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j, k-planes of order 43

Norman L. Johnson Oscar Vega Fred W. Wilke∗

Abstract

A new class of translation planes of order 43 is constructed and studied.
These planes are a generalization of the j-planes discovered by Johnson, Po-
mareda and Wilke ([16]). These j, k-planes may be André replaced and the
j, k-planes and the planes obtained by André replacement may be derived.
There are thirteen new planes constructed and classified. Using ‘regular
hyperbolic covers’, there are some new constructions of flat flocks of Segre
varieties by Veronesians.
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1. Introduction

More than twenty years ago, T.G. Ostrom asked of the first author whether there
exist non-André translation planes of order qn that admit an affine homology
group of order (qn − 1)/(q − 1). The André planes of order qn admit two affine
homology groups of order (qn − 1)/(q − 1) that fix a pair of components L and
M such that one group has axis L and coaxis M and the remaining group has
axis M and coaxis L. If the groups are cyclic, planes with two homology groups
of such order may be characterized. We call such homology groups as above
‘symmetric’ to each other. When n = 2, the first author (Johnson [13]) recently
described the planes with spread in PG(3, q) that admit such groups.

Theorem 1.1. (Johnson [13]) Let π be a translation plane with spread in PG(3, q)

that admits at least two homology groups of order q+ 1. Then one of the following
occurs:
∗We thank the reviewers for their interesting comments and for pointing out improvements to

our work.
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(1) q ∈ {5, 7, 11, 19, 23} (the irregular nearfield planes and the exceptional
Lüneburg planes are examples),

(2) π is André,

(3) q is odd and π is constructed from a Desarguesian spread by (q + 1)-nest
replacement (actually q = 5 or 7 for the irregular nearfield planes also occur here),

(4) q is odd and π is constructed from a Desarguesian spread by a combination
of (q + 1)-nest and André net-replacement,

(5) q ≡ −1 mod 4 and the axis/coaxis pair is invariant under the full collinea-
tion group (in this case there is a non-cyclic homology group of order q + 1),

(6) q = 7 and the plane is the Heimbeck plane of type III with 10 homology axes
of quaternion groups of order 8.

Furthermore, the first author has shown that every translation plane of order
q2 with spread in PG(3, q) that admits a cyclic homology group produces a flock
of a quadratic cone.

Theorem 1.2. (Johnson [12]) The set of translation planes of order q2 with
spread in PG(3, q) that admit cyclic affine homology groups of order q + 1 is
equivalent to the set of flocks of a quadratic cone.

Therefore, we may really consider Ostrom’s question for planes of order qn,
n > 2. When there are two cyclic symmetric affine homology groups of order
(qn− 1)/(q− 1), the following result shows that we really are dealing only with
the André planes.

Theorem 1.3. (Johnson and Pomareda [15]) Let π be a translation plane of order
qn that admits symmetric cyclic affine homology groups of orders (qn− 1)/(q− 1),
n > 2.

Then the plane π is André.

So, the problem posed above can be reduced to asking if one affine homology
group of order (qn − 1)/(q − 1) is sufficient to classify such planes.

Again, when n = 2, since every flock of a quadratic cone gives at least one
translation plane with the required homology group, there are tremendous va-
rieties of such translation planes. In particular, the so-called ‘j-planes’ of order
q2 admit a cyclic collineation group of order q2 − 1, of which there is an affine
homology subgroup of order q + 1. Hence, in particular, j-planes correspond to
flocks of quadratic cones (in fact, j-planes correspond to monomial flocks).

So, the question now turns to whether there are non-André planes of order
qn admitting an affine homology group of order (qn − 1)/(q − 1), for n > 2.
The connection with j-planes and cyclic homology groups of order q + 1 in
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translation planes of order q2 and then with corresponding flocks of quadratic
cones ultimately depends upon the partition of PG(3, q) into a set of (q − 1)

mutually disjoint hyperbolic quadrics unioned with two carrying lines. When
considering whether there are non-André planes admitting such large groups,
we note the following:

Theorem 1.4. (Ostrom [22]) Let π be a translation plane of order qn that admits
a cyclic affine homology group H of order (qn − 1)/(q − 1). Then any component
orbit union the axis and coaxis of the group is a Desarguesian partial spread.

Corollary 1.5. Let π be a translation of order qn and kernel containing GF (q)

that admits a cyclic affine homology group H of order (qn − 1)/(q− 1) and let Sπ

denote the spread for π. Then Sπ is the union of a set of (q − 1) André nets Ai in
Desarguesian spreads Σi, i = 1, 2, . . . , q − 1, union the axis and coaxis of H.

Furthermore, any such André net has at least n− 1 André replacements.

Proof. Consider a Desarguesian plane Σ containing an orbit HM , where H is
a cyclic homology group of order (qn − 1)/(q − 1). Coordinatize Σ by a field
isomorphic to GF (qn) and let the homology group H have axis x = 0, y = 0.
By Johnson [12], we may assume that n > 2. We see for n > 2, that there is a
unique Desarguesian spread of π containing HM union x = 0, y = 0 so H must
be a collineation group of Σ. Consider the spread for Σ in the form

x = 0, y = 0, y = xm;m ∈ GF (qn).

But then we may identify H with the following affine homology group of Σ:
〈

(x, y) 7−→ (x, y)

[
I 0

0 m

]
; |m|

∣∣ (qn − 1)/(q − 1)

〉
.

Hence, considering M in GF (qn), we see that HM is the André net

Aα =
{
y = xm ; m(qn−1)/(q−1) = α

}
,

where α is fixed in GF (q). Since we may replace HM by nets

Aiα =
{
y = xq

i

m ; m(qn−1)/(q−1) = α
}
, for i = 1, 2, . . . , n− 1,

we have the proof to the corollary.

When n = 2, André nets in this context are reguli. The connection with flocks
of quadratic cones and translation planes of order q2 with spreads in PG(3, q)

admitting cyclic homology groups of order q+1 is made due to ‘hyperbolic fibra-
tions’; a covering of PG(3, q) by a set of (q − 1) hyperbolic quadrics union two
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carrying lines. Noticing the similarity with the content of the above corollary,
we formulate the following definition. Although there is a projective definition,
we prefer the vector-space version.

Definition 1.6. Let V2n be a 2n-dimensional GF (q)-vector space. A ‘hyper-
regulus’ is a partial spread of order qn and degree (qn−1)/(q−1) of n-dimensional
GF (q)-subspaces that has a replacement partial spread of the same degree such
that each component of the replacement set intersects each component of the
original partial spread in a 1-dimensional GF (q)-subspace.

Definition 1.7. A ‘hyperbolic fibration of dimension n’ is a partition of V2n into
(q − 1) hyper-reguli union two carrying lines.

Hence, we see that any translation of order qn and kernel GF (q) admitting a
cyclic homology group of order (qn − 1)/(q− 1) produces a hyperbolic fibration
of dimension n. Recently, Culbert and Ebert [4] have pointed out the possibility
of extending the nature of hyperbolic fibrations to correspond to a situation such
as described in the above corollary, and noted that so far there are no known
examples of such generalizations.

About 1992, in unpublished work, the first author constructed an affine plane
of order 43 and kernel GF (4) admitting an affine homology group of order
(43 − 1)/(4− 1), which, in fact, is not André. The third author was able to use
the computer to construct a large set of such planes, however no classification
was attempted at that time. The present work extends both of the previously
mentioned constructions and is part of the second author’s Ph.D. thesis at the
University of Iowa.

The idea of the basic constructions in this article involves extending the def-
inition of j-planes for planes of order q2, to j . . . j-planes for planes of order
qn. When n = 3, we call these ‘jj-planes’, or ‘j, k-planes’, to fix the notation.
The reader is directed to the second author’s thesis for the more general defini-
tion and for other constructions of new translation planes of order qn admitting
affine homology groups of order (qn − 1)/(q − 1) and for the general theory of
j . . . j-planes.

We shall get to the precise definition shortly, but roughly we construct new
planes of order 43 and kernel GF (q) by use of a cyclic group C of order 43 − 1,
that contains an affine homology group of order (43 − 1)/(4 − 1). As noted in
the above corollary, we now have three André nets, each of which admits two
André replacements. Hence, we obtain additional translation planes, each of
which admits affine homology groups of order (43− 1)/(4− 1). Of course, there
is the unique nearfield plane of order 43 with kernel GF (4), which also admits
a cyclic homology group of order (43 − 1)/(4− 1).
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At this point, it is important to mention that, since 43 − 1 does not have 2-
primitive divisors, we will not be able to use several theorems on collineation
groups of translation planes that require the existence of p-primitive divisors.
Note that 43 is one of the smallest non-trivial orders a plane can have that does
not have p-primitive divisors.

Let K∗ denote the kernel homology group of order 4− 1 = 3. Within CK∗, it
is possible to find so-called ‘regulus-inducing’ homology groups of order 3; the
axis and coaxis together with any component orbit of length 3 define a regulus
in PG(5, 4). Hence, we have covering of the spread by a set of reguli that share
two components. We note that Jha and Johnson [10] have shown that such
spreads correspond to and produce flat flocks of Segre varieties. Hence, any
such plane constructed that admits this homology group of order 3 produces a
flat flock.

We also note that any homology group of order (43 − 1)/(4 − 1) contains a
cyclic affine homology group of order 8−1, where the plane has order 82. Since
any such orbit union the axis and coaxis is contained in a unique Desarguesian
spread, it follows that a cyclic affine homology group of order 8−1 corresponds
to the cyclic homology group arising from GF (8) in GF (82). It then follows
that any such orbit union the axis and coaxis defines a derivable net (this is a
regulus in the PG(3, 8) wherein the unique Desarguesian spread lives). If any
such net is derived we obtain a new translation plane that retains the group of
order 7 but loses the group of order 3 and, in fact, the kernel of these derived
planes becomes GF (2).

Our main results are as follows:

Theorem 1.8. There are three isomorphism classes of j, k-planes of order 43.

One of these planes is a nearfield plane and the other two are new planes. All
such planes have kernel GF (4) and spreads in PG(5, 4).

Each j, k-plane admits a collineation group G of order 43− 1 fixing two compo-
nents and transitive on the remaining components.

Within G, there is an affine homology group of order (43 − 1)/(4− 1) produc-
ing three nets (André nets) of the same size that are replaceable by two distinct
replacements.

Theorem 1.9. Using the replacements listed in the theorem above, there are ex-
actly two mutually non-isomorphic planes obtained by multiple André replacement,
which are not j, k-planes. These two planes admit affine homology groups of order
(43 − 1)/(4− 1) but not the larger group of order 43 − 1. These planes also have
kernel GF (4) and spreads in PG(5, 4).

Theorem 1.10. Each of the four new translation planes listed in the two previous
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theorems admits a cyclic affine homology group of order 7. The component orbits
union the axis and coaxis of the group define derivable nets.

Deriving such planes provides ‘nine’ mutually non-isomorphic and new transla-
tion planes. Each derived plane has kernel GF (2) and spread in PG(11, 2).

Theorem 1.11. Each j, k-plane and replaced j, k-plane whose spreads have kernel
GF (4) admits an affine homology group of order 3. The component orbits union
the axis and coaxis are GF (4)-reguli. Hence, we have a ‘regulus hyperbolic cover’.
Each such regulus hyperbolic cover produces a flat flock of the Segre variety S2,2

by Veroneseans.

2. Definition and basic properties

Let K ∼= GF (q). Given a polynomial p(x) = x3 − ax2 − bx− c, irreducible over
K[x], we can construct the following field of matrices F ∼= GF (q3).

F =



Mr,s,t =




r s t

tc r + tb s+ ta

c(s+ ta) b(s+ ta) + tc a(s+ ta) + (r + tb)


 ; r, s, t ∈ K



 .

For fixed j, k ∈ {0, 1, 2, . . . , q − 2} we define:

G =





[
∆−1 0

0 M

]
; M ∈ F ∗ and ∆ =




1 0 0

0 ∂j 0

0 0 ∂k


 , where ∂ = det(M)



 .

Clearly G ∼= Zq3−1.

Notation 1. For fixed j and k in {0, 1, 2, . . . , q − 2} and any M ∈ F ∗ we will
denote the matrix 


1 0 0

0 ∂−j 0

0 0 ∂−k




by ∆M , where ∂ = det(M). We will omit the sub-index M in ∆M whenever the
context makes clear what matrix is associated to ∆M .

Remark 2.1. We define S to be the orbit of the line {y = x} under the group G.
Note that, since G is cyclic,

S ∪ {x = 0, y = 0}

is a spread if and only if det(∆M − Id) 6= 0 for every M 6= Id in F ∗.
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Definition 2.2. Whenever S defines a spread, the associated translation plane
will be called a j, k-plane. These planes have order q3.

Remark 2.3. A 0, 0-plane is Desarguesian.

We will restrict ourselves to the case q = 4. We say that GF (4) was obtained
by extending GF (2) by using α, a root of x2 + x+ 1.

By using a computer, we have checked the necessary conditions for S to
be a spread. This has yielded the existence of 16 putative non-Desarguesian
j, k-planes of order 43 (we will show they are non-Desarguesian in Corollary
3.5). The planes are given by:

(a, b, c) – (j, k)

(0, 0, α) – (0, 1)

(0, 0, α) – (1, 0)

(0, 0, α) – (1, 2)

(0, 0, α) – (2, 1)

(0, 0, α) – (2, 2)

(0, 0, α+ 1) – (0, 1)

(0, 0, α+ 1) – (1, 0)

(0, 0, α+ 1) – (1, 2)

(0, 0, α+ 1) – (1, 2)

(0, 0, α+ 1) – (2, 2)

(0, 1, 1) – (2, 2)

(0, α, 1) – (2, 2)

(0, α+ 1, 1) – (2, 2)

(1, 0, 1) – (0, 1)

(α, 0, 1) – (0, 1)

(α+ 1, 0, 1) – (0, 1)

where the triple (a, b, c) represents the field of matrices (via the coefficients of
p(x)) over which the j, k-plane is constructed.

Remark 2.4. It is easy to see that there are some homology groups. These
groups will play an important role in the next section, where we will discuss
the isomorphism classes and the classification of the planes we have found. The
most important of these groups is Hy = {N ∈ G ; det(N) = 1 }. This group
is a cyclic ((∞), y = 0)-homology group of order 21 that intersects trivially the
kernel homologies.

The second group is Hx, a ((0), x = 0)-homology group of order 3 induced
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by H0 =

{
N ∈ G ; N =

[
Id 0

0 r Id

]
, r ∈ GF (4)∗

}
. Specifically,

Hx =

{[
r Id 0

0 Id

]
; r ∈ GF (4)∗

}

Clearly Hx and Hy are symmetric to each other in the sense that the axis of
one is the coaxis of the other, hence they commute. Thus, HxHy = Hx ×Hy.

Remark 2.5. For a fixed j, k-plane Π, consider the homology group Hy. Note
that its line orbits define 3 André nets in the plane. Together with the lines y = 0

and x = 0, these nets partition the spread. All such orbits look like:

Nv = { y = x(∆LLM) ; M ∈ F ∗ and det(M) = 1 } ,

where L is fixed with det(L) = v and v ∈ {1, α, α2}.

In Section 4 we will consider replacements of these nets.

3. Isomorphisms and classification

In this section we will show that there are only three isomorphism classes of
j, k-planes of order 43. Also, we will prove that the non-André planes we have
found are new.

Lemma 3.1. Assume the notation used in the previous list of planes. The collinea-
tion Ψ, defined by

(x1, x2, x3, y1, y2, y3) 7→ (x2
1, x

2
2, x

2
3, y

2
1, y

2
2, y

2
3),

induces the following isomorphisms:

1. (0, α, 1)− (2, 2) ' (0, α+ 1, 1)− (2, 2),

2. (α, 0, 1)− (0, 1) ' (α+ 1, 0, 1)− (0, 1),

3. (0, 0, α)− (j, k) ' (0, 0, α+ 1)− (j, k), for every (j, k).

Proof. Let us prove that Ψ induces the isomorphism between (0, α, 1) − (2, 2)

and (0, α+ 1, 1)− (2, 2).

First, we note that Ψ sends the line

y = x




r s t

∂2tc ∂2(r + tα) ∂2s

∂2s ∂2(αs+ t) ∂2(r + tα)
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to the line

y = x




r2 s2 t2

(∂2)2t2 (∂2)2(r2 + t2α2) (∂2)2s2

(∂2)2s2 (∂2)2(α2s2 + t2) (∂2)2(r2 + t2α2)


 .

Now we make use of the fact that α2 = α+ 1 and the fact that

∂ = det



r s t

tc r + tα s

s αs+ t r + tα




implies

∂2 = det



r2 s2 t2

t2 r2 + t2α2 s2

s2 α2s2 + t2 r2 + t2α2


 .

Then
Ψ((0, α, 1)− (2, 2)) = (0, α+ 1, 1)− (2, 2).

The other isomorphisms follow similarly.

Remark 3.2. It follows from the lemma that there are, at most, 9 isomorphism
classes of j, k-planes of order 43. Also, we can see that automorphisms of the
field do not induce any isomorphism between planes from the 9 classes we have
right now. Thus, any possible isomorphism between planes from these 9 classes
can be considered as a linear morphism.

Now we will show some isomorphisms that will restrict the number of iso-
morphism classes of j, k-planes to, at most, 4.

For all the isomorphisms we will use a generic Ψ defined by Ψ(x, y) =

(xA, yA). The following are the distinct matrices A together with the isomor-
phism they generate.

For A =




1 0 0

0 α 0

0 0 α2


, Ψ is an isomorphism between (0, 1, 1) − (2, 2) and

(0, α, 1)− (2, 2).

For A =




1 0 0

0 α 1

0 1 α


, Ψ is an isomorphism between (0, 0, α) − (2, 2) and

(0, 1, 1)− (2, 2).
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For A =




0 α 0

α2 α 0

0 0 1


, Ψ is an isomorphism between (1, 0, 1) − (0, 1) and

(α, 0, 1)− (0, 1).

For A =




1 α 0

α2 α 0

0 0 1


, Ψ is an isomorphism between (0, 0, α) − (0, 1) and

(1, 0, 1)− (0, 1).

For A =




0 0 1

α2 0 0

0 1 0


 we obtain the isomorphism between (0, 0, α) − (0, 1)

and (0, 0, α)− (1, 0).

Therefore, there are, at most, the following four isomorphism classes of
j, k-planes:

(0, 0, α)− (0, 1),

(0, 0, α)− (1, 2),

(0, 0, α)− (2, 1),

(0, 0, α)− (2, 2).

However, we will show in Remark 3.9 that the number of classes is at most
three.

Also, note that all j, k-planes can be considered, now, as constructed over the
same field of matrices F . Thus, they can be considered as planes that share the
net N1 = {M ∈ F ; det(M) = 1 }.

Lemma 3.3. The translation complement of a non-André j, k-plane Π fixes the
lines (x = 0) and (y = 0).

Proof. If (x = 0) is fixed and Ψ(y = 0) 6= (y = 0), then there are least 64 distinct
homology groups with different coaxes but that share the axis (x = 0). By using
André’s homology theorem we can see that the size of the elation group with
axis (x = 0) is going to be 64. This forces Π to be Desarguesian. If we assume
that (y = 0) is fixed and Ψ(x = 0) 6= (x = 0) the proof follows similarly.

If both lines are moved by Ψ, then, using the transitivity of G on `∞ if neces-
sary, it is possible to construct a collineation of Π mapping (y = 0) to (x = 0).
This cannot happen because that would imply that Π is André. The result fol-
lows.

Theorem 3.4. The linear part of the translation complement of a j, k-plane Π is
isomorphic to the product of G and ΓL(1, 43).
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Proof. We use the previous lemma and the fact that the group G is transitive
in `∞ \ {x = 0, y = 0} to restrict ourselves to find a linear element Ψ in the
translation complement of the j, k-plane Π that fixes y = x, (x = 0) and (y = 0).
This element Ψ can be represented as:

Ψ =

[
A

A

]
for some A in GL(3, 4).

Note that the pairs {j, k} we are now considering are either {0, 1}, {1, 2} or
{2, 2}. In any case, gcd(j + k + 1, 3) = 1 which implies ∆M = ∆M ′ if and only
if det(M) = det(M ′).

Let A be as above, i.e., Ψ = diag(A,A). Since A−1∆MA = A−1∆AA−1MA

and gcd(j+k+1, 3) = 1, the element A has to normalize the field of matrices F .
This implies that Ψ is a collineation of the Desarguesian plane with spreadset F
which forces A to be in ΓL(1, 43). Thus the desired result follows.

Corollary 3.5. A j, k-plane of order 43 with (j, k) 6= (0, 0) is not Desarguesian.

Proof. Since we know what the collineations of our planes look like, we just
have to see that this group cannot be the translation complement of a Desar-
guesian plane. This follows from the fact that if (j, k) 6= (0, 0) then ∆ does not
commute with the field F .

Lemma 3.6. The j, k-planes (0, 0, α)− (0, 1) and (0, 0, α)− (2, 2) are not André.
However, the planes (0, 0, α) − (1, 2) and (0, 0, α) − (2, 1) are André. Moreover,
they are nearfield planes.

Proof. Let Π be a j, k-plane with {j, k} 6= {1, 2}. Assume it is an André plane.

Let M ∈ F and y = x∆M .

If y = x∆M = x4N where N ∈ F . Then det(M)1+j+k = det(∆M) =

det(N).

Since {j, k} = {2, 2} or {0, 1}, the square det(M)2 = det(N). This forces

{ y = x∆M ; det(M) = α } = { y = x4N ; det(N) = α2 }
and

{ y = x∆M ; det(M) = α2 } = { y = x4N ; det(N) = α }.
Let us assume that x∆M = x4N where det(M)2 = det(N) and M,N ∈ F .

Consider the basis for GF (q3) as a GF (q) vector space given by {1, β, β2}
where β3 = α. Then the automorphism x 7→ x4 is given by the matrix

M4 =




1 0 0

0 α 0

0 0 α2


 .
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If x∆M = x4N as above, then ∆M = M4N . This implies that M4∆ =

NM−1.

Since NM−1 ∈ F and M4∆ is a diagonal matrix with a 1 in the entry 1, 1,
the diagonal matrix M4∆ = Id. Then ∆ = M2

4 .

Similarly we can show that if we assume that x∆M = x42

N where det(M) =

det(N)2 and M,N ∈ F then ∆ = M4.

Following a similar argument it is easy to see that both (0, 0, α)− (1, 2) and
(0, 0, α)− (2, 1) are André.

Now, consider Π = (0, 0, α) − (1, 2). In order to prove that Π is a nearfield
plane we will check that the multiplication defined on the spreadset is associa-
tive.

Note that the non-zero matrices in the spreadset S of Π are:

S \ {0} = { y = xM ; det(M) = 1 }
∪ { y = xM4M ; det(M) = α }

∪ { y = xM2
4M ; det(M) = α2 }.

To see that the product is associative we will limit our work to a particular
case: Let x ∈ GF (43). Then

x(A) [(M4B)(M4C)] = (xA)4B(M4C)

=
[
(xA)4B4

]
C

= x [A(M4B)] (M4C)

= [(xA)(M4B)]
4
C

=
[
(xA)4B

]4
C

= x [(A)(M4B)] (M4C).

The other products are checked in the same way. Also, the product in the
plane (0, 0, α)− (2, 1) works similarly. Thus, the planes are nearfield.

Theorem 3.7. (Lüneburg [20]) Let p be a prime and q a power of p. If every prime
divisor of n divides q−1 and n 6= 0 mod 4 when q ≡ 3 mod 4 ({q, n} is a nearfield
pair), then there are up to isomorphism exactly ϕ(n)f−1 Dickson nearfield planes
of order qn, where f is the order of p mod n and ϕ is the Euler function.

Corollary 3.8. The planes (0, 0, α)− (1, 2) and (0, 0, α)− (2, 1) are isomorphic

Proof. Just note that {4, 3} is a Dickson pair. Use Lüneburg’s theorem to con-
clude that there is a unique nearfield plane of order 43.
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Remark 3.9. We have shown that there are at most three different isomorphism
classes. They are:

(0, 0, α)− (0, 1),

(0, 0, α)− (1, 2),

(0, 0, α)− (2, 2).

One of these planes is André, the other two are not. In the following propo-
sitions we will show that these two planes are not isomorphic.

Lemma 3.10. Let Π1 and Π2 be the two non-André j, k-planes. Assume that Ψ is
an isomorphism between Π1 and Π2. Let Hi be the homology group of order 21 of
the plane Πi for i = 1, 2. Then H2 and the homology group induced by Ψ and H1

in Π2 have the same axis and coaxis.

Proof. First of all, because of Remark 3.2, we can consider Ψ to be represented
by an element of GL(6, q).

Recall that the homology groups H1 and H2 are cyclic and note that there is
another cyclic homology group of order 21 acting on Π2: the group induced by
Ψ and H1. Let us call this group Ψ(H1). It is clear that we can assume that the
groups H1 and H2 have same axis (y = 0) and coaxis (x = 0).

Let l and m be the axis and coaxis of Ψ(H1) respectively. If the set of lines
{(x = 0), (y = 0), l,m} has size at least 3, then there is going to be a collineation
of Π that does not fix either (x = 0) or (y = 0). This contradicts Lemma 3.3.

It follows that the axes are either interchanged or fixed. The first case con-
tradicts Lemma 3.3; thus the latter case holds.

Corollary 3.11. With the same hypothesis as in the previous lemma, Ψ can be
chosen so that Ψ(N1,v) = N2,v, where {Ni,v ; v ∈ {1, α, α2} } are the nets of the
plane Πi induced by the homology group Hi.

Proof. First note that we can identify Ni,v with the set of matrices in the spread-
set of Πi with determinant (v)2.

Since Ψ fixes x = 0 and y = 0, the matrix for Ψ looks like [A 0
0 B ]. However,

since Π2 has a single orbit in `∞ \ {x = 0, y = 0}, we can assume that the line
y = x is fixed. Thus, Ψ is given by [A 0

0 A ].

It follows that Ψ sends the line y = xM to the line y = xA−1MA.

Since det(M) = det(A−1MA), we conclude that Ψ(N1,v) = N2,v.

Lemma 3.12. The planes Π1 = (0, 0, α)− (0, 1) and Π2 = (0, 0, α)− (2, 2) are
not isomorphic to each other.
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Proof. Using the previous corollary, we consider Ψ = [ A 0
0 A ] ∈ GL(6, q) as an

isomorphism between Π1 and Π2. We know that A normalizes N1.

Let ∆1M1 be a line in Π1 with det(M1) 6= 1.

Then A−1∆1M1A = ∆2M2, some line in Π2. Note that, since the character-
istic is 2, det(M1) = det(M2). Then

∆2M2 = A−1∆1M1A = (A−1∆1A)(A−1M1A) = (A−1∆1A)M̃2,

where M̃2 ∈ F . Thus, ∆2N2 = A−1∆1A for some N2 ∈ F with determinant 1.

Suppose N2 6= Id. Note that, if the line y = x∆1M1 is in Π1 then so is
y = x∆2

1M
2
1 . Then A−1∆2

1A = ∆2
2Ñ2 for some Ñ2 ∈ F with determinant 1.

However,

A−1∆2
1A = (A−1∆1A)2 = (∆2N2)2 = ∆2

2(∆−1
2 N2∆2)N2.

This implies that (∆−1
2 N2∆2) ∈ F .

It is easy to see that this is impossible unless det(M1) = 1. So we have
reached a contradiction.

If N2 = Id then ∆2 = A−1∆1A. Since two similar matrices that are diagonal
have to be the same, we obtain a contradiction.

Next, we will prove that the non-André j, k-planes we have found are new.
We will do this by proving a sequence of short lemmas that follow the next
remark.

Remark 3.13. All the results that follow until the end of this section will consider
a j, k-plane to be one of the planes listed in Remark 3.9.

In order to demonstrate that the planes we have found are new we will com-
pare them to all the known classes of translation planes of order 43. A list of
these classes follows.

1. Desarguesian.

2. André.

3. Nearfield.

4. Generalized André.

5. Semifield.

6. Hiramine–Jha–Johnson [6].

7. Flag-transitive.

8. SL(2, q) plane, i.e., a plane that admits SL(2, q) as a collineation group.

9. Symplectic (see, for example, [18], [3] and [24]).
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Also, there are the planes that are obtained by transposition, net replacement
and derivation on the planes described on the list.

Recall that in Corollary 3.5 we showed that j, k-planes cannot be Desargue-
sian (unless j = k = 0) and that in Lemma 3.6 we proved that there is a class
of j, k-planes that is nearfield (and André) and that the other two classes are
non-André.

Lemma 3.14. If Π is a non-André j, k-plane, then Π is neither a nearfield plane
nor a generalized André plane.

Proof. If Π were a nearfield plane, then because its order is not a prime number
or the square of a prime number, it would be André.

If Π were generalized André, then since the plane has a homology group of
size 21 = (43 − 1)/(4− 1), the plane would be André.

Lemma 3.15. If Π is a j, k-plane, then Π is not a semifield plane.

Proof. If Π is a semifield plane, then the nuclei are fields and the semifield is a
left or right vector space over them. Since Π has a homology group of order 21,
the nuclei have order at least 22, which is too large for a proper subfield to be
contained in the semifield with 64 elements. Then the semifield would become
a skewfield and the plane would be Desarguesian.

Remark 3.16. A j, k-plane of order 43 cannot be Hiramine–Jha–Johnson because
they have different types of orbits in `∞.

Remark 3.17. Since the collineation group of any given non-André j, k-plane
Π fixes the lines (x = 0) and (y = 0) (Lemma 3.3), the plane Π is not flag-
transitive.

Lemma 3.18. If Π is a j, k-plane then Π is not an SL(2, q)-plane.

Proof. If we assume that a j, k-plane Π admits H ∼= SL(2, q) as a linear collin-
eation group, then since the p-elements of H are affine elations, Π would be
Desarguesian.

In general, transposing the spread of a translation plane, described below,
may yield a different translation plane. However, we shall see that j, k-planes
of order 43 are all self-transposed.

Definition 3.19. Let S = {y = xM} ∪ {(x = 0)} be a spread. Then the spread
given by St = {y = xM t} ∪ {x = 0} is called the transposed spread of S. It is
known that, after a change of basis, the collineations of St look like

(x, y)→ (x, y)

[
Dt Bt

Ct At

]
,
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where

(x, y)→ (x, y)

[
A C

B D

]

is a collineation of S.

Lemma 3.20. Let Π be a j, k-plane, Then Π is isomorphic to its transposed plane.

Proof. Let S = { y = x∆M ; M ∈ F ∗ } ∪ {x = 0} be the spreadset for Π. Then
St looks like

St = { y = xM t∆t ; M ∈ F ∗ } ∪ {x = 0}.

After the change of basis (x, y) 7→ (y, x),

St = { y = x∆−tM−t ; M ∈ F ∗ } ∪ {x = 0}.

Since ∆t = ∆ and det(M−1) = det(M)−1 for M ∈ F ∗, the transposed spread is

St = { y = x∆M t ; M ∈ F ∗ } ∪ {x = 0}.

Denote by F t the set F t = {M t ; M ∈ F }.
We know that the field F is given by the polynomial x3−α. Let F̃ be the field

obtained by extending GF (4) by using a root of x3 − α2 and let F t = {M t ;

M ∈ F }. Simple matrix computations show that F t = F̃ . Finally, Lemma 3.1
shows that S ∼= St.

In order to prove that j, k-planes are not symplectic we need to learn a little
more about this class of planes.

Definition 3.21. A translation plane Π is said to be symplectic if it admits a
spreadset of symmetric matrices (that we will call a symplectic spread).

Recently Kantor [19] showed that every symplectic spread is also symplectic
over its kernel. Using this result, we can assume that a j, k-plane or a replaced
j, k-plane can be represented in some basis by a set of 3 × 3 matrices that are
symmetric.

We note that a symplectic spread is the set of subspaces that are invariant
under a suitable polarity. This should force, after a change of basis, the new
spreadset that represents the symplectic plane to be self-transposed. Next we
provide a more “hands on” proof of this fact and we improve the result by
obtaining a new condition that we will use often for the rest of this work.

Lemma 3.22. If Π is a symplectic plane of order qn with kernel GF (q) and with
spread S in Mn(q) such that Id ∈ S, then there is a symmetric matrix R such that
RSR−1 = St. In particular, S is self-transposed.
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Proof. Using Kantor’s result [19], since Π is symplectic, there is a change of
basis such that the spread of Π in this new basis is a set of symmetric matrices.
Let Φ be the matrix that represents this change of basis.

We use elation sliding and inversion [17] to select Φ fixing (x = 0). Also,
assume that (y = 0) is not fixed, so Φ(y = 0) = (y = xT ) for some symmetric
matrix T . Also assume that for some (y = x∆M) ∈ S, Φ(y = x∆̃M̃) = (y = 0).
Since G acts transitively on `∞ \{x = 0, y = 0}, we can assume that Φ(y = x) =

(y = 0). Hence, Φ looks like:

Φ =

[
A AT

0 −AT

]

for some invertible matrix A. It follows that

Φ(y = x∆M) = (y = xA−1(Id−M)AT )

Let S̃ = {N = Id−M ; M ∈ S }, P = A−1 and Q = AT . Clearly, because of
what we have just shown, the set P S̃Q is a symplectic spread.

Let Id−M = N ∈ S̃. Using the symmetry of T , it is easy to see that

PNQ = (PNQ)t ⇒ (P tQ−1)N(P tQ−1)−1 = N t

⇒ (P tQ−1)M(P tQ−1)−1 = M t.

Note that P tQ−1 is symmetric. Hence, there exists a symmetric matrix R

such that RSR−1 = St. It follows that S ∼= St.

If we assume that Φ fixes (y = 0), then Φ looks like:

Φ =

[
P 0

0 Q

]

for some invertible matrices P and Q.

Since Id ∈ S, it is easy to see that PQ = T is a symmetric matrix. The rest of
the proof follows the ideas used above.

Remark 3.23. We know that j, k-planes are self-transposed, so the previous
lemma seems not to be very helpful for us. However, for the non-André planes,
it is easy, but time-consuming unless one uses a computer, to see that there is no
symmetric R such that R∆θθR

−1 = (∆θθ)
t and R∆2

θθ
2R−1 = (∆2

θθ
2)t unless

k + j ≡ 0 mod 3, where

θ =




0 1 0

0 0 1

α 0 0


 .

It follows that the non-André j, k-planes are not symplectic. Note that this
gives a counterexample for the converse of Lemma 3.22.
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In the previous series of lemmas we have ruled out the possibility of a j, k-
plane being a plane of the list given in Remark 3.13. However, we still have
to check that j, k-planes cannot be derived or obtained by net replacement in a
known plane. The sections to follow will show that they indeed cannot be so
obtained. Nevertheless, keeping in mind this issue, we summarize this section
in the following theorem.

Theorem 3.24. There are three isomorphism classes of j, k-planes of order 43.
One of these planes is a nearfield plane and the other two are new planes.

4. Replaced planes

In this section we explore the construction of more planes by replacing the
nets that are the orbits of the homology group Hy. These planes will be called
“replaced j, k-planes”.

We start with a short summary of the material that will be necessary for this
section.

Every j, k-plane Π of order 43 has two important homology groups:

1. Hy = {N ∈ G ; det(N) = 1 } ,

2. Hx =

{[
r Id 0

0 Id

]
; r ∈ GF (4)∗

}
.

Hy has order 21; its orbits of lines define 3 André nets on the plane. They all
share the lines y = 0 and x = 0 and partition the rest of the lines.

For v ∈ {1, α, α2}, the nets look like:

Nv = { y = xSvM ; Sv = ∆LL and det(L) = v, M ∈ F ∗ ∩ SL(3, 4) } .

We want to replace these nets to get more planes. It was shown by Pomareda
[23] that for any André net of this order there are only two different replace-
ments. In our case, they are:

N ′v =
{
y = (x4)SvM ; Sv = ∆LL and det(L) = v, M ∈ F ∗ ∩ SL(3, 4)

}
,

N ′′v =
{
y = (x42

)SvM ; Sv = ∆LL and det(L) = v, M ∈ F ∗ ∩ SL(3, 4)
}
.

It follows that, in order to know the replacements for Nv, we need to find a
representation for x4 and x42

.
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Let x ∈ GF (43). Then x = x1 + x2β + x3β
2, where β satisfies p(x) = x3 − α,

the same cubic polynomial we used to construct the field of matrices F . Note
that we can identify the elements of GF (43) with the elements of F .

Let M4 be the matrix that represents x → x4 in the basis {1, β, β2}. Clearly
M2

4 represents x→ x42

. Then the replacements for N1 are

N ′1 = { y = xM4M ; M ∈ F ∗ and det(M) = 1 } ,

N ′′1 =
{
y = xM2

4M ; M ∈ F ∗ and det(M) = 1
}
.

In order to obtain the replacements for the other 2 nets we change basis via

γ =

[
S−1
v 0

0 Id

]
to transform Nv into N1. Then we replace N1 and go back via

γ−1. The replacements for Nv are:

N ′v = { y = xSvM4M ; M ∈ F ∗ and det(M) = 1 } ,

N ′′v =
{
y = xSvM

2
4M ; M ∈ F ∗ and det(M) = 1

}
,

where Sv = ∆LL is an arbitrary, but fixed, line on the net. So det(L) = v for
v ∈ {α, α2}.
Notation 2. We enumerate the nets of a given j, k-plane Π by saying that N1 is
the first net, Nα is the second and Nα2 is the third net of Π.

We use this enumeration to label the planes π that have been obtained via
the net replacement of the nets N1, Nα, Nα2 .

We will write π = [n1, n2, n3] to mean that the ith net has been replaced by
using x→ x4ni .

Notation 3. In this section we will always consider non-Desarguesian j, k-planes.
That is, planes from the list in Remark 3.9.

Lemma 4.1. Let Π = (0, 0, α)− (0, 1) and let π = [0, 2, 1]. Then π is isomorphic
to the plane (0, 0, α)− (2, 2).

Proof. It is enough to note that the morphism x 7→ x4 is given, in the basis
{1, β, β2}, by the matrix

M4 =




1 0 0

0 α 0

0 0 α2


 .

By inspecting the matrix spreadsets of the planes π and (0, 0, α)− (2, 2) one
can see that they are the same.
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Remark 4.2. With this result, the study of all non-André j, k-planes in Remark
3.9 can be restricted to the family of planes obtained from (0, 0, α)− (0, 1).

Lemma 4.3. Let π1 = [n1, n2, n3] and π2 = [m1,m2,m3] be two planes obtained
by net replacement from the same j, k-plane Π. If there is a k, 0 ≤ k ≤ 2, such
that ni ≡ mi+k mod 3 for every i, then the planes are isomorphic.

Proof. Let G be the group of order 43 − 1 that is associated to Π. Note that the
subgroup of order 3 of G acts transitively on the nets of Π. This is the group
that induces the isomorphism between π1 and π2.

Using the previous lemma, we can reduce the number of possible distinct
isomorphism classes of replaced planes to 11; these are given by:

[0, 0, 0], [0, 0, 1], [0, 0, 2], [0, 1, 1],

[0, 1, 2], [0, 2, 1], [1, 2, 2], [1, 1, 1],

[1, 1, 2], [1, 2, 2], [2, 2, 2].

Lemma 4.4. Let M4 be the matrix that represents the automorphism σ : x 7→ x4

in the basis {1, β, β2} and let

A = {M ∈ F ; det(M) = 1 }.

Then M4 normalizes A. Moreover, it normalizes the field of matrices F .

Proof. Note that

M4 =




1 0 0

0 α 0

0 0 α2


 .

Let Mr,s,t ∈ F . An easy computation shows that

(M4)−1Mr,s,tM4 = Mr,αs,α2t.

Since det((M4)−1MM4) = det(M) for every M , the result follows.

Corollary 4.5. Let π1 = [n1, n2, n3] and π2 = [m1,m2,m3] be two planes ob-
tained by net replacement from the same j, k-plane Π.

If, for a fixed k and every i, ni ≡ mi + k mod 3, then the planes are isomorphic.

Proof. The previous lemma implies that Φ :=

[
Id 0

0 Mq

]
maps Nv into N ′v and

N ′v into N ′′v for every v ∈ GF (4)∗. It follows that Φ induces an isomorphism
between π1 and π2.
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Using this lemma we can see that, for a fixed j, k-plane Π, there are at most
5 non-isomorphic planes; these are:

[0, 0, 0], [0, 1, 1], [0, 1, 2], [0, 2, 1], [0, 2, 2].

Remark 4.6. All these planes inherit the homology group of order 21 from their
corresponding j, k-plane. Also, all of them contain the net N1.

Lemma 4.7. Let π be a replaced j, k-plane. Then π is an André plane if and only
if Π is an André plane.

Proof. Clearly, the replaced planes obtained from the André j, k-plane are also
André.

Assume π is an André plane. Because of a result by Foulser [5], one of
the two symmetric homology groups of π that have been inherited from some
Desarguesian plane and the homology group Hy inherited from Π are the same.

This implies that, by reversing the nets Nv, N ′v or N ′′v for v ∈ GF (4)∗, we
obtain more André planes. In particular, Π is André.

Lemma 4.8. If Π is an André j, k-plane, then it is isomorphic to all the planes
obtained by net replacement on Π.

Proof. In the proof of Lemma 3.6 we learned that the lines of Π are given by the
following spreadset S:

{
y = xM ; det(M) = 1

}

∪
{
y = xM4M ; det(M) = α

}

∪
{
y = xM2

4M ; det(M) = α2
}
.

Using the fact that the spreadset S ′ of a replaced André j, k-plane Π′ is similar
to S, it is easy to show that Π′ is a nearfield plane as well. Moreover, because
of Lüneburg’s theorem (Theorem 3.7), Π′ is isomorphic to the plane Π it was
obtained from.

Since we know exactly what happens when we replace nets on an André
plane, we will study, for the rest of the section, only planes that are non-André.

Lemma 4.9. Let π = [n1, n2, n3] and let Π be its associated j, k-plane. Assume
that Π is not André. Then π is not isomorphic to any plane of the list given in
Remark 3.13.
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Proof. The proofs are essentially the same as the ones needed to show that non-
André j, k-planes were new (Lemma 3.14 to Remark 3.23). In order to make the
same ideas work in this new setting we may use Lemma 4.7. The rest follows
because of the facts that replaced j, k-planes still admit a homology group of
size 21 and that they have kernel containing GF (4).

In Lemma 3.20 we showed that the transposition of the class of j, k-planes
did not induce any plane that was not in that class. Now, we will show that the
same situation holds for the class of replaced j, k-planes.

Lemma 4.10. Let π be a transposed replaced j, k-plane. Then π is isomorphic to
a, possibly different, replaced j, k-plane. Actually,

1. [0, 1, 1]t ∼= [0, 2, 2],

2. [0, 2, 2]t ∼= [0, 1, 1],

3. [0, 1, 2]t ∼= [0, 2, 1],

4. [0, 2, 1]t ∼= [0, 1, 2].

Proof. Let
S =

{
y = x(M4)i∆M ; M ∈ F ∗

}
∪ {x = 0}

be the spreadset of Π.

Note that (M4)−t = M42 .

From now on, everything follows the lines of the proof of Lemma 3.20; we
refer to that proof for some details omitted here.

Simple matrix manipulations show that

St =
{
y = x(M42)i∆M t ; M ∈ F ∗

}
∪ {x = 0}.

As we saw previously, F t = {M t ; M ∈ F } = F̃ , the field obtained by
extending GF (4) by a root of x3 − α2. Finally, Lemma 3.1 gives us the desired
isomorphisms.

First of all, note that the previous lemma implies that these planes cannot be
considered as transposes of planes that are not replaced j, k-planes.

We know that symplectic spreads are self-transposed. Right now we cannot
say whether or not replaced j, k-planes are self-transposed. However, in the
next section we will learn about the isomorphism classes of these planes. We
will leave the proof of replaced j, k-planes being neither self-transposed nor
symplectic for when all the classes are known.
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We are now in a position to claim that the non-André class of replaced
j, k-planes we have found is new unless they are symplectic. In the next sec-
tion we will discuss how many isomorphism classes there are. We will consider
only non-André planes because the replaced planes of an André j, k-plane are
André as well.

5. Isomorphism classes of replaced j, k-planes

Recall that the André replaced j, k-planes are all isomorphic to the nearfield
j, k-plane (0, 0, α)− (1, 2) (see Lemma 4.8).

Lemma 5.1. The plane π = [0, 1, 2] is isomorphic to (0, 0, α)−(0, 1). In particular,
π � [0, 2, 1].

Proof. Following the proof of Lemma 4.1 it is easy to show that π is isomorphic
to (0, 0, α)−(1, 0). On the other hand, the isomorphisms described after Remark
3.2 show that (0, 0, α) − (1, 0) ∼= (0, 0, α) − (0, 1). Finally, that same list of
isomorphisms together with Lemma 4.1 prove that π � [0, 1, 2].

Lemma 5.2. The translation complement of a non-André replaced plane π fixes
the lines (x = 0) and (y = 0).

Proof. Let Hy be the homology group of order 21 (which has axis (y = 0)). Let
Ψ be an element in the translation complement of Π and let S be the spread of
π.

Assume that Ψ(x = 0) 6= (x = 0) and (y = 0) fixed by Ψ. Then there are
at least 22 homology groups with distinct coaxes but that share the axis. We
use André’s homology theorem to see that the size of the elation group with
axis (y = 0) has to be at least 22. Since Hy has three orbits of size 21 in `∞,
it follows that the elation group with axis (y = 0) has to have size 64. Thus, π
would be Desarguesian.

If (x = 0) is mapped to (y = 0) by Ψ, then Ψ−1(y = 0) = (x = 0); thus π is
André, which is a contradiction. Hence (x = 0) is fixed by every element of the
translation complement.

Assume Ψ(y = 0) 6= (y = 0) and (x = 0) fixed. Then the orbit of (y = 0) may
be of size 22, 43 or 64. However, since 43 is prime and does not divide the order
of GL(6, 4), the orbit cannot have size 43. In either of the other two cases we
get that 2 divides the order of the translation complement, which implies that
this group contains an involution. Since the order of the plane is 64 and it has
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kernel GF (4), the involution σ must be an elation with axis (x = 0). It follows
that σ can be represented as:

σ =

[
Id M

0 Id

]

for some M ∈ S.

Now note that σ(y = xN) = (y = x(M +N)). This implies that M +N is in
S for every N ∈ S.

Assume that M = ∆LLM4iN for some N ∈ F and i = 1 or 2 depending on
π = [0, 1, 1] or π = [0, 2, 2]. Consider M 6= M̃ = ∆LLM4iÑ where Ñ ∈ F . It
follows that M̃ +M = ∆LLM4i(N + Ñ) is an element of S. Hence

∆LLM4i(N + Ñ) = (∆L)jLjM4kA,

where k is either i or 0 and A ∈ F with determinant one. It is easy to see that
this situation forces ∆L to be in F unless i = j. It follows that N + Ñ is in F
and has determinant one for every Ñ 6= N in F with determinant one. As this
is not possible, we get the contradiction that finishes the proof.

Theorem 5.3. The translation complement of a replaced j, k-plane π that is not
a j, k-plane, that has been obtained by net replacement in the j, k-plane Π, is the
group induced by the translation complement of Π.

Proof. Let Ψ be an element of the translation complement of π. Because of the
previous lemma we can assume that Ψ fixes (x = 0) and (y − 0). If Ψ fixes the
net N1, then by using G′, the group induced in π by G, we can assume that Ψ

fixes (y = x), and it follows that, as a block matrix, Ψ = diag(A,A), where A is
some invertible matrix.

Since Ψ fixes N1, the matrix A normalizes F . Then, by Theorem 3.4, A ∈
ΓL(1, q3). Thus, this element was already considered as induced by Π.

If Ψ does not fix N1, then we can assume that Φ(y = xM) = (y = xP−1MQ)

for some invertible matrices P and Q. Assume that (y = xM) ∈ N1. Then
Ψ(y = xM) ∈ Nαi for i either 1 or 2. We note that Ψ(Ψ(y = xM)) ∈ Nα2i , thus
the group generated by Ψ and G′ is transitive in `∞ \ {(x = 0), (y = 0)}.

It follows that there is an element Φ in the collineation group of π such that
Φ(Id) = ∆LLM4 for some L ∈ F with determinant different from one. We
can assume that Φ(M) = A−1MB, with A−1B = ∆LLM4. Thus, Φ(M) =

∆LLM4B
−1MB and B−1MB ∈ N1 for every M ∈ N1. Then B ∈ ΓL(1, q3).

Using this fact and A−1B = ∆LLM4, it is easy to show that Φ is in the group
induced by Π.
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Corollary 5.4. Let Ψ be an isomorphism between the non-André planes π1 and
π2, both replaced from the j, k-plane Π.

Let Hyi be the homology group of order 21 of the plane πi and let Gy1
be the

homology group induced by Ψ and Hy1
in π2. Then Hy2

= Gy1
.

Corollary 5.5. Let π be a replaced j, k-plane. ThenHy is normal in the translation
complement.

Proof. Just consider π1 = π2 = π and Ψ a collineation in the translation com-
plement of π, and use the previous lemma.

Remark 5.6. An isomorphism Ψ such as the one described above fixes the nets
Nv of the associated j, k-plane Π.

Recall that we have restricted our work to planes that contain the net N1.
Then we can assume that the planes we are working with look like π = [0, n2, n3]

and they all come from the j, k-plane Π via net replacement.

Let N1 be the standard André net in the plane πi and Hyi be the correspond-
ing homology group of order 21.

Lemma 5.7. Let Ψ: π1 → π2 be an isomorphism between π1 = [0, n2, n3] and
π2 = [0,m2,m3] where neither of the planes is André. Then Ψ can be chosen so
that Ψ = [A 0

0 A ] and A normalizes Γ = {M ∈ F ; det(M) = 1 }. Moreover, Ψ

normalizes F .

Proof. Since Ψ fixes the nets Nv, it follows that Ψ induces an isomorphism from
a plane π3 = [0, k2, k3] into Π.

Now consider Ψ as an isomorphism from π3 = [0, k2, k3] into Π.

We know that Ψ looks like a block diagonal matrix because it fixes (x = 0)

and (y = 0). Now, since there is an orbit of size 63 in `∞, we can choose Ψ

fixing y = x. Thus, Ψ = [A 0
0 A ].

Because of the previous lemma, it follows that Ψ fixes N1, so A normalizes
Γ.

Finally, since the field F̃ = ΨFΨ−1 shares N1 with F , the intersection F̃ ∩ F
is a subfield of F with at least 22 elements. This forces F̃ = F .

Lemma 5.8. Let π = [0, 0, n] be a replaced plane obtained from the j, k-plane
Π = (0, 0, α)− (0, 1). Then there is no isomorphism between π and Π.

Proof. Let Ψ be an isomorphism from Π into π. Then Ψ = [A 0
0 A ] and A normal-

izes F .
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The isomorphism Ψ fixes Nα, which means that

{A−1∆LMA ; M ∈ Γ } = {∆LM ; M ∈ Γ },

where det(L) = α. Thus, A−1∆A = ∆N for some N ∈ Γ.

Since
A−1Nα2A = M4nNα2 ,

we have
A−1∆2L2A = M4n∆2L2Ñ ,

where det(L) = α and Ñ ∈ Γ.

On the other hand,

A−1∆2L2A = (A−1∆2A)(A−1L2A)

= (A−1∆A)2(A−1LA)2

= (∆N)2(A−1LA)2

= ∆(N∆N)(A−1LA)2.

Since ∆ and M4n commute, we have

N(∆N)(A−1LA)2 = M4n∆L2Ñ .

Then
(∆N)(A−1LA)2 = (N−1M4n)∆L2Ñ .

Since N ∈ F and M4n is an automorphism of the field, it must be the case
that (N−1M4n) ∈ F .

Thus, B∆B̃ = ∆ forB, B̃ ∈ F . In other words, ∆−1B∆ ∈ F for someB ∈ F .
This is possible only when B is a diagonal matrix.

This implies that N−1M4n is diagonal, and it follows that N is diagonal.

Since A−1∆A = ∆N , the spectra of ∆ and ∆N are the same. However, the
spectrum of ∆N equals the spectrum of ∆ only if N = Id.

Assume that A−1∆A = ∆. Then we can consider

A =



a b 0

c d 0

0 0 1


 .

But A is not an element of ΓL(1, 43), and thus by Theorem 3.4, it cannot
normalize F . This contradiction shows that there is no isomorphism Ψ between
Π and π.
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Corollary 5.9. Every pair of distinct replaced planes that share two nets are not
isomorphic to each other.

Proof. If we assume that there is an isomorphism Ψ: π3 → π4, where the planes
share two nets, then we can construct an isomorphism from a replaced plane
π = [0, 0, n] and the j, k-plane Π. The previous lemma contradicts this fact.

There are 4 classes of isomorphism of replaced planes: they are:

[0, 0, 0], [0, 1, 1], [0, 2, 1], and [0, 2, 2].

We already have seen in Lemma 5.1 that [0, 0, 0] � [0, 2, 1].

Because of Corollary 4.5, we know that the plane [0, 1, 1] shares two nets with
[0, 0, 0] and [0, 2, 1]. Then

[0, 1, 1] � [0, 0, 0]

and
[0, 1, 1] � [0, 2, 1].

Also,

[0, 0, 2] � [0, 2, 2] but [0, 1, 1] ∼= [0, 0, 2], so [0, 1, 1] � [0, 2, 2].

Similarly,

[0, 2, 2] � [0, 2, 1], [0, 2, 2] ∼= [0, 0, 1] � [0, 2, 1],

and
[0, 2, 2] ∼= [0, 0, 1] � [0, 0, 0].

Corollary 5.10. Replaced j, k-planes are not self-transposed.

Proof. Use the previous theorem together with Lemma 4.10 and Lemma 5.1.

Corollary 5.11. Replaced j, k-planes are not symplectic.

Proof. This follows from Lemma 3.22 and the previous corollary.

We summarize the preceding two sections in the following theorem.

Theorem 5.12. There are 3 new non-isomorphic planes obtained by net replace-
ment on j, k-planes of order 43. One of them is isomorphic to a j, k-plane and the
other two are new. Thus, the count of new planes found so far is four, two of them
being j, k-planes.
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6. Derived j, k-planes

Note that the group Hy contains a homology subgroup of order 7. The orbits of
lines under this group look, in some basis, like { y = xm ; m ∈ GF (8)∗ }. Since
our plane has order 82, each of these orbits union the lines x = 0 and y = 0

forms a derivable net (see, e.g., [8]).

Thus, any j, k-plane or replaced j, k-plane of order 43 is covered by 9 deriv-
able nets that share the lines x = 0 and y = 0. By deriving these nets we can
obtain more planes. Note that we can derive only one of these nets at a time.

Any plane obtained by net derivation in a (possibly replaced) j, k-plane will
be called “derived j, k-plane”.

Notation 4. For the rest of this section, let Π be a plane obtained by replacing
the derivable net D in the (possibly replaced) j, k-plane Π0. The derived net of
D will be called D′.

Remark 6.1. Since we can derive only one net at a time and each of these nets is
contained in exactly one hyper-regulus, we could, after the derivation has been
done, replace any of the other two hyper-reguli that do not contain the derived
net. Also, we could derive a plane that has already been replaced.

Note that, in order to know all the planes obtained by derivation on (possibly
replaced) j, k-planes, it is enough to consider the case of planes that have been
derived after all the hyper-reguli replacements have been performed.

Remark 6.2. The homology group of order 7 of Π0 is a Baer group of order 7

in Π because the line y = 0 (of Π0), which is fixed pointwise by Hy, becomes a
Baer subplane in Π.

Remark 6.3. Since the Baer subplanes that cover D have order 8, the kernel of
Π cannot be GF (4). This forces the kernel to be isomorphic to GF (2).

Theorem 6.4. (Johnson-Ostrom [14]) Let Π0 be a translation plane of order
> 16. Let D be a derivable net and let K be the kernel of Π0. Let Π be the plane
obtained by deriving D.

If the Baer subplanes of D incident with the zero vector are not all K-subspaces,
then the full group of Π is the inherited group.

Remark 6.5. The previous theorem and Remark 6.3 tell us that the collineation
group of Π is inherited from Π0. So, the collineation group of Π is given by the
stabilizer of D in Π0.

Remark 6.6. Note that the subgroup of Hy of order 7 is a Baer group on Π

because, as a collineation of Π, Hy fixes y = 0 pointwise. However, we cannot
say that every collineation of Π is Baer, because, even though we know every
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collineation of Π0 has to fix x = 0 and y = 0, we do not know whether or not
they do it pointwise.

Lemma 6.7. Π cannot be Desarguesian, André, generalized André, nearfield nor
semifield.

Proof. Since the collineation group of Π is inherited from Π0, it has to stabilize
the derivable net. It follows that Π cannot be neither Desarguesian nor André.
Similarly, in a semifield plane, there is an orbit of size 64 in `∞ (given by an
elation group). It follows that a derived j, k-plane cannot be a semifield plane.

A nearfield plane of order 43 must be André. Thus, Π is not nearfield.

There are no generalized André planes of order 43 with kernel isomorphic to
GF (2) [21, p. 48].

Remark 6.8. Π cannot be flag-transitive, Hiramine–Jha–Johnson, triangle tran-
sitive nor an SL(2, q)-plane because the collineation group of Π has to stabilize
D.

Remark 6.9. We note from Johnson [11] that the sequences of construction
processes “transpose—derive” and “derive—transpose” produce the same plane.
Hence, the transposes of two derived planes are isomorphic if and only if the
transposes of the two corresponding planes from which the indicated planes
are derived are isomorphic. Hence, no additional planes are obtained from the
transpose of a derived plane. We will see later that some of the derived planes
are self-transposed and others not. As we did in the previous section, we will
use this result to prove that derived j, k-planes are not symplectic.

Finally, notice that a derived j, k-plane cannot be isomorphic to a (possibly
replaced) j, k-plane because the derived plane does not have an orbit of size 63

in `∞.

Thus, we have shown

Theorem 6.10. The planes obtained by derivation in a (possibly replaced) j, k-plane
of order 43 are new or symplectic.

Now, we will study the isomorphism classes of these planes.

7. Isomorphism classes of derived j, k-planes

We have seen that we can derive (possibly replaced) j, k-planes in 9 different
ways. However, some planes obtained via derivation might be isomorphic to
each other. In any case, we are working with 4 new planes and one André
plane. This give us a maximum of 45 non-isomorphic derived j, k-planes.
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Remark 7.1. If there is an isomorphism Φ between two derived planes Π1 and
Π2, then Φ induces an isomorphism between the planes that were derived to
obtain Π1 and Π2.

Remark 7.2. If a derivable net of a plane Π can be sent to another derivable
net of Π by some collineation Φ, then the corresponding derived planes are
isomorphic. It is easy to see that the converse holds as well.

Remark 7.3. Using the previous remark, we just need to see the number of or-
bits of derivable nets to learn the maximum number of non-isomorphic derived
planes.

For example, if we start out with the André j, k-plane or any of the two
j, k-planes we are working with, we will obtain only one (up to isomorphism)
derived plane per plane. Similarly, in the other two replaced j, k-planes we
obtain at most three non-isomorphic derived planes.

Theorem 7.4. There are exactly 9 non-isomorphic derived j, k-planes.

Proof. First note that the previous remarks reduce the maximum number of
derived planes to 3 + 2 × 3 = 9 and say that the only way two of these 9

planes may be isomorphic to each other is if they come from the same (possibly
replaced) j, k-plane.

Let Π0 and Π1 be two derived planes obtained by replacing the derivable nets
D1 and D2 respectively in the non-André (possibly replaced) j, k-plane Π. We
can assume that the derivable nets are contained in different hyper-reguli of Π.

Then Π0
∼= Π1 implies the existence of a collineation Ψ of Π that permutes the

hyper-reguli of Π. Since Π is not André, Theorem 5.3 gives us a contradiction.

We close this section by finishing the proof that derived j, k-planes are new.

Lemma 7.5. A derived j, k-plane π is self-transposed if and only if π was derived
from a j, k-plane.

Proof. Let π be derived from Π, and let π̃ and Π̃ be their transposed planes
respectively. Then π̃ may be considered as derived from Π̃. Remark 7.1 says
that if π̃ ∼= π then Π̃ ∼= Π. Remark 7.2 proves the other direction.

Lemma 7.6. Derived j, k-planes are not symplectic.

Proof. The only case to work on is when the derived j, k-plane π has been ob-
tained from one of the three j, k-planes.

Let S̃ be the spreadset of π (this is a subset of GL(6, 2)) and let S be the
spread of Π in GL(3, 4).
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Given that there are lines of π that are also lines of Π, it is not hard to realize
that when we see the matrices of S̃ as block matrices they have the same form
as the matrices of S. Using this, we can show that the existence of a symmetric
matrix R̃ ∈ GL(6, 2) such that R̃S̃R−1 = S̃t implies the existence of a symmetric
matrix R ∈ GL(3, 4) such that RSR−1 = St. This contradicts Remark 3.23.
Thus, by Lemma 3.22, derived j, k-planes are not symplectic.

Corollary 7.7. The class of derived j, k-planes is a new class of translation planes.

8. Flat flocks induced by j, k-planes

Recently, Bader, Cossidente and Lunardon [1, 2] have generalized the idea of
a flock of a hyperbolic quadric of PG(3, q) to flat flocks of the Segre variety
Sn,n. They also provided an equivalence between flat flocks and the class of
translation planes that admit an (A,B)-regular spread.

The following two definitions may be found in [7, Chapter 25].

Definition 8.1. Consider two projective spaces PG(n1, K) and PG(n2, K) with
ni ≥ 1.

Let η be a bijection between {0, 1, . . . , n1} × {0, 1, . . . , n2} and {0, 1, . . . ,m},
with m+ 1 = (n1 + 1)(n2 + 1).

Then the Segre variety of the 2 given projective spaces is the variety

Sn1,n2
=
{

(x0, x1, . . . , xm)
∣∣ xη(i1,i2) = x

(1)
i1
x

(2)
i2

with P (i) = (x
(i)
0 , x

(i)
1 , . . . , x(i)

ni
) ∈ PG(ni, K)

}

of PG(m,K).

Definition 8.2. The Veronesean variety of all quadrics of PG(n,K), n ≥ 1, is
the variety

Vn =
{

(x2
0, x

2
1, . . . , x

2
n, x0x1, . . . , x0xn, x1x2, . . . , xn−1xn)∣∣ (x0, x1, . . . , xn) ∈ PG(n,K)

}

of PG(N,K) with N = n(n+ 3)/2.

Definition 8.3. A flock of Sn,n is a partition of it into caps of size (qn−1)/(q−1).

If the caps are Veronesean varieties obtained as sections of Sn,n by linear
subspaces of the projective space PG(n2 + 2n, q) in which Sn,n resides, then the
flock is called a flat flock.
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The flat flock is linear if all the subspaces of its Veronesean members share
an n-dimensional subspace of PG(n2 + 2n, q).

Remark 8.4. The smallest Segre variety Sn,n is Q+(3, q) = S1,1 and the smallest
Veronesean variety is V1, an oval in PG(2, q). This explains why flat flocks can
be considered as a generalization of flocks of hyperbolic quadrics in PG(3, q).

Definition 8.5. Let A and B be members of a spread S of PG(2n+1, q). We say
S is (A,B)-regular if for every component C ∈ S \(A,B), the regulus generated
by {A,B,C} is contained in S.

Theorem 8.6. (Bader, Cossidente, Lunardon [2]) Flat flocks of Sn,n and (A,B)-
regular spreads in PG(2n + 1, q) are equivalent. Moreover, the Veronese varieties
correspond to GF (q)-reguli.

Definition 8.7. Let R be a net of degree 1 + q corresponding to a partial spread
in PG(2n+ 1, K), where K ∼= GF (q).

i. IfR contains a Desarguesian subplane of order q, R is said to be a “rational
net”. The associated partial spread is called a “rational partial spread”.

ii. If R is a rational net that may be embedded in a Desarguesian affine plane,
the partial spread is called a “rational Desarguesian net”. The associated
partial spread is called a “rational Desarguesian partial spread”.

A “hyperbolic cover of order q” of a spread S in PG(2n + 1, K) is a set of
(qn+1 − 1)/(q − 1) rational Desarguesian partial spreads each of degree 1 + q

that share two components of S and whose union is S.

If the rational Desarguesian partial spreads are all K-reguli, we call the hy-
perbolic cover a “regulus hyperbolic cover”.

Theorem 8.8. (Jha–Johnson [10]) Flat flocks of Sn,n are equivalent to transla-
tion planes of order qn+1 that admit a regulus hyperbolic cover.

Some examples of flat flocks may be found in [2], [10] and [9]. These flat
flocks are related to planes that are Desarguesian, semifield, regular nearfield
N(n+ 1, q) or André.

Corollary 8.9. Every j, k-plane and replaced j, k-plane of order 43 induces a flat
flock.

Proof. The subgroup of Hy of order 3 induces a regulus hyperbolic cover of the
plane.

Remark 8.10. Note that the non-André j, k-planes induce new flat flocks. The
André j, k-plane is one of the regular nearfield planes studied in [2].
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