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Abstract

The trivial lower bound for the size of a maximal partial ovoid ofH(3, q2)

is q2 + 1. In [4] it was shown that this bound can be attained if and only if
q is even. In the present paper it is shown that a maximal partial ovoid of
H(3, q2), q odd, has at least q2 + 1 + 4

9
q points (previously, only q2 + 3 was

known). It is also shown that a maximal partial spread of H(3, q2), q even,
has size q2 + 1 or size at least q2 + 1 + 4

9
q.

Keywords: ovoid, polar space, Hermitian variety

MSC 2000: 51E20, 51E12, 05B25

1 Introduction

An ovoid of the hermitian polar space H(3, q2) is a set of points such that each
generator is incident with exactly one point of the ovoid. Ovoids of H(3, q2)

have size q3 + 1 and there exist many different types of ovoids. The easiest
example is to take the point set O of a hermitian curve H(2, q2) in a plane π of
the ambient projective space PG(3, q2). One can pass through a second example
by replacing the q+ 1 points of a secant line l of π to the hermitian curve by the
q + 1 points on the secant line l⊥ in H(3, q2). Here and throughout the paper,
⊥ denotes the unitary polarity of PG(3, q2) defining the hermitian polar space
H(3, q2).

A partial ovoid of H(3, q2) is a set of points such that no generator meets it
in more than one point; it is called maximal, if it is not contained in a strictly
larger partial ovoid. It was shown in [5] that the largest maximal partial ovoid
of H(3, q2) that is not an ovoid has size q3 + 1− q. On the other side, the trivial
lower bound for the size of a maximal partial ovoid in H(3, q2) is q2 + 1 (see
[4]), and Cossidente and Korchmáros constructed a maximal partial ovoid of
that size when q is even [2]. The size of the smallest maximal partial ovoid for
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odd q is not known. In [4] it was shown by A. Aguglia, G.L. Ebert, and D. Luyckx
that it is at least q2 + 3.

The construction of a maximal partial ovoid of size q2 + 1 in H(3, q2), q even,
is as follows: Start with an elliptic quadric O = Q−(3, q) in PG(3, q). The
tangent lines to O are the generators of a symplectic polar space W (3, q) ⊆
PG(3, q). Extend PG(3, q) to PG(3, q2). The lines of W (3, q) cover as lines of
PG(3, q2) the points of a H(3, q2); this was shown in [2] and [3]. The set O is
then a maximal partial ovoid of this H(3, q2). It was shown in [4] that every
maximal partial ovoid of H(3, q2) of size q2 + 1 can be constructed in this way.
It should be noticed that the example can also be constructed in a dual way
using that H(3, q2) is dual to Q−(5, q). Under the duality the W (3, q) translates
to a Q(4, q) inside Q−(5, q), and the ovoid O of W (3, q) translates to a spread of
Q(4, q), which of course is a maximal partial spread of Q−(5, q).

If one deletes from the above example for O one point P , then the q+ 1 gen-
erators on P miss O. The points on these generators that are perpendicular to a
point of O \{P} lie in PG(3, q). It follows that there exists besides O essentially
one other type of a maximal partial ovoid containing O \ {P}. It is obtained by
adjoining q + 1 points of PG(3, q2) \ PG(3, q), one on each generator of P . This
shows that H(3, q2), q even, has maximal partial ovoids of size q2 + q + 1.

I guess that H(3, q2), q even, does not possess a maximal partial ovoid of a
size between q2 + 1 and q2 + q + 1. I also find it very likely that the smallest
maximal partial ovoid of H(3, q2), q odd, has at least around q2 + q + 1 points
(but see the open problems at the end of the article). The following theorem
and its corollary support this conjecture.

Theorem 1.1. Let O be a maximal partial ovoid of H(3, q2). Suppose that |O| =
q2 + 1 + δ for an integer δ satisfying 0 ≤ δ ≤ (q − 1)/2 and

4
∆q + δ(q + 1)

q − δ + 3q < 2q2 + 4δ + q
√

(2q + 3)2 − 8(δ + 1)(q + 1) (1)

where

∆ :=

⌊
δ(q + 1)2(qδ − δ − 1)

(q − δ)(q2 + 1 + δ)

⌋
.

Then δ = 0 and q is even.

We remark that the bound is satisfied for integers δ with 0 ≤ δ ≤ 4
9q.

Corollary 1.2. Every maximal partial ovoid of H(3, q2), with q odd, has at least
q2 + 1 + 4

9q points.

Most of the arguments used to prove these results remain true for δ <

(q − 1)/2, and I could imagine that it is possible to improve the arguments so
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that they cover all δ up to (q− 1)/2. For 1
2 (q− 1) < δ < q, new arguments seem

to be needed.

2 An internal incidence structure

Let O be a maximal partial ovoid of H(3, q2) and suppose that

|O| = q2 + 1 + δ, δ < q − 1.

The generators of H(3, q2) not meeting O will be called free generators. For
i ≥ 0 we denote by Fi the set consisting of all points P of H(3, q2) such that the
number of generators on P that meet O is i. This implies that O is contained in
Fq+1. The idea of the following proof is to show that Fq+1 is the point set of a
projective space PG(3, q).

Lemma 2.1. (a) For every free generator g we have
∑

i

|g ∩ Fi| = q2 + 1 and
∑

i

|g ∩ Fi|i = q2 + 1 + δ.

(b) Fi = ∅ for i = 0 and δ + 1 < i < q + 1.

(c) For a free generator g we have g ∩ Fq+1 = ∅.

(d) The number of free generators is (q + 1)(q3 − q2 − δ).

Proof. (a) Consider a free generator g. Every point of O lies on a unique
generator meeting g. Hence, there exist exactly |O| = q2 +1+δ generators
that meet O and g. This proves (a).

(b & c) Since O is a maximal partial ovoid, we have F0 = ∅. By (a) we have∑
i |g ∩ Fi|(i − 1) = δ for the free generators g. Hence g ∩ Fi = ∅ for all

free generators g and all indices i > δ+1. As every point P with P /∈ Fq+1

lies on a free generator, this proves (b).

(d) Since the number of generators is (q + 1)(q3 + 1) and each point of O lies
on q + 1 of these, we find (d).

Notation 2.2. We consider H(3, q2) in its natural embedding in PG(3, q2). The
associate polarity is denoted by ⊥. The points of PG(3, q2) in H(3, q2) are called
the hermitian points. For a hermitian point, the tangent plane P⊥ meetsH(3, q2)

in the union of the q + 1 generators on P . The non-tangent planes are called
hermitian planes; they meet H(3, q2) in hermitian curves H(2, q2). A secant line
is a line of PG(3, q2) meeting H(3, q2) in q + 1 points; these points form a Baer-
subline of the secant line.
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Lemma 2.3. A hermitian plane meets Fq+1 in at most q + 1 + δ points.

Proof. Let λ points of O be in the hermitian plane π, and let µ be the number
of points of Fq+1 \ O in π. Count pairs (X,Y ) of perpendicular points X ∈
π ∩H(3, q2) and Y ∈ O \ π to find

q3 + 1− λ− µ+ µ(q + 1) ≤ (|O| − λ)(q + 1) ;

here we use that each one of the q3 + 1− λ− µ points of π that does not lie in
Fq+1 is perpendicular to at least one point of O. As |O| = q2 + 1 + δ, it follows
that λ+ µ ≤ q + 1 + δ + 1

q δ. Since δ < q, this completes the proof.

Lemma 2.4. (a) Suppose the secant line smeets Fq+1 in more than δ+1 points.
Then s and s⊥ meet Fq+1 in exactly q + 1 points.

(b) Suppose that two different coplanar secant lines s and t both meet Fq+1 in
q + 1 points. Then the point s ∩ t lies in Fq+1.

(c) Suppose that the q+1 hermitian points of a secant line s belong to Fq+1 \O.
Then s⊥ meets O in at least two points.

Proof. (a) The line s⊥ is a secant line. ForX ∈ s∩Fq+1 and Y ∈ s⊥∩H(3, q2),
the line XY is a generator and its meets O as X ∈ Fq+1. Thus Y lies on
at least |s ∩ Fq+1| > δ + 1 generators that meet O. Then Y ∈ Fq+1 by
Lemma 2.1 (b). Hence all q + 1 points of s⊥ ∩ H(3, q2) lie in Fq+1. As
s = (s⊥)⊥, the same argument shows now that all points of s ∩ H(3, q2)

lie in Fq+1.

(b) By part (a) the lines s⊥ and t⊥ meet Fq+1 in q + 1 points. As the plane
(s∩ t)⊥ contains s⊥ and t⊥, this plane meets Fq+1 in at least 2q+1 points.
By the previous lemma it is thus a tangent plane. Hence s ∩ t is a point of
H(3, q2). As all q + 1 points of s ∩H(3, q2) lie in Fq+1, the point s ∩ t lies
in Fq+1.

(c) Consider the q+1 planes X⊥ = 〈X, s⊥〉 for the hermitian pointsX of s. As
the pointsX lie in Fq+1, all q+1 generators onX meetO. AsX 6∈ O, then
each planeX⊥ meetsO in q+1 points. Then the union of these q+1 planes
contains (q+ 1)2− q · |s⊥∩O| points of Fq+1. As |O| = q2 + 1 + δ ≤ q2 + q,
it follows that |s⊥ ∩O| ≥ 2.

Definition 2.5. For every point P ∈ O, we denote by IP the incidence structure
with point set P⊥ ∩ Fq+1 and whose lines are the generators of H(3, q2) on P
and the secant lines P⊥ ∩Q⊥ for the points Q ∈ O \ {P}. Incidence is inherited
from the projective space. The number of points of IP on a line of IP will be
called the length of the line. The set of lines of IP not passing through P will be
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denoted by LP . We also define the weight w(l) of every line l of IP as follows:
The weight of the generators on P is one, and the weight of a line l ∈ LP is
the number of points Q ∈ O \ {P} with l = P⊥ ∩ Q⊥. Clearly the sum of the
weights of all lines in LP is |O| − 1 = q2 + δ, so the sum of the weights of all
lines of IP is q2 + q + 1 + δ.

Finally, we call a line of IP long, if it lies in LP and has q+ 1 points in IP . We
call a line of IP short, if it lies in LP and has less than q + 1 points in IP . We
shall see in the next lemma that short lines have at most δ + 1 points.

Lemma 2.6. The incidence structure IP has the following properties.

(a) Every line has length at most q + 1.

(b) A line not passing through P has length q + 1 or at most δ + 1.

(c) Any two long lines meet in IP .

Proof. (a) A generator on P meets Fq+1 in P and in at most b|O\{P}|/qc = q

further points, since each point of Fq+1 \O is perpendicular to q+1 points
of O.

For a point Q ∈ O \ {P} the line Q⊥ ∩ P⊥ is a secant line of H(3, q2).
Hence it has q+ 1 points in H(3, q2) and thus at most q+ 1 points in Fq+1.

(b) The lines of IP not passing through P are secant lines to H(3, q2). Part (a)
of Lemma 2.4 shows that they meet Fq+1 in q + 1 or at most δ + 1 points.

(c) Part (b) of Lemma 2.4 shows that any two long lines of IP meet in IP .

Lemma 2.7. Suppose that the sum of the weights of the long lines of IP is larger
than q. Then the plane P⊥ contains a Baer-subplane BP = PG(2, q) such that
P ∈ BP and X ∈ BP for every point X of IP that lies on a long line of IP .

Proof. Every point 6= P of IP is perpendicular to P and q further points of O.
Thus for a point X 6= P of IP the sum of the weights of the lines of LP on X is
q. In particular, every line of IP has weight at most q.

Thus we find two long lines l1 and l2. By part (c) of Lemma 2.6, these meet
in a point Q of IP . The q + 1 points of IP on each line li form a Baer-subline in
PG(3, q2). There exists a unique Baer-subplane BP containing these two Baer-
sublines. As the two long lines l1 and l2 meet all generators on P in a point of
IP , then the q generators on P that meet l1 and l2 in different points are lines
of the Baer-subplane. Hence P is a point of the subplane, and then all q + 1

generators on P are lines of BP (since they contain P and meet BP in a point
on l1).
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As the sum of the weights of all lines of LP on Q is q, the hypothesis implies
that there exists a long line l3 not passing through Q. Then l3 meets l1 and l2 in
different points of IP and hence l3 is a line of BP . As the generators of H(3, q2)

through P belong to the subplane, they intersect l3 in points of the subplane.
The q + 1 intersection points are the points of IP on l3 and so they lie in the
subplane.

Finally, every long line l other than l1, l2, l3 meets two of the lines l1, l2, l3 in
different points, so it belongs to the subplane and as before all its points of IP
belong to the subplane.

Lemma 2.8. In the situation that the subplane BP described in Lemma 2.7 exists,
suppose that the long lines of IP cover more than (δ+ 1)(q+ 1) points of IP . Then
all points and lines of BP belong to IP .

Proof. Since the points of the long lines of IP belong to BP , then BP and IP
share more than (δ + 1)(q + 1) points.

Assume by way of contradiction that for some generator g on P , at most δ+1

of the q points 6= P of BP on g are also points of IP . Then more than (δ + 1)q

common points of BP and IP lie outside g. Consider a point X on g that lies in
BP but not in IP . One of the q lines 6= g of BP on X has more than δ+ 1 points
in IP . These points lie in Fq+1 and the line is a secant line to H(3, q2). Lemma
2.4 shows that all hermitian points on this secant line lie in Fq+1. As X is one
of these points, then X ∈ Fq+1. But then X is a point of IP , a contradiction.

Hence every generator on P has apart from P at least δ+2 points that belong
to BP and IP .

Assume by way of contradiction that some point X of BP is not a point of IP .
As each of the q generators 6= PX on P has apart from P at least another δ + 2

points that belong to IP and BP , there exist at least (δ + 2)q points outside the
line PX that belong to IP and BP . Some of the q lines 6= PX of BP on X thus
contain more than δ + 1 of these points. As before this implies that X ∈ Fq+1

with the same contradiction.

Hence every point of BP is also a point of IP , that is every point other than
P of BP lies in Fq+1. By the construction in the proof of Lemma 2.7, the lines
of BP on P belong to IP . Consider one of the other q2 lines s of BP . Then s

is a secant line to H(3, q2) with all its hermitian points in Fq+1 \ O. Part (c)
of Lemma 2.4 shows that there exists a point Q ∈ O \ {P} with s ∈ Q⊥. This
means by definition that s is a line of IP .

Lemma 2.9. Suppose that the sum of the weights of the long lines of IP is larger
than q, and that the long lines of IP cover more than (δ + 1)(q + 1) points of IP .
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Then δ = 0, q is even, and O is an ovoid of a Baer-subspace PG(3, q) of PG(3, q2),
and thus O is an ovoid of a W (3, q) embedded in H(3, q2).

Proof. From the previous lemmas we see that IP contains a Baer-subplane BP .
As the sum of the weights of all lines of IP on a point of IP is q+ 1, we see that
every line of IP that belongs to BP has weight one. Also, the lines of BP are all
lines of IP that are incident with a point of BP . But then the lines of IP are all
lines of BP , since the Baer-subplane BP meets every line of P⊥ = PG(2, q2).

Thus, LP contains exactly q2 lines and all have weight one. As the sum of
the weights of the lines of LP is q2 + δ we find δ = 0, that is |O| = q2 + 1.

The results in [4] show that this implies that q is even and O is an ovoid
in a Baer-subspace. We sketch an alternative proof which is prepared by the
previous arguments:

Two different Q1, Q2 ∈ O \ {P} give different lines Q⊥1 ∩ P⊥ and Q⊥2 ∩ P⊥,
since the lines of IP have weight one. Then they are lines of the Baer-subplane
BP and thus meet in a point of BP . It follows that Q⊥1 ∩ Q⊥2 ∩ P⊥ is a point
of H(3, q2). Hence P,Q1, Q2 are non-collinear in PG(3, q2) and span a tangent
plane of H(3, q2).

As δ = 0, then Fi = ∅ except for i = 1 and i = q + 1 (Lemma 2.1 (b)). Then
every generator on a point of O meets Fq+1 in exactly q + 1 points. Thus what
we have proved for P holds for every point of O. Therefore any three points of
O span a tangent plane. Using what we have shown in the above lemmata, it
is now easy to see that |Fq+1| = q3 + q2 + q + 1, that the points of Fq+1 form a
Baer-subspace, and that O is an ovoid of this Baer-subspace.

Three points P,Q1, Q2 ∈ O span a tangent plane; this is the plane X⊥ for
X = P⊥∩Q⊥1 ∩Q⊥2 . The setX⊥∩O is an oval in the plane Fq+1∩X⊥ = PG(2, q).
As XP,XQ1, XQ2 are three tangents on X , we conclude that q is even (and X
is the nucleus of this oval).

In the next section we show that the hypothesis of the preceding lemma can
be satisfied for at least one point P provided that δ is not too large.

3 Estimations

In this section we suppose that O is a maximal partial ovoid of H(3, q2) of size
q2 + 1 + δ with δ < q − 1. We first estimate the size of Fq+1.

Lemma 3.1.

|Fq+1| ≥ q3 + q2 + q + 1− δ(q2δ − q − δ − 1)

q − δ + qδ + δ.
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Proof. We estimate the number of points in the union of the Fi for 1 ≤ i ≤ δ+1.
Let G be the set of all free generators. Since each point of Fi lies on q + 1 − i
free generators, we have for i ≤ δ + 1

|Fi| =
1

q + 1− i
∑

g∈G
|g ∩ Fi|.

Hence, using Lemma 2.1,

δ+1∑

i=1

|Fi| =
∑

g∈G

δ+1∑

i=1

|g ∩ Fi|
q + 1− i

=
∑

g∈G

(
q2 + 1−∑q+1

i=2 |g ∩ Fi|
q

+

δ+1∑

i=2

|g ∩ Fi|
q + 1− i

)

=
∑

g∈G

(
q2 + 1

q
+

δ+1∑

i=2

|g ∩ Fi|(i− 1)

q(q + 1− i)

)
.

We know from Lemma 2.1 that
∑ |g∩Fi|(i−1) = δ. Using part (d) of Lemma 2.1

we conclude that

δ+1∑

i=1

|Fi| ≤ (q + 1)(q3 − q2 − δ)
(
q2 + 1

q
+

δ

q(q − δ)

)

= q5 − q +
δ(q2δ − q − δ − 1)

q − δ − qδ − δ.

It follows that

|Fq+1| ≥ (q2 + 1)(q3 + 1)− (q5 − q +
δ(q2δ − q − δ − 1)

q − δ − qδ − δ).

This proves the statement.

Lemma 3.2. If δ < q
2 , then there exists a point P such that |P⊥ ∩ Fq+1| ≥

q2 + q + 1−∆ where

∆ =

⌊
δ(q + 1)2(qδ − δ − 1)

(q − δ)(q2 + 1 + δ)

⌋
.

Proof. Count pairs (P,X) of perpendicular points P ∈ O and X ∈ Fq+1 \ O to
find ∑

P∈O
(|P⊥ ∩ Fq+1| − 1) ≥ (Fq+1 \ O)(q + 1).
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Using |O| = q2 + 1 + δ and for |Fq+1| the bound of the preceding lemma we
conclude that there exists a point P ∈ O such that

(q2 + 1 + δ)(|P⊥ ∩ Fq+1| − 1) ≥
(
q3 + q − δ(q2δ − q − δ − 1)

q − δ + qδ

)
(q + 1).

This proves the statement.

Lemma 3.3. Let P ∈ O and denote by x the sum of the weights of all long lines
of IP . Suppose that x > q. Then IP has at least d2x/qe long lines.

Proof. If the weight of every long line is at most q/2, then the assertion is obvi-
ous. Suppose therefore that there exists a long line l with weight s > q/2. From
Lemma 2.4 (b) we know that l meets every other long line in a point of Fq+1.
As the sum of the weights of all lines of LP on a point of IP is q, it follows that
every long line other than l has weight at most q − s. Hence, if y is the number
of long lines, then

s+ (y − 1)(q − s) ≥ x ⇒ y ≥ x− q
q − s + 2 ≥ 2(x− q)

q
+ 2.

The assertion follows.

Lemma 3.4. Suppose that 0 ≤ δ ≤ (q − 1)/2 and

4
∆q + δ(q + 1)

q − δ + 3q < 2q2 + 4δ + q
√

(2q + 3)2 − 8(δ + 1)(q + 1) (2)

where

∆ :=

⌊
δ(q + 1)2(qδ − δ − 1)

(q − δ)(q2 + 1 + δ)

⌋
.

Then δ = 0 and q is even.

Proof. According to Lemma 3.2 there exists a point P such that

|P⊥ ∩ Fq+1| ≥ q2 + q + 1−∆.

For l ∈ LP , let w(l) be the weight of l and k(l) be the length of l. We know that
for each point X 6= P of IP , the sum of the weights of the lines of LP on X is
q. Counting weighted incidences between points 6= P of IP and lines of LP , we
find

(q2 + q −∆)q ≤
∑

l∈LP
w(l) · k(l). (3)
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As
∑

l∈LP w(l) = q2 + δ, it follows that

∑

l∈LP
w(l)(q + 1− k(l)) ≤ δ(q + 1) + q∆.

For a short line of LP we have q + 1− k(l) ≥ q − δ, see Lemma 2.6 (b). Hence,
for the sum S of the weights of all short lines of LP we have

S ≤ δ(q + 1) + q∆

q − δ .

We denote by µ the largest integer satisfying µ ≤ q + 1 and

(µ− 1)
q

2
+

∆q + δ(q + 1)

q − δ < q2 + δ. (4)

Since the sum of the weights of the lines of LP is q2 + δ, the sum of the weights
of all long lines of LP is larger than (µ− 1) q2 . Using ∆ ≤ δ2(q + 1)/(q − δ) and
δ ≤ (q − 1)/2, one easily sees that µ ≥ 3. [For this, it suffices to show that

q +
δ2q(q + 1) + δ(q + 1)(q − δ)

(q − δ)2
< q2 + δ;

multiplying by (q − δ)2 one sees that this is equivalent to
(
q − 1

2
− d
)(

2q3 + d
(5

2
q − d− 1

2

))
+

1

4
(3q2 − 1)d+

1

2
qd > 0

and this holds, sicne d ≤ 1
2 (q − 1) ]. As µ ≥ 3, then Lemma 2.7 proves the

existence of the subplane BP . Hypothesis (2) is equivalent to

1

2

(
2q + 3−

√
(2q + 3)2 − 8(δ + 1)(q + 1)

)
<

2

q

(
q2 + δ − ∆q + δ(q + 1)

q − δ

)
.

Therefore
µ >

1

2

(
2q + 3−

√
(2q + 3)2 − 8(δ + 1)(q + 1)

)
.

The right-hand side of this inequality is the smaller solution for x of the equation
(
q + 2

2

)
−
(
q + 2− x

2

)
= (δ + 1)(q + 1).

It follows that
(
q + 2

2

)
−
(
q + 2− µ

2

)
> (δ + 1)(q + 1). (5)
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As the sum of the weights of the long lines of IP is larger than (µ − 1) q2 ,
Lemma 3.3 shows that IP has at least µ long lines. As µ ≤ q + 1, then µ

long lines cover at least

µ∑

i=1

(
q + 2− i

)
=

(
q + 2

2

)
−
(
q + 2− µ

2

)

points. By (5), this is larger than (δ+ 1)(q+ 1). We have verified the hypothesis
of Lemma 2.9. Application of this lemma shows that δ = 0 and q is even, proving
the lemma and also Theorem 1.1.

Problems. (a) Construct small maximal partial ovoids ofH(3, q2), q odd. Du-
ally this asks for small maximal partial spreads of Q−(5, q), q odd. One
construction, that appears in [4] and [6] uses maximal partial spreads in
PG(3, q). A maximal partial spreads of size s in PG(3, q) gives rise to a
maximal partial spread of size q(s− 1) + 1 of Q−(5, q). Another idea is to
embed Q(4, q) in Q−(5, q) and start with a large partial spread of Q(4, q).
If this partial spread has q2 + 1 − δ lines, then this can be extended to a
maximal partial spread ofQ−(5, q), which has at most q2+1+qδ lines. Un-
fortunately, no general construction for maximal partial spreads of Q(4, q)

is known. For small q, examples for large partial spreads of Q(4, q) were
found by M. Cimráková [1] (see her tables for maximal partial ovoids of
W (3, q)). For q ∈ {3, 5, 7} her search was exhaustive, but using her re-
sults, the size q2 + 1 + qδ is slightly worse than the size of the examples
found by the first approach in [4]. No construction is known producing
examples of size close to q2 + 1.

(b) Prove that a maximal partial ovoid of H(3, q2), q odd, has at least q2 + q

points.
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