$$

for all $x, y \in GF(q)$.

Step 2. In Expression (22), we may assume that a = id, the identity on GF(q).

Proof. As $M_{\sigma,\phi}^{\tau} = M_{\sigma',\phi'}$, there is a positive integer i with $m_{\eta}^{\tau} = (m_{\eta}')^i$, whence $m_b^{\tau} = (m_b')^i$ for all $b \in GF(q)^{\times}$. Applying $m_b \tau = \tau(m_b')^i$ to (x, y), we have

$$(bx)^a = b^i \cdot x^a \tag{23}$$

$$(b^{(\sigma\phi-1)/(\phi-1)}y)^d = ((b^i)^{(\sigma'\phi'-1)/(\phi'-1)}) \cdot y^d$$
 (24)

for all $b \in GF(q)^{\times}$, $x, y \in GF(q)$. From Equation (23) and the linearity of a, we have $(b_1 + b_2)^i = b_1^i + b_2^i$ for every $b_1 \neq b_2 \in GF(q)^{\times}$. Hence the map $GF(q) \ni x \mapsto x^i \in GF(q)$ is both additive and multiplicative, whence $x^i = x^{\theta}$ ($x \in GF(q)$) for some $\theta \in \text{Gal}(GF(q)/GF(2))$. Then all the conditions in Step 1 are satisfied with τ replaced by $\tau' := \tau f'_{\theta^{-1}}$, where $f'_{\theta^{-1}}$ denotes the field automorphism of Aut(S') corresponding to θ^{-1} . Moreover, we have $m_b\tau' = \tau'm'_b$. Thus replacing τ by τ' , we may assume that $(bx)^a = b \cdot x^a$ for all $b, x \in GF(q)$. As $X(0) \cap X(1) = [(1,0)]$ is mapped by τ to $X'(0) \cap X'(1) = [(1,0)]$ by Step 1, we have $1^a = 1$. Thus $b^a = b \cdot 1^a = b$ for all $b \in GF(q)$. Hence we conclude that a = id, whence i = 1 in Equations (23),(24).

CADEMIZ

Step 3. There is a non-prime subfield F of GF(q) such that in Expression (22) we have $d = \mu q$ for some $\mu \in \text{Gal}(GF(q)/GF(2))$ and an F-linear bijection q on GF(q). Furthermore, $((\sigma\phi-1)/(\phi-1))\mu\nu' = (\sigma'\phi'-1)/(\phi'-1)$ on $GF(q)^{\times}$ for every $\nu' \in \operatorname{Gal}(GF(q)/F)$.

Proof. Let $I := \{b^{(\sigma\phi-1)/(\phi-1)} \mid b \in GF(q)\}$ and $I' := \{b^{(\sigma'\phi'-1)/(\phi'-1)} \mid b \in GF(q)\}$ GF(q). From Equation (24), for $b \in GF(q)^{\times}$ we have $b^{(\sigma\phi-1)/(\phi-1)} = 1$ if and only if $b^{(\sigma'\phi'-1)/(\phi'-1)}$. Thus the endomorphisms $(\sigma\phi-1)/(\phi-1)$ and $(\sigma'\phi'-1)/(\phi'-1)$ of $GF(q)^{\times}$ have the same kernel. As I and I' are images of these endomorphisms, they are subgroups of a cyclic group $GF(q)^{\times}$ of the same order, whence I = I'.

Let F be the set of sums of elements of I = I'. As I is closed under multiplication, F is closed under both addition and multiplication. Thus F is a subfield of GF(q). If F is GF(2), then $I = \{1\}$, whence $x^{\sigma\phi-1} = 1$ for all $x \in GF(q)^{\times}$. However, this implies that $\sigma \phi = id$ on GF(q), which contradicts our assumption that ϕ is not contained in Gal(GF(q)/GF(2)). Thus F properly contains GF(2).

Then it follows from Equation (24) (with i = 1 by Step 2) and the linearity of d that there exists an additive map μ on F such that

$$(fy)^d = f^\mu \cdot y^d \tag{25}$$

$$(b^{(\sigma\phi-1)/(\phi-1)})^{\mu} = b^{(\sigma'\phi'-1)/(\phi'-1)}$$
(26)

for all $f \in F$, $b \in GF(q)^{\times}$ and $y \in GF(q)$. From Equation (26), μ is multiplicative on I, whence μ is multiplicative on F, as every element of F is a sum of elements in I. Thus μ is an automorphism in Gal(F/GF(2)). We also denote by μ an automorphism in Gal(GF(q)/GF(2)) whose restriction on F is μ . Then it follows from Equation (25) that $(fy)^{d\mu^{-1}} = f(y^{d\mu^{-1}})$ for all $f \in F$ and $y \in GF(q)$. Hence $d\mu^{-1} =: h$ is an F-linear bijection on GF(q). Thus $d = h\mu = \mu g$, where $g := \mu^{-1}h\mu$ is an *F*-linear bijection.

As $b^{(\sigma\phi-1)/(\phi-1)} \in F$ for all $b \in GF(q)^{\times}$, the last claim in Step follows from Equation (26).

Step 4. Let $F \cong GF(2^s)$ with sr = d+1, and let ν be an automorphism of GF(q)defined by $x^{\nu} = x^{2^{s}}$. There exists some *i* with $0 \le i \le r-1$ such that one of the following occurs, where μ is the element of Gal(GF(q)/GF(2)) in Step 3.

- (a) $\sigma = \sigma'$ and $\mu \nu^i = id$.
- (b) $\sigma\sigma' = \text{id and } \mu\nu^i = \sigma'.$

Proof. For $t \in GF(q)$, we write $X(t)^{\tau} = X'(\overline{t})$. As a vector $(x, x^{\sigma}t + xt^{\phi})$ of X(t)is mapped by τ to a vector $(x, ((x^{\sigma}t + xt^{\phi})^{\mu})^g)$ of $X'(\overline{t})$ by Step 2 and Step 3,

we have

$$(x^{\sigma\mu}t^{\mu} + x^{\mu}t^{\phi\mu})^g = x^{\sigma'}\overline{t} + x(\overline{t})^{\phi'}$$
(27)

for all $x, t \in GF(q)$. Putting t = 1, for all $x \in GF(q)$ we have

$$(x^{\sigma\mu} + x^{\mu})^g = x^{\sigma'} + x.$$
 (28)

Now there is a unique polynomial g(X) in GF(q)[X] of degree at most q-1 such that $g(x) = x^g$ for all $x \in GF(q)$. As g is F-linear for $F = GF(2^s)$, we have

$$g(X) = \sum_{i=0}^{r-1} b_i X^{2^{st}}$$

for some $b_i \in GF(q)$ (i = 0, ..., r - 1). Recall that there are positive integers m, k with $1 \le m, k \le d$ coprime with d + 1 so that $x^{\sigma} = x^{2^m}$ and $x^{\sigma'} = x^{2^k}$ for all $x \in GF(q)$. We also define a with $0 \le a \le d$ by $x^{\mu} = x^{2^a}$ for all $x \in GF(q)$. Then it follows from Equation (28) that

$$\sum_{i=0}^{r-1} b_i x^{2^{m+a+is}} + \sum_{i=0}^{r-1} b_i x^{2^{a+is}} = x^{2^k} + x$$
(29)

for all $x \in GF(q)$. Choose integers α_i and β_i with $0 \le \alpha_i, \beta_i \le q-1$ so that

$$X^{\alpha_i} \equiv X^{2^{m+a+is}}, X^{\beta_i} \equiv X^{2^{a+is}}$$
modulo $X^q - X$

(i = 0, ..., r - 1). Then the left hand side of Equation (29) is given as L(x) $(x \in GF(q))$ for a polynomial $L(X) := \sum_{i=0}^{r-1} b_i X^{\alpha_i} + \sum_{i=0}^{r-1} b_i X^{\beta_i}$ of degree at most q - 1, while the right hand side is R(x) ($x \in GF(q)$) for $R(X) = X^{2^k} + X$ of degree at most q - 1. Thus Equation (29) implies that L(X) = R(X) as polynomials of GF(q)[X], that is,

$$\sum_{i=0}^{r-1} b_i X^{\alpha_i} + \sum_{i=0}^{r-1} b_i X^{\beta_i} = X^{2^k} + X.$$
(30)

Now it is easy to verify that $\alpha_i \neq \alpha_j$ and $\beta_i \neq \beta_j$ if $0 \leq i \neq j \leq r-1$. If $\alpha_i = \beta_j$ for some i, j, then $X^{2^{m+a+is}} \equiv X^{2^{a+js}}$ (modulo $X^q - X$). This implies that $m \equiv (j-i)s$ (modulo d+1). However, s is a divisor of d+1 with $s \geq 2$, as GF(2) is a proper subfield of $F = GF(2^s)$ by Step 3. This contradicts that m is coprime with d+1. Hence $\alpha_i \neq \beta_j$ for every $0 \leq i, j \leq q-1$.

Thus the monomials in the left hand side of Equation (30) are distinct from each other. As X^{α_i} and X^{β_i} has the same coefficient b_i , we conclude that there exists a unique *i* with $0 \le i \le r - 1$ such that $b_i = 1$, $b_j = 0$ for every $j \ne i$, and that either $X^{\alpha_i} = X^{2^k}$ and $X^{\beta_i} = X$ or $X^{\alpha_i} = X$ and $X^{\beta_i} = X^{2^k}$. Accordingly, we have Case (a) or Case (b) in the claim of this Step.

Step 5. We have either $(\sigma, \phi) = (\sigma', \phi')$ or $\sigma\sigma' = id = \phi\phi'$.

Proof. Note that $\nu' := \nu^i$ in Step 4 lies in Gal(GF(q)/F) as $F = GF(2^s)$. Then it follows from the last remark in Step 3 that we have

$$(\sigma\phi - 1)\mu\nu'(\phi' - 1) = (\sigma'\phi' - 1)(\phi - 1).$$

If Case (a) in Step 4 holds, then $(\sigma\phi - 1)(\phi' - 1) = (\sigma\phi' - 1)(\phi - 1)$, from which we have $(\sigma - 1)(\phi - \phi') = 0$. Thus $\phi = \phi'$ as $\sigma - 1$ is bijective. If Case (b) in Step 4 holds, then we have $(\sigma\phi - 1)\sigma'(\phi' - 1) = (\sigma'\phi' - 1)(\phi - 1)$. Multiplying both sides by σ and using $\sigma\sigma' = id$, we have $(\sigma\phi - 1)(\phi' - 1) = (\phi' - \sigma)(\phi - 1)$. It follows that $(\sigma - 1)(\phi\phi' - 1) = 0$, whence $\phi\phi' = id$ as $\sigma - 1$ is bijective. \Box

This completes the proof of the 'only if' part of Theorem 1.2. Thus Theorem 1.2 is established by Lemma 2.2.

5. Some general setting

In the definition of $S_{\sigma,\phi}^{d+1}$, we only consider a generator σ of Gal(GF(q)/GF(2)). In fact, this is naturally required, as the following proposition shows.

Proposition 5.1. For any polynomials a(X) and b(X) in GF(q)[X], we define $S_{a,b}^{d+1}$ to be the collection of X(t) over $t \in GF(q)$, where

 $X(t) := \{ (x, a(x)t + xb(t)) \mid x \in GF(q) \}.$

Assume that $S_{a,b}^{d+1}$ is a d-dimensional dual hyperoval. Then there exist $\alpha, \beta \in GF(q)^{\times}$, $\gamma \in GF(q)$, a generator σ of $\operatorname{Gal}(GF(q)/GF(2))$ and an o-polynomial $\phi(X)$ of GF(q)[X] such that $a'(x) = \alpha x^{\sigma}$ and $b'(x) = \beta x^{\phi} + \gamma$ for all $x \in GF(q)$ and $S_{a,b}^{d+1} = S_{a',b'}^{d+1}$.

In particular, $S_{a,b}^{d+1}$ is isomorphic to $S_{\sigma,\phi}^{d+1}$.

We first prepare a lemma.

Lemma 5.2. Let c(X) be a polynomial of GF(q)[X] such that

$$(c(t_1) + c(t_2))/(t_1 + t_2) \neq (c(t_1) + c(t_3))/(t_1 + t_3)$$

for every mutually distinct elements t_1, t_2, t_3 of GF(q). Then there exist $\lambda \in GF(q)$ and an o-polynomial f(X) such that for all $t \in GF(q)$ we have

$$c(t) = (c(0) + c(1) + \lambda)f(t) + \lambda t + c(0),$$

where λ is the unique value of GF(q) which cannot be written as $(c(t_1) + c(t_2))/(t_1 + t_2)$ for any $t_1 \neq t_2 \in GF(q)$.

Proof. Recall that three points $[a_{i1}, a_{i2}, a_{i3}]$ (i = 1, 2, 3) of PG(2, q) are not in a line in common if and only if $det(a_{ij}) \neq 0$. Thus no three distinct points of $\mathcal{A} := \{[1, t, c(t)] \mid t \in GF(q)\} \cup \{[0, 0, 1]\}$ are collinear from the hypothesis. Then \mathcal{A} is uniquely extended to a hyperoval \mathcal{O} of PG(2, q). As the nucleus does not lie on any line through two distinct points of \mathcal{A} , it is of form $[0, 1, \lambda]$, where λ is the unique value of GF(q) which cannot be written as $(c(t_1) + c(t_2))/(t_1 + t_2)$ for some $t_1 \neq t_2 \in GF(q)$.

As (1,0,c(0)), (1,1,c(1)) and $(0,1,\lambda)$ are linearly independent, there is a unique GF(q)-linear bijection F on $GF(q)^3$ for which F(1,0,0) = (1,0,c(0)), F(1,1,1) = (1,1,c(1)) and $F(0,1,0) = (0,1,\lambda)$. Then

$$F(0,0,1) = (0,0,c(0) + c(1) + \lambda),$$

and the hyperoval $F^{-1}(\mathcal{O})$ of PG(2,q) contains four points [1,0,0], [1,1,1], [0,0,1] and [0,1,0]. Thus $F^{-1}(\mathcal{O})$ has a canonical description $\{[1,t,f(t)] \mid t \in GF(q)\} \cup \{[0,0,1], [0,1,0]\}$ with an o-polynomial f(X). As $F(1,t,f(t))) = F(1,0,0) + tF(0,1,0) + f(t)F(0,0,1) = (1,t,(c(0) + c(1) + \lambda)f(t) + \lambda t + c(0))$ corresponds to a point of \mathcal{O} , we have $c(t) = (c(0) + c(1) + \lambda)f(t) + \lambda t + c(0)$ for every $t \in GF(q)$.

Now we prove Proposition 5.1. As each $X(t) = \{(x, a(x)t + xb(t)) \mid x \in GF(q)\}$ is a subspace over GF(2), a(X) is additive: $a(x_1 + a_2) = a(x_1) + a(x_2)$ for all $x_1, x_2 \in GF(q)$. Take any mutually distinct values t_i (i = 1, 2, 3) of GF(q). As S is a dimensional dual hyperoval, $X(t_1) \cap X(t_2)$ contains a unique nonzero vector, but $X(t_1) \cap X(t_2) \cap X(t_3) = \{(0,0)\}$. This implies that $a(x)/x = (b(t_1) + b(t_2))/(t_1 + t_2)$ has a unique solution x in $GF(q)^{\times}$, while $(b(t_1) + b(t_2))/(t_1 + t_2) \neq (b(t_1) + b(t_3))/(t_1 + t_3)$. In particular, b(X) satisfies the hypothesis of Lemma 5.2, and the map $t \mapsto (b(t_1)+b(t))/(t_1+t)$ is a bijection of $GF(q) \setminus \{t_1\}$ with $GF(q) \setminus \{\lambda\}$. Thus the map $x \mapsto a(x)/x$ gives a bijection of $GF(q)^{\times}$ with $GF(q) \setminus \{\lambda\}$. Then

$$\frac{a(x_1) + a(x_2)}{x_1 + x_2} = \frac{a(x_1 + x_2)}{x_1 + x_2} \neq \frac{a(x_1 + x_3)}{x_1 + x_3} = \frac{a(x_1) + a(x_3)}{x_1 + x_3}$$

for all triple of distinct elements x_i (i = 1, 2, 3) of GF(q). Hence the polynomial a(X) also satisfies the hypothesis of Lemma 5.2. Then there exist $\lambda, \lambda' \in GF(q)$ and o-polynomials π and ϕ in GF(q)[X] such that $a(t) = (a(0) + a(1) + \lambda)\pi(t) + \lambda t + a(0)$ and $b(t) = (b(0) + b(1) + \lambda')\phi(t) + \lambda't + b(0)$ for all $t \in GF(q)$.

Note that we have $\lambda = \lambda'$, because the above argument also shows that the values $(a(x_1) + a(x_2))/(x_1 + x_2)$ for $x_1 \neq x_2 \in GF(q)$ form a set $GF(q) \setminus \{\lambda\}$. We set $\alpha := a(0) + a(1) + \lambda$ and $\beta := b(0) + b(1) + \lambda$, which are nonzero elements of GF(q).

As a(X) is additive, a(0) = 0 and $\pi(X)$ is an additive o-polynomial. Thus it follows from [3, Theorem 8.41] that $\pi(X) = X^{2^{\sigma}}$ for some generator σ of $\operatorname{Gal}(GF(q)/GF(2))$. Then $a(x) = \alpha x^{\sigma} + \lambda x$ for all $x \in GF(q)$. However, as $a(x)t + xb(t) = (\alpha x^{\sigma} + \lambda x)t + x(\beta t^{\phi} + \lambda t + b(0)) = \alpha x^{\sigma} t + x(\beta t^{\phi} + b(0))$, we have a(x)t + xb(t) = a'(x)t + xb'(t), where $a'(t) := \alpha x^{\sigma}$ and $b'(t) := \beta t^{\phi} + \gamma$ with $\gamma := b(0)$. Thus X(t) in $\mathcal{S}_{a,b}^{d+1}$ is identical with X(t) in $\mathcal{S}_{a',b'}^{d+1}$, whence $\mathcal{S}_{a,b}^{d+1} = \mathcal{S}_{a',b'}^{d+1}$.

Finally, define GF(2)-linear transformations G, H and I by $G : (x, y) \mapsto (x, \gamma x + y)$, $H : (x, y) \mapsto (\delta x, \delta^{\sigma} y)$ for $\delta \in GF(q)^{\times}$ with $\delta^{\sigma-1} = \alpha/\beta$ and $I : (x, y) \mapsto (x, \alpha^{-1} y)$. As $X(t) = \{(x, \alpha x^{\sigma} t + x(\beta t^{\phi} + \gamma)) \mid x \in GF(q)\}$, we can easily see that $X(t)^{GHI} = \{(x, x^{\sigma} t + xt^{\phi} \mid x \in GF(q)\}$. Thus $(\mathcal{S}_{a,b}^{d+1})^{GHI} = (\mathcal{S}_{a',b'}^{d+1})^{GHI} = \mathcal{S}_{\sigma,\phi}^{d+1}$.

References

- D. G. Glynn, Two new sequences of ovals in finite Desarguesian planes of even order, *Combinatorial Mathematics X*, Springer Lecture Notes in Mathematics 1063 (1983), 217–229.
- [2] C. Hering, W. M. Kantor and G. M. Seitz, Finite groups with split BNpair of rank 1. I, J. Algebra 20 (1972), 453–475.
- [3] J. W. P. Hirschfeld, *Projective Geometries over Finite Fields*, 2nd edn, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1998.
- [4] W. M. Kantor, Linear groups containing a Singer cycle, J. Algebra 62 (1980), 232–234.
- [5] **S. Yoshiara**, A family of *d*-dimensional dual hyperovals in PG(2d+1, 2), *Europ. J. Combin.* **20** (1999), 589–603.

Hiroaki Taniguchi

TAKUMA NATIONAL COLLEGE OF TECHNOLOGY, 551 TAKUMA, KAGAWA 769-1192, JAPAN *e-mail*: taniguchi@dg.takuma-ct.ac.jp

Satoshi Yoshiara

Department of Mathematics, Tokyo Woman's Christian University, 2-6-1 Zempukuji, Suginamiku, Tokyo 167-8585, Japan

e-mail: yoshiara@lab.twcu.ac.jp

