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On dimensional dual hyperovals Sd+1
σ,φ

Hiroaki Taniguchi Satoshi Yoshiara

Abstract

A d-dimensional dual hyperoval Sd+1
σ,φ inside PG(2d + 1, 2) (d ≥ 2) is

constructed in [5], for a generator σ of Gal(GF (q)/GF (2)) and an o-poly-
nomial φ(X) of GF (q)[X] (q = 2d+1). There, its automorphism group is
determined and a criterion is given for these dimensional dual hyperovals to
be isomorphic, assuming that the map φ on GF (q) induced by φ(X) lies in
Gal(GF (q)/GF (2)). In this paper, we extend these results for a monomial
o-polynomial φ. We show that Aut(Sd+1

σ,φ ) ∼= GL3(2) or Zq−1.Zd+1 accord-
ing as d = 2 or d ≥ 3, if φ(X) is monomial but φ 6∈ Gal(GF (q)/GF (2)).
In particular, a special member X(0) of Sd+1

σ,φ is always fixed by any au-
tomorphism of Sd+1

σ,φ . Furthermore, Sd+1
σ,φ

∼= Sd+1
σ′,φ′ if and only if either

(σ, φ) = (σ′, φ′) or σσ′ = φφ′ = id.

Keywords: dimensional dual hyperoval, o-polynomial

MSC 2000: 51,12,20

1. Introduction

A d-dimensional dual hyperoval with ambient space PG(n, q) is defined to be
a family S of ((qd+1 − 1)/(q − 1)) + 1 d-subspaces of PG(n, q) enjoying the
following properties:

(1) any two distinct members of S intersect in a projective point.

(2) any three mutually distinct members of S intersect trivially.

(3) the members of S span PG(n, q).

For a generator σ of Gal(GF (q)/GF (2)) and an o-polynomial φ(X) over
GF (q) (q = 2d+1), one can construct a d-dimensional dual hyperoval Sd+1

σ,φ



I I G

JJ II

J I

page 2 / 23

go back

full screen

close

quit

ACADEMIA
PRESS

inside PG(2d + 1, 2) by [5, Lemma 1]. (See also Proposition 2.1). When the
permutation φ on GF (q) induced by φ(X) lies in Gal(GF (q)/GF (2)), its auto-
morphism group is determined [5, Proposition 7]. Furthermore, for σ, σ′, φ, φ′

generating Gal(GF (q)/GF (2)), it is shown that Sd+1
σ,φ is isomorphic to Sd+1

σ′,φ′ if
and only if either (σ, φ) = (σ′, φ′) or σσ′ = φφ′ = id [5, Proposition 11]. In
this paper we extended these results to the case when φ and φ′ are induced by
monomial o-polynomials. We always assume that d ≥ 2.

Theorem 1.1. Let φ be a bijection on GF (q) induced by a monomial o-polynomial
which is not contained in Gal(GF (q)/GF (2)). Then G = Aut(Sd+1

σ,φ ) stabilizes
X(0). We have G ∼= GL3(2) if d = 2, while G ∼= Zq−1 : Zd+1 for d ≥ 3.

Theorem 1.2. Let σ and σ′ be generators of Gal(GF (q)/GF (2)), and let φ(X)

and φ′(X) be monomial o-polynomials in GF (q)[X] such that neither φ nor φ is
contained in Gal(GF (q)/GF (2)).

Then two dimensional dual hyperovals Sd+1
σ,φ and Sd+1

σ′,φ′ are isomorphic if and
only if either (σ, φ) = (σ′, φ′) or σσ′ = φφ′ = idGF (q).

Recall that two d-dimensional dual hyperovals S and S ′ with common ambi-
ent space PG(V ), where V is a vector space over GF (2), are called isomorphic
if there is a GF (2)-linear map f of V sending every member of S to a member
of S ′.

Theorem 1.1 shows that Sd+1
σ,φ is never isomorphic to Sd+1

σ′,φ′ if φ′ is contained
in Gal(GF (q)/GF (2)) but φ is not, because Aut(Sd+1

σ,φ ) fixes the special member
X(0), while Aut(Sd+1

σ′,φ′) is doubly transitive on the members of Sd+1
σ′,φ′ [5, Propo-

sition 7]. Thus Theorem 1.2 together with [5, Proposition 11] gives a criterion
for two dimensional dual hyperovals Sd+1

σ,φ and Sd+1
σ′,φ′ to be isomorphic, if both

φ and φ′ are multiplicative o-polynomials.

The subsidiary aim of this paper is to supply a corrected proof for [5, Lemma
6]. The original proof does not work, as it confuses the trace function for
GF (q)/GF (2) with that for GF (2k)/GF (2). Step 3 and Step 4 of the proof
of Theorem 1.1 provide a proof for [5, Lemma 6], as they do not assume that
φ 6∈ Gal(GF (q)/GF (2)). When φ ∈ Gal(GF (q)/GF (2)), we have an explicit
group T of translations [5, Section 4]. One can also establish Step 3 by showing
that T is normal in G, because then CV (T ) = X(∞) is G-invariant.

Two new ideas are used to establish Theorem 1.1. One is to exploit a classical
result [2] on a group with a split BN-pair of rank one, namely a doubly tran-
sitive group in which one point stabilizer contains a normal subgroup acting
regularly on the remaining points. The other is to show the invariance of a cer-
tain subspace X(∞) of the ambient space under some automorphism groups,
using Lemma 2.3.
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The proof of Theorem 1.2 is along the same line with the proof of [5, Propo-
sition 11]. However, we are required more careful treatment because GF (q) is
not necessarily generated by b(σφ−1)/(φ−1) (b ∈ GF (q)×) (compare Step 3 with
the third paragraph of the proof of [5, proposition 11]). We exploit a polyno-
mial representation of a certain function to overcome this difficulty (see Step
4). Furthermore, Lemma 2.3 is used to simplify reduction arguments in Step 1.

The next section provides the definition of Sd+1
σ,φ with the description of its

ambient space (Proposition 2.1). It also supplies the notation used throughout
the paper and Lemma 2.3. Sections 3 and 4 are respectively devoted to the
proofs of Theorems 1.1 and 1.2. In the last section, Proposition 5.1 is given
which explains why we require that σ is a generator of Gal(GF (q)/GF (2)) and
φ(X) is an o-polynomial in the definition of Sd+1

σ,φ .

2. Preliminaries

Throughout this paper, let q = 2d+1 be a power of 2 with d ≥ 2. Let σ be an
automorphism of GF (q) over GF (2) defined by

xσ = x2m for some integer m ∈ {1, . . . , d} with (m, d+ 1) = 1.

Then σ is a generator of the Galois group for an extension GF (q)/GF (2),
whence the map

σ − 1 : GF (q)× 3 x 7→ xσ/x ∈ GF (q)×

is a bijection preserving each subfield of GF (q). The inverse map of σ − 1 is
denoted 1/(σ − 1).

Choose an o-polynomial φ(X) in GF (q)[X], namely, φ(X) is a permutation
polynomial with φ(0) = 0 and φ(1) = 1, and the polynomial φs defined by
φs(X) := (φ(X+s)−φ(s))/X for every s ∈ GF (q) is a permutation polynomial.
If φ is a monomial polynomial, that is, φ(X) = XN for some integer N in
{2, . . . , q− 2}, it is an o-polynomial if and only if the following three conditions
are satisfied:

(N, q − 1) = (N − 1, q − 1) = 1 and φ1(X) is a permutation polynomial.

We use the same letter φ to denote the bijection on GF (q) induced by φ(X):
xφ = φ(x) for all x ∈ GF (q). Then the map

φ− 1 : GF (q)× 3 x 7→ xφ/x ∈ GF (q)×

is a bijection, because it is induced by the polynomial φ0(X). The inverse map
of φ − 1 is denoted 1/(φ− 1). Note that if φ is a monomial o-polynomial, then
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φ − 1 is multiplicative, whence it induces an automorphism of a multiplicative
group GF (q)×. In particular, it preserves the order of each element of GF (q)×,
whence it preserves each subfield of GF (q).

Throughout this paper, we use Tr = TrGF (q)/GF (2) to denote the trace func-
tion for the field extension GF (q)/GF (2). Furthermore, we regard

V := GF (q)⊕GF (q) = {(x, y) | x, y ∈ GF (q)}

as a 2(d+ 1)-dimensional vector space over GF (2).

Proposition 2.1. Let σ be a generator of Gal(GF (q)/GF (2)) with q = 2d+1,
d ≥ 2, and let φ(X) be an o-polynomial φ(X) of GF (q)[X]. For each t ∈ GF (q),
define a subspace X(t) of V by

X(t) := {(x, xσt+ xtφ) | x ∈ GF (q)}.

Then the family Sd+1
σ,φ := {X(t) | t ∈ GF (q)} is a d-dimensional dual hyperoval

with ambient space PG(W ) or PG(V ), according as σφ is the identity on GF (q)

or not, where W = {(x, y) | Tr(y) = 0} is a hyperplane of V .

Proof. Except the statement for the ambient space, Proposition was shown in
[5, Lemma 1]. This part is also verified in view of the following expression of
intersections of two members.

X(0) ∩X(t) = [(t(φ−1)/(σ−1), 0)] = [(φ0(t)1/(σ−1), 0)]. (1)

X(s) ∩X(t) = [

(
(
sφ + tφ

s+ t
)1/(σ−1), (

sφ + tφ

s+ t
)1/(σ−1)(

sφt+ tφs

s+ t
)

)
]. (2)

We will determine the subspace U := 〈X(t) | t ∈ GF (q)〉 of V . For each
t ∈ GF (q)×, we set A(t) := {xσt + xtφ | x ∈ GF (q)}. It is straightforward to
verify that A(t) = {x ∈ GF (q) | Tr(t(1−φσ)/(σ−1)x) = 0} for every t ∈ GF (q)×.
Consider A := 〈A(t) | t ∈ GF (q)〉, the subspace of GF (q) consisting of sums of
elements in A(t)’s. As 〈X(0), X(t)〉 = {(x, y) | x ∈ GF (q), y ∈ A(t)}, we have
U = {(x, y) | x ∈ GF (q), y ∈ A}. As A(1) = {x ∈ GF (q) | Tr(x) = 0} is a
hyperplane of GF (q), we have either A = GF (q) or A = A(1). Accordingly we
have U = V or U = W .

Assume that U = W . Then A = A(1) = A(t) for all t ∈ GF (q)×. It is
well known that every hyperplane of GF (q) is uniquely written as the kernel
of the GF (2)-linear form x 7→ Tr(ax) for some a ∈ GF (q)×. Thus we have
t(1−φσ)/(σ−1) = 1, or equivalently tφσ = t for all t ∈ GF (q)×. Thus φσ = id on
GF (q). Conversely if φ = σ−1, we have A(t) = A(1) for all t ∈ GF (q)×, whence
A = A(1) and U = W .
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We sometimes denote Sd+1
σ,φ by Sd+1

2m,N , where m and N are integers such that
xσ = x2m and xφ = xN for all x ∈ GF (q).

The ‘if’ part of Theorem 1.2 holds under mild restriction for o-polynomials φ
and φ′.

Lemma 2.2. Let σ and σ′ be generators of Gal(GF (q)/GF (2)), and let φ(X) and
φ′(X) be o-polynomials in GF (q)[X] with φ, φ′ 6∈ Gal(GF (q)/GF (2)). Assume
that σ′φ = φσ′.

If either (σ, φ) = (σ′, φ′) or σσ′ = φφ′ = idGF (q), then Sd+1
σ,φ and Sd+1

σ′,φ′ are
isomorphic.

Proof. If σ = σ′ and φ = φ′, the dimensional dual hyperovals S := Sd+1
σ,φ and

S ′ := Sd+1
σ′,φ′ are identical. If σσ′ = id = φφ′, consider the GF (2)-linear bijection

τ on V given by (x, y) 7→ (x, yσ
′
). Then a vector (x, xσt + xtφ) of X(t) is sent

under τ to a vector (x, xtσ
′

+ xσ
′
tφσ
′
). As σ′φ = φσ′, we have x(tφσ

′
)φ
′

=

x(tσ
′φφ′) = xtσ

′
. Then (x, xtσ

′
+ xσ

′
tφσ
′
) lies in a member X(tφσ

′
) of Sd+1

σ′,φ′ .
Thus τ sends each X(t) to X(tφσ

′
), whence it induces an isomorphism of S

with S ′.

Now we specialize the case when both φ and φ′ are monomial o-polynomials.
We introduce important automorphisms mb and fθ of Aut(Sd+1

σ,φ ) defined for
b ∈ GF (q)× and θ ∈ Gal(GF (q)/GF (2)) :

mb : (x, y) 7→ (bx, b(σφ−1)/(φ−1)y) (3)

fθ : (x, y) 7→ (xθ, yθ) (4)

Observe that for t ∈ G(q), b ∈ GF (q)×, θ ∈ Gal(GF (q)/GF (2)) we have

X(t)mb = X(b(σ−1)/(φ−1)t), (5)

X(t)fθ = X(tθ). (6)

In the sequel, we set as follows:

S := Sd+1
σ,φ , G := Aut(S) and A := the stabilizer of X(0) in G.

M := {mb | b ∈ GF (q)×} and F := {fθ | θ ∈ Gal(GF (q)/GF (2))}.

The group M is a cyclic group generated by mη for a generator η of GF (q)×,
because we have mbb′ = mbmb′ from Equation (3). The group F of ‘field’ auto-
morphisms, which is isomorphic to the cyclic group of order d + 1, normalizes
M . We have A ≥MF ∼= Zq−1 : Zd+1.

As both σ and φ are induced by monomial polynomials, they induce automor-
phisms of the multiplicative groupGF (q)×. Moreover φ−1 and 1/(φ−1) induce
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automorphisms of GF (q)×. Suppose b(σ−1)/(φ−1) = 1 for some b ∈ GF (q)×.
Then bσ/b = 1 and bσ = b. Thus b = 1, as σ generates Gal(GF (q)/GF (2)).
Hence it follows from Equation (5) that the cyclic group M is a subgroup of A
acting regularly on the members of S \ {X(0)}.

Consider the following map

(σφ− 1)/(φ− 1) : GF (q)× 3 x 7→ x(σφ−1)/(φ−1) ∈ GF (q)×. (7)

It is a multiplicative homomorphism ofGF (q)×. Thus it preserves every subfield
of GF (q). The map (σφ− 1)/(φ− 1) is not necessarily injective. However, it is
never additive, because of the following lemma applied to GF (q) itself.

Lemma 2.3. Let σ be a generator of Gal(GF (q)/GF (2)) and let φ(X) be a mono-
mial o-polynomial in GF (q)[X]. Then for every non-prime subfield GF (2k) of
GF (q), the restriction of the map (σφ − 1)/(φ − 1) on GF (2k) does not coincide
with any automorphism in Gal(GF (2k)/GF (2)).

Proof. We denote the restriction of σ and φ on GF (2k) by the same letters.
Then σ is a generator of Gal(GF (2k)/GF (2)) and φ is induced by a monomial
o-polynomial in GF (2k)[X], written also as φ(X). There exists an integer m
with 1 ≤ m ≤ k − 1 coprime with k such that xσ = x2m for all x ∈ GF (2k). As
GF (2k) 6= GF (2), σ is not the identity and σ − 1 is bijective on GF (2k). Then
(σφ − 1)/(φ − 1) is not the identity on GF (2k), for otherwise we would have
(σ − 1)φ = 0, whence xφ = 1 for every x ∈ GF (q), as σ − 1 is bijective on
GF (2k).

Suppose (σφ− 1)/(φ− 1) coincides with τ−1 ∈ Gal(GF (2k)/GF (2)). By the
above remark, τ 6= id, so that there exists an integer l with 1 ≤ l ≤ k − 1 such
that xτ = x2l for all x ∈ GF (2k). In particular, 2 ≤ m + l ≤ 2(k − 1). From
(σφ− 1)/(φ− 1) = 1/τ ,

(στ − 1) = φ−1(τ − 1). (8)

Take an integerN with 1 ≤ N ≤ 2k−1 such that xφ = xN for all x ∈ GF (2k). As
φ is bijective on GF (q)×, N is prime to 2k− 1, whence the inverse of N modulo
2k− 1 exists. We denote it by N ′. Namely N ′ is an integer with 1 ≤ N ′ ≤ 2k− 1

such that NN ′ ≡ 1 (modulo 2k − 1). Then Equation (8) is rewritten as

2m+l − 1 ≡ N ′(2l − 1) (mod 2k − 1). (9)

Recall that φ−1(X) = XN ′ is also an o-polynomial (see e.g. [1, Result 8]). It
follows from Glynn’s criterion for monomial o-polynomials [1, Theorem A] that
for every d ∈ {1, . . . , 2k − 2}, we have d 6� (dN ′ (mod 2k − 1)) with respect to
the following ordering � on {0, . . . , 2k − 1}.
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For integers a =
∑k−1
i=0 ai2

i and b =
∑k−1
i=0 bi2

i with ai, bi ∈ {0, 1},
we define a � b if and only if ai ≤ bi for all i = 0, . . . , k − 1.

Note that (dN ′ (mod 2k − 1)) denotes the unique integer M in {1, . . . , 2k − 1}
with M ≡ dN ′ (modulo 2k − 1).

Assume that 2 ≤ m + l ≤ k. Then 1 ≤ 2m+l − 1 ≤ 2k − 1, whence we
have ((2l − 1)N ′ (mod 2k − 1)) = 2m+l − 1 by Equation (9). However, as
2m+l − 1 =

∑m+l−1
i=0 2i and 2l − 1 =

∑l−1
i=0 2i, we have 2l − 1 � 2m+l − 1, which

contradicts Glynn’s criterion. Thus we have k + 1 ≤ m + l ≤ 2(k − 1). In this
case, we consider the equation

(2m+l − 1)N ≡ 2l − 1 (mod 2k − 1),

equivalent to Equation (9). We have 2m+l − 1 ≡ 2f − 1 (modulo 2k − 1), where
f := m+ l−k. Then 1 ≤ f < l ≤ k−1, as m < k. Since 2l−1 ≡ (2m+l−1)N ≡
(2f − 1)N (modulo 2k − 1), we have ((2f − 1)N (mod 2k − 1)) = 2l − 1. Then
Glynn’s criterion applied to d = 2f − 1 yields that

∑f−1
i=0 2i = 2f − 1 6� 2l − 1 =∑l−1

i=0 2i, which contradicts f < l. Hence we have contradiction in any case.

3. Automorphism group of Sd+1
σ,φ

In this section, we prove Theorem 1.1. We first treat the case when d = 2.

Step 1. If d = 2, G fixes X(0) and G ∼= GL3(2).

Proof. There are three monomial o-polynomials in GF (8)[X]: X2, X4 and X6.
Thus the only choice for φ(X) is X6. As the map x 7→ x4 is the inverse map of
the map x 7→ x2 on GF (8), we have S3

2,6
∼= S3

4,6 by Lemma 2.2. Thus we may
assume that S = S3

2,6.

Let η be a generator of GF (8)× with η3 = η + 1. Consider the following
involutive GF (2)-linear transformation v on V :

(1, 0)v = (1, 0), (η, 0)v = (η2, 0), (η2, 0)v = (η, 0);
(0, 1)v = (0, 1), (0, η)v = (η + η2, η), (0, η2)v = (η2, η + η2).

Then we can verify that v induces the following permutation on the members
of S:

(X(0))(X(1))(X(η))(X(η5))(X(η2)X(η4))(X(η3)X(η6)).

Now the stabilizer A of X(0) in G is isomorphic to a subgroup of GL3(2), as
A acts faithfully on X(0) [5, Lemma 4(1)]. As A contains MF ∼= Z7.Z3 and
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the above involution v, we have A ∼= GL3(2). In particular, A acts doubly
transitively on S \ {X(0)}.

We can also verify that 〈X(1), X(η)〉 contains X(η5) but not X(0). In partic-
ular, G does not act triply transitively on the members of S. Thus G does not
move X(0), whence G = A ∼= GL3(2).

In the following, we consider the generic case with d ≥ 3. We first determine
the stabilizer A in G of X(0). From Step 2 to Step 4, we do not assume that
φ 6∈ Gal(GF (q)/GF (2)).

Step 2. One of the following occurs.

(1) A = MF .

(2) We have d+ 1 = 2k with k ≥ 2 and A = LF , where L = Z × S is a normal
subgroup of A isomorphic to GL2(2k) with direct factors Z := Z(L) ∼=
Z2k−1 and S := L′ ∼= SL2(2k). We also have |L ∩ F | = |S ∩ F | = 2.

Proof. As A acts on X(0) faithfully by [5, Lemma 4(1)], A is isomorphic to a
subgroup of GL(X(0)) ∼= GLd+1(2), regarding X(0) as a (d + 1)-dimensional
space over GF (2). NowM is a cyclic subgroup of order q−1 acting regularly on
the nonzero vectors (X(0)∩X(t))× (t ∈ GF (q)×) of X(0), whence it is a Singer
cycle of GL(X(0)). As A is a subgroup of GL(X(0)) containing a Singer cycle
M on X(0), it follows from Kantor’s result [4] that A has a normal subgroup
isomorphic to GL(d+1)/e(2

e) for some divisor e of d + 1. If e = d + 1, this
normal subgroup coincides with the Singer cycle M , whence A is contained in
the normalizer of M in GLd+1(2). It is easy to verify that the normalizer is MF .
Thus in this case we have A = MF . Assume that e < d + 1. As d ≥ 3, one of
the following holds from the arguments in [5, Lemma 5]:

(a) d+ 1 = 4 and A ∼= GLd+1(2).

(b) d+ 1 = 2k and A contains a normal subgroup isomorphic to GL2(2k).

We eliminate Case (a) first. Assume that Case (a) holds. There are only
three monomial o-polynomials in GF (16)[X]: X2, X8 and X14. As S4

2,14 is
isomorphic to S4

8,14 by Lemma 2.2, we may assume that S = S4
2,14. Observe that

for t ∈ GF (16) \GF (2)

〈X(0), X(1)〉 ∩X(t) = {(x, xσt+ xtφ) | Tr(xσt+ xtφ) = 0},

where Tr denotes the trace function for GF (16)/GF (2). As Tr(xσt + xtφ) =

Tr(xσ(t + tφσ), the member X(t) is contained in 〈X(0), X(1)〉 if and only if
t+ tφσ = t+ t−2 = 0, namely t ∈ GF (4)×. In particular, 〈X(0), X(1)〉 ∩X(t) is
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of dimension 4 or 3 according as t ∈ GF (4)× or not. However, as A ∼= GL4(2)

is doubly transitive on S \ {X(0)}, the stabilizer of X(1) in A is transitive on
S\{X(0), X(1)}, whence the dimension of 〈X(0), X(1)〉∩X(t) does not depend
on the choice of t ∈ GF (16) \ GF (2). This contradiction shows that Case (a)
does not occur.

Assume that Case (b) occurs. As d ≥ 3, we have k ≥ 2. Let L be a normal
subgroup of A isomorphic to GL2(2k). Then M ≤ L and L = Z × S, where
S ∼= SL2(2k) and Z = Z(L) ∼= Z2k−1. Let η be a generator of GF (q)×. Then
ζ := η2k+1 is a generator of GF (2k)× and mζ is a generator of Z. In particular,
Z ≤M . Moreover, M = Z× (M ∩S), as |Z| = 2k− 1 is coprime with [M : Z] =

2k + 1.

A Singer cycle M in GL(GF (q)) ∼= GLd+1(2) is self-centralizing. In particu-
lar, CA(L) ≤ CA(M) = M = Z × (M ∩ S). As S is simple and so CM∩S(S) = 1,
we have CA(L) = Z. Then Z ≤ CA(S) ≤ CA(L) = Z, whence CA(S) = Z. Now
A normalizes S ∼= Inn(S), and hence A/SCA(S) is isomorphic to a subgroup
of Out(S), which is known to be the group of field automorphisms induced
by Gal(GF (2k)/GF (2)). Each element fθ of F induces an automorphism on
GF (2k). It induces a GF (2k)-linear map on GF (q) if and only if θ fixes every
element of GF (2k), whence θ ∈

〈
σk
〉
. Thus F ∩L =

〈
fkσ
〉

of order 2, which lies
in S, as [L : S] = 2k − 1 is odd. Then F ∩ L = F ∩ S = 〈u〉 with u = (fσ)k, and
F/(F ∩ S) is isomorphic to Out(S). Thus A/SCA(S) ∼= Out(S) ∼= F/(F ∩ S),
whence A = (CA(S)× S)F = (Z × S)F .

Step 3. A acts on X(∞) := {(0, y) | y ∈ GF (q)}.

Proof. This is clear if A = MF , as both M and F act on X(∞) in view of
Equations (3) and (4). Thus we may assume that Case (2) occurs in Step 2. We
use the notation there.

We first examine the Z-orbits on V × := V \ {0}. Regard GF (q) as a 2-
dimensional space overGF (2k) and let ζi (i = 0, . . . , 2k) be elements ofGF (q)×

no two of which lie in the same 1-dimensional subspace over GF (2k) of GF (q).
For each ζi (i = 0, . . . , 2k) and c ∈ GF (q)×, set

Z(ζi, c) := {(ζix, cx(σφ−1)/(φ−1)) | x ∈ GF (2k)×}.

As Z = 〈mζ〉, each Z(ζi, c) is a Z-orbit of length 2k − 1 from Equation (3).
Moreover, it is easy to see that X(0)× is a disjoint union of Z(ζi, 0) for i =

0, . . . , 2k and that V \ (X(0) ∪X(∞)) is a disjoint union of Z(ζi, c) for i =

0, . . . , 2k and c ∈ GF (q)×. On the other hand, each Z-orbit in X(∞)× is of the
form

Z(c) := {(0, cy(σφ−1)/(φ−1) | y ∈ GF (2k)×}
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for some c ∈ GF (q)× by Equation (3). In particular, each Z-orbit in X(∞)× is
of length l, where l := #{y(σφ−1)/(φ−1) | y ∈ GF (2k)×}.

Suppose l < 2k − 1. Then every Z-orbit in X(∞)× has length l, which is
different from the length 2k − 1 of each Z-orbit in V \X(∞). As Z is normal in
A, every element of A permutes the Z-orbits in V ×. Thus A acts on the union
of Z-orbits of length l, which is X(∞)×. Hence in this case A acts on X(∞).

Thus we may assume that l = 2k−1, that is, the restriction of a map (σφ−1)/

(φ− 1) on GF (2k) is a (multiplicative) bijection. We denote its inverse map by
(φ− 1)/(σφ− 1).

Now take any involution v of S. As v stabilizesX(0), there existGF (2)-linear
maps a, c, d on GF (q) such that

(x, y)v = (xa + yc, yd) (10)

for every x, y ∈ GF (q). As v centralizes Z = {mb | b ∈ GF (2k)×}, Equations (3)
and (10) show that (x, y)mbv = ((bx)a+(b(σφ−1)/(φ−1)y)c, (b(σφ−1)/(φ−1)y)d) co-
incides with (x, y)vmb = (b·xa+b·yc, (b(σφ−1)/(φ−1))·yd) for all b ∈ GF (2k)× and
x, y ∈ GF (q). In particular, we have b · yc = (b(σφ−1)/(φ−1)y)c, or equivalently

(by)c = (b(φ−1)/(σφ−1)) · yc (11)

for all y ∈ GF (q) and b ∈ GF (2k)×. From Equation (11) and the linearity of
c, we have (b1 + b2)(φ−1)/(σφ−1) · yc = ((b1 + b2)y)c = (b1y)c + (b2y)c, which is
equal to b(φ−1)/(σφ−1)

1 · yc + b
(φ−1)/(σφ−1)
2 · yc. Thus

((b1 + b2)(φ−1)/(σφ−1) + b
(φ−1)/(σφ−1)
1 + b

(φ−1)/(σφ−1)
2 ) · yc = 0

for all b1 6= b2 ∈ GF (2k)× and y ∈ GF (q). If there exists y ∈ GF (q) with yc 6= 0,
then we have

(b1 + b2)(φ−1)/(σφ−1) = b
(φ−1)/(σφ−1)
1 + b

(φ−1)/(σφ−1)
2

for all b1 6= b2 ∈ GF (2k)×. Thus the map (φ − 1)/(σφ − 1) on GF (2k) is
GF (2)-linear. Then its inverse map, which is (σφ − 1)/(φ − 1) restricted to
GF (2k), is both multiplicative and additive on GF (2k). Thus it coincides with
an automorphism τ in Gal(GF (2k)/GF (2)). However, this is impossible by
Lemma 2.3, as k ≥ 2. Hence we have yc = 0 for all y ∈ GF (q). This shows that
the involution v acts on X(∞).

As S ∼= SL2(2k) is generated by involutions, the above conclusion implies
that A = (Z × S)F also acts on X(∞).

Step 4. Case (2) in Step 2 does not occur.
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Proof. By Step 3, X(0) and X(∞) are A-invariant subspaces of V . As V =

X(0) ⊕ X(∞), for each g ∈ A there are GF (2)-linear maps g and g̃ on GF (q)

such that

(x, y)g = ((x)g, (y)g̃) (12)

for all x, y ∈ GF (q). On the other hand, g induces a permutation on S. We
denote X(t)g = X(tĝ) for each t ∈ GF (q). As X(0) ∩ X(t) = [(tε, 0)] with
ε := (φ−1)/(σ−1), applying g to this equation we haveX(0)∩X(tĝ) = [(tε)g, 0],
whence (tĝ)ε = (tε)g. Thus we obtain the following relation for all t ∈ GF (q)×:

(t)ĝ = ((tε)g)1/ε. (13)

Each vector (x, xσt1/ε + xtφ/ε) of X(t1/ε) is mapped by g to the vector (xg,

(xσt1/ε + xtφ/ε)g̃), which lies in X((t1/ε)ĝ) = X((tg)1/ε). Thus for all t, x ∈
GF (q)× we have

(xσt1/ε + xtφ/ε)g̃ = (xg)σ(tg)1/ε + (xg)(tg)φ/ε. (14)

We now choose any element ρ fromGF (q)\GF (2k). Then (1, ρ) forms a basis
for a 2-dimensional vector space GF (q) over GF (2k). Consider a GF (2k)-linear
map l(ρ) on GF (q) determined by 1 7→ 1 and ρ 7→ 1 + ρ. Then l(ρ) is a GF (2k)-
linear involution on GF (q) with determinant 1. We denote by SL(GF (q)) the
group of GF (2k)-linear bijections on GF (q) with determinant 1. For every a ∈
GF (2k)×, the involution l(a−1ρ) is represented as ( 1 0

a 1 ) with respect to a basis
(1, ρ) over GF (2k) for GF (q). Thus {l(a−1ρ) | a ∈ GF (2k)×} generates a Sylow
2-subgroup of SL(GF (q)) ∼= SL2(2k).

Now S ∼= SL2(2k) (≤ A) acts faithfully on X(0), as every nonzero vector of
X(0) is expressed as (X(0) ∩ X(t))× for some t ∈ GF (q)×. Thus, identifying
X(0) with GF (q) via (x, 0) 7→ x, the map g 7→ g gives an isomorphism of S with
SL(GF (q)). Then the vectors of X(0) fixed by an involution of S forms a k-
dimensional subspace of X(0) over GF (2). Furthermore, for every ρ ∈ GF (q) \
GF (2k), there exists a unique involution g = g(ρ) of S such that g = l(ρ). From
the definition of l(ρ), the subspace {(x, 0) | x ∈ GF (2k)} of X(0) coincides with
the subspace of vectors of X(0) fixed by every g(aρ) (a ∈ GF (2k)×).

The group S acts on X(∞) as well by Step 3. As the involution u in F ∩ S
(see Step 2) induces on X(∞) the action (0, y) 7→ (0, y2k) by Equation (4), the
action of S is not trivial. As k ≥ 2, S is simple, and hence the action of S on
X(∞) is faithful as well. Identifying X(∞) with GF (q) via (0, x) 7→ x, the map
g 7→ g̃ gives an isomorphism from S to SL(GF (q)). In particular, there is a
k-dimensional subspace K of X(∞) consisting of vectors fixed by g(aρ) for all
a ∈ GF (2k)×. As l(aρ) fixes each element of GF (2k) and ε preserves GF (2k), it
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follows from Equation (14) that vectors (0, xσt1/ε + xtφ/ε) for all x, t ∈ GF (2k)

lie in K. Note that, if σφ is not the identity on GF (2k), these vectors span
GF (2k) by the arguments in [5, Lemma 2], whence K = {(0, y) | GF (2k)}.

We now claim:

σφ is not the identity map on GF (q).

For otherwise, η(σφ−1)/(φ−1) = 1 for a generator η of GF (q)×, whence a gener-
ator m2k−1

η of a Singer cycle M ∩ S in S acts trivially on X(∞) from Equation
(3). This contradicts the faithfulness of S on X(∞).

Next we claim:

if σφ is not the identity map on GF (2k), then we have a contradiction.

To show the claim, take any ρ ∈ GF (q)\GF (2k) and choose an involution g ∈ S
with g = l(ρ). By Equation (14), applying to this g, x = ρ and t = 1, we have

(ρσ + ρ)g̃ = (1 + ρ)σ + (1 + ρ) = ρσ + ρ.

Thus for every ρ ∈ GF (q) \ GF (2k), the vector (0, ρ+ ρσ) lies in K = {(0, y) |
y ∈ GF (2k)} by the remark above. As x + xσ = y + yσ (x, y ∈ GF (q)) occurs
exactly when x + y = (x + y)σ ∈ GF (2), there are (q − 2k)/2 = 22k−1 − 2k−1

elements in the form ρ + ρσ for some ρ ∈ GF (q) \ GF (2k). Hence we have
22k−1 − 2k−1 ≤ 2k, from which 2k ≤ 2 + 1 = 3 or equivalently k = 1. However,
this contradicts that k ≥ 2.

Finally we claim:

if σφ is the identity map on GF (2k), we have a contradiction as well.

In this case, the vectors (0, xσt1/ε + xtφ/ε) for all x, t ∈ GF (2k) span a hy-
perplane H := {(0, y) | y ∈ GF (2k),TrGF (2k)/GF (2)(y) = 0} of the subspace
{(0, y) | y ∈ GF (2k)}. The corresponding hyperplane of GF (2k) is denoted H ′:
H ′ := {y ∈ GF (2k) | TrGF (2k)/GF (2)(y) = 0}.

Take any ρ ∈ GF (q) \ GF (2k). We claim that there are at least 2k−1 − 1

elements a ∈ GF (2k)× such that (aρ) + (aρ)σ ∈ H ′. If (aρ) + (aρ)σ ∈ H ′ for all
a ∈ GF (2k), this clearly holds. Thus we may assume that ρ+ρσ 6∈ H ′, replacing
ρ by its suitable multiple by an element of GF (2k)×. The subspace of X(∞)

fixed by g(ρ) is {(0, y) | y ∈ K ′}, where K ′ denotes the k-dimensional subspace
of GF (q) over GF (2) spanned by ρ+ ρσ and all y ∈ H ′. As we observed before,
every vector of {(0, y) | y ∈ K ′} is fixed by g(aρ) for all a ∈ GF (2k)×. If we
replace ρ by aρ at the calculation of ρ + ρσ in the proof of the last claim, we
conclude that (0, (aρ) + (aρ)σ) is fixed by g(aρ). Hence

(aρ) + (aρ)σ ∈ K ′
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for all a ∈ GF (2k)×. Then we can define a map κ from GF (2k) to K ′ by
κ(a) := (aρ)+(aρ)σ. This is aGF (2)-linear map. It is injective, because κ(a) = 0

implies that aρ = (aρ)σ ∈ GF (2) but aρ ∈ GF (q)−GF (2k) unless a = 0. Then κ
is an isomorphism fromGF (2k) with K ′. In particular, there are exactly 2k−1−1

elements a ∈ GF (2k)× with (aρ) + (aρ)σ ∈ H ′.
Let ρ1, . . ., ρm (m = 2k) be a set of representatives for projective points of

a projective line PG(GF (q)), distinct from the projective point [1] = GF (2k),
where we regard GF (q) as a 2-dimensional vector space over GF (2k). The
above paragraph shows that for each ρi (i = 1, . . . ,m), there are at least 2k−1−1

elements a ∈ GF (2k)× such that (aρi)+(aρi)
σ ∈ H ′. Remark that (aρi)+(aρi)

σ

lies in H ′ implies that it lies in (H ′)×, as (aρi) = (aρi)
σ ∈ GF (2) would imply

that ρi ∈ GF (2k).

Thus the number of nonzero vectors x in GF (q) \GF (2k) satisfying x+xσ ∈
(H ′)× is at least (2k−1 − 1)2k. As x+ xσ = y + yσ if and only if x+ y ∈ GF (2),
we conclude that

2k(2k−1 − 1)/2 ≤ |(H ′)×| = 2k−1 − 1.

Then k ≤ 1, which is a contradiction.

Remark 3.1. Up to the above step, we do not use the assumption that φ does
not lie in Gal(GF (q)/GF (2)). Thus the conclusion in Step 4 also holds in the
case when φ = τ is a generator of Gal(GF (q)/GF (2)). This corresponds to [5,
Lemma 6].

Note that the proof given there is incorrect, as it confuses the trace function
for GF (q)/GF (2) with that for GF (2k)/GF (2). Thus Step 2, Step 3, Step 4
provide a correction to the proof of [5, Lemma 6].

We have determined the structure of A as A = MF . Now suppose that G =

Aut(S) contains an automorphism which sendsX(0) to a member of S\{X(0)}.
Then G is doubly transitive on S, as M is transitive on S \ {X(0)}.

Step 5. There is a normal subgroup N of G which acts regularly on S. In partic-
ular, N is an elementary abelian 2-group of order q = 2d+1.

Proof. From Step 2, the one point stabilizer A of a doubly transitive group G

has a normal subgroup M acting regularly on the remaining members. By a
classical result [2] by Hering, Kantor and Seitz, such doubly transitive groups
are classified. Thus G has a normal subgroup N which either acts regularly
on S or is isomorphic to one of the following simple groups. In each case, the
permutation representation of G on S is equivalent to its action via conjugation
on the set of Sylow p-subgroups of N , where p is a prime dividing r:
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N ∼= PSL2(r), Sz(r) (r = 22e+1), PSU3(r), or a group of Ree type
(2G2(r)) with r = 32e+1.

Thus |S| = r + 1, r2 + 1, r3 + 1 or r3 + 1, according as N ∼= PSL2(r), Sz(r),
PSU3(r) or a group of Ree type. As |S| = 2d+1, N is not Sz(r). If N ∼= PSU3(r)

or a group of Ree type, then |S| = 2d+1 = r3+1 = (r+1)(r2−r+1), whence both
r+ 1 and r2− r+ 1 are power of 2 larger than 1. However, (r+ 1, r2− r+ 1) = 1

or 3, which is a contradiction. If N ∼= PSL2(r) with r+ 1 = 2d+1, the two point
stabilizer is a cyclic group of order (r − 1)/2. As the two point stabilizer in G is
a cyclic group of order d + 1, we conclude that (2d+1 − 2)/2 = 2d − 1 divides
d+ 1, which occurs only when d = 1 or d = 2. This contradicts our assumption
that d ≥ 3.

Thus G has a regular normal subgroup N . Then N is an elementary abelian
2-subgroup of order 2d+1 by a standard argument.

As N is a regular normal subgroup on S, the action of A on S \ {X(0)} is
equivalent to the action of A via conjugation on N \ {1}. In particular, the
group M acts regularly on N \ {1} under conjugation. Thus the dimensions
of [V, τ ′] := {v + vτ

′ | v ∈ V } for involutions τ ′ of N do not depend on the
choice of τ ′. We next observe the action of N on V , specifically the commutator
subspace [V,N ] := 〈v + vτ

′ | τ ′ ∈ N〉. As N is normalized by G, the subspace
[V,N ] is invariant under the action of G. By standard arguments for 2-groups,
[V,N ] is a proper subspace of V .

Step 6. We have [V,N ] = X(∞). In particular, X(∞) is G-invariant.

Proof. For short, we set W = [V,N ] for a while. (The arguments in the few
paragraphs below work for any G-invariant proper subspace W of V . This fact
will be used in Step 1 of the proof of Theorem 1.2.)

Assume thatW contains a point of formX(a)∩X(b) for some a 6= b ∈ GF (q).
As G is doubly transitive on S = {X(t) | t ∈ GF (q)} and W is G-invariant,
this implies that W contains X(a) = 〈X(a) ∩X(b) | b ∈ GF (q) \ {a}〉 for all
a ∈ GF (q), whence W = 〈X(a) | a ∈ GF (q)〉 = V , a contradiction. Thus
W does not contain a point of form X(a) ∩ X(b) for any a 6= b ∈ GF (q), or
equivalently W ∩X(a) = {(0, 0)} for all a ∈ GF (q).

Assume now that W contains two vectors (x, y) and (x′, y) for some x 6= x′

and y ∈ GF (q). Then W contains (x − x′, 0) = (x, y) − (x′, y), which is a
nonzero vector of X(0). This contradicts the above conclusion. Thus for each
y ∈ GF (q), there is at most one element x ∈ GF (q) such that (x, y) ∈W . Hence
|W | ≤ q = 2d+1.

Now assume thatW is not contained inX(∞). Then there is a vector (x, y) in
W with x 6= 0. As W is invariant under M , it follows from the action of mb (see
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Equation (3)) that W contains a vector of form (x′, y′) for every x′ ∈ GF (q).
Thus |W | ≥ q.

Together with the above conclusions, we have either W ≤ X(∞) or dimW =

d+1. Assume thatW is not contained inX(∞). Then, asM acts onW , it follows
from Equation (3) thatW = Y (c) := {(x, cx(φσ−1)/(φ−1)) | x ∈ GF (q)} for some
c ∈ GF (q)× (compare the arguments in [5, Lemma 10] with τ replaced by φ).
However, then the map (σφ − 1)/(φ − 1) is additive on GF (q)×, as Y (c) is a
subspace. This contradicts Lemma 2.3. Thus we have W ⊆ X(∞).

Up to here, arguments can be applied to any G-invariant proper subspace W
of V . Now we specialize to [V,N ].

As N acts regularly on S, there is a unique involution τ(t) of N exchanging
X(0) and X(t) for each t ∈ GF (q)×. Then (x, 0) + (x, 0)τ(t) ∈ [X(0), τ(t)] ≤
[V,N ]. Notice here that [V,N ] = W ≤ X(∞) = {(0, y) | y ∈ GF (q)} by
the conclusion in the previous paragraph. Thus (x, 0)τ(t) = (x, y) for some
y ∈ GF (q). As (x, 0)τ(t) ∈ X(0)τ(t) = X(t), we have y = xσt+ xtφ. Hence

[X(0), τ(t)] = {(0, xσt+ xtφ) | x ∈ GF (q)}. (15)

The map X(0) 3 (x, 0) = v 7→ v + vτ(t) ∈ [X(0), τ(t)] is a GF (2)-linear sur-
jection with kernel CX(0)(τ(t)) = X(0)∩X(t) of dimension 1. Thus [X(0), τ(t)]

is a subspace of [V,N ] of dimension d. On the other hand, [V,N ] is con-
tained in the (d + 1)-dimensional subspace X(∞) by the conclusion in the
above paragraph. Thus we have either dim[V,N ] = d or [V,N ] = X(∞). In
the former case, we have [V,N ] = [X(0), τ(t)] for all t ∈ G(q)×. In partic-
ular, [X(0), τ(t)] = [X(0), τ(1)]. Then it follows from Equation (15) that for
every x ∈ GF (q) and t ∈ GF (q)× we have xσt + xtφ = yσ + y for some
y ∈ GF (q). Thus Tr(xσt + xtφ) = 0 for all x ∈ GF (q) and t ∈ GF (q)×, where
Tr = TrGF (q)/GF (2). As Tr(xσt+xtφ) = Tr(xσ(t+tφσ)), this implies that t = tφσ

for all t ∈ GF (q)×. Hence φ = σ−1 ∈ Gal(GF (q)/GF (2)), which contradicts
our hypothesis. Thus we have [V,N ] = X(∞).

Step 7. We have a contradiction, if G contains an automorphism sending X(0) to
a member distinct from X(0).

Proof. We denote by τ the unique involution of N which sends X(0) to X(1).
From regularity of the action of N on S, such an element uniquely exists. As N
is an elementary abelian 2-group, τ is an involution and it exchanges X(0) and
X(1).

We examine the action of τ on V . Since τ is GF (2)-linear on V and stabilizes
X(∞) by Step 6, we can display the action of τ as follows.

(x, y)τ = (xa, xb + yd), (16)
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where a, b and d are GF (2)-linear maps from GF (q) to itself. They can be
determined as follows. We have (x, y) + (x, y)τ ∈ [V, τ ] ≤ [V,N ] = X(∞),
whence x = xa for every x ∈ GF (q), that is, a = id, the identity map on GF (q).
As (x, 0)τ = (x, xb) ∈ X(0)τ = X(1), we have xb = xσ + x for every x ∈ GF (q).
Thus b = σ+ id. Then we have (x, xσ +x)τ = (x, xσ +x+ (x+xσ)d), which is a
vector ofX(1)τ = X(0). Hence from the linearity of dwe have x+xd = xσ+xσd

for all x ∈ GF (q). Now remark that τ commutes with a generator fσ of F ,
because both τ and τfσ are involutions of N which send X(0) to X(1), whence
τ = τfσ . This implies that xdσ = xσd for all x ∈ GF (q) from Equation (16).
Then we have x + xd = xσ + xdσ = (x + xd)σ for all x ∈ GF (q). Hence
ε(x) := x+ xd ∈ GF (2) for all x ∈ GF (2).

Summarizing, we have

(x, y)τ = (x, xσ + x+ y + ε(y)) (17)

for all x, y ∈ GF (q), where ε(y) is an element of GF (2) uniquely determined by
y.

We write X(t)τ = X(t) for t ∈ GF (q)×. From Equation (17), we have
(x, xσt+xtφ)τ = (x, xσ+x+xσt+xtφ+ε(xσt+xtφ)),which lies inX(t)τ = X(t).
Thus

xσ(t+ t+ 1) + x((t)φ + tφ + 1) = ε(xσt+ xtφ) (18)

for all t ∈ GF (q)× and x ∈ GF (q). Putting x = 1, we have

t+ t+ tφ + (t)φ = ε(t+ tφ). (19)

Substituting Equation (19) into Equation (18), we have

(1 + t+ t)(x+ xσ) = xε(t+ tφ) + ε(xσt+ xtφ). (20)

Suppose ε(t + tφ) = 1 for some t ∈ GF (q)×. Then for every x ∈ GF (q) \
GF (2), we have xσ + x 6= 0 and 1 + t + t = (x + ε(xσt + xtφ))/(xσ + x) from
Equation (20). As this holds for every x ∈ GF (q), we have

x+ ε(xσt+ xtφ)

xσ + x
=
y + ε(yσt+ ytφ)

yσ + y
(21)

for all x, y ∈ GF (q) \ GF (2). Write ε(xσ + xtφ) = εx and ε(yσ + ytφ) = εy,
elements of GF (2). Then Equation (21) can be rewritten as

xyσ + yxσ = εx(yσ + y) + εy(xσ + x),

whence
Tr(xyσ + yxσ) = 0
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for all x, y ∈ GF (q) \ GF (2). Hence we have 0 = Tr(xσ(y + yσ
2

)) for all
x, y ∈ GF (q), from which we have y = yσ

2

for all y ∈ GF (q). However, this
implies that d + 1, the order of a generator σ of Gal(GF (q)/GF (2)), is 2. This
contradicts d ≥ 2.

Hence we have ε(t+ tφ) = 0 for all t ∈ GF (q). Then it follows from Equation
(20) that (1 + t+ t)(x+ xσ) = ε(xσt+ xtφ) for all x, t ∈ GF (q). Thus

1 + t+ t = εx/(x+ xσ)

for all x ∈ GF (q) \ GF (2) with εx = ε(xσt + xtφ) ∈ GF (2). Suppose εx = 1

for all x ∈ GF (q) \ GF (2). As t and t are independent of x, then we have
1/(x + xσ) = 1/(y + yσ) for every x, y ∈ GF (q) \ GF (2). However, this is
equivalent to the condition that x+ y = (x+ y)σ ∈ GF (2) for all x, y ∈ GF (q),
which contradicts q = 2d+1 ≥ 8. Hence εx = 0 for some x ∈ GF (q) \ GF (2).
This implies that for all t ∈ GF (q)× we have

t = t+ 1.

From Equation (19) and ε(t+ tφ) = 0, then we have 1 + tφ = (1 + t)φ for all
t ∈ GF (q)×. However, as φ is multiplicative, this shows that for s, t ∈ GF (q)

with t 6= 0 we have

(s+ t)φ = sφ((s/t)φ + 1)φ = sφ((s/t)φ + 1) = sφ + tφ.

Thus φ is additive as well. Hence φ is a field automorphism on GF (q), which
contradicts our assumption that φ 6∈ Gal(GF (q)/GF (2)).

By Step 7, the automorphism group G stabilizes X(0). Hence G = A = MF ,
and Theorem 1.1 is proved.

4. Isomorphism

In this section, we prove Theorem 1.2.

We set S := Sd+1
σ,φ with S ′ := Sd+1

σ′,φ′ . To distinguish members of S from S ′, we
denote members of S and S ′ as X(t) and X ′(t) respectively. The normal sub-
group of Aut(S) acting regularly on S \ {X(0)} (see Theorem 1.1) is denoted
Mσ,φ. The corresponding group for S ′ is denoted Mσ′,φ′ . To distinguish ele-
ments mb (see Definition 3) of Mσ,φ from the corresponding elements in Mσ′,φ′ ,
we denote the latter by m′b (b ∈ GF (q)×).

In view of Lemma 2.2, it suffices to show the ‘only if ’ part of Theorem 1.2.
In the case when d = 2, S3

2,6 and S3
4,6 are the only candidates for S and S ′
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(see Step 1 in the previous section), and there is nothing to prove. Thus we
may assume that d ≥ 3. Let τ be a GF (2)-linear bijection on V inducing an
isomorphism of S with S ′.

Step 1. We may assume that τ satisfies the following conditions.

X(0)τ = X ′(0), X(1)τ = X ′(1),M τ
σ,φ = Mσ′,φ′ and X(∞)τ = X(∞) .

Proof. As X(0) is the unique member of S fixed by Aut(S) by Theorem 1.1, it
is sent by τ to the unique member X ′(0) of S ′ = Sτ fixed by Aut(S ′). As d ≥ 3,
Mτ
σ,φ and Mσ′,φ′ are normal subgroups of Aut(S ′) ∼= Zq−1.Zd+1 (see Theorem

1.1) acting regularly on S ′ \ {X ′(0)}. Thus M τ
σ,φ = Mσ′,φ′ .

The subspaceX(∞)τ is a (d+1)-dimensional subspace of V which is invariant
under Aut(S)τ = Aut(S ′). Thus it follows from the argument in the first part of
the proof for Step 6 (or [5, Lemma 10] together with Lemma 2.3) thatX(∞)τ =

X(∞). As Mσ′,φ′ is transitive on S ′ \ {X ′(0)}, we may furthermore assume that
X(1)τ = X ′(1), replacing τ by τm′ for a suitable element m′ of Mσ′,φ′ .

As τ stabilizes both X(0) = X ′(0) = {(x, 0) | x ∈ GF (q)} and X(∞) =

{(0, y) | y ∈ GF (q)}, there exist GF (2)-linear bijections a and d on GF (q) such
that

(x, y)τ = (xa, yd) (22)

for all x, y ∈ GF (q).

Step 2. In Expression (22), we may assume that a = id, the identity on GF (q).

Proof. As M τ
σ,φ = Mσ′,φ′ , there is a positive integer i with mτ

η = (m′η)i, whence
mτ
b = (m′b)

i for all b ∈ GF (q)×. Applying mbτ = τ(m′b)
i to (x, y), we have

(bx)a = bi · xa (23)

(b(σφ−1)/(φ−1)y)d = ((bi)(σ′φ′−1)/(φ′−1)) · yd (24)

for all b ∈ GF (q)×, x, y ∈ GF (q). From Equation (23) and the linearity of a,
we have (b1 + b2)i = bi1 + bi2 for every b1 6= b2 ∈ GF (q)×. Hence the map
GF (q) 3 x 7→ xi ∈ GF (q) is both additive and multiplicative, whence xi =

xθ (x ∈ GF (q)) for some θ ∈ Gal(GF (q)/GF (2)). Then all the conditions
in Step 1 are satisfied with τ replaced by τ ′ := τf ′θ−1 , where f ′θ−1 denotes
the field automorphism of Aut(S ′) corresponding to θ−1. Moreover, we have
mbτ

′ = τ ′m′b. Thus replacing τ by τ ′, we may assume that (bx)a = b · xa for all
b, x ∈ GF (q). AsX(0)∩X(1) = [(1, 0)] is mapped by τ toX ′(0)∩X ′(1) = [(1, 0)]

by Step 1, we have 1a = 1. Thus ba = b · 1a = b for all b ∈ GF (q). Hence we
conclude that a = id, whence i = 1 in Equations (23),(24).
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Step 3. There is a non-prime subfield F of GF (q) such that in Expression (22)
we have d = µg for some µ ∈ Gal(GF (q)/GF (2)) and an F -linear bijection g on
GF (q). Furthermore, ((σφ− 1)/(φ− 1))µν ′ = (σ′φ′− 1)/(φ′− 1) on GF (q)× for
every ν′ ∈ Gal(GF (q)/F ).

Proof. Let I := {b(σφ−1)/(φ−1) | b ∈ GF (q)} and I ′ := {b(σ′φ′−1)/(φ′−1) | b ∈
GF (q)}. From Equation (24), for b ∈ GF (q)× we have b(σφ−1)/(φ−1) = 1 if
and only if b(σ

′φ′−1)/(φ′−1). Thus the endomorphisms (σφ − 1)/(φ − 1) and
(σ′φ′ − 1)/(φ′ − 1) of GF (q)× have the same kernel. As I and I ′ are images of
these endomorphisms, they are subgroups of a cyclic groupGF (q)× of the same
order, whence I = I ′.

Let F be the set of sums of elements of I = I ′. As I is closed under multipli-
cation, F is closed under both addition and multiplication. Thus F is a subfield
of GF (q). If F is GF (2), then I = {1}, whence xσφ−1 = 1 for all x ∈ GF (q)×.
However, this implies that σφ = id on GF (q), which contradicts our assumption
that φ is not contained in Gal(GF (q)/GF (2)). Thus F properly containsGF (2).

Then it follows from Equation (24) (with i = 1 by Step 2) and the linearity
of d that there exists an additive map µ on F such that

(fy)d = fµ · yd (25)

(b(σφ−1)/(φ−1))µ = b(σ
′φ′−1)/(φ′−1) (26)

for all f ∈ F , b ∈ GF (q)× and y ∈ GF (q). From Equation (26), µ is mul-
tiplicative on I, whence µ is multiplicative on F , as every element of F is a
sum of elements in I. Thus µ is an automorphism in Gal(F/GF (2)). We also
denote by µ an automorphism in Gal(GF (q)/GF (2)) whose restriction on F is
µ. Then it follows from Equation (25) that (fy)dµ

−1

= f(ydµ
−1

) for all f ∈ F
and y ∈ GF (q). Hence dµ−1 =: h is an F -linear bijection on GF (q). Thus
d = hµ = µg, where g := µ−1hµ is an F -linear bijection.

As b(σφ−1)/(φ−1) ∈ F for all b ∈ GF (q)×, the last claim in Step follows from
Equation (26).

Step 4. Let F ∼= GF (2s) with sr = d+1, and let ν be an automorphism of GF (q)

defined by xν = x2s . There exists some i with 0 ≤ i ≤ r − 1 such that one of the
following occurs, where µ is the element of Gal(GF (q)/GF (2)) in Step 3.

(a) σ = σ′ and µνi = id.

(b) σσ′ = id and µνi = σ′.

Proof. For t ∈ GF (q), we write X(t)τ = X ′(t). As a vector (x, xσt+xtφ) of X(t)

is mapped by τ to a vector (x, ((xσt + xtφ)µ)g) of X ′(t) by Step 2 and Step 3,
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we have

(xσµtµ + xµtφµ)g = xσ
′
t+ x(t)φ

′
(27)

for all x, t ∈ GF (q). Putting t = 1, for all x ∈ GF (q) we have

(xσµ + xµ)g = xσ
′
+ x. (28)

Now there is a unique polynomial g(X) in GF (q)[X] of degree at most q − 1

such that g(x) = xg for all x ∈ GF (q). As g is F -linear for F = GF (2s), we have

g(X) =

r−1∑

i=0

biX
2si

for some bi ∈ GF (q) (i = 0, . . . , r − 1). Recall that there are positive integers
m, k with 1 ≤ m, k ≤ d coprime with d+ 1 so that xσ = x2m and xσ

′
= x2k for

all x ∈ GF (q). We also define a with 0 ≤ a ≤ d by xµ = x2a for all x ∈ GF (q).
Then it follows from Equation (28) that

r−1∑

i=0

bix
2m+a+is

+

r−1∑

i=0

bix
2a+is

= x2k + x (29)

for all x ∈ GF (q). Choose integers αi and βi with 0 ≤ αi, βi ≤ q − 1 so that

Xαi ≡ X2m+a+is

, Xβi ≡ X2a+is

modulo Xq −X

(i = 0, . . . , r − 1). Then the left hand side of Equation (29) is given as L(x)

(x ∈ GF (q)) for a polynomial L(X) :=
∑r−1
i=0 biX

αi +
∑r−1
i=0 biX

βi of degree at
most q − 1, while the right hand side is R(x) (x ∈ GF (q)) for R(X) = X2k +X

of degree at most q − 1. Thus Equation (29) implies that L(X) = R(X) as
polynomials of GF (q)[X], that is,

r−1∑

i=0

biX
αi +

r−1∑

i=0

biX
βi = X2k +X. (30)

Now it is easy to verify that αi 6= αj and βi 6= βj if 0 ≤ i 6= j ≤ r − 1. If
αi = βj for some i, j, then X2m+a+is ≡ X2a+js

(modulo Xq −X). This implies
that m ≡ (j − i)s (modulo d+ 1). However, s is a divisor of d+ 1 with s ≥ 2, as
GF (2) is a proper subfield of F = GF (2s) by Step 3. This contradicts that m is
coprime with d+ 1. Hence αi 6= βj for every 0 ≤ i, j ≤ q − 1.

Thus the monomials in the left hand side of Equation (30) are distinct from
each other. As Xαi and Xβi has the same coefficient bi, we conclude that there
exists a unique i with 0 ≤ i ≤ r − 1 such that bi = 1, bj = 0 for every j 6= i, and
that either Xαi = X2k and Xβi = X or Xαi = X and Xβi = X2k . Accordingly,
we have Case (a) or Case (b) in the claim of this Step.



I I G

JJ II

J I

page 21 / 23

go back

full screen

close

quit

ACADEMIA
PRESS

Step 5. We have either (σ, φ) = (σ′, φ′) or σσ′ = id = φφ′.

Proof. Note that ν′ := νi in Step 4 lies in Gal(GF (q)/F ) as F = GF (2s). Then
it follows from the last remark in Step 3 that we have

(σφ− 1)µν′(φ′ − 1) = (σ′φ′ − 1)(φ− 1).

If Case (a) in Step 4 holds, then (σφ− 1)(φ′− 1) = (σφ′− 1)(φ− 1), from which
we have (σ − 1)(φ − φ′) = 0. Thus φ = φ′ as σ − 1 is bijective. If Case (b) in
Step 4 holds, then we have (σφ− 1)σ′(φ′ − 1) = (σ′φ′ − 1)(φ− 1). Multiplying
both sides by σ and using σσ′ = id, we have (σφ− 1)(φ′ − 1) = (φ′ − σ)(φ− 1).
It follows that (σ − 1)(φφ′ − 1) = 0, whence φφ′ = id as σ − 1 is bijective.

This completes the proof of the ‘only if’ part of Theorem 1.2. Thus Theorem
1.2 is established by Lemma 2.2.

5. Some general setting

In the definition of Sd+1
σ,φ , we only consider a generator σ of Gal(GF (q)/GF (2)).

In fact, this is naturally required, as the following proposition shows.

Proposition 5.1. For any polynomials a(X) and b(X) in GF (q)[X], we define
Sd+1
a,b to be the collection of X(t) over t ∈ GF (q), where

X(t) := {(x, a(x)t+ xb(t)) | x ∈ GF (q)}.

Assume that Sd+1
a,b is a d-dimensional dual hyperoval. Then there exist α, β ∈

GF (q)×, γ ∈ GF (q), a generator σ of Gal(GF (q)/GF (2)) and an o-polynomial
φ(X) of GF (q)[X] such that a′(x) = αxσ and b′(x) = βxφ + γ for all x ∈ GF (q)

and Sd+1
a,b = Sd+1

a′,b′ .

In particular, Sd+1
a,b is isomorphic to Sd+1

σ,φ .

We first prepare a lemma.

Lemma 5.2. Let c(X) be a polynomial of GF (q)[X] such that

(c(t1) + c(t2))/(t1 + t2) 6= (c(t1) + c(t3))/(t1 + t3)

for every mutually distinct elements t1, t2, t3 ofGF (q). Then there exist λ ∈ GF (q)

and an o-polynomial f(X) such that for all t ∈ GF (q) we have

c(t) = (c(0) + c(1) + λ)f(t) + λt+ c(0),

where λ is the unique value of GF (q) which cannot be written as (c(t1) + c(t2))/

(t1 + t2) for any t1 6= t2 ∈ GF (q).
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Proof. Recall that three points [ai1, ai2, ai3] (i = 1, 2, 3) of PG(2, q) are not in
a line in common if and only if det(aij) 6= 0. Thus no three distinct points of
A := {[1, t, c(t)] | t ∈ GF (q)}∪{[0, 0, 1]} are collinear from the hypothesis. Then
A is uniquely extended to a hyperoval O of PG(2, q). As the nucleus does not
lie on any line through two distinct points of A, it is of form [0, 1, λ], where λ is
the unique value of GF (q) which cannot be written as (c(t1) + c(t2))/(t1 + t2)

for some t1 6= t2 ∈ GF (q).

As (1, 0, c(0)), (1, 1, c(1)) and (0, 1, λ) are linearly independent, there is a
unique GF (q)-linear bijection F on GF (q)3 for which F (1, 0, 0) = (1, 0, c(0)),
F (1, 1, 1) = (1, 1, c(1)) and F (0, 1, 0) = (0, 1, λ). Then

F (0, 0, 1) = (0, 0, c(0) + c(1) + λ),

and the hyperoval F−1(O) of PG(2, q) contains four points [1, 0, 0], [1, 1, 1],
[0, 0, 1] and [0, 1, 0]. Thus F−1(O) has a canonical description {[1, t, f(t)] |
t ∈ GF (q)} ∪ {[0, 0, 1], [0, 1, 0]} with an o-polynomial f(X). As F (1, t, f(t))) =

F (1, 0, 0) + tF (0, 1, 0) + f(t)F (0, 0, 1) = (1, t, (c(0) + c(1) + λ)f(t) + λt+ c(0))

corresponds to a point of O, we have c(t) = (c(0) + c(1) + λ)f(t) + λt+ c(0) for
every t ∈ GF (q).

Now we prove Proposition 5.1. As each X(t) = {(x, a(x)t + xb(t)) | x ∈
GF (q)} is a subspace over GF (2), a(X) is additive: a(x1 + a2) = a(x1) +

a(x2) for all x1, x2 ∈ GF (q). Take any mutually distinct values ti (i = 1, 2, 3)
of GF (q). As S is a dimensional dual hyperoval, X(t1) ∩ X(t2) contains a
unique nonzero vector, but X(t1) ∩X(t2) ∩X(t3) = {(0, 0)}. This implies that
a(x)/x = (b(t1) + b(t2))/(t1 + t2) has a unique solution x in GF (q)×, while
(b(t1) + b(t2))/(t1 + t2) 6= (b(t1) + b(t3))/(t1 + t3). In particular, b(X) satisfies
the hypothesis of Lemma 5.2, and the map t 7→ (b(t1)+b(t))/(t1+t) is a bijection
of GF (q) \ {t1} with GF (q) \ {λ}. Thus the map x 7→ a(x)/x gives a bijection
of GF (q)× with GF (q) \ {λ}. Then

a(x1) + a(x2)

x1 + x2
=
a(x1 + x2)

x1 + x2
6= a(x1 + x3)

x1 + x3
=
a(x1) + a(x3)

x1 + x3

for all triple of distinct elements xi (i = 1, 2, 3) of GF (q). Hence the polynomial
a(X) also satisfies the hypothesis of Lemma 5.2. Then there exist λ, λ′ ∈ GF (q)

and o-polynomials π and φ in GF (q)[X] such that a(t) = (a(0) +a(1) +λ)π(t) +

λt+ a(0) and b(t) = (b(0) + b(1) + λ′)φ(t) + λ′t+ b(0) for all t ∈ GF (q).

Note that we have λ = λ′, because the above argument also shows that the
values (a(x1) + a(x2))/(x1 + x2) for x1 6= x2 ∈ GF (q) form a set GF (q) \ {λ}.
We set α := a(0)+a(1)+λ and β := b(0)+b(1)+λ, which are nonzero elements
of GF (q).
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As a(X) is additive, a(0) = 0 and π(X) is an additive o-polynomial. Thus
it follows from [3, Theorem 8.41] that π(X) = X2σ for some generator σ of
Gal(GF (q)/GF (2)). Then a(x) = αxσ + λx for all x ∈ GF (q). However, as
a(x)t + xb(t) = (αxσ + λx)t + x(βtφ + λt + b(0)) = αxσt + x(βtφ + b(0)), we
have a(x)t + xb(t) = a′(x)t + xb′(t), where a′(t) := αxσ and b′(t) := βtφ + γ

with γ := b(0). Thus X(t) in Sd+1
a,b is identical with X(t) in Sd+1

a′,b′ , whence
Sd+1
a,b = Sd+1

a′,b′ .

Finally, define GF (2)-linear transformations G, H and I by G : (x, y) 7→
(x, γx + y), H : (x, y) 7→ (δx, δσy) for δ ∈ GF (q)× with δσ−1 = α/β and
I : (x, y) 7→ (x, α−1y). As X(t) = {(x, αxσt + x(βtφ + γ)) | x ∈ GF (q)}, we
can easily see that X(t)GHI = {(x, xσt+ xtφ | x ∈ GF (q)}. Thus (Sd+1

a,b )GHI =

(Sd+1
a′,b′)

GHI = Sd+1
σ,φ .
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