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A note on Laguerre translations
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Abstract

Using the correspondence between 2n-dimensional Laguerre planes and
compact antiregular generalized quadrangles with parameter n = 1, 2 we
show that almost each automorphism of such a Laguerre plane that induces
a translation in the derived affine plane at a point p is a Laguerre translation,
that is, fixes all points on the parallel class of p. The same is true for ovoidal
Laguerre planes over ovals that also are dual ovals.
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1 Introduction and results

A Laguerre translation of a Laguerre plane L is an automorphism of L that fixes
the points of a parallel class and induces a translation in the derived affine
plane at one of its fixed points, compare [3] or [5]. Often it is clear that an au-
tomorphism of a Laguerre plane has this last property, which we refer to as the
translation property at the point p for short, but it usually takes some effort to
verify that one has a Laguerre translation, that is, that all the points of the par-
allel class |p| of p are fixed. Hartmann [3, Lemma 2.2] obtained several rather
restrictive conditions for the translation property implying Laguerre translation
in a general setting.

The aim of this paper is to use the close relationship between 2n-dimensional
Laguerre planes for n = 1, 2 and compact antiregular generalized quadrangles
with parameter n and give a partial answer to Problem 5.9.8 in [7] in that we
show that in fact for an automorphism of such a Laguerre plane L not in the ker-
nel of L the translation property at a point suffices in order to have a Laguerre
translation. (The kernel of a Laguerre plane consists of all automorphisms that
fix each parallel class and is a normal subgroup of the automorphism group.)
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Theorem 1.1. Let L be a 2n-dimensional Laguerre plane, n = 1, 2, and let α be
an automorphism of L that fixes a point p and induces a translation in the derived
affine plane at p. Then α fixes all points of the parallel class of p and thus is a
Laguerre translation unless α is in the kernel of L.

The case that α is in the kernel of L is more difficult and has not been solved
completely for 2-dimensional Laguerre planes but there are many situations
where one can conclude that α fixes every point of |p|.

Theorem 1.2. Let L be a 2n-dimensional Laguerre plane, n = 1, 2, and let α be
an automorphism in the kernel of L that fixes a point p and induces a translation
in the derived affine plane at p. Then each of the following implies that α fixes all
points of |p|.

• n = 2, that is, L is a 4-dimensional Laguerre plane;

• there is a Laguerre translation not in the kernel of L that also fixes p;

• L is ovoidal.

It turns out that the ovoidal case in the proof of Theorem 1.2 does not require
any topological assumptions. In fact, Theorem 1.1 also remains valid for ovoidal
Laguerre planes over certain ovals.

Theorem 1.3. Let L be an ovoidal Laguerre plane over an oval that also is a
dual oval and let α be an automorphism of L that fixes a point p and induces a
translation in the derived affine plane at p. Then α fixes all points of the parallel
class of p and thus is a Laguerre translation.

Hartmann [3, Lemma 2.2.d] obtained the same conclusion of Theorem 1.3
for ovoidal Laguerre planes of characteristic 2. Describing ovals of such La-
guerre planes, however, are far away from being dual ovals.

In the following section we review for easy reference the basic theory of
2- and 4-dimensional Laguerre planes and their associated generalized quad-
rangles. Section 3 then proves Theorems 1.1, 1.2 and 1.3 and gives a generali-
sation to a potentially wider class of Laguerre planes.

2 2n-dimensional Laguerre planes and their
Lie geometries

A 2n-dimensional Laguerre plane where n = 1, 2 is a Laguerre plane L = (P, C, ||)
whose point set P and circle set C carry Hausdorff topologies such that P is
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2n-dimensional locally compact and such that the geometric operations of join-
ing three mutually non-parallel points by a circle, of intersecting two different
circles, parallel projection and touching are continuous with respect to the in-
duced topologies on their respective domains of definition. In this case the circle
set C is homeomorphic to R3n and elements of C are, considered as subsets of P ,
each homeomorphic to the n-sphere Sn. For more information about topological
Laguerre planes we refer to [1], [2], [7] and [10].

The derived projective plane Pp at p is the projective completion of the derived
affine plane Ap = (Ap,Lp) at p whose point set Ap ≈ R2n consists of all points
of L that are not parallel to p and whose line set Lp consists of all restrictions
to Ap of circles of L passing through p and of all parallel classes not passing
through p. In fact, each derived projective plane of a 2n-dimensional Laguerre
plane is a 2n-dimensional projective plane.

The axioms of a 2n-dimensional Laguerre plane further imply that circles not
passing through the distinguished point p induce closed ovals in Pp by remov-
ing the point parallel to p and adding in Pp the point ω at infinity of the lines
that come from parallel classes of L; compare [8, Proposition 55.18 and The-
orem 55.11]. The line at infinity of Pp (relative to Ap) is a tangent to each of
these ovals.

It is well known that 2n-dimensional Laguerre planes correspond to certain
generalized quadrangles. More precisely, the Lie geometry associated with such
a Laguerre plane is an antiregular compact generalized quadrangle with param-
eter n (so that all lines and line pencils are homeomorphic to the n-dimensional
sphere Sn) and up to duality every compact generalized quadrangle with param-
eter n is the Lie geometry of a 2n-dimensional Laguerre plane; see [9, Corol-
lary 2.16 and Chapter 3]. Recall that the Lie geometry of a Laguerre plane L has
points the points of L plus the circles of L plus one additional point at infinity,
denoted by ∞. The lines of the Lie geometry are the extended parallel classes,
that is, the parallel classes to which the point ∞ is added, and the extended
tangent pencils, that is, the collections of all circles that touch a given circle at
a point p together with its support p. Incidence is the natural one. So ‘collinear’
in the Lie geometry corresponds to ‘on the same parallel class or incident or
touching’ in the Laguerre plane. Conversely, for every point p of an antiregular
generalized quadrangle Q one obtains a Laguerre plane, called the derivation
at p, whose points are the points of Q that are collinear with p except p and
whose circles are of the form p⊥ ∩ q⊥ for points q not collinear with p where x⊥

denotes the set of all points collinear with the point x.

Starting with a 2n-dimensional Laguerre plane L one obtains an antiregular
compact generalized quadrangle Q with parameter n. One can then derive at
any point p of Q to obtain another 2n-dimensional Laguerre plane L′p. We call
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L′p a sister of L; see [9, Chapter 6]. In particular, if p is a point of L, then the
sister L′p with respect to p obtained in the fashion above has points the circles of
L that pass through p, the points of L on the parallel class |p| of p but not p itself
and the extra point∞. The parallel classes of L′p are obtained from the parallel
class |p| and the tangent pencils with support p. The circles of L′p correspond to
the points of L not on |p| (that is, the collection of all circles of L through p and
q for q /∈ |p|) and to circles of L not passing through p (that is, the collection of
all circles of L through p that touch a circle C, p /∈ C).

3 Laguerre translations

There are two kinds of Laguerre translations of a Laguerre plane L, cf. [5]. Let
G be a parallel class of L. A G-translation of L is an automorphism of L in the
kernel of L that is either the identity or fixes precisely the points of G. In each
derived affine plane at a point of G a G-translation induces a translation in the
vertical direction.

For the second kind of Laguerre translations we need a circle C passing
through p ∈ G. Let B(p, C) denote the touching pencil with support p, that
is, B(p, C) consists of all circles that touch the circle C at the point p. In the de-
rived affine plane at p the touching pencil represents a parallel class of lines and
we can look at translations in this direction. Then a (G,B(p, C))-translation of
L is an automorphism of L that is either the identity or fixes precisely the points
of G and fixes each circle in B(p, C) globally. Thus a (G,B(p, C))-translation
induces a translation in a non-vertical direction in the derived affine plane at p.

Lemma 3.1. Let L be a Laguerre plane and let α be an automorphism in the
kernel of L and assume that α fixes three points p1, p2, p3 such that p1 is parallel
to p2 but not to p3. Then α fixes each point on the parallel classes of p1 and p3.

Proof. α induces a collineation αi of the derived projective plane Ppi at pi. Since
α is in the kernel of L, each αi is a central collineation with centre ω, the point
at infinity of the lines that come from parallel classes of L. Hence αi has an
axis Ai, which must contain any fixed points 6= ω of αi in Ppi . In particular, A3

contains p1 and p2 so that A3 equals the line that stems from the parallel class of
p1. Therefore, α3 and thus α fixes no points not on |p1| ∪ |p3|. Now A1 contains
p3 but no points off |p3|. Hence A1 equals the line that stems from the parallel
class of p3. This shows that α fixes each point of |p1| ∪ |p3|.

Proof of Theorem 1.1. Let L be a 2n-dimensional Laguerre plane, n = 1, 2, and
let α be an automorphism of L that fixes a point p and induces a translation
in the derived affine plane at p. We assume that α is not in the kernel of L.
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This means that the induced translation in Ap is a translation in a non-vertical
direction so that α fixes a touching pencil B(p, C) elementwise for some circle
C through p. Moreover, every other touching pencil B(p,D) 6= B(p, C) is fixed
globally.

We now form the sister L′p of L at p. α induces an automorphism α′ of L′p that
fixes∞. Furthermore, α′ fixes all points of one parallel class (the parallel class
that stems from B(p, C)) and each parallel class globally (the parallel classes
that come from touching pencils B(p,D) and the one that stems from the par-
allel class of p in L). Hence α′ satisfies the assumptions made in Lemma 3.1
and thus fixes all points on the parallel class of ∞. But the points of this par-
allel class in L′p are precisely the points of |p| in L. Therefore α fixes all points
of |p|.

Note that if α is in the kernel of L then the induced automorphism α′ of the
sister L′p is again in the kernel of L′p but fixes no point off the parallel class of
∞. Hence in this case the above trick does not work and we can prove, so far,
the fixed-point property of α only under additional assumptions.

Proof of Theorem 1.2. Let L be a 2n-dimensional Laguerre plane, n = 1, 2, and
let α be an automorphism in the kernel of L that fixes a point p and induces a
translation in the derived affine plane at p.

In 4-dimensional Laguerre planes the desired fixed-point property of α fol-
lows from the fact that any two circles in such a Laguerre plane intersect in at
least one point, see [2, Satz 3.3.b]. Indeed, let q 6= p be a point on |p| and let
C be a circle through q. Then C and α(C) have at least one point in common
which then must be fixed by α. But the only fixed points of α are on |p| for α
not the identity. Hence q is fixed by α.

We now assume that there is a Laguerre translation β not in the kernel of L
that fixes the same point p. Then αβ is an automorphism of L that fixes p and
induces a translation in a non-vertical direction in Pp. Hence αβ is a Laguerre
translation by Theorem 1.1 and therefore α = (αβ)β−1 fixes |p| pointwise.

Finally assume that L is ovoidal. In this case L can be obtained as the
geometry of non-trivial plane sections of a cone over an oval in projective
3-dimensional space P with its vertex v removed and α is induced by a col-
lineation α̃ of the surrounding 3-dimensional projective space, cf. [6]. If α is
in the kernel of L, then α̃ is a central collineation of P with centre v and thus
has an axis, that is, a plane of P consisting of fixed points of α̃. Since α fixes no
point off the parallel class of p it now follows that the axis is a tangent plane to
the cone touching the cone in |p|. Hence α fixes each point of |p|.
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Proof of Theorem 1.3. Let L be to ovoidal Laguerre plane represented on the
cone C(v,O) with vertex v over the oval O. Let α be an automorphism of L that
fixes a point p and induces a translation in the derived affine plane at p. Since
the ovoidal case in the proof of Theorem 1.2 does not require any topological
assumptions, this Theorem remains true in our situation and we can assume
that α is not in the kernel of L. Let α̃ be the collineation of the surrounding
3-dimensional projective space P3 that induces α, see [6], and let P2 be the
tangent plane to C(v,O) that contains the line L through p and v. Then α̃

leaves P2 invariant and fixes every line in P2 through p. To see the latter note
that the collection of planes through each such line except L forms a tangent
bundle of circles of L through p, that is, a parallel bundle of lines in the derived
affine plane Ap at p. Hence α̃ induces a central collineation in P2 and thus has
an axis A which must pass through the fixed point v.

Assume that A 6= L. Let M be the line in P2 through p that represents the
unique parallel bundle of lines in Ap that is fixed elementwise by α. We now
consider a plane P ′2 of P3 that contains M but not v. Without loss of generality
we may assume that the oval O belongs to P ′2 because any intersection of the
cone with a plane not passing through v can be used to obtain the same cone.
Let q = M ∩A. Since O is also a dual oval in P ′2 there are precisely two tangent
lines to O through q, one being the line M . Now α̃ fixes q, M , O and P ′2.
Therefore α̃ also fixes the second tangent line M ′ 6= M to O through q. But
then α̃ must fix M ′ ∩ O too—a contradiction to the fact that α is a translation
of Ap and thus fixes no point of L not on the parallel class |p|.

This shows that A = L. Hence every point of |p| is fixed by α̃ and thus
by α.

Analysing the proof of Theorem 1.1 we see that this theorem can be gener-
alized to a potentially wider class of Laguerre planes. First we formed the Lie
geometry Q of the Laguerre plane L. For Q to be a generalized quadrangle
one needs one more condition on L which we call the oval tangent condition
at infinity. In each derived projective plane Pp of L every oval induced by a
circle of L not passing through p has precisely two tangent lines through each
point 6= ω on the line at infinity. Equivalently, for every circle C and every tan-
gent pencil B(p,D) with p not on C there is precisely one circle in the tangent
pencil that touches C. For example, every ovoidal Laguerre plane over an oval
that also is a dual oval, every 2n-dimensional Laguerre plane and every finite
Laguerre plane of odd order has this property. With this notation we have the
following, compare the proof of Theorem 3.4 in [9] and the remark following
that Theorem.
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Proposition 3.2. The Lie geometry of a Laguerre plane L is a thick generalized
quadrangle if and only if L satisfies the oval tangent condition at infinity.

We then derived Q at points that correspond to points of L. Hence, by
[4, Theorem 3.1], all these points must be strongly antiregular where a point
p is called strongly antiregular if each triad containing p or contained in p⊥ \{p}
is antiregular, that is, for each such triple {x, y, z} of mutually non-collinear
points one has that |x⊥ ∩ y⊥ ∩ z⊥| ∈ {0, 2}.
Theorem 3.3. Let Q be a thick generalized quadrangle with a point∞ such that
every point in ∞⊥ is strongly antiregular and let L be the derived Laguerre plane
of Q at∞. If α is an automorphism of L not in the kernel of L that fixes a point p
and induces a translation in the derived affine plane at p, then α fixes all points of
the parallel class of p and thus is a Laguerre translation.

The condition on the point ∞ in the above Theorem is satisfied if Q is an-
tiregular, that is, every point of Q is antiregular. This is the case when Q is
the classical generalized quadrangle Q(4, F ) over a field F of characteristic 6= 2

(and each derived Laguerre plane is Miquelian) or, up to duality, ifQ is compact
with parameter 1 or 2.
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