Vol. 1, No. 1, 2005

Download this article
Download this article For screen
For printing
Recent Issues
Volume 17, Issue 3 (189-249)
Volume 17, Issue 2 (77-188)
Volume 17, Issue 1 (1-75)
Volume 16, Issue 1
Volume 15, Issue 1
Volume 14, Issue 1
Volume 13, Issue 1
Volume 12, Issue 1
Volume 11, Issue 1
Volume 10, Issue 1
Volume 9, Issue 1
Volume 8, Issue 1
Volume 6+7, Issue 1
Volume 5, Issue 1
Volume 4, Issue 1
Volume 3, Issue 1
Volume 2, Issue 1
Volume 1, Issue 1
The Journal
About the Journal
Editorial Board
Subscriptions
Submission Guidelines
Submission Form
Ethics Statement
Editorial Login
ISSN (electronic): 2640-7345
ISSN (print): 2640-7337
Author Index
To Appear
 
Other MSP Journals
New results on covers and partial spreads of polar spaces

Andreas Klein and Klaus Metsch

Vol. 1 (2005), No. 1, 19–34
Abstract

We investigate blocking sets of projective spaces that are contained in cones over quadrics of rank two. As an application we obtain new results on partial ovoids, partial spreads, and blocking sets of polar spaces. One of the results is that a partial ovoid of H(3,q2) with more than q3 q + 1 points is contained in an ovoid. We also give a new proof of the result that a partial spread of Q(4,q) with more than q2 q + 1 lines is contained in a spread; this is the first common proof for even and odd q. Finally, we improve the lower bound on the size of a smallest blocking set of the symplectic polar space W(3,q), q odd.

Mathematical Subject Classification 2000
Primary: 05B25, 51E12, 51E20, 51E21
Milestones
Received: 30 July 2004
Accepted: 20 January 2005
Authors
Andreas Klein
Klaus Metsch