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Abstract

A partial linear space is a non-empty set of points, provided with a col-
lection of subsets called lines such that any pair of points is contained in at
most one line and every line contains at least two points. Graphs and linear
spaces are particular cases of partial linear spaces. A partial linear space
which is not a graph or a linear space is called proper. In this paper, we give
a complete classification of all finite proper partial linear spaces admitting
a primitive rank 3 automorphism group of almost simple type.
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1 Introduction

There exist a lot of interesting partial linear spaces on which an almost simple
group acts as a rank 3 automorphism group, such as the classical symplectic,
hermitian and orthogonal polar spaces, the Fischer spaces, the buildings of type
E6. Our aim in this paper is to classify all such finite proper partial linear spaces,
that is the ones with a primitive rank 3 automorphism group of almost simple
type.

A partial linear space S = (P ,L) is a non-empty set P of points, provided
with a collection L of subsets of P called lines such that any pair of points is
∗Chargé de Recherche of the Fonds National de la Recherche Scientifique (Belgium).
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contained in at most one line and every line contains at least two points. Par-
tial linear spaces are a common generalization of graphs (where all lines have
exactly two points) and of linear spaces (where any pair of points is contained
in exactly one line). A partial linear space that is neither a graph nor a linear
space will be called proper.

A primitive permutation group G acting on a set Ω is a transitive group ad-
mitting no non-trivial G-invariant equivalence relation on Ω. An almost sim-
ple group is a group G containing a non-abelian simple subgroup S such that
S E G ≤ Aut(S). A rank 3 permutation group on Ω is a transitive permutation
group such that Gp has exactly three orbits for any p ∈ Ω.

If a proper partial linear space admits a rank 3 group G as an automor-
phism group, then G is transitive on the ordered pairs of collinear points, as
well as on the ordered pairs of non-collinear points. This property is called
2-ultrahomogeneity, in the sense of [12] and [13]. The finite non-trivial graphs
having this property are exactly the finite rank 3 graphs, whose classification
follows from the classification of finite primitive rank 3 groups. Our aim here is
to classify the finite proper partial linear spaces with the same property. From
now on, we will only consider finite proper partial linear spaces admitting a
rank 3 automorphism group.

The classification of finite primitive rank 3 almost simple groups relies on the
classification of the finite simple groups. In particular, it follows from Bannai [2]
for the alternating groups, Kantor and Liebler [19] for the classical Chevalley
groups, Liebeck and Saxl [21] for the exceptional Chevalley groups and the
sporadic groups. A summary of this classification can be found in [5], which
contains a list of the smallest possible groups. For the convenience of the reader,
this list is given at the end of the introduction, as the first two columns of the
table.

The goal of this paper is to prove the following theorem:

Theorem 1.1. A finite proper partial linear space admits a primitive rank 3 auto-
morphism group of almost simple type if and only if it is listed in the table below.

The first column of the table describes the action of the finite primitive rank 3
almost simple group G given in the second column. The third column gives the
size of the two non-trivial orbits of a point-stabilizer Gp. The fourth column
gives, next to each orbit, all examples of 2-ultrahomogeneous proper partial
linear spaces such that the orbit in question contains exactly the points collinear
with p. Whenever there was a standard notation for such a space, I used it. In
the other cases (where to the best of my knowledge there was no standard
notation), I made up one of type Slp, where S represents the space or the group
from which the partial linear space is built, p describes the points of the partial
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linear space, and l attempts to describe the lines (not always an easy task).
The notation (n) means that there are n isomorphic copies of that space on the
same point-set. For each partial linear space, a number (n) is given, referring to
a more detailed description of the example in Section 3.

Note that every time we find examples in both orbits of a point-stabilizer, we
also get an example of a linear space with a rank 3 automorphism group, by
taking as line-set the union of two line-sets corresponding to different orbits of
a point-stabilizer of the partial linear space. Note also that in this way we only
obtain the examples such that for each flag (p, L) all the points of L \ {p} are
completely contained in an orbit of Gp.

Table of rank 3 almost simple groups and associated partial linear spaces

Action Group Orbit sizes Partial linear spaces
on pairs Alt(n) 2n− 4 U2,3(n) (1), T(n) (2)

(n ≥ 5) (n−2)(n−3)
2 Sp(4, 2) for n = 6 (11)

PΓL(2, 8) 14 U2,3(9) (1), T(9) (2)
21 PΓL(2, 8)involutions

pairs (3)
M11 18 U2,3(11) (1), T(11) (2)

36 M11
involutions
pairs (5),

M11
2 pairs stabilizers
pairs (4)

M12 20 U2,3(12) (1), T(12) (2)
45

M23 42 U2,3(23) (1), T(23) (2)
210

M24 44 U2,3(24) (1), T(24) (2)
231

on PSL(n, q) (qn−1−q)(q+1)
q−1 PG(n− 1, q)pencils

lines (7),

(singular) PG(n− 1, q)
pencils/plane
lines (8),

lines PG(n− 1, q)
planes
lines (6)

(qn+2−q4)(qn−3−1)
(q−1)2(q+1)

PSU(5, q) q3(q2 + 1) H(4, q2)D (9),
PGU(4, q2)

pencils/plane
lines (10)

q8
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Action Group Orbit sizes Partial linear spaces

on PSp(2n, q) q2n−1−q
q−1 Sp(2n, q) (11)

singular (n ≥ 2) q2n−1 Sp(2n, q) (14),
points T(6) for n = q = 2 (2)

PΩ+(2n, q) (qn−1−1)(qn−1+q)
q−1 O+(2n, q) (13),

(n ≥ 3) PG(3, q)
planes
lines (2) for n = 3 (6)

q2n−2

PΩ−(2n, q) (qn−1+1)(qn−1−q)
q−1 O−(2n, q) (13)

(n ≥ 3) q2n−2

PΩ(2n+ 1, q) q2n−1−q
q−1 O(2n+ 1, q) (13)

(n ≥ 2, q odd) q2n−1

PSU(n, q) (qn−3+(−1)n)(qn−(−1)nq2)
q2−1 U(n, q) (12)

(n ≥ 4) q2n−3 U(n, q) (15)
on an PΩε(2n, 2) 22n−2 − 1

orbit (ε = ±1, n ≥ 3) 22n−2 − ε.2n−1 NQε(2n− 1, 2) (16),
of non- T(8) for n = 3, ε = +1 (2)
singular PΩε(2n, 3) 32n−2−ε.3n−1

2

points (ε = ±1, n ≥ 3) 32n−2 − 1 TQε(2n− 1, 3) (17)
PΩ(2n+ 1, 3) 32n−1−ε.3n−1

2 U(4, 2) for n = 2, ε = +1 (12)
on ε-points 32n−1 + ε.2.3n−1 − 1 TQε(2n, 3) (17)
(ε = ±1, n ≥ 3)
PSU(n, 2) 22n−3+(−2)n−2

3 Sp(4, 3) for n = 4 (11)
(n ≥ 4) 22n−3 − (−2)n−2 − 1 TU(n− 1, 4) (18)
PΩ(7, 2) 63

(≤ PΩ+(8, 2)) 56 NQ+(7, 2) (16)
PΩ(7, 3) 351

(≤ PΩ+(8, 3)) 728 TQ+(7, 3) (17)
G2(3) on (−1)-pts 126 PG(6, 3)

3 orth. points
−1-points (19)

(≤ PΩ(7, 3)) 224 TQ−(6, 3) (17),
PG(6, 3)

AG(2,3)
−1-points (20)

Alt(9) 63 PQ+(7, 2) (21)
(≤ PΩ+(8, 2)) 56 NQ+(7, 2) (16)

on sing. PΩ+(10, q) q(q5−1)(q2+1)
q−1 D5,5(q) (22)

4-spaces q6(q5−1)
q−1

on pts of E6(q) q(q8−1)(q3+1)
q−1 E6,1(q) (23)

a building q8(q5−1)(q4+1)
q−1
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Action Group Orbit sizes Partial linear spaces
on an Sp(2n, 4) (4n − ε)(4n−1 + ε) Sp(2n, 4)linear comb.

ε-forms (24)
orbit of on ε-forms 4n−1(4n − ε)
quadratic G2(4) 975 Sp(6, 4)linear comb.

ell. forms (24),
forms on ell. forms G2(4)

special planes
ell. forms (25)

1040 G2(4)
special pts with Q-value 1
ε-forms (26)

ΓSp(2n, 8) (8n−1 + ε)(8n − ε) Sp(2n, 8)linear comb.
ε-forms (27)

on ε-forms 3.8n−1(8n − ε) Sp(2n, 8)4 forms
ε-forms (28)

G2(8) : 3 32319 Sp(6, 8)linear comb.
ell. forms (27),

on ell. forms G2(8)
special planes
ell. forms (29),

G2(8)third roots
ell. forms (30)

98496 Sp(6, 8)4 forms
ell. forms (28),

G2(8)
special pts w. Q-value in{i,i2,i4}
ell. forms (31)

G2(2) 14

on hyp. forms 21

on Alt(10) 25

partitions on 5|5 part. 100

M24 on pairs 792 S(5, 8, 24)part. in 4 6-subsets
dodecads (32)

of dodecads 495

on M22 60 S(3, 6, 22)2-sets
blocks (33)

blocks on hexads 16

of M23 140 S(4, 7, 23)3-sets
blocks (34)

designs on heptads 112

M22 105 3− (22, 7, 4)3-sets
blocks (35),

on heptads 3− (22, 7, 4)
8 heptads
blocks (36)

70

on PSL(3, 4) 45 PG(2, 4)2-sets
hyperovals in 1 orbit (2) (37)

hyperovals 10

on points Fi22 2816 F22 (38)
of a 693

sporadic Fi23 28160 F23 (38)
Fischer 3510

space Fi′24 275264 F24 (38)
31671

on lines PSU(6, 2) 840 F res.
22 (39)

through a 567

point of a Fi22 10920 F res.
23 (39)

sporadic 3159

Fischer Fi23 109200 F res.
24 (39)

space 28431
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Action Group Orbit sizes Partial linear spaces
sporadic J2 36

rank 3 63

repr. HS 22

77

McL 112

162

Suz 416

1365

Co2 891

1408

Ru 1755

2304

G2(4) 100

on J2 315

PSU(3, 5) 7

Hoffman-Singleton 42 M(7) (40)
PSU(4, 3) 56

on PSL(3, 4) 105 PSU(4, 3)flags sharing a point
PSL(3,4) (2) (41)

2 Preliminary definition and results

Let S be a finite proper partial linear space with rank 3 automorphism group G.
SinceG is transitive on points, the number of lines through a point is a constant;
since G is transitive on lines, all lines have the same size.

The next Lemma is obvious.

Lemma 2.1. If G is an automorphism group of a proper partial linear space S =

(P ,L) acting 2-ultrahomogeneously on it, then G is a rank 3 permutation group
on P .

Theorem 2.2. Let G be a rank 3 permutation group on a set P . Suppose that G
is an automorphism group of a proper partial linear space S = (P ,L). Then one
of the following holds:

(a) G is imprimitive on P and S is a disjoint union of same-sized lines, namely
the blocks of imprimitivity of G, or

(b) for any point p ∈ P and any line L ∈ L through p, the set L \ {p} is a block
of imprimitivity for Gp, and the stabilizer GL is transitive on L.
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Proof. First assume that G is a rank 3 automorphism group of a proper partial
linear space S and suppose that S is not a disjoint union of same-sized lines,
in which case G is of course imprimitive. Let L be a line containing p. The
set B := L \ {p} is a block of imprimitivity for Gp acting on the orbit of points
collinear with p. Indeed, B is non-trivial since the lines have size at least 3 and
there is more than one line through each point; moreover, for any h ∈ Gp, we
have B ∩ Bh = B or φ (otherwise B ∪ {p} = L and Bh ∪ {p} = Lh would
be two lines intersecting in more than one point). Finally, the stabilizer of
L is 2-transitive on L. Indeed, since G is of rank 3, there exists an element
of G mapping any ordered pair of points of L onto any other such pair, but,
since there exists at most one line through any pair of points, this element is in
GL.

Theorem 2.3. Let G be a rank 3 permutation group on a set P and let p be a
point in P . If, in the action of Gp on any of its orbits, we choose a block B of
imprimitivity such that the stabilizer of B ∪ {p} in G is transitive on the points of
B∪{p}, then the pair (P ,L), where L = (B∪{p})G, forms a proper partial linear
space.

Proof. Let G be a rank 3 permutation group acting on the set P and take B as
in the statement (if such a B exists). Let L = (B ∪ {p})G. Then S = (P ,L) is
an incidence structure having G as an automorphism group. We need to prove
that S is a partial linear space.

Suppose that two lines L1 = (B ∪ {p})g1 and L2 = (B ∪ {p})g2 meet in at
least 2 points, say x and y. Since GB∪{p} is transitive on the points of B ∪ {p},
there exists an element hi (i = 1, 2) of G stabilizing B ∪ {p} and mapping xg

−1
i

onto p. Let h = h−1
2 g2g

−1
1 h1 ∈ G. Obviously h fixes p. Let z = yg

−1
1 h1 . Since

y ∈ (B ∪ {p})g1 , we have z ∈ B ∪ {p}, but z 6= p since x 6= y, and so z ∈ B. On
the other hand, zh

−1

= yg
−1
2 h2 is in B for the same reason. Hence z ∈ B ∩ Bh.

Since we have assumed that B is a block of imprimitivity for Gp and h ∈ Gp, it
follows that Bh = B, thus (B ∪ {p})h = B ∪ {p}, and so L1 = L2, showing that
S is a partial linear space.

The two preceding theorems give a method for constructing 2-ultrahomo-
geneous partial linear spaces from rank 3 groups and show that they are all
obtained in this way. Note that, in order for the stabilizer of B ∪ {p} in G to be
transitive on the points of B∪{p}, the mutual relations between the elements of
B must be the same as the relation between p and the elements of B. In other
words, if there exists a partial linear space having G as a rank 3 automorphism
group, then its collinearity graph will be one of the two strongly regular graphs
associated with G.
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We have checked several results by computer, using the method described
in Theorem 2.3 implemented in the software Magma [3]; the permutation
groups were found either directly inside Magma (when they had a classical
permutation representation or had a degree < 1000), or by constructing them
from a matrix group, or downloading generators from the Atlas [8] website
(http://web.mat.bham.ac.uk/atlas/v2.0). However, the largest part of the
proof is computer free.

The next Theorem, whose proof is trivial, allows us to restrict ourselves to
the smallest rank 3 groups, listed in [5].

Theorem 2.4. Let H ≤ G be two rank 3 permutation groups on P . Any partial
linear space admitting G as an automorphism group acting 2-ultrahomogeneously
also admits H as an automorphism group acting 2-ultrahomogeneously.

This means that all the partial linear spaces we would find by applying our
method to the group G would also be found by applying our method to H .

We will use several times Kantor’s classification of finite 2-ultrahomogeneous
linear spaces [18].

Theorem 2.5 (Kantor 1985). Any finite 2-ultrahomogeneous linear spaces is one
of the following:

(i) PG(d, q) ;

(ii) AG(d, q) ;

(iii) a unital with q3 + 1 points and lines of size q + 1 associated with PSU(3, q)

or 2G2(q) ;

(iv) one of two affine planes, having 34 or 36 points ;

(v) one of two linear spaces with 36 points and lines of size 9 .

The following Lemma will be useful.

Lemma 2.6. Let S = (P ,L) be a partial linear space admitting G as a rank 3

automorphism group.

Suppose there exists a subset U of P with GU of rank 3 on U . Choose a line
L ∈ L intersecting U in at least 2 points. Then (L∩U)GU is the line-set of a partial
linear space (possibly a linear space) with point-set U and having GU as a rank 3

automorphism group.

Suppose there exists a subset U of P with GU of rank 2 on U . Choose a line
L ∈ L intersecting U in at least 2 points. Then (L∩U)GU is the line-set of a linear
space with point-set U and on which GU acts 2-transitively. This linear space is
non-trivial if and only if |L ∩ U | 6= 2 and U 6⊂ L.
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Proof. Trivial.

We end this section by giving some definitions of well-known families of par-
tial linear spaces.

A partial geometry with parameters (s, t, α) is a partial linear space satisfying
the following conditions:

(i) each line is incident with s+ 1 points (s ≥ 1),
(ii) each point is incident with t+ 1 lines (t ≥ 1),
(iii) any point p outside a line L is collinear with a constant number α of points

of L.

A polar space is a partial linear space satisfying the following conditions:

(i) each line is incident with a constant number of points,
(ii) each point is incident with a constant number of lines,
(iii) any point p outside a line L is collinear with 1 or all points of L.

A generalized quadrangle GQ(s, t) of order (s, t) is a partial geometry with
parameters (s, t, 1); it is also a particular type of polar space.

A copolar space is a partial linear space satisfying the following conditions:

(i) each line is incident with a constant number of points,
(ii) each point is incident with a constant number of lines,
(iii) any point p outside a line L is collinear with none or all but one points

of L.

A t − (v, k, λ) design is a point-block geometry (P ,B) where P is a set of
v points and B is a collection of k-subsets of P (called blocks), with the property
that every t-subset of P is contained in exactly λ blocks of B.

A Steiner system S(t, k, v) is a t− (v, k, 1) design.

3 Case by case analysis

We will investigate all finite primitive rank 3 almost simple groups, whose list
can be found in [5]. Thanks to Theorem 2.4, it is enough to consider only the
smallest such groups. In order to improve readability, the notations throughout
the proof are at some points kept short (for instance, when we choose points
a and b, we implicitly suppose a 6= b).
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3.1 Action on unordered pairs

Let G be a primitive permutation group of degree n whose induced action on
unordered pairs is of rank 3. This is the case if G = Alt(n) for any n ≥ 5,
PΓL(2, 8) for n = 9, M11 for n = 11, M12 for n = 12, M23 for n = 23 and M24

for n = 24. Note that all these groups are 3-transitive on n points, and even
4-transitive except for Alt(5) and PΓL(2, 8).

The stabilizer inG of a pair p = {a, b} has 3 orbits on unordered pairs, namely
the pairs sharing 2, 1 or 0 elements with {a, b}. The orbit sizes are respectively
1, 2(n− 2) and (n− 2)(n− 3)/2.

Consider first the collinearity relation corresponding to “sharing a singleton”.
We are looking for blocks of imprimitivity of Gp all sharing a singleton with p

and mutually sharing singletons. Let B be the block of imprimitivity for Gp
containing {a, c}. A second point of B must be a pair sharing a singleton with
{a, b} and {a, c}, that is {b, c} or {a, d}.

In the first case, there is no other pair sharing a singleton with the three of
them. The two pairs {a, c} and {b, c} form a block of imprimitivity of Gp. Since
G is 3-transitive, there exists an element of G mapping a onto b, b onto c and
c onto a. Hence the stabilizer in G of the three pairs is transitive on them, and
by Theorem 2.3 these 3 pairs form a line of a 2-ultrahomogeneous partial linear
space.

Example 1. P is the set of unordered pairs of {1, 2, . . . , n} (n ≥ 5), and L is the
set of 3-sets {{a, b}, {a, c}, {b, c}} for distinct a, b, c ∈ {1, 2, . . . , n}. This partial
linear space, called U2,3(n), is a copolar space with line-size 3.

In the second case, if G is 4-transitive, there exists an element of G fixing a, b
and c and mapping d onto any other point, and so B must contain all the pairs
containing a. For G = Alt(5), take g = (a)(b)(c, d, e) ∈ G: then g fixes p, maps
{a, c} onto {a, d} and {a, d} onto {a, e}, hence Bg = B and B must contain all
the pairs containing a. ForG = PΓL(2, 8), we identify PG(1, 8) with GF(8)∪{∞}.
By the 3-transitivity ofG, without loss of generality, we may assume that a =∞,
b = 0, and c = 1. The element g : z → dz ∈ G{0,∞} maps {∞, 1} onto {∞, d}
(hence Bg = B) and {∞, d} onto {∞, d2}, hence {∞, d2} is in B. Using the
powers of g, we find that all the pairs containing ∞ must be in B (because all
the elements of GF(8) \ GF(2) are primitive). Obviously, no other pair shares
a singleton with all these pairs, and so B = {{a, x} | x 6= a, b}. Moreover the
stabilizer in G of B ∪ {p} = {{a, x} | x 6= a} is transitive on this set, because
G is 2-transitive. Hence, by Theorem 2.3, we get a 2-ultrahomogeneous partial
linear space.

Example 2. P is the set of unordered pairs of {1, 2, . . . , n}, and L is the set of



Partial linear spaces with a primitive rank 3 almost simple group 139

(n − 1)-sets {{a, x} | 1 ≤ x ≤ n, x 6= a}. This partial linear space , called the
triangular space T(n), is a partial geometry with parameters (n− 2, 1, 2).

We consider now the collinearity relation corresponding to “being disjoint”.
We are looking for blocks of imprimitivity of Gp, containing only pairs which
are disjoint from p and mutually disjoint. Such non-trivial blocks can exist only
for n ≥ 6.

If G = Alt(6), B = {{c, d}, {e, f}} forms a block of imprimitivity for Gp
and the stabilizer in Alt(6) of B ∪ {{a, b}} = {{a, b}, {c, d}, {e, f}} contains the
permutation (a, c, e)(b, d, f), and so is transitive on this set. Hence, by Theo-
rem 2.3, we have a 2-ultrahomogeneous partial linear space, whose point-set is
the set of unordered pairs in {1, 2, 3, 4, 5, 6} and whose lines are the partitions
of {1, 2, 3, 4, 5, 6} in three unordered pairs. It is well-known that this partial
linear space is isomorphic to the generalized quadrangle of order 2, that is the
symplectic polar space Sp(4, 2) (see Example 11).

If G = Alt(n) with n ≥ 7, let B be the block of imprimitivity for Gp con-
taining {c, d}. Let {e, f} be a second pair in B. Then using (a, b)(f, g) ∈ G,
we see that {e, g} ∈ B and B contains two pairs sharing a singleton, yielding a
contradiction.

If G = PΓL(2, 8), we identify PG(1, 8) with GF(8) ∪ {∞}, and we let {a, b} =

{∞, 0}. Let B be a block of imprimitivity containing {1, i}. The only element
of G stabilizing these two pairs is z → iz−1, that is (0,∞)(1, i)(i2, i6)(i3, i5)(i4).
Hence there are 5 possibilities for the block B. After some work, it turns out
that there is only one possibility remaining, namely {∞, 0}, {1, i}, {i2, i6} and
{i3, i5}. The last three pairs form a block of imprimitivity for Gp and the stabi-
lizer in G of these 4 pairs is transitive on them. Hence we have a new example
of a 2-ultrahomogeneous partial linear space.

Example 3. P is the set of unordered pairs of points of PG(1, 8), and L is the
set of 4-sets {{a, b}, {c, d}, {e, f}, {g, h}} such that (a, b)(c, d)(e, f)(g, h)(i) is an
element of order 2 of PΓL(2, 8). This space will be denoted by PΓL(2, 8)involutions

pairs .

If G = M11, let B be the block of imprimitivity of Gp containing {c, d}. The
subgroup of G stabilizing {a, b} and {c, d} is of order 4 and has orbits of size
1,2,2,2,4. It turns out that there are only two possibilities remaining: either B
contains two pairs and the second pair of B is the third orbit of order 2, or B
contains 3 pairs and the two other pairs of B are the other two 2-cycles in the
cycle decomposition of the unique involution switching a with b and c with d.
In both cases, the stabilizer in G of B ∪ {p} is transitive on B ∪ {p} , and so we
get two new examples of 2-ultrahomogeneous partial linear spaces.
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Example 4. P is the set of unordered pairs of an 11-set, and L is the set of 3-sets
{{a, b}, {c, d}, {e, f} | the stabilizer in M11 of 2 pairs also stabilizes the third one}.
This space will be denoted by M11

2 pairs stabilizers
pairs .

Example 5. P is the set of unordered pairs of an 11-set, and L is the set of 4-sets
{{a, b}, {c, d}, {e, f}, {g, h} | (a, b)(c, d)(e, f)(g, h) ∈ M11}. This space will be
denoted by M11

involutions
pairs .

If G = M12 (respectively M24), the stabilizer of a pair {a, b} is isomorphic to
M10 : 2 (respectively M22 : 2) which is primitive on the set of unordered pairs
disjoint from {a, b}.

If G = M23, the stabilizer of a pair {a, b} is isomorphic to M21 : 2, which
acts as H = PΣL(3, 4) on the 21 points of PG(2, 4). In H , the stabilizer of a
pair disjoint from {a, b} is a group of order 192, contained in exactly one proper
subgroup of H , that is the stabilizer of a line in PG(2, 4), which is of order 1920.
Hence H admits one system of imprimitivity on the set of pairs disjoint from
{a, b}. The blocks are of size 10 and correspond to the 10 pairs contained in a
line of PG(2, 4). Since not all these pairs are disjoint from each other, this yields
no example.

3.2 Action on (singular) lines of a projective space

This case concerns PSL(n, q) acting on the lines of PG(n − 1, q), and PSU(5, q)

acting on the singular (i.e. totally isotropic) lines of PG(4, q2). This includes the
alternating group Alt(8) ∼= PSL(4, 2) acting on the lines of PG(3, 2).

Let G be one of these groups. The stabilizer of a (singular) line L in G has
3 orbits on the other (singular) lines: L itself, the lines intersecting L, and the
lines disjoint from L. Collinearity corresponds either to “being concurrent” or
“being disjoint”.

Consider first the case when the collinearity relation corresponds to “being
concurrent”. This means that any two (singular) lines in a line L of our desired
partial linear space must intersect.

Assume that L contains three (singular) lines L1, L2, L3, mutually intersect-
ing but not concurrent. Since U(5, q), the geometry of singular points and singu-
lar lines, is a generalized quadrangle, this case is impossible for G = PSU(5, q).
Hence this can happen only for G = PSL(n, q). Since the stabilizer in G of two
intersecting lines is transitive on the lines not containing their point of intersec-
tion but coplanar with both of them, L must contain all the lines intersecting
L1 and L2 but not containing L1 ∩ L2 and also all the lines intersecting L2

and L3 but not containing L2 ∩ L3. Hence L contains all the lines in the plane
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generated by L1 and L2. Note that there is no other line of PG(n − 1, q) inter-
secting all the lines of this plane, and so L must be exactly the set of lines in
this plane. Moreover, the stabilizer of this set is transitive on it, and so we get a
new example:

Example 6. P is the set of lines of PG(n − 1, q) and L is the set of planes of
PG(n−1, q) (the incidence being the natural inclusion). This space will be denoted
by PG(n− 1, q)planes

lines .

Assume now that all the lines in L have a common point p. Let Q be the
set of (singular) lines through p. In both cases, Gp is 2-transitive on Q, and
so (Q, (Q ∩ L)Gp) is a 2-ultrahomogeneous linear space by Lemma 2.6. If G =

PSL(n, q), Gp contains PSL(n − 1, q) acting on Q, and if G = PSU(5, q), then
Gp contains PSU(3, q) acting on Q. Kantor (see Theorem 2.5) has shown that
a non-trivial 2-ultrahomogeneous linear space admitting PSL(n − 1, q) (resp.
PSU(3, q)) as an automorphism group must be the usual geometry of points and
lines (resp. singular points and hyperbolic lines, that is the associated unital).
Since |Q ∩ L| ≥ 3, L must contain either all (singular) lines through p or all
(singular) lines through p contained in a plane. Since the stabilizers of these
sets are transitive on them, we get 4 families of examples:

Example 7. P is the set of lines of PG(n−1, q) and L is the set of pencils of lines of
PG(n− 1, q). This space is a partial geometry with parameters ( q

n−1
q−1 − 1, q, q+ 1)

that we will denote by PG(n− 1, q)pencils
lines .

Example 8. P is the set of lines of PG(n− 1, q) and L is the set of pencils of lines
in a plane of PG(n− 1, q). This space will be denoted by PG(n− 1, q)

pencils/plane
lines .

Example 9. P is the set of singular lines of PG(4, q2) for a non-singular hermitian
form, and L is the set of pencils of singular lines. This space is a generalized
quadrangle of order (q3, q2) denoted by H(4, q2)D .

Example 10. P is the set of singular lines of PG(4, q2) for a non-singular hermi-
tian form, and L is the set of pencils of lines in a plane. This space will be denoted
by PGU(4, q2)pencils/plane

lines .

Note that if n = 4, examples 6 and 7 are dual to each other, hence isomorphic
(see in Section 3.3 a remark about the isomorphism between PSL(4, q) acting
on the lines of PG(3, q) and PΩ+(6, q) acting on the singular points of PG(5, q)).

Consider now the case when the collinearity relation corresponds to “being
disjoint”. This means that any two (singular) lines in a line L of our desired
partial linear space must be disjoint. Let L1, L2, L3 be three lines in L and let
T be the projective 3-space 〈L1, L2〉. The unitary form is non-singular on T .



142 A. Devillers

The stabilizer GT of T in G contains PSU(4, q) if G = PSU(5, q) and PSL(4, q)

if G = PSL(n, q), which is (in both cases) of rank 3 on the (singular) lines
of T . Then the orbit of GT on the (singular) lines of L contained in T form
the line-set of a 2-ultrahomogeneous partial linear space whose point-set is the
set of (singular) lines of T . But PSU(4, q) (resp. PSL(4, q)) acting on (singular)
lines is isomorphic to PΩ−(6, q) (resp. PΩ+(6, q)) acting on singular points,
with disjoint (singular) lines corresponding to non-orthogonal points. We will
prove in section 3.3, that there is no example of a 2-ultrahomogeneous partial
linear space admitting PΩ−(6, q) or PΩ+(6, q) as automorphism group and with
collinearity corresponding to “being non-orthogonal”. Hence L must contain
only two singular lines in T . Hence L3 intersects T in at most one point.

ForG = PSL(n, q), it is not difficult to see that the stabilizerH of L1 and L2 in
G can map L3 onto another line meeting L3. Hence L must contain intersecting
lines, and so this case will not give rise to a 2-ultrahomogeneous partial linear
space.

For G = PSU(5, q), T is an hyperplane of PG(4, q2), so L3 meets T in p. By
Witt’s theorem, the stabilizer H of L1 and L2 in G has 2 orbits on the singular
points of T outside these two lines: the unique singular lines passing through
the singular point and intersecting respectively L1 and L2 (remember that we
are in a generalized quadrangle) can either be the same or distinct. Whatever
situation p is in, it is not very difficult to show that H can map any singular
line through p not contained in T onto another singular line through p not in T .
Hence L must contain intersecting lines, and we find no further example.

3.3 Action on singular points of PG(d, q) for a non-singular
reflexive sesquilinear form f (alternating, symmetric or
hermitian) or for a non-singular quadratic form in the
orthogonal case when q is even

This case concerns PSp(2n, q) acting on P = PG(2n − 1, q) for an alternating
form (n ≥ 2), PΩε(n, q) acting on P = PG(n − 1, q) (n ≥ 5) for a quadratic
form, and PSU(n, q) acting on P = PG(n − 1, q2) (n ≥ 4) for a hermitian form.
Note that in the case of PΩε(n, q) with n odd and q even, the quadratic form
is necessarily singular. In this case, PΩ(2m + 1, q) ∼= PGO(2m + 1, q) acting
on the singular points of PG(2m, q) is isomorphic to PSp(2m, q) acting on the
points of PG(2m − 1, q), a case that will be investigated in this section. The
totally isotropic lines of the symplectic space correspond to singular lines of the
orthogonal space, and the hyperbolic lines of the symplectic space correspond
to ovals admitting the radical of f as nucleus in the orthogonal space. So here
we do not have to consider this case. In every other case, the quadratic form Q
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and the bilinear form f(x, y) = Q(x+ y)−Q(x)−Q(y) are non-singular.

Let G be one of these groups and let P be the projective space on which G

is acting. The stabilizer of a singular point p in G has 3 orbits on the other
singular points, namely p itself, the set of points orthogonal to p and the set of
points non-orthogonal to p. So the collinearity relation in a 2-ultrahomogeneous
partial linear space is either orthogonality or non-orthogonality.

Consider first the collinearity relation corresponding to “being orthogonal”.
We claim that the lines of L are either totally singular lines or maximal totally
singular subspaces.

G is either the full isometry group of (P, f) or its derived subgroup in the
orthogonal and unitary cases.

Let L be a line of L. Since collinearity corresponds to “being orthogonal”, all
the points of L are pairwise orthogonal. Hence the points of L are in a maximal
totally singular subspace A of (projective) dimension m. By Witt’s theorem, the
stabilizer of A in the full isometry group of (P, f) induces PGL(m+ 1, q). Hence
the stabilizer T of A in G contains the derived subgroup of PGL(m + 1, q), that
is PSL(m + 1, q) except if m = 1 and q = 2. In the latter case, A consists of
a single line of size 3, and since we assume that the lines of L have at least 3

points, L equals A. Suppose we are not in this case. Assume that L contains
3 points incident to a common line M of A. Since the stabilizer of M in T

contains PSL(2, q) (acting on M), it is of rank 2 on M . By Lemma 2.6, we can
construct a 2-ultrahomogeneous linear space on M . But by a result of Kantor
(see Theorem 2.5), there is no such non-trivial linear space, and so L must
contain all the points of M . If L contains any additional point outside M , then,
since the pointwise stabilizer of M in PSL(m+ 1, q) is transitive on the points of
A outside ofM , L must contain all the points of A. Assume now that L contains
3 points p1, p2, p3 which are not collinear. Again the stabilizer in T of p1 and p2

is transitive on the points not on the line p1p2, and so L contains 3 collinear
points and we are back in the preceding situation. This proves our claim.

If G = PSp(2n, q), G has only one orbit on maximal totally isotropic sub-
spaces (which are PG(n−1, q)’s, and so are not lines as long as n ≥ 3). Moreover,
if n ≥ 3, some of them meet in more than one point. Since two lines of a partial
linear space meet in at most one point, the maximal totally isotropic subspaces
cannot be the lines of a partial linear space, unless those are lines. Hence, by
the claim, the lines of L must be the totally isotropic lines of PG(2n− 1, q). This
gives us

Example 11. P is the set of points of PG(2n − 1, q) (n ≥ 2), and L is the set
of totally isotropic lines of PG(2n − 1, q) for a non-singular alternating bilinear
form. This space is called a symplectic polar space and denoted by Sp(2n, q) or
W (2n− 1, q).
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IfG = PSU(n, q), G has only one orbit on maximal totally isotropic subspaces
(which are PG(m− 1, q)’s if n = 2m+ 1 or n = 2m, and so are not lines as long
as n ≥ 6). Moreover, if n ≥ 6, some of them meet in more than one point,
hence the maximal totally isotropic subspaces cannot be the lines of a partial
linear space. Therefore, by the claim, the lines of L must be the totally isotropic
lines of PG(n− 1, q). This gives us

Example 12. P is the set of singular points of PG(n − 1, q2) (n ≥ 4) for a non-
singular hermitian form, and L is the set of totally isotropic lines of PG(n− 1, q2).
This space is called a unitary polar space and denoted by U(n, q).

Let G = PΩε(n, q) (ε = −1, 0, or 1), that is G is the derived subgroup of the
orthogonal group POε(n, q). If n = 2m+1, there is only one case, with maximal
singular subspaces being PG(m− 1, q)’s; this is the case where ε = 0. If n = 2m,
there are two cases: either maximal singular subspaces are PG(m − 1, q)’s or
they are PG(m− 2, q)’s. In the first case ε = +1 and in the second ε = −1.

Assume that the lines are the totally singular lines of PG(n − 1, q). Then we
get

Example 13. P is the set of singular points of PG(n − 1, q) (n ≥ 5), for a non-
singular quadratic form, and L is the set of totally isotropic lines of PG(n − 1, q).
This space is called an orthogonal polar space, denoted by O(2m+1, q), O+(2m, q)

or O−(2m, q) according to ε = 0,1 or −1.

Assume that the lines are maximal singular subspaces of PG(n−1, q). Except
in the case of PΩ+(2m, q), G has only one orbit on maximal totally singular
subspaces (which are not lines only if n ≥ 7). Moreover, if n ≥ 7, some of them
meet in more than one point, which contradicts the fact that two lines of a par-
tial linear space meet in at most one point. Assume now that G = PΩ+(2m, q).
G has two orbits on the set of maximal totally singular subspaces (which are not
lines only if m ≥ 3), two such subspaces are in the same orbit if and only if the
codimension of their intersection in each of these subspaces is even. If m ≥ 4,
this means that there are maximal totally singular subspaces in the same orbit
intersecting in more than one point, and so we have a contradiction. If m = 3,
the maximal totally singular subspaces are projective planes, and those in the
same orbit are pairwise intersecting in only one point. So if we take one of these
orbits as the set of lines, we get a 2-ultrahomogeneous partial linear space who
has G = PΩ+(6, q) as an automorphism group. We find here two isomorphic
examples.

Actually, by the Klein correspondence, we know that PΩ+(6, q) (acting on
the singular points of PG(5, q)) is isomorphic to PSL(4, q) (acting on the lines
of PG(3, q)). By this correspondence, singular points of PG(5, q) correspond to
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lines of PG(3, q), singular planes in one orbit correspond to points of PG(3, q)

and singular planes in the other orbit correspond to planes of PG(3, q). Orthog-
onal singular points correspond to intersecting lines. We have already proved in
Section 3.2 that there are three types of partial linear spaces whose points are
the lines of PG(3, q) and which admit G = PSL(4, q) as an automorphism group
acting 2-ultrahomogeneously on it. Namely the lines of such a partial linear
space can be: (i) the pencils of lines in a plane of PG(3, q), (ii) the pencils of
lines of PG(3, q) or (iii) all the lines in a plane of PG(3, q). Cases (ii) and (iii)

are dual to each other, hence isomorphic. Through the Klein correspondence,
these cases correspond to the case when the lines are: (i) the totally isotropic
lines of PG(5, q), (ii) the singular planes in one orbit, (iii) the singular planes
in the other orbit.

Consider now the collinearity relation corresponding to “being non-orthogo-
nal”. This means that any two points in a line L of our partial linear space must
be non-orthogonal.

Let G = PSp(2n, q). The points which are non-orthogonal to a point p form
an affine space Ap = AG(2n − 1, q). First assume that L contains three points
a, b and c (mutually non-orthogonal) which are on some common line L of
PG(2n − 1, q). Since the stabilizer of a hyperbolic line in G is isomorphic to
PSL(2, q), by using again Lemma 2.6, we conclude that L must contain all the
points of L. If L contains a point r outside L, then L intersect r⊥ in one point,
and r is orthogonal to one point of L, a contradiction. Hence the lines must be
exactly the hyperbolic lines of PG(2n− 1, q), and this gives us

Example 14. P is the set of points of PG(2n − 1, q) (n ≥ 2), and L is the
set of hyperbolic lines of PG(2n − 1, q), for a non-singular alternating bilinear
form. This space is called a symplectic copolar space and denoted by Sp(2n, q) or
W (2n− 1, q).

Secondly assume that no three points of L lie on a common line. Let p, r and
s be three mutually non-orthogonal points of L. Let t be a point orthogonal to
p and r but not to s. Then the transvection subgroup with center t fixes p and
r and maps s to any singular point on the hyperbolic line st, except t itself. If
q ≥ 3, this shows that L contains three points on a common line of PG(2n−1, q),
a contradiction. Hence q = 2. Let s′ be any point non-orthogonal to p, r and s.
Then p and r are both orthogonal to the third point t of the line ss′, and the non-
identity transvection with center t fixes p and r and exchanges s and s′. Hence L

contains all points non-orthogonal to p, r and s, and cannot contain any other
point of course. An easy counting argument shows that there are 22n−3 such
points. Since |L \ {p}| = 22n−3 + 2 must divide the size of the orbit of points
non-orthogonal to p, that is 22n−1,it follows that n = 2. L\{p} is indeed a block
of imprimitivity of Gp and the stabilizer of L in G is transitive on L. This gives
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an example which is actually isomorphic to T(6), this isomorphism resulting
from the isomorphism between the groups PSp(4, 2) and Sym(6) (in its action
on pairs).

Consider now G = PΩε(n, q). Again we may assume that we are not in the
case of PΩ(2m+ 1, q) with q even. Here there are no 3 singular points mutually
non-orthogonal on a common line of PG(n − 1, q), because hyperbolic lines
contain only two singular points.

Let p = 〈u〉, r = 〈v〉, and s = 〈w〉 be three points of L, with v and w chosen
in such a way that f(u, v) = f(u,w) = 1. The line pr = 〈u, v〉 is a hyperbolic
line with Q(au + bv) = ab. The underlying vector space can be written as
〈u, v〉 ⊥ 〈u, v〉⊥. Hence s can be written as 〈au+ v + x〉 where x ∈ 〈u, v〉⊥ and
Q(au + v + x) = a + Q(x) = 0. Also a = −Q(x) 6= 0, otherwise s would be
orthogonal to r. By Witt’s theorem, the stabilizer of p and r in G has at most
2 orbits on the points non-orthogonal to p and r, according to Q(x) being a
square or not (only one orbit if and only if q is even). Clearly L contains the
whole orbit containing s.

Assume that 〈u, v〉⊥ contains two hyperbolic lines L1 = 〈u1, v1〉 and L2 =

〈u2, v2〉 orthogonal to each other, where the ui’s and vi’s are chosen in such a
way that Q(ui) = Q(vi) = 0 for i = 1, 2 and f(u1, v1) = f(u2, v2) = 1. Then let
s = 〈−cu+ v + cu1 + v1〉 and t = 〈−cu+ v + cu1 + v1 + u2〉. These points are
both singular, non-orthogonal to p and also to r (because they are of the form
〈−Q(x)u + v + x〉). Moreover they are in the same orbit of the stabilizer of p
and r in G, the orbit depending on the fact that c is a square or not. Hence t
must be in L, but t is orthogonal to s, contradicting the fact that all the points
in B must be mutually non-orthogonal.

The only cases where 〈u, v〉⊥ does not contain two orthogonal hyperbolic
lines are G = PΩ(5, q) or PΩ−(6, q).

Let us first consider G = PΩ(5, q). By a remark above, we may assume that
q is odd. The number of points of PG(4, q) not in p⊥ nor in r⊥ is (q − 1)q2. If
B contains all these points, then |B| = (q − 1)q2 + 1, which does not divide
q3, the size of the orbit of singular points non-orthogonal to p, hence B cannot
be a block of imprimitivity. It is well known that, in 〈u, v〉⊥ = V(3, q) (for
q odd), there are exactly q(q − 1)2/2 vectors on which the quadratic form takes
a non-zero square value and exactly q(q2 − 1)/2 vectors on which the quadratic
form takes a non-square value (or the converse according to the choice of the
quadratic form). Hence these are the sizes of the 2 orbits of the stabilizer of p
and r in G on the orbit of singular points non-orthogonal to p nor to r. Again,
if B consists of r and one of these orbits, then its size does not divide q3, and B
cannot be a block of imprimitivity.

Let us now consider G = PΩ−(6, q). The number of points of PG(5, q) not
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in p⊥ nor in r⊥ is q(q − 1)(q2 + 1). When q is even, B must contain all those
points. Then |B| = q(q − 1)(q2 + 1) + 1, which does not divide q4, the size of
the orbit of singular points non-orthogonal to p, hence B cannot be a block of
imprimitivity. When q is odd, the point s = 〈−Q(x)u + v + x〉 can be of two
types, according to Q(x) being a square or not. In 〈u, v〉⊥ = V(4, q), there are
the same number of vectors on which the elliptic quadratic form takes a non-
zero square value and on which the quadratic form takes a non-square value,
namely q(q − 1)(q2 + 1)/2. Hence the 2 orbits of the stabilizer of p and r in G
inside the set of singular points non-orthogonal to p and also non-orthogonal to
r have this size. Again, if B consists of r and one of these orbits, then its size
does not divide q4, and B cannot be a block of imprimitivity.

This concludes the proof that there is no 2-ultrahomogeneous partial lin-
ear space admitting an orthogonal group such that the bilinear form f is non-
singular and the collinearity relation corresponds to being non-orthogonal.

Suppose now that G = PSU(n, q). Let a and b be two points of L and let
U be a unital containing them (within a projective plane on which the unitary
form is non-singular). The stabilizer H of U in G acts as PGU(3, q) on U , hence
is of rank 2 on U . By Lemma 2.6, we can define a linear space on U , whose
lines are the sets LH ∩ U , on which H acts 2-transitively. Using Theorem 2.5,
provided that the lines have at least 3 points and that there is more than one
line, the only such linear space corresponding to PGU(3, q), is the unital (with
the hyperbolic lines as lines of the linear space). Hence, either L contains U , or
L ∩ U = {a, b}, or L meets U in a hyperbolic line.

Assume that L contains U . Since G is transitive on unitals, L must also
contain all the unitals which intersect U in a line and those which intersect
these unitals in a line. As it is easily seen, this implies that L must contain all
singular points of PG(n− 1, q2), and so this does not give a partial linear space.

Assume first that L meets U in a hyperbolic line ab (containing q+ 1 singular
points). If we take L to be exactly that hyperbolic line, we get a partial linear
space admitting PSU(n, q) as an automorphism group.

Example 15. P is the set of singular points of PG(n − 1, q2) (n ≥ 4), for a non-
singular hermitian form, and L is the set of intersections of hyperbolic lines with
the set of singular points of PG(n− 1, q2). This space will be denoted by U(n, q).

Suppose now that L contains some other point c. If a, b, c generate a unital,
then, by the argument above, L must contain the whole unital, and we are back
in the preceding situation. If a, b, c generate a singular plane, so that there is
a point r orthogonal to all the others, then c is orthogonal to the point of ab
which is also on rc, and so L contains a pair of mutually orthogonal points, a
contradiction.
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If we are not in any of these cases, then L intersects every unital in at most
two points, and so obviously L does not contain three points on a common
hyperbolic line. Let a, b, c be three points of L. They are not on a common
hyperbolic line, and they generate a singular plane with the point r as radical.
Let s be a singular point orthogonal to a and b but not to c. Then the transvec-
tion subgroup with center s fixes a and b (hence the line L) and maps c to any
singular point on the hyperbolic line cs, except s itself. If q ≥ 3, this shows that
L contains three points on a common hyperbolic line, and we are back to one
of the preceding cases.

Consider now the case q = 2. Suppose that we have found an example (P ,L)

of a 2-ultrahomogeneous partial linear space in PG(n−1, 4) satisfying the above
conditions. Let S be a 3-dimensional non-singular subspace of PG(n − 1, 4)

containing a, b, c. The stabilizer of S acts on it as PSU(4, 2), which is of rank 3.
The intersection of L with S has size at least 3. Consequently, by Lemma 2.6,
we have found a partial linear space with point set the singular points of S on
which PSU(4, 2) acts 2-ultrahomogeneously. Therefore if we prove that there is
no example in PG(3, 4) with the above conditions, then there will be none in
any higher dimension. The stabilizer of a and b in the stabilizer of the singular
plane determined by a, b and c can map c to any point of the isotropic line
cr, except r and the intersection of cr with the line ab. Hence the line L must
contain points orthogonal to each other, a contradiction.

3.4 Action on one orbit of non-singular points of PG(d, q) for
a non-singular reflexive sesquilinear form f (symmetric
or hermitian) or for a non-singular quadratic form in the
orthogonal case when q is even

This case concerns PΩε(n, 2) acting on PG(n − 1, 2) (n ≥ 6, ε = +1 or −1) for
a quadratic form, PΩε(n, 3) acting on PG(n− 1, 3) (n ≥ 5, ε = 0,+1 or −1) for
a quadratic form, and PSU(n, 2) acting on PG(n− 1, 4) (n ≥ 4) for a hermitian
form.

In the particular case of PΩ+(8, q) (q = 2, 3), there is an irreducible subgroup
isomorphic to PΩ(7, q) which is also of rank 3 on one orbit of non-singular points
of PG(7, q). For q = 2, there is also an irreducible subgroup isomorphic to Alt(9)

which is of rank 3 on the non-singular points. In the case of PΩ(7, 3), there is an
irreducible subgroup isomorphic to G2(3) which is also of rank 3 on one orbit
of non-singular points of PG(6, 3). These particular cases will be considered
separately in subsection 3.4.1.

Let G be one of the above groups in their natural action and let O be the
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orbit of non-singular points of PG(d, q) on which G acts. For PΩε(n, 2) and
PSU(n, 2), there is only one such orbit. For PΩε(n, 3), there are two such orbits:
one containing the points with Q-value 1 and the other containing the points
with Q-value −1. If ε = +1 or −1, the action on each of these orbits being
isomorphic, it is enough to consider the points with Q-value 1 only. If ε = 0,
the actions on the two orbits of non-singular points are not isomorphic, and so
we have to consider both orbits; in this case, we choose Q such that if p has
Q-value 1 (resp. −1), the form on p⊥ is hyperbolic (resp. elliptic).

The stabilizer of p ∈ O in G has 3 orbits on the other points of O: p itself, the
points orthogonal to p, and the points non-orthogonal to p. Thus the collinearity
relation in a 2-ultrahomogeneous partial linear space is either orthogonality or
non-orthogonality.

Consider first the collinearity relation corresponding to “being orthogonal”.

Let G = PΩ±(2m, 2) (m ≥ 3). Note that p ∈ p⊥ since, in even characteristic,
the bilinear form associated to Q is alternating. We are looking for a block of
imprimitivity of Gp amongst the non-singular points in p⊥. The stabilizer of a
non-singular point p in G is isomorphic to PΩ(2m − 1, 2), and acts in a natural
way on p⊥ (isomorphic to PG(2m− 2, 2)) in which p is the non-singular radical,
and p⊥ intersects the quadric Q(x) = 0 in a parabolic quadric. Each of the non-
singular points in p⊥ is on a unique line with p and a point of the quadric. We
know that the action of Gp = PΩ(2m− 1, 2) on the quadric in PG(2m− 2, 2) is
primitive. Hence its action on the non-singular points in p⊥ is also primitive.

Let G = PΩε(n, 3) (n ≥ 5). This time p /∈ p⊥. Gp contains PΩ(n − 1, 3) if
ε = +1 or −1. If ε = 0, then Gp contains PΩ−(n − 1, 3) when O is the orbits
of points with Q-value −1 and PΩ+(n − 1, 3) when O is the orbit of points
with Q-value +1. In any case, Gp acts in a natural way on p⊥ (isomorphic to
PG(n−2, 3)). If n ≥ 6, this action of Gp is primitive on one orbit of non-singular
points of p⊥. If G = PΩ(5, 3) acting on the 45 points of PG(4, 3) with Q-value 1,
this action is isomorphic to PSU(4, 2) acting on the singular points of PG(3, 4),
a case already considered above: with the collinearity relation corresponding to
orthogonality, we had found the unitary polar space U(4, 2) (see Example 12)
whose lines are the totally singular lines (of size 5) for the hermitian form. If
G = PΩ(5, 3) acting on the 36 points of PG(4, 3) with Q-value −1, this action
is isomorphic to PΩ−(6, 2) acting on the non-singular points of PG(5, 2), a case
already considered above: we have found that there are no examples with the
collinearity relation corresponding to orthogonality.

If G = PSU(n, 2) (n ≥ 4), then p /∈ p⊥ and Gp contains PSU(n − 1, 2) acting
naturally on p⊥ (isomorphic to PG(n−2, 2)). If n ≥ 5, Gp acts primitively on the
non-singular points of p⊥. If G = PSU(4, 2) acting on the non-singular points
of PG(3, 4), this action is isomorphic to the action of PSp(4, 3) on the points of
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PG(3, 3), a case already considered: with the collinearity relation corresponding
to orthogonality, we had found the symplectic polar space Sp(4, 3) (see Exam-
ple 11) whose lines are the totally singular lines (of size 4) for the alternating
form. Here it corresponds to the partial linear space whose point-set consists of
the non-singular points of the unitary geometry in PG(3, 4) and whose line-set
consists of the orthogonal frames of PG(3, 4) (i.e. the sets of 4 non-singular
mutually orthogonal points).

Consider now the collinearity relation corresponding to “being non-orthogo-
nal”.

Let G = PΩ±(2m, 2) and let a be a point not orthogonal to p. Then the third
point b of the line ap is also non-singular and is not orthogonal to p. It is well-
known that {p, a, b}G forms the line-set of a 2-ultrahomogeneous partial linear
space.

Example 16. P is the set of non-singular points of PG(2m− 1, 2) (m ≥ 3), for a
non-singular elliptic (-) or hyperbolic (+) quadratic form, and L is the set of lines
of PG(2m − 1, 2) not meeting the quadric Q(x) = 0. This copolar space is called
the orthogonal Fischer space over GF(2) and denoted by NQ±(2m− 1, 2).

Consider first the case m = 3.

Let G = PΩ−(6, 2) act on the 36 non-singular points of PG(5, 2). The sta-
bilizer Gp ' Sym(6) of a point p has a unique non-trivial class of imprimitivity
blocks, having size 2 in the orbit of non-singular points not orthogonal to p. This
gives the orthogonal Fischer space NQ−(5, 2).

Let G = PΩ+(6, 2) act on the 28 non-singular points of PG(5, 2). G is iso-
morphic to Alt(8) in its action on pairs of an 8-set, a case already considered in
Section 3.1 (orthogonal points in PG(5, 2) correspond to pairs sharing a single-
ton): we had found U2,3(8), which is isomorphic to the Fischer space NQ+(5, 2),
and the triangular space T(8) with lines of size 7.

Suppose now that m ≥ 4, and let S be a partial linear space, with collinear-
ity relation corresponding to non-orthogonality, admitting G = PΩ±(2m, 2) as
an automorphism group. If L is a line of S, L contains 3 non-singular points
a, b, c which are mutually non-orthogonal. Therefore 〈a, b, c〉 ∩ 〈a, b, c〉⊥ is at
most a point and 〈a, b, c〉 is contained in a non-singular PG(3, 2), which is itself
contained in a non-singular subspace of projective dimension 5 intersecting the
quadric in an elliptic quadric. Let U be the set on non-singular points of this
5-dimensional subspace. The stabilizer of U in G contains PΩ−(6, 2) and so is
of rank 3. By Lemma 2.6, (U, (L ∩ U)GU ) is a partial linear space on U , on
which GU acts 2-ultrahomogeneously. This partial linear space is proper since
L ∩ U contains at least 3 points and since U contains non-collinear points of S
(i.e. points which are mutually orthogonal). Applying what we have just seen
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before, it is necessarily the Fischer space NQ−(5, 2). Hence a, b, c are on a line
not meeting the quadric. Since this argument is valid for any choice of three
points on L, L contains only a, b and c, and S is NQ±(2m− 1, 2).

Let G = PΩε(n, 3), let p ∈ O, and let a be a point of O not orthogonal to
p. Then the line of PG(n, 3) containing p and a meets p⊥ in a singular point.
The fourth point b of this line is also in O and is also not orthogonal to p. It
is well-known that {p, a, b}G forms the line-set of a 2-ultrahomogeneous partial
linear space.

Example 17. P is the set of non-singular points of PG(n−1, 3) (n ≥ 5) with given
Q-value, for a non-singular quadratic form Q, and L is the set of all the tangents
to the quadric such that the 3 points distinct from the contact point have the given
Q-value. This space is called the orthogonal Fischer space over GF(3) and will be
denoted by TQ+(n − 1, 3) (resp. TQ−(n − 1, 3)) if the form is hyperbolic (resp.
elliptic), and by TQ+(n− 1, 3) (resp. TQ−(n− 1, 3)) if the form is parabolic and
the points considered have Q-value +1 (resp. −1).

Consider first the case n = 5.

G = PΩ(5, 3) acting on the 45 points of PG(4, 3) with Q-value 1 is isomorphic
to PSU(4, 2) acting on the singular points of PG(3, 4), a case already considered
in section 3.3: with collinearity corresponding to non-orthogonality, we had
found only one example, whose lines are the intersections of the hyperbolic
lines with the set of singular points. This is U(4, 2), which is isomorphic to
TQ+(4, 3).

G = PΩ(5, 3) acting on the 36 points of PG(4, 3) with Q-value −1 is iso-
morphic to PΩ−(6, 2) acting on the non-singular points of PG(5, 2), again a case
already considered above: with collinearity corresponding to non-orthogonality,
the only example was the orthogonal Fischer space NQ−(5, 2), which is isomor-
phic to TQ−(4, 3).

Suppose now that n ≥ 6 and let S be a partial linear space, with collinear-
ity relation corresponding to non-orthogonality, admitting G = PΩε(n, 3) as an
automorphism group. If L is a line of S, L contains 3 points a, b, cwhich are mu-
tually non-orthogonal. Since 〈a, b, c〉 ∩ 〈a, b, c〉⊥ is at most a line, there exists a
non-singular subspace of projective dimension 4 containing the points a, b, c. Let
U be the set on non-singular points in O of this 4-dimensional subspace. The sta-
bilizer of U in G contains PΩ(5, 3), and so is of rank 3. As before, (U, (L∩U)GU )

is a proper partial linear space on U , on which GU acts 2-ultrahomogeneously.
Applying what we have just seen before, this is necessarily the Fischer space
TQ−(4, 3) or TQ+(4, 3). Therefore, a, b, c are on a line tangent to the quadric.
Since this argument is valid for any choice of three points on L, L contains only
a, b and c, and S is an orthogonal Fischer space over GF(3).
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Let G = PSU(n, 2). G has only one orbit of non-singular (i.e., non-isotropic)
points. Let p be a non-singular point, and let a be a non-singular point not
orthogonal to p. Then the line of PG(n − 1, 4) containing p and a meets p⊥

in a singular point and the other two points b and c of this line are also non-
singular and not orthogonal to p. The space with line set {p, a, b, c}G is a 2-
ultrahomogeneous partial linear space, studied by Cuypers [9].

Example 18. P is the set of non-singular points of PG(n − 1, 4) (n ≥ 4), for a
non-singular hermitian form, and L is the set of all the tangents to the hermitian
quadric (with the contact point deleted). This space is called the unitary general-
ized Fischer space and will be denoted by TU(n− 1, 4).

If n = 4, the action of PSU(4, 2) on the non-singular points of PG(3, 4) is
isomorphic to the action of PSp(4, 3) on the points of PG(3, 3), and so we get
only Sp(4, 3) (see Example 14), which is isomorphic to TU(3, 4).

If n = 5, the stabilizer of a point p is isomorphic to 3× PSU(4, 2) ' GU(4, 2)

(see Atlas [8]). It acts as PSU(4, 2) on the orbit of size 40, which is a prim-
itive action. The stabilizer Gp acts on the orbit of size 135 as GU(4, 2) on
the 135 nonzero isotropic vectors of V(4, 4) for a non-singular Hermitian form.
The stabilizer of one point in that group is properly contained in exactly one
proper subgroup of GU(4, 2), namely the stabilizer of a 1-dimensional subspace
in V(4, 4), with index 3. Hence there is only one example with that group and
that collinearity relation, with lines of size 4, so it has to be TU(4, 4).

Suppose now that n ≥ 6 and let S be a partial linear space, with collinearity
relation corresponding to non-orthogonality, admitting G = PSU(n, 2) as an
automorphism group. An argument similar to the case G = PΩε(n, 3) discussed
above shows that L contains only a, b, c and d, the fourth non-singular point on
the line through a, b and c (tangent to the hermitian quadric), and so S is a
unitary generalized Fischer space.

3.4.1 Proper rank 3 subgroups

We have already studied above the action of PΩ+(8, q) on one orbit of non-
singular points of PG(7, q) for q = 2, 3. Denote byQ the quadratic form and by f
the associated bilinear form. There is only one orbit for q = 2. Choose the orbit
of points with Q-value 1 for q = 3. PΩ+(8, q) contains an irreducible subgroup
G = PΩ(7, q); in this group, stabilizing one non-singular point corresponds to
choosing the identity element in the octonion algebra on which PG(7, q) is built,
so that a point stabilizer is isomorphic to G2(q). We recall that the octonion
algebra is an 8-dimensional vector space admitting a bilinear product and a
quadratic form Q such that Q(a.b) = Q(a).Q(b). The point which we stabilize
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becomes the identity element in this algebra and the three orbits of the stabilizer
are the identity 1, the set of points orthogonal to 1 and the set of points non-
orthogonal to 1 (among the points having the right Q-value), i.e. the same
orbits as PΩ+(8, q) acting on one orbit of non-singular points of PG(7, q).

In both cases, G2(q) is primitive on the orthogonal orbit, and so this orbit
does not give any example.

Consider now the orbit of non-singular points not orthogonal to 1.

Case q = 2. Here 1 ∈ 1⊥. We are looking for blocks of imprimitivity of G2(2)

containing the non-singular point p (with f(1, p) = 1). The third point of the
line generated by 1 and p, that is 1 + p, is also non-singular and non-orthogonal
to 1. These 3 points form a line of a partial linear space , which is exactly
NQ+(7, 2) (see Example 16). The stabilizer of 1 and p in G2(2) is transitive on
the other points of that orbit which are non-orthogonal to p, and some of them
are orthogonal to each other. Hence we do not get any new example.

Case q = 3. Here 1 /∈ 1⊥. There are 728 points in the orbit. We are looking
for blocks of imprimitivity of G2(3) containing the non-singular point p (with
f(1, p) 6= 0 and Q(p) = 1). Among the other two points of the line generated
by 1 and p, one is singular and orthogonal to 1, and the other p′ has Q-value
1 and is non-orthogonal to 1. The three points 1, p, p′ form a line of a partial
linear space, which is exactly TQ+(7, 3) (see Example 17). We have checked
by computer that this is the only block of imprimitivity of G2(3) containing p.
Hence the space TQ+(7, 3) is the only one arising in this situation.

Now let G = G2(3) ≤ PΩ(7, 3) acting on the orbit of points with Q-value −1

in 1⊥, in the octonion algebra over F3. As noted above, this action is primitive,
and it is of rank 3. The subspace 1⊥ is isomorphic to PG(6, 3), and the orbits of
the stabilizer of a point p with Q-value −1 in G and in PΩ(7, 3) are the same,
namely p, the points withQ-value −1 orthogonal to p and those non-orthogonal
to p. The stabilizer of p in G is isomorphic to PSU(3, 3) : 2 acting in a natural
way on p⊥. Indeed the diagonal of a hermitian form on V(3, q2) is an elliptic
quadratic form on V(6, q), and so PSU(3, 3) is a subgroup of PΩ−(6, 3) (which
acts in a natural way on p⊥). Let GF(9) = GF(3)[i], where i2 = 2i + 1. If
r = 〈v〉 is a point of p⊥, there is a “special” line Lr through r in p⊥, which
contains the points generated by v seen as a vector of V(3, 32), more precisely
Lr = {〈v〉, 〈iv〉, 〈(i + 1)v〉, 〈(i+ 2)v〉}.

Consider first the collinearity relation corresponding to “being orthogonal”.
We are looking for blocks of imprimitivity of Gp among the points of p⊥ with
Q-value −1. Let r = 〈v〉 be such a point. For λ ∈ GF(9), Q(λv) = λλQ(v),
since Q comes from a hermitian form. So, among the points on Lr, only two
have Q-value −1, namely r and 〈(i+ 2).v〉. These two points form a block B of
imprimitivity of Gp. We have checked by computer that the stabilizer in G of



154 A. Devillers

B ∪ {p} is transitive on B ∪ {p}, and so we get a new example. It turns out that
B is the only block of imprimitivity of Gp containing r.

Example 19. P is the set of non-singular points of PG(6, 3) with Q-value −1 for
a non-singular quadratic form, and L consists of the sets of 3 mutually orthogonal
points such that two of them are multiple of each other when the perp of the
third one is seen as a unitary plane over GF(9). This space will be denoted by
PG(6, 3)3 orth. points

−1-points .

Now consider the collinearity relation corresponding to “being non-orthogo-
nal”. We are looking for blocks of imprimitivity of Gp among the points with
Q-value −1 not in p⊥. Let r be such a point. Then the line pr contains a third
point s with Q-value −1 and a singular point t in p⊥. {p, r, s}G yields again
the space TQ−(6, 3) (see Example 17). A computer check shows that there is
exactly one other block B containing r, having size 8, with the property that G
is transitive on B ∪ {p}. Let Lt be the special line of t in p⊥. The intersection of
the plane 〈p, Lt〉 with p⊥ is Lt, whose points have Q-value 0, all the other points
of the plane having Q-value −1. The 8 points of this plane which have Q-value
−1 and are distinct from p form the block B. This gives rise to a new example.

Example 20. P is the set of non-singular points of PG(6, 3) with Q-value −1 for a
non-singular quadratic form, and L is the set of affine planes whose line at infinity
is a special line in the perp of each of its points. This space will be denoted by
PG(6, 3)

AG(2,3)
−1-points.

Finally G = Alt(9) < PΩ+(8, 2) has also rank 3 (with the same orbits as
PΩ+(8, 2)) on the non-singular points of PG(7, 2), with respect to a hyperbolic
quadric. Let p be such a point.

Consider first the orbit of non-singular points orthogonal to p. A computer
check shows that Gp has exactly one system of imprimitivity in that orbit, with
blocks of size 7. This gives rise to a new example, denoted by PQ+(7, 2) in [11];
it was first discovered independently by Cohen [6], Haemers and van Lint [16]
and De Clerck, Dye and Thas [10]. The details of the description given here can
be found in [10].

Example 21. P is the set of non-singular points of PG(7, 2) for a hyperbolic form
Q. The quadric Q(x) = 0 admits two families F1 and F2 of maximal singular
subspaces, such that the intersection of two distinct subspaces in the same family
is either a line or is empty. In F1 we choose a subset D1 consisting of 9 subspaces
partitioning the quadric. Let H be the set of all hyperplanes of the maximal singu-
lar subspaces in D1. Each plane H ∈ H is contained in exactly one element of F1

and one element of F2, which together generate a 4-space. This 4-space contains a
unique 3-space M(H) containingH but not contained in the quadric. L consists of
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the sets of 8 non-singular points of M(H) for all H ∈ H. This is a partial geometry
with parameters (7, 8, 4), and it will be denoted by PQ+(7, 2).

Consider now the orbit of non-singular points non-orthogonal to p. A com-
puter check shows that Gp contains exactly one system of imprimitivity in that
orbit, with blocks of size 2. This gives again NQ+(7, 2) (see Example 16).

3.5 PΩ+(10, q) acting on an orbit of totally singular 4-spaces
of PG(9, q) for a non-singular orthogonal form

G = PΩ+(10, q) has two orbits on totally singular 4-spaces of PG(9, q). The
actions of G on these orbits are isomorphic, so we can choose one, which we
call O. Two singular 4-spaces in O can either intersect in a point or in a plane.
Note that the points, singular lines, singular planes and singular 4-spaces of
both orbits form a geometry with diagram D5.

We first consider the case where the collinearity relation corresponds to “in-
tersecting in a plane”. The set of totally singular 4-spaces containing a given
singular plane π has the structure of a quadric O+(4, q), that is two families of
lines corresponding to the two orbits of singular 4-spaces. Each family carries
the structure of a projective line. The stabilizer of π contains PSL(2, q) acting
on the 4-spaces in O as on the points of the projective line PG(1, q). Since the
stabilizer ASL(1, q) of one point of PG(1, q) is primitive on the other points of
the line, the stabilizer of one 4-space of O containing π is primitive on the other
4-spaces of O containing π. Hence if a line of our desired partial linear space
contains three 4-spaces of O containing π, then it contains all of them. This
gives examples of partial linear spaces, which are parapolar spaces of type D5,5

(see [7]).

Example 22. P is one orbit (for PΩ+(10, q)) of totally singular 4-spaces of PG(9, q),
for a non-singular hyperbolic quadratic form, and L is the set of totally singular
planes (a line contains the q+1 4-spaces (in that orbit) through a common singular
plane). This space will be denoted by D5,5(q).

Now suppose that a line L of our desired partial linear space contains three
4-spaces of O, namely S1, S2 and S3, intersecting mutually in three distinct
planes. Let p ∈ (S1 ∩ S2) \ S3. Then p⊥ ∩ S3 is a projective 3-space. S1 ∩ S3 and
S2 ∩ S3 are two planes contained in p⊥ ∩ S3, hence they share a line. Therefore
S1∩S2∩S3 is a line L of PG(9, q). The set U of 4-spaces ofO containing L carries
the structure of the singular planes in one orbit of a O+(6, q) geometry, on which
PΩ+(6, q) acts. This action is isomorphic to the action of PSL(4, q) on the points
of PG(3, q) (by the Klein correspondence), which is of rank 2. Using Lemma 2.6,
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(L ∩ U)GU is a 2-ultrahomogeneous linear space. But by Theorem 2.5, the only
2-ultrahomogeneous linear spaces on the points of PG(3, q), admitting PSL(4, q)

as automorphism group, are the usual space and the trivial space containing
only one line. Since the lines of PG(3, q) correspond to 4-spaces of O containing
a common plane, L must contain the whole set U . Let L′ be a line of PG(9, q), in
a singular plane with L. There is an element of G mapping L onto L′ and there
are q + 1 4-spaces of O containing both L and L′. Since two lines of a partial
linear space meet in at most one point, all the 4-spaces of O containing L′ must
also be in L. It is easily seen that there are 4-spaces of O which contain L and
L′ respectively and which intersect in only one point, yielding a contradiction.

Now consider the case where the collinearity relation corresponds to “inter-
secting in a point”. Suppose that a line L of our desired partial linear space
contains three 4-spaces S1, S2 and S3 of O sharing a singular point p and in-
tersecting each other in one point. The set U of 4-spaces of O containing p

carries the structure of the singular 3-spaces in one orbit of a O+(8, q) geome-
try, on which PΩ+(8, q) acts. By triality, this action is isomorphic to the action
of PΩ+(8, q) on the singular points of PG(7, q), which is of rank 3. Singular
4-spaces intersecting only in p correspond to non-orthogonal points of PG(7, q).
Using Lemma 2.6 (since PG(7, q) contains orthogonal points, we are not in the
case of a rank 3 linear space), (L∩U)GU is a 2-ultrahomogeneous partial linear
space. But, by a result of section 3.3, there is no 2-ultrahomogeneous partial
linear space on the singular points of PG(7, q) with collinearity relation corre-
sponding to “being non-orthogonal”.

We warn the reader that we abusively use in this paragraph the same notation
for the vector and for the projective point it induces. Suppose finally that a line
L of our desired partial linear space contains three 4-spaces S1, S2 and S3 of O
such that S1∩S2 = {p3}, S2∩S3 = {p1} and S3∩S1 = {p2}where p1, p2 and p3

are distinct singular points. Let r be a point of S2 orthogonal to p2 and not on
the line p1p3. Consider the Siegel transformation ρ(x) = x+f(x, r)p3−f(x, p3)r.
Then ρ ∈ G and ρ fixes every point that is orthogonal to both p3 and r. Hence ρ
fixes pointwise S2 and a singular 3-space of S1 containing p2 and p3. Since there
is only one 4-space of O through any singular 3-space, ρ stabilizes S1. Let s be
a point of S3 not on the line p1p2. Then ρ(s) − s = f(s, r)p3 − f(s, p3)r /∈ S3,
which shows that ρ(s) /∈ S3. Therefore S3 is mapped by ρ onto another 4-space
S4 of O, which must be in L. Thus S3 and S4 are both in L and meet in more
than one point (namely p1 and p2), contradicting the fact that any two 4-spaces
of L must meet in exactly one point.
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3.6 Action on the points of a building

This case concerns the group G = E6(q), acting on the points of a building of
type E6. The points and lines of such a building form a parapolar space of type
E6,1 (see [7]). This gives examples of 2-ultrahomogeneous partial linear spaces.

Example 23. P is the set of points, and L is the set of lines of a building of type
E6. This space will be denoted by E6,1(q).

This building can be seen as embedded in PG(26, q) provided with a cubic
form (for more details see [7, 1]). In this partial linear space, any two non-
collinear points are contained in a symplecton isomorphic to the orthogonal
polar space O+(10, q).

Assume first that the collinearity relation in our desired partial linear space is
the same as the collinearity relation in the building. Suppose that a line of the
partial linear space contains three points mutually collinear but not on a com-
mon line of the building. These 3 points are contained in a maximal singular
subspace A, which is of (projective) dimension 4 or 5. It is easily deduced from
the diagram that the stabilizer of a maximal singular subspace induces at least
PSL(5, q) or PSL(6, q) on it, according to its dimension. Since the pointwise
stabilizer of a line in PSL(n, q) is transitive on the points of PG(n − 1, q) not
on that line, our line must contain all the points of A. Hence our line must be
exactly a maximal singular subspace (since there is no point outside of it which
is collinear to all its points). It is well-known (see [7]) thatG is transitive on the
maximal singular subspaces of dimension 4, as well as on the maximal singular
subspaces of dimension 5. It is easily seen from the diagram that for both orbits
there are maximal singular subspaces intersecting in a plane, contradicting the
fact that two lines of a partial linear space intersect in at most one point. Sup-
pose now that a line of the partial linear space is contained in a line L of the
building. The stabilizer of L in G contains PSL(2, q), and so, by an argument
used several times before, all the points of L must be contained in the line of
the partial linear space. This gives us the parapolar space.

Assume now that the collinearity relation in our desired partial linear space
corresponds to non-collinearity in the building. Suppose that a line L of our
desired partial linear space contains three points a, b, c mutually non-collinear
in the building. Then a and b are contained in a unique symplecton U . The
stabilizer of U in G contains PΩ+(10, q) (acting as on the singular points of
PG(9, q)), which is of rank 3. By Lemma 2.6, (L ∩ U)GU is the line-set of a
2-ultrahomogeneous partial linear space on U with collinearity corresponding
to the non-collinearity in the polar space O+(10, q). We have seen in section 3.3
that such a space does not exist unless it is trivial, that is, all its lines have size 2.
We conclude that L does not contain a third point in U . Hence c /∈ U . Now there
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are two possibilities: c can be collinear with no points of U or with a singular
4-space of U (see [7]).

If c is collinear with no point of U , then c and U are opposite objects. This
means that the stabilizer of c and U induces at least PΩ+(10, q) on U (see
[1, (3.14.1,3,4)]), which is of rank 3. There certainly exists a point d in U

which is collinear with b but not with a. Since there is an element of G fixing
c and a and mapping b onto d, L contains d. Therefore L contains collinear
points, a contradiction.

If c is collinear with a singular 4-subspace of U , then there is at least one
singular plane in this 4-space which is collinear with both a and b. Let x be a
point in this plane and let V be the union of x and all the points collinear with x.
Then V spans a PG(16, q). According to [1, (4.7.2)], the stabilizer of x contains
a subgroup acting faithfully on V as the group of transvections with center x.
Choose a hyperplane H of V containing a, b and x but not c (this is possible
since c is not in the plane 〈a, b, x〉) and consider a transvection t with axis H
and center x. Then t fixes a and b (and so fixes L), but moves c to another point
on the line cx. This other point must also be in L, but it is collinear with c, a
contradiction.

This ends the proof that there is no example where the collinearity relation
corresponds to non-collinearity in the building.

3.7 Action on an orbit of non-singular hyperplanes of a
projective space for a given quadratic form

Note first that if the quadratic form is non-singular, each non-singular hyper-
plane is the perp of a non-singular point, and we might as well consider the
action on non-singular points, which we did in section 3.4.

The quadratic form is singular when the projective space has even dimension
and the field has even characteristic.

The action of the group PGO(2n + 1, 2e) on an orbit of non-singular hyper-
planes of PG(2n, 2e) is isomorphic to the action of Sp(2n, 2e) acting on Q, the
set of quadratic forms on V polarizing into the given symplectic form f , where
V is a vector space of dimension 2n over GF(2e). The quadratic forms can of
course be of elliptic or hyperbolic type.

As proved in [14], if Q(x) is a member of Q, then the members of Q are the
various Q(x)+(f(x, q))2 for q ∈ V . Moreover,Q(x) and Q(x)+(f(x, q))2 are in
the same orbit under Sp(2n, 2e) if and only if Q(q) = t2 + t for some t ∈ GF(2e).

Hence Sp(2n, 2e) is of rank 2 on the quadratic forms of a given type when
e = 1 (Q(q) = 0), of rank 3 when e = 2 (Q(q) ∈ {0, 1}) and of rank 5 when e = 3
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(Q(q) ∈ {0, i, i2, i4}). The Frobenius field automorphism in ΓSp(2n, 8) fuses into
one orbit the 3 orbits of the stabilizer of Q corresponding to Q(q) = i, i2, i4.

This case concerns Sp(2n, 4) acting on the hyperbolic or elliptic forms of
V(2n, 4) (n ≥ 2), ΓSp(2n, 8) acting on the hyperbolic or elliptic forms of V(2n, 8)

(n ≥ 2), G2(2) (subgroup of Sp(6, 2)) acting on the hyperbolic forms of V(6, 2),
G2(4) (subgroup of Sp(6, 4)) acting on the elliptic forms of V(6, 4), and G2(8) : 3

(subgroup of ΓSp(6, 8)) acting on the elliptic forms of V(6, 8).

Let G = Sp(2n, 4) and let us fix Q(x) of elliptic (ε = −) or hyperbolic (ε = +)
type. The stabilizer GQ is isomorphic to Oε(2n, 4). The two non-trivial orbits
of GQ correspond to quadratic forms Q(x) + (f(x, q))2 with Q(q) = 0 or 1. Let
R1 and R2 be in the same orbit for GQ. In order for Q,R1, R2 to be points
of a line of a 2-ultrahomogeneous partial linear space, we need the relation
between R1 and R2 to be the same as the one between Q and each of R1,
R2. If R1(x) = Q(x) + (f(x, q1))2 and R2(x) = Q(x) + (f(x, q2))2, then R2(x) =

R1(x)+(f(x, q1+q2))2, and R1(q1+q2) = Q(q1)+Q(q2)+f(q1, q2)+(f(q1, q2))2.
Hence, if R1 and R2 are in the 0-orbit (that is Q(q1) = Q(q2) = 0), we need
f(q1, q2) to be equal to 0 or 1, and if R1 and R2 are in the 1-orbit (that is
Q(q1) = Q(q2) = 1), we need f(q1, q2) to be equal to i or i+ 1.

Let R1 and R2 be in the 0-orbit for GQ. Let q1 and q2 be as above. We
need f(q1, q2) = 0 or 1. Assume f(q1, q2) = 1. Then, by Witt’s theorem, there
exists an element of GQ fixing q1 (and hence R1) and mapping q2 onto any q
such that Q(q) = 0 and f(q1, q) = 1. Hence a line of our partial linear space
containing Q,R1 and R2 must contain all quadratic formsQ(x)+(f(x, q))2 with
q satisfying Q(q) = 0 and f(q1, q) = 1. It is not difficult to see that there exists
such a q with f(q2, q) not equal to 0 or 1, contradicting the condition found
in the previous paragraph. Assume that f(q1, q2) = 0 and q2 is not a multiple
of q1. Notice that this case does not happen for GQ = O−(4, 4). Using again
Witt’s theorem, a line of our partial linear space containing Q,R1 and R2 must
contain all quadratic forms Q(x) + (f(x, q))2 with q satisfying Q(q) = 0 and
f(q1, q) = 0 and q not a multiple of q1. As before, it is easy to see that there
exists such a q with f(q2, q) not equal to 0 or 1. Assume finally that q2 = λq1

(λ = i or i+ 1). Then an element of GQ mapping q1 onto q2 maps q2 onto λ2q1,
that is the fourth vector in the 1-space generated by q1. Hence a line of our
partial linear space containing Q,R1 and R2 must contain also the quadratic
form R3 = Q(x) + (f(x, λ2q1))2. Notice that R2 = λ2R1 + (1 + λ2)Q and
R3 = λR1 + (1 + λ)Q. {R1, R2, R3} forms a block of imprimitivity for GQ and
the stabilizer in G of {Q,R1, R2, R3} is transitive on {Q,R1, R2, R3}, because
(by Lemma 2 of Inglis [17]) there exists en element of G switching any two
quadratic forms in the same G-orbit. Therefore we have found examples of
2-ultrahomogeneous partial linear spaces:
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Example 24. P is the set of elliptic or hyperbolic quadratic forms polarizing into a
non-singular bilinear form f of a 2n-dimensional vector space over GF(4) (n ≥ 2),
and L consists of the 4-sets {Q,R, iQ+ (1 + i)R, (1 + i)Q + iR} where R(x) =

Q(x) + (f(x, q))2 and Q(q) = 0. These spaces, with line size 4, will be denoted by
Sp(2n, 4)linear comb.

ell. forms and Sp(2n, 4)linear comb.
hyp. forms .

Let R1 and R2 be in the 1-orbit for GQ. Let q1 and q2 be as above. We
need f(q1, q2) = i or i + 1. In either case, using Witt’s theorem, we can prove
that a line of our partial linear space containing Q,R1 and R2 must contain a
quadratic formQ(x)+(f(x, q))2 with f(q2, q) not equal to i or i+1, contradicting
the condition found previously. Hence this case does not give any example of
2-ultrahomogeneous partial linear space.

Everything can actually be checked inside a O+(4, 4) containing two orthog-
onal hyperbolic lines, except in the O−(4, 4) case, which has to be checked
separately.

Now consider G = G2(4) < Sp(6, 4). Let Q be an elliptic form. The two
orbits of GQ correspond as above to quadratic forms Q(x) + (f(x, q))2 with
Q(q) = 0 or 1 but this time the stabilizer GQ is isomorphic to SU(3, 4) : 2, acting
naturally on V(6, 4). Indeed the diagonal of a hermitian form on V(3, q2) is an
elliptic quadratic form on V(6, q), so SU(3, 4) is a subgroup O−(6, 4) (which is
the stabilizer of an elliptic form in Sp(6, 4)). Let GF(4) = GF(2)[i] and GF(16) =

GF(4)[j], where i2 = i + 1 and j2 = j + i. If q ∈ V(6, 4) \ {0}, then there is
a “special” plane πq , through q, containing the 16 vectors generated by q seen
as a vector of V(3, 42). Let q0 be the vector corresponding to jq, q1 the one
corresponding to (j+ 1)q, qi the one corresponding to (j+ i)q, and qi+1 the one
corresponding to (j + i+ 1)q.

Consider first the 0-orbit. In this case, we are looking for blocks of imprimi-
tivity of SU(3, 4) : 2 on the singular points of V(6, 4). We checked by computer
that there are only the lines of V(6, 4) and those special planes of V(6, 4) that
give rise to a 2-ultrahomogeneous partial linear space. In the first case, we get
again Sp(6, 4)linear comb.

ell. forms . In the second case we get a new example, one line be-
ing the set of forms Q(x) + (f(x, q))2 with q in a fixed special plane, that is
the set of Q(x) + (f(x, λr))2 , for r ∈ {q, q0, q1, qi, qi+1} and λ ∈ GF(4). Let
R(x) = Q(x) + (f(x, q))2 and Rα = Q(x) + (f(x, qα))2 for α ∈ GF(4).

Example 25. P is the set of elliptic quadratic forms polarizing into a non-singular
bilinear form f of a 6-dimensional vector space over GF(4), and L consists of the
16-sets {Q,R, iQ+ (1 + i)R, (1 + i)Q+ iR,Rα, iQ+ (1 + i)Rα, (1 + i)Q+ iRα |
α ∈ GF(4)} where R(x) = Q(x) + (f(x, q))2, Q(q) = 0, and Rα is as described
above for the stabilizer of Q in G2(4), which is isomorphic to SU(3, 4) : 2. These
spaces, with line size 16, will be denoted by G2(4)

special planes
ell. forms .
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Consider now the 1-orbit. We are now looking for blocks of imprimitivity
of SU(3, 4) : 2 containing q, with Q(q) = 1. Since Q comes from a hermitian
form, Q(λv) = λλQ(v). Hence, there are exactly 5 vectors with Q-value 1 in the
special plane πq , namely q, iq0, iq1, (i+1)qi and (i+1)qi+1. We checked by com-
puter that these 5 vectors form the unique block of imprimitivity of SU(3, 4) : 2

containing q and that this block gives us a new example.

Example 26. P is the set of elliptic quadratic forms polarizing into a non-singular
bilinear form f of a 6-dimensional vector space over GF(4), and L consists of the
6-sets {Q,R, iQ+ (1 + i)R0, iQ + (i + 1)R1, (i + 1)Q + iRi, (i + 1)Q + iRi+1}
where R(x) = Q(x) + (f(x, q))2, Q(q) = 1, and Rα is as described above for the
stabilizer of Q in G2(4), which is isomorphic to SU(3, 4) : 2. These spaces, with
line size 6, will be denoted by G2(4)special pts with Q-value 1

ell. forms .

Let G = ΓSp(2n, 8), H = Sp(2n, 8) < G, and let us fix Q(x) of elliptic (ε = −)
or hyperbolic (ε = +) type. The stabilizer GQ is isomorphic to ΓOε(2n, 8).

The two orbits of GQ correspond to quadratic forms Q(x) + (f(x, q))2 with
Q(q) = 0 or Q(q) ∈ {i, i2, i4}.

Let R1 and R2 be in the 0-orbit for GQ, that is, R1(x) = Q(x) + (f(x, q1))2

and R2(x) = Q(x) + (f(x, q2))2 with Q(q1) = Q(q2) = 0. As seen above, in
order for Q,R1, R2 to be points of a line of a 2-ultrahomogeneous partial linear
space, we need R1(q1 + q2) = Q(q1) +Q(q2) + f(q1, q2) + (f(q1, q2))2 = 0, that
is f(q1, q2) = 0 or 1. Assume f(q1, q2) = 1, resp. 0, and q2 is not a multiple of q1.
In either case, by Witt’s theorem, there exists an element of HQ ≤ GQ fixing q1

(and hence R1) and mapping q2 onto any q such that Q(q) = 0 and f(q1, q) = 1

(resp. 0, with q not a multiple of q1). Hence a line of our partial linear space
containing Q,R1 and R2 must contain all quadratic forms Q(x) + (f(x, q))2

with q satisfying these conditions. It is easy to see that there exists such a q with
f(q2, q) not equal to 0 or 1, yielding a contradiction. Assume now that q2 = λq1

(λ 6= 0, 1). Then an element ofGQ mapping q1 onto q2 maps q2 onto λ2q1, which
is itself mapped onto λ3q1, and so on. Hence a line of our partial linear space
containing Q,R1 and R2 must contain all the quadratic forms Qα = Q(x) +

(f(x, αq1))2 for α ∈ GF(8), because all elements of GF(8) \ GF(2) are primitive.
Note that Qα = α2R1 + (1 +α2)Q. The set B = {Qα | α ∈ GF(8) \ {0}} forms a
block of imprimitivity of GQ and the stabilizer in G of {Q} ∪ B is transitive on
{Q}∪B, by Lemma 2 of Inglis [17]. Therefore we have found new examples of
2-ultrahomogeneous partial linear spaces.

Example 27. P is the set of elliptic or hyperbolic quadratic forms polarizing into a
non-singular bilinear form f of a 2n-dimensional vector space over GF(8) (n ≥ 2),
and L consists of the 8-sets {αQ+ (1 + α)R | α ∈ GF(8)} where R(x) = Q(x) +

(f(x, q))2 and Q(q) = 0. These spaces will be denoted by Sp(2n, 8)linear comb.
ell. forms and
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Sp(2n, 8)linear comb.
hyp. forms .

Let R1 and R2 be in the {i, i2, i4}-orbit for GQ, that is, R1(x) = Q(x) +

(f(x, q1))2 and R2(x) = Q(x) + (f(x, q2))2 with Q(q1) and Q(q2) ∈ {i, i2, i4}.
We needR1(q1+q2) = Q(q1)+Q(q2)+f(q1, q2)+(f(q1, q2))2 ∈ {i, i2, i4}. Assume
that q2 is not a multiple of q1. Then by Witt’s theorem, there exists an element
of HQ ≤ GQ fixing q1 (and hence R1) and mapping q2 onto any q such that
Q(q) = Q(q2) and f(q1, q) = f(q1, q2). Hence a line of our partial linear space
containing Q,R1 and R2 must contain all quadratic forms Q(x) + (f(x, q))2

with q satisfying these conditions. One can check that there exists such a q with
Q(q) +Q(q2) + f(q, q2) + (f(q, q2))2 /∈ {i, i2, i4}, yielding a contradiction.

Finally assume that q2 is a multiple of q1. Then they are both multiples of a
vector q such that Q(q) = 1, that is q1 = αq and q2 = βq for α, β ∈ {i, i2, i4}.
Using the Frobenius field automorphism, we see that a line containing Q,R1

and R2 must also contain R3 = Q(x) + (f(x, q3))2, with q3 = γq where γ is in
{i, i2, i4} but distinct from α and β. {R1, R2, R3} forms a block of imprimitivity
of GQ and the stabilizer of {Q,R1, R2, R3} in G is transitive on {Q,R1, R2, R3},
because of Lemma 2 of [17]. Therefore we have found new examples of 2-
ultrahomogeneous partial linear spaces.

Example 28. P is the set of elliptic or hyperbolic quadratic forms polarizing into a
non-singular bilinear form f of a 2n-dimensional vector space over GF(8) (n ≥ 2),
and L consists of the 4-sets {Q, (1 + i)Q+ iR, (1 + i2)Q+ i2R, (1 + i4)Q+ i4R}
where R(x) = Q(x) + (f(x, q))2 and Q(q) = 1. These spaces will be denoted by
Sp(2n, 8)

4 forms
ell. forms and Sp(2n, 8)

4 forms
hyp. forms.

Now consider G = G2(8) : 3 < ΓSp(6, 8). Let Q be an elliptic form. The two
non-trivial orbits ofGQ correspond as above to quadratic formsQ(x)+(f(x, q))2

with Q(q) = 0 or Q(q) ∈ {i, i2, i4}, but this time the stabilizer GQ is isomorphic
to ΓU(3, 8) : 2, acting naturally on V(6, 8). Let GF(8) = GF(2)[i] and GF(64) =

GF(8)[j], where i3 = i+1 and j2 = j+ i3. If q ∈ V(6, 8)\{0}, there is a “special”
plane πq containing the 64 vectors generated by q seen as a vector of V(3, 82).
Let qα be the vector corresponding to (j + α)q for α ∈ GF(8).

Consider first the 0-orbit. We are now looking for blocks of imprimitivity
of ΓU(3, 8) : 2 on the singular points of V(6, 8). We have checked by com-
puter that there are exactly three systems of imprimitivity which give rise to
a 2-ultrahomogeneous partial linear space: the lines of V(6, 8), those special
planes of V(6, 8), and 3-subsets of those special planes. In the first case, we
get again Sp(6, 8)linear comb.

ell. forms . In the second case, we get a new example, one line
being the set of forms Q(x) + (f(x, q))2 with q in one of those special planes,
that is the set of Q(x) + (f(x, λr))2 , for r ∈ {q, qα | α ∈ GF(8)} and λ ∈ GF(8).
Let R(x) = Q(x) + (f(x, q))2 and Rα = Q(x) + (f(x, qα))2 for α ∈ GF(8).
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Example 29. P is the set of elliptic quadratic forms polarizing into a non-singular
bilinear form f of a 6-dimensional vector space over GF(8), and L consists of
the 64-sets {Q, (1 + β)Q + βR, (1 + β)Q + βRα | α, β ∈ GF(8), β 6= 0} where
R(x) = Q(x)+(f(x, q))2, Q(q) = 0, and Rα is as described above for the stabilizer
of Q in G2(8), which is isomorphic to ΓU(3, 8) : 2. These spaces, with line size 64,
will be denoted by G2(8)special planes

ell. forms .

In the third case, take q and the vectors corresponding to k21q and k42q,
where k is a primitive element of GF(64). In the description GF(64) = GF(8)[j]

given above, {1, k21, k42} = {1, j + i2, j + i6} are the third roots of unity. These
three vectors form a block of imprimitivity giving rise to a 2-ultrahomogeneous
partial linear space, with lines {Q(x), Q(x)+(f(x, q))2, Q(x)+(f(x, qi2 ))2, Q(x)+

(f(x, qi6 ))2}.

Example 30. P is the set of elliptic quadratic forms polarizing into a non-singular
bilinear form f of a 6-dimensional vector space over GF(8). Let GF(8) = GF(2)[i]

and GF(64) = GF(8)[j], where i3 = i+1 and j2 = j+i3, so that 1, j+i2, and j+i6

are the third roots of unity. Then L consists of the 4-sets {Q,R,Ri2 , Ri6} where
R(x) = Q(x)+(f(x, q))2, Q(q) = 0, and Rα is as described above for the stabilizer
of Q in G2(8). These spaces, with line size 4, will be denoted by G2(8)third roots

ell. forms .

Consider now the {i, i2, i4}-orbit. We are looking for blocks of imprimitiv-
ity of ΓU(3, 8) : 2 on the points of V(6, 8) with Q-value in {i, i2, i4}. For each
α ∈ GF(8), there are exactly 3 vectors multiple of qα with Q-value in {i, i2, i4}.
We have checked by computer that there are exactly two systems of imprimi-
tivity that give rise to a 2-ultrahomogeneous partial linear space: the 3 GF(8)-
multiples of q with Q-value in {i, i2, i4}, and the 27 GF(64)-multiples of q with
Q-value in {i, i2, i4} (that is the 27 vectors in πq with Q-value in {i, i2, i4}). In
the first case, we find again Sp(6, 8)4 forms

ell. forms (see Example 28). In the second
case, we find the following example:

Example 31. P is the set of elliptic quadratic forms polarizing into a non-singular
bilinear form f of a 6-dimensional vector space over GF(8), and L consists of the
28-sets {Q, (1 + λ2)Q + λ2Rα | λ(j + α).λ(j + α) ∈ {i, i2, i4}, λ, α ∈ GF(8)}
where R(x) = Q(x) + (f(x, q))2, Q(q) = 1, and Rα is as described above for
the stabilizer of Q in G2(8). These spaces, with line size 28, will be denoted by
G2(8)

special pts with Q-value in{i,i2,i4}
ell. forms .

Finally, let G = G2(2) acting on the hyperbolic forms of V(6, 2). Here Sp(6, 2)

is only of rank 2. Let Q(x1, . . . , x6) = x1x4 + x2x5 + x3x6. The stabilizer of Q
in Sp(6, 2) is isomorphic to GO+(6, 2) and has one orbit on the other hyperbolic
forms, namely the set of forms Q(x) + f(x, q)2 with Q(q) = 0 and q 6= 0. In G,
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the stabilizer of Q is isomorphic to SL(3, 2) : 2. It acts as SL(3, 2) on the first
three coordinates and on the last three coordinates, and the SL(3, 2) : 2 allows
us to switch them. Hence it has three orbits on the hyperbolic forms: Q itself,
the formsQ(x)+f(x, q)2 with (q1, q2, q3) = (0, 0, 0) or (q4, q5, q6) = (0, 0, 0) (size
14), and the forms Q(x) + f(x, q)2 with (q1, q2, q3) 6= (0, 0, 0) and (q4, q5, q6) 6=
(0, 0, 0) (size 21).

The stabilizer in GQ of a form in the orbit of size 21 is D8, which is maximal
in SL(3, 2) : 2, hence GQ is primitive on that orbit. The stabilizer in GQ of a
form in the orbit of size 14 is S4, and SL(3, 2) is the only proper subgroup of GQ
containing this S4. Hence GQ has only one system of imprimitivity in the orbit
of size 14, with blocks of size 7. We have checked by computer that, if B is one
of these blocks, then the stabilizer of B ∪ {Q} fixes Q, so it does not give rise to
an example of a 2-ultrahomogeneous partial linear space.

3.8 Action on partitions

This case concerns Alt(10) acting on the 5|5 partitions of a 10-set, and M24 acting
on partitions of the point-set of a Steiner system S(5, 8, 24) into two dodecads.

The stabilizer in G = Alt(10) of the complementary pair p = {f1, f2} of 5-sets
admits 3 orbits on partitions {f ′1, f ′2}: f ′1 intersects f1 (or f2) in 0, 1 or 2 points.

Consider first the case where {f1, f2} and {f ′1, f ′2} are collinear whenever
f ′1 intersects f1 in 1 and f2 in 4 points or conversely. Let p = {f1, f2} with
f1 = {1, 2, 3, 4, 5} and f2 = {6, 7, 8, 9, 10}. There are 25 partitions in that or-
bit of Gp. Each is entirely determined by the choice of an element in f1 and
an element in f2, that are switched in p. For instance 1|6 corresponds to the
partition {{6, 2, 3, 4, 5}, {1, 7, 8, 9, 10}}. The partitions a|b and c|d are collinear
if and only if a = c or b = d. Without loss of generality, we may assume
that a block B of imprimitivity of Gp contains the partitions 1|6 and 1|7. Since
(1, 6)(2, 7, 3, 8, 4, 9, 5, 10) ∈ Gp, B contains also 3|6, but then the partitions 1|7
and 3|6 are not collinear, yielding a contradiction.

Consider next the case where {f1, f2} and {f ′1, f ′2} are collinear whenever f ′1
intersect f1 in 2 and f2 in 3 points or conversely. There are 100 partitions in that
orbit of Gp. Each is entirely determined by the choice of an unordered pair in
{1, 2, 3, 4, 5} and an unordered pair in {6, 7, 8, 9, 10}, that are switched in p. For
instance 12|67 corresponds to the partition {{6, 7, 3, 4, 5}, {1, 2, 8, 9, 10}}. Two
partitions ab|cd and a′b′|c′d′ are collinear if and only if |{a, b, c, d}∩{a′, b′, c′, d′}|
is 1 or 2. Let B be a block of imprimitivity of Gp containing the partition 12|67.
We have 3 cases. B can contain also 13|89, 12|89, or 13|68. In each case, using
(8, 9, 10) ∈ Gp, B must contain partitions not collinear to each other, yielding a
contradiction.
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Let G = M24. This group acts naturally on the well-known Witt design
S(5, 8, 24). Notice that this Steiner system is uniquely determined by its pa-
rameters. The blocks are called octads, and a dodecad is the symmetric differ-
ence of two octads meeting in two points. Here we consider the action of G on
complementary pairs of dodecads The stabilizer in G of such a pair {d1, d2} of
dodecads is isomorphic to M12 : 2 and has 3 orbits on pairs of dodecads {d′1, d′2}:
d′1 intersects d1 (or d2) in 0,4 or 6 points.

Consider the case where {d1, d2} and {d′1, d′2} are collinear whenever d′1 inter-
sect d1 in 4 and d2 in 8 points or conversely. The stabilizer of {d1, d2} (M12 : 2)
is primitive on that orbit (of size 495).

Consider now the case where {d1, d2} and {d′1, d′2} are collinear whenever
d′1 intersect d1 and d2 in 6 points. The Atlas [8] shows that the stabilizer in G

of {d1, d2} has only one block of imprimitivity containing {d′1, d′2} in that orbit
(of size 792). This block has size 2 and also contains {(d1 ∩ d′1) ∪ (d2 ∩ d′2),

(d1 ∩ d′2) ∪ (d2 ∩ d′1)}. Furthermore, the stabilizer in G of these three pairs is
transitive on them, hence this gives an example of a 2-ultrahomogeneous partial
linear space.

Example 32. P is the set of complementary pairs of dodecads in a Steiner system
S(5, 8, 24), and L consists of all the sets of 3 pairs {a∪ b, c∪ d}, {a∪ c, b∪ d} and
{a ∪ d, b ∪ c} where a, b, c, d are disjoint 6-subsets and where these unions are all
dodecads. This space will be denoted by S(5, 8, 24)

part. in 4 6-subsets
dodecads .

3.9 Action on blocks of Steiner systems or related designs

This case concerns M22 acting on the blocks (called hexads) of the S(3, 6, 22),
M23 acting on the blocks (called heptads) of the S(4, 7, 23), and M22 acting
on the heptads of the S(4, 7, 23) not containing a given point, which form a
3− (22, 7, 4) design. The Steiner systems S(3, 6, 22) and S(4, 7, 23) are uniquely
determined by their parameters, and are the well-known Witt designs.

In the first case, the stabilizer of a hexad b has 3 orbits on the hexads, namely
the hexads intersecting b in 0, 2 or 6 points. In the second and third case,
the stabilizer of a heptad b has 3 orbits on the heptads, namely the heptads
intersecting b in 1, 3 or 7 points.

Let G = M22 acting on the hexads. Consider first the collinearity relation cor-
responding to “intersecting in 2 points”. Let L be the line of our desired partial
linear space containing b1 and b2, with b1 ∩ b2 = {p, q}. We have checked by
computer that Gb1 ' 24 : A6 has only one block of imprimitivity containing b2,
namely the set of 4 blocks intersecting b1 in {p, q}. Furthermore, the stabilizer
in G of the five blocks containing {p, q} is transitive on these five blocks, hence
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this gives an example of a 2-ultrahomogeneous partial linear space.

Example 33. P is the set of hexads in the Steiner system S(3, 6, 22), and L con-
sists of the sets of 5 hexads sharing a doubleton. This space will be denoted by
S(3, 6, 22)2-sets

blocks.

Consider now the collinearity relation corresponding to “intersecting in 0

points”. This means that any two blocks in a line L of our desired partial linear
space must be disjoint. Since there are no 3 blocks which are mutually disjoint,
there cannot be an example in that case.

Let G = M23 acting on the heptads.

Consider first the collinearity relation corresponding to “intersecting in 3

points”. Let L be the line of our desired partial linear space containing b1 and
b2, with b1 ∩ b2 = {p, q, r}. We have checked by computer that Gb1 ' 24 : A7

has only one block of imprimitivity containing b2, namely the set of 4 blocks
intersecting b1 in {p, q, r}. Furthermore, the stabilizer in G of the five blocks
containing {p, q, r} is transitive on these five blocks, hence this gives an exam-
ple of a 2-ultrahomogeneous partial linear space.

Example 34. P is the set of heptads in the Steiner system S(4, 7, 23), and L
consists of the sets of 5 heptads sharing a 3-subset. This space will be denoted by
S(4, 7, 23)3-sets

blocks.

Consider now the collinearity relation corresponding to “intersecting in 1

point”. Let L be the line of our desired partial linear space containing b1 and b2,
with b1 ∩ b2 = {p}. This means that any two heptads in L must intersect in one
point. There is no block intersecting both b1 and b2 in p alone, so a third block b3
in this line must intersect b1 in q1 and b2 in q2 with q1 6= q2. It turns out that the
stabilizer in G of b1 and b2 is transitive on the blocks intersecting both of them
in exactly one point. Hence they must all be in L, but some of them intersect
b3 in 3 points, contradicting the fact that any two blocks in L must intersect in
exactly one point.

Let G = M22 acting on the heptads of the S(4, 7, 23) not containing a given
point x. In M23, the stabilizer of a point x is isomorphic to M22 acting on the
22 remaining points. Hence G = M22 acts on the blocks of the Steiner system
S(4, 7, 23) not containing x. These form a 3−(22, 7, 4) design, which means that
there are exactly 4 heptads through any 3 points.

Consider first the collinearity relation corresponding to “intersecting in 3

points”. Let L be the line of our desired partial linear space containing b1 and
b2, with b1 ∩ b2 = {p, q, r}. We checked by computer that Gb1 has exactly two
blocks of imprimitivity containing b2.
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There are exactly 5 blocks of the S(4, 7, 23) through {p, q, r}, among which
one contains x. So there are 3 blocks of the 3 − (22, 7, 4) design intersect-
ing b1 in {p, q, r}. These 3 blocks form the first block of imprimitivity contain-
ing b2. Furthermore, the stabilizer in G of the four blocks containing {p, q, r}
but not x is transitive on these four blocks, hence this gives an example of a
2-ultrahomogeneous partial linear space.

Example 35. P is the set of heptads of the S(4, 7, 23) not containing a given point
x, and L consists of the sets of 4 heptads not containing x and sharing a 3-subset.
This space will be denoted by 3− (22, 7, 4)3-sets

blocks.

Note that each 3-subset {a, b, c} determines another 3-subset disjoint from
it: the 3 remaining points of the unique block of the S(4, 7, 23) containing
{a, b, c, x}. There are 15 points outside of b1 (not counting x). It turns out that
the 3-subsets determined by the 35 3-subsets of b1 form the lines of PG(3, 2).
The 4 points of b2 outside of b1 and the 3 points determined by {p, q, r} form a
plane of this PG(3, 2). Each of the 7 lines in this plane determines a 4-subset,
namely the complement of the line in the plane, and a 3-subset, namely the 3

points of b1 determining that line. These 7 points together form a block of the
S(4, 7, 23) not containing x and intersecting b1 in 3 points. Moreover, these 7

blocks mutually intersect in 3 points. The second block of imprimitivity of Gb1
containing b2 consists of these 7 blocks. Although this is not obvious from our
description, we would have found the same blocks by exchanging the roles of b1

and b2. Hence these 8 blocks form a line of a 2-ultrahomogeneous partial linear
space.

Example 36. P is the set of heptads of the S(4, 7, 23) not containing a given point
x, and L consists of the sets of 8 heptads described above. This space will be denoted
by 3− (22, 7, 4)8 heptads

blocks .

Consider now the collinearity relation corresponding to “intersecting in 1

point”. Let L be the line of our desired partial linear space containing b1 and b2,
with b1∩b2 = {p}. This means that any two blocks in Lmust intersect in exactly
one point. There is no block intersecting both b1 and b2 in p alone, so a third
block b3 in the line L must intersect b1 in q1 and b2 in q2 with q1 6= q2. It turns
out that the stabilizer in G of b1 and b2 is transitive on the blocks intersecting
both of them in exactly one point and not containing x. Hence they must all be
in L, but some of them intersect b3 in 3 points, contradicting the fact that any
two blocks in L must intersect in exactly one point.
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3.10 Action on one orbit of hyperovals

This case concerns G = PSL(3, 4) acting on one orbit of hyperovals (6 points, no
3 collinear) in PG(2, 4). The projective plane PG(2, 4) contains 168 hyperovals,
all projectively equivalent. In one orbit O of G, there are 56 hyperovals. The
stabilizer of a hyperoval h in G has three orbits on the other hyperovals of
O, namely h, the hyperovals disjoint from h (there are 10 of them) and the
hyperovals intersecting h in 2 points (there are 45 of them).

Consider first the collinearity relation corresponding to “intersecting in 2

points”. Let L be the line of our desired partial linear space containing the
hyperovals h1 and h2 of O, with h1 ∩ h2 = {a, b}.

Suppose that L contains a hyperoval h3 also containing a and b. Then there is
an element of G fixing h1 and h2 and mapping h3 onto h4, the fourth hyperoval
of O containing a and b. ?The set {h2, h3, h4} forms a block of imprimitivity of
Gh1 and the stabilizer of {h1, h2, h3, h4} in G is transitive on this subset. Hence
we get a new example of a 2-ultrahomogeneous partial linear space.

Example 37. P is an orbit of hyperovals of PG(2, 4) for PSL(3, 4), and L consists
of the sets of 4 hyperovals in that orbit containing a common pair of points of
PG(2, 4). This space will be denoted by PG(2, 4)

pairs
hyperovals in 1 orbit.

Suppose now that L contains a hyperoval h3 intersecting h1 in {a, c} and h2

in {a, d}, with c and d distinct from b. There exists an element of G fixing h1

and h2 and mapping h3 onto another hyperoval of O disjoint from h3, yielding
a contradiction.

Suppose finally that L contains a hyperoval h3 intersecting h1 in {c, d} and
h2 in {e, f}, with c, d, e and f distinct from a and b. Let l1 be the line of PG(2, 4)

containing e and f , l2 the line containing c and d, and l3 the line containing a
and b.

If l1, l2 and l3 are not concurrent, then there exists an element of G fixing h1

and h2 and mapping h3 onto another hyperoval h4 of O containing c but not d.
Now apply an earlier argument to h1, h3 and h4 to get a contradiction.

If l1, l2 and l3 are concurrent, then l1 contains the two points of h1 distinct
from a, b, c and d, l2 contains the two points of h2 distinct from a, b, e and f ,
and l3 contains the two points of h3 distinct from c, d, e and f . There exists an
element of G fixing h1 and h2 and mapping h3 onto the only other hyperoval h4

of O containing the two points of h3 distinct from c, d, e and f and intersecting
h1 and h2 in 2 points. These 4 hyperovals form a line of a 2-ultrahomogeneous
partial linear space. They are exactly the hyperovals intersecting each of the
lines l1, l2 and l3 in 2 points distinct from the common intersection point of
the three lines. The line-set of this partial linear space consists of the sets of
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4 hyperovals in O intersecting each of three fixed concurrent lines in exactly
two points distinct from the intersection point. This example is isomorphic to
Example 37. Indeed, the 6 lines disjoint from a hyperoval H of PG(2, 4) form a
hyperoval in the dual plane of PG(2, 4), that we will call the dual hyperoval of
H . It is not difficult to see that the duals of 4 hyperovals in our example above
share a doubleton, and so form a line in Example 37.

Consider now the collinearity relation corresponding to “being disjoint”. Since
there are no 3 mutually disjoint hyperovals in O, this case does not give any ex-
ample.

3.11 Action on the points of a sporadic Fischer space

A conjugacy class D of 3-transpositions in a group G is a class of conjugate
elements of order 2 such that, for all d and e in D, the order of the product de
is 1, 2 or 3. G is called a Fischer group if it is generated by a conjugacy class of
3-transpositions. Such groups were introduced and studied by B. Fischer [15].

If G is a Fischer group, with a given conjugacy class D of 3-transpositions, we
can build from G the following partial linear space, called a Fischer space: take
as points the elements of D and as lines the sets of 3 points such that any two
of them generate a subgroup isomorphic to Sym(3) containing the third one. In
other words, {d, e, f} is a line of the Fischer space whenever de is of order 3 and
f = de = ed. Of course, G (acting by conjugation) induces an automorphism
group of the associated Fischer space.

Fischer spaces were introduced by F. Buekenhout [4], who observed that
they can be defined by purely geometric axioms: a Fischer space is a connected
partial linear space such that the subspace generated by any two intersecting
lines (i.e a plane) is isomorphic to either a dual affine plane of order 2 (that is
T(4)) or an affine plane of order 3.

We have already met several Fischer spaces in the preceding sections:

(i) U2,3(n), for G ≥ Alt(n) and D is the transposition class,

(ii) NQε(2n− 1, 2), for G ≥ PΩε(2n, 2) and D is the transvection class,

(iii) Sp(2n, 2), for G = PSp(2n, 2) and D is the transvection class,

(iv) TQε(2n− 1, 3), for G ≥ PΩε(2n, 3) and D is a reflection class,

(v) TQε(2n, 3), for G ≥ PΩ(2n+ 1, 3) and D is a reflection class,

(vi) U(n, 2), for G = PSU(n, 2) and D is the transvection class.

It remains to investigate the sporadic Fischer groups Fi22, Fi23 and Fi24. Each
of them has a unique class D of 3-transpositions, and yields a Fischer space,
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which turns out to be a 2-ultrahomogeneous partial linear space.

Example 38. P is the set of involutions in the unique conjugacy class of 3-trans-
positions of resp. Fi22, Fi23 and Fi24, and L consists of the sets {d, e, f} where de
is of order 3 and f = de = ed. These spaces are called the sporadic Fischer spaces
and will be denoted respectively by F22, F23 and F24.

Note that for F24, the group Fi′24, of index 2 in Fi24, is the smallest rank 3

group acting on it. For the other two Fischer spaces, the full Fischer group is
needed.

Let G = Fi22, Fi23 or Fi′24 acting on the corresponding Fischer space F22, F23

or F24. G is of rank 3: the stabilizer of a point p has 3 orbits, namely p itself,
the points collinear to p and the points non-collinear to p.

Consider first the collinearity relation corresponding to the collinearity in the
Fischer space Fi. We are looking for blocks of imprimitivity of Gp in the orbit
of points collinear with p, which has size 2816 for i = 22, 28160 for i = 23,
and 275264 for i = 24. The group Gp is isomorphic to 2.PSU(6, 2) for i = 22,
2.Fi22 for i = 23, and Fi23 for i = 24. We claim that there is only one system of
imprimitivity of Gp in that orbit: it has blocks of size 2 and yields the space Fi.
This will be proved if we can show that any subgroup K of Gp whose index is
the size of that orbit (that is the stabilizer of a point in that orbit) is necessarily
contained in exactly one proper subgroup of Gp.

Consider for example G = Fi′24. The list of maximal subgroups given in
[20] shows that the simple group Gp ' Fi23 has a unique conjugacy class of
subgroups of index 275264, those of index 2 in maximal subgroups L of index
137632. L is isomorphic to PΩ+(8, 3) : Sym(3), so that K is isomorphic to
PΩ+(8, 3) : 3. K is contained in a unique member L of the maximal class LGp ,
namely NGp(K

′) where K ′ ' PΩ+(8, 3). Thus in this orbit there is a unique
system of non-trivial blocks of imprimitivity.

The same type of argument can be used for Fi22 and Fi23, but is slightly
more complicated since Gp is not simple in these two cases. However, these
representations are small enough to be checked by computer, which confirmed
that the Fischer spaces are the only examples.

Consider now the collinearity relation corresponding to the non-collinearity
in Fi. We are looking for blocks of imprimitivity of Gp in the orbit of points
non-collinear with p, which has size 693 for i = 22, 3510 for i = 23 and 31671

for i = 24. We claim that Gp is primitive on this orbit.

For G = Fi′24, the list of maximal subgroups ([20]) shows that the simple
group Gp ' Fi23 has a unique conjugacy class of subgroups of index 31671,
isomorphic to 2.Fi22, and these subgroups are maximal; the conclusion follows.
The same type of argument can be used for Fi22 and Fi23, but is slightly more
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complicated since Gp is no longer simple. However, this result can also be
checked by computer.

3.12 Action on the lines through a fixed point in a sporadic
Fischer space

Let ∞ be a point of the Fischer space associated with the Fischer group G,
and let P∞ be the set of all Fischer lines on ∞. The Fischer subspace (plane)
generated by two lines meeting in ∞ is either dual affine of order 2 (in which
case these are the only two lines of P∞ in the plane) or affine of order 3 (in
which case there are exactly 4 lines of P∞ in this plane). For each affine plane
A of order 3 with∞ ∈ A, let LA be the set of 4 Fischer lines of A on∞; and let
L∞ be the set of all such LA’s. Then (P∞,L∞) is a partial linear space which
admits the stabilizer G∞ as an automorphism group. We call the geometry
(P∞,L∞) a residual Fischer space.

For G as in (i), (ii), or (iii) in the last section, there are no affine planes
through∞, and G∞ is of rank 2 on P∞. For G as in (iv) or (v), G∞ is of rank 3

and it is easy to see that the partial linear space (P∞,L∞) is isomorphic to an
orthogonal polar space. For G as in (vi), G∞ is of rank 3 but is of affine type,
and so does not concern us here. Now for G equal to Fi22, Fi23, or Fi′24, G∞ is
of rank 3.

For G = Fi22, G∞ ' 2.PSU(6, 2), but the quotient PSU(6, 2) is the rank 3

group induced on P∞. For G = Fi23, G∞ ' 2.Fi22, but the quotient Fi22 is the
rank 3 group induced on P∞. For G = Fi′24, G∞ ' Fi23, and it is the smallest
rank 3 group on P∞.

These give rise to 3 new examples:

Example 39. P is the set of lines through a given point ∞ in F22, F23, or F24

respectively, and L consists of the sets of 4 such lines contained in an affine plane
of order 3 through∞. These spaces will be called residual sporadic Fischer spaces
and denoted by F res

22 , F res
23 , and F res

24 respectively.

Consider first the collinearity relation corresponding to collinearity in the
residual Fischer space. We have checked by computer that in the three cases
there is only one system of imprimitivity in that orbit of the stabilizer of a line
through∞, and that the blocks have size 3. So this orbit yields only the residual
Fischer spaces.

Consider now the collinearity relation corresponding to non-collinearity in
the residual Fischer space. A computer check shows that in the three cases the
stabilizer of a line through∞ is primitive on this orbit.
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These results can also be proved using [20] and the Atlas [8] list of maximal
subgroups of finite simple groups. Some cases are a lot more complicated than
the proof given as an example in the preceding section.

3.13 Sporadic rank 3 permutation representations

Now we come to the rank 3 groups which are not otherwise included in one of
the families previously considered. One can always visualize them as acting on
the vertices of a strongly regular graph.

This case concerns the sporadic groups J2, HS, McL, Suz, Co2, and Ru in their
natural representation, G2(4) acting on the cosets of J2, PSU(3, 5) acting on the
Hoffman-Singleton graph, and PSU(4, 3) acting on the cosets of PSL(4, 3).

In all these cases except the last two, the stabilizer of a point is primitive on
both orbits, so that there is no example arising.

Let G = PSU(3, 5) acting on the vertices of the Hoffman-Singleton graph.
This graph is the unique finite graph of diameter 2 containing no circuit of
length 3 or 4 and all of whose vertices have degree 7; it is also known as the
Moore graph M(7). The group G is of rank 3 on its vertices: the stabilizer of
a vertex is transitive on the adjacent vertices, as well as on the non-adjacent
vertices.

Consider first the collinearity relation corresponding to “being adjacent”.
Since no 3 vertices are mutually adjacent, there cannot be a line of size at least
3 with that collinearity.

Consider now the collinearity relation corresponding to “being non-adjacent”.
Let L be the line of our desired partial linear space containing the vertices v1

and v2. Since the graph has diameter 2 but no circuit of length 4, there is a
unique vertex w adjacent to both v1 and v2. Let v3 be a third point of L, that
is a vertex non-adjacent to both v1 and v2. If v3 is non-adjacent to w, then the
stabilizer of v1 and v2 in G is transitive on the vertices non-adjacent to v1, v2

and w, hence all these vertices must be in L, but some of them are adjacent to
v3, a contradiction. So v3 must be adjacent to w. The stabilizer of v1 and v2

in G is transitive on the other vertices adjacent to w. Hence L must contain
all the vertices adjacent to w. The stabilizer in G of the set of vertices adja-
cent to w is transitive on those 7 vertices. Therefore we get an example of a
2-ultrahomogeneous partial linear space.

Example 40. P is the set of vertices of the Hoffman-Singleton graph, and L is the
set of neighborhoods of vertices. This space, denoted by M(7), is a copolar space.

Finally let G = PSU(4, 3) in its sporadic rank 3 representation on 162 points.
The stabilizer of a point is isomorphic to PSL(3, 4), and has three orbits of size
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1, 56 and 105 respectively. Notice that G contains two non-isomorphic conju-
gacy classes of subgroups isomorphic to PSL(3, 4), but the coset action of G on
a subgroup in any of these conjugacy classes is the same, hence they yield iso-
morphic permutation groups. The stabilizer of a point in G acts primitively on
the orbit of size 56, so this orbit does not give any new example. It acts on the
orbit of size 105 as it does on the flags (incident point-line pairs) of PG(2, 4). It
is easy to see that this orbit has exactly two systems of imprimitivity, both with
blocks of size 5: a block consists either of the 5 flags sharing a point or the 5

flags sharing a line. We have checked by computer that, in both cases, we get
a new example of 2-ultrahomogeneous partial linear space, these two examples
being isomorphic.

Example 41. P is the set of cosets of PSL(3, 4) in PSU(4, 3), and L consists in
the sets of 6 cosets such that 5 of them correspond to flags sharing a point in the
stabilizer of the sixth one. This space will be denoted by PSU(4, 3)flags sharing a point

PSL(3,4) .

Acknowledgment

This paper was written mainly while the author was a Visiting Researcher at
Michigan State University, as a Research Fellow of the Belgian American Educa-
tional Foundation. The author wishes to thank Jonathan Hall for his tremendous
help during the preparation of this manuscript, and Jean Doyen for his help in
the final draft.

References

[1] M. Aschbacher, The 27-dimensional module for E6, I, Invent. math. 89
(1987), 159–195.

[2] E. Bannai, Maximal subgroups of low rank of finite symmetric and alter-
nating groups, J. Fac. Sci. Univ. Tokyo Sect. I A 18 (1972), 475–486.

[3] W. Bosma, J. Cannon and C. Playoust, The Magma Algebra System I:
the user language, J. Symbolic Comput. (3/4) (1997), 235–265.
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