Innovations in Incidence Geometry

Volume 3 (2006), Pages 13–23 ISSN 1781-6475

A subset of the Hermitian surface

Giorgio Donati Nicola Durante

Abstract

In this paper we define a ruled algebraic surface of $PG(3,q^2)$, called a hyperbolic \mathcal{Q}_F -set and we prove that it is contained in the Hermitian surface of $PG(3,q^2)$. Also, we characterise a hyperbolic \mathcal{Q}_F -set as the intersection of two Hermitian surfaces.

Keywords: Hermitian surface, collineation.

MSC 2000: 51E20, 05B25.

1 Introduction

Let \mathcal{P}_A and \mathcal{P}_B be the pencils of lines with vertices two distinct points A and B in $\mathrm{PG}(2,q^2)$. Let α_F be the involutory automorphism of $GF(q^2)$ given by $x \in GF(q^2) \mapsto x^q \in GF(q^2)$ and let Φ be an α_F -collineation between \mathcal{P}_A and \mathcal{P}_B . If Φ does not map the line $A \vee B$ onto the line $B \vee A$, then the set of points of intersections of corresponding lines under Φ is called a \mathcal{C}_F -set (see [3], [4]). If Φ maps the line $A \vee B$ onto the line $B \vee A$, then the set of points of intersections of corresponding lines under Φ is called a degenerate \mathcal{C}_F -set (see [5]).

Every \mathcal{C}_F -set has q^2+1 points, it is of type (0,1,2,q+1) with respect to lines of $\operatorname{PG}(2,q^2)$ and every (q+1)-secant line intersects such a set in a Baer subline. The (q+1)-secant lines number q-1 and all contain a common point C not on the \mathcal{C}_F -set. Those lines, together with the lines $C\vee A$ and $C\vee B$, form a Baer subpencil. The point C is called the *centre* of the \mathcal{C}_F -set. Also, every \mathcal{C}_F -set is projectively equivalent to the algebraic curve with equation

$$x_1 x_2^q - x_3^{q+1} = 0.$$

Under the André–Bruck–Bose representation of $PG(2, q^2)$ in PG(4, q) these subsets correspond to three-dimensional elliptic quadrics contained in suitable hyperplanes of PG(4, q).

Every degenerate \mathcal{C}_F -set has $2q^2+1$ points, it is of type $(1,2,q+1,q^2+1)$ with respect to lines of $\operatorname{PG}(2,q^2)$ and every (q+1)-secant line intersects such a set in a Baer subline. Also, every degenerate \mathcal{C}_F -set is the union of the line $A\vee B$ and a Baer sublane meeting the line $A\vee B$ in a Baer subline. Every degenerate \mathcal{C}_F -set is projectively equivalent to the algebraic curve with equation

$$x_3(x_1x_2^{q-1} - x_2^q) = 0.$$

The points A and B are called the *vertices* of a C_F -set (degenerate or not).

Observe that the construction of a C_F -set (degenerate or not) is a variation of Steiner's projective construction of conics.

In a similar way, we obtain an algebraic surface of $PG(3, q^2)$ by using a variation of Steiner's projective generation of hyperbolic quadrics.

2 Definition and properties

Let a and b be two skew lines of the projective space $PG(3, q^2)$ and let \mathcal{P}_a and \mathcal{P}_b be the pencils of planes with axes a and b. Let Φ be an α_F -collineation between \mathcal{P}_a and \mathcal{P}_b ; the set of points of intersection of corresponding planes under Φ is called a *hyperbolic* \mathcal{Q}_F -set. In [3] it is proved that every hyperbolic \mathcal{Q}_F -set of $PG(3, q^2)$ is projectively equivalent to the algebraic surface with equation

$$x_1 x_4^q - x_2 x_3^q = 0.$$

The lines a and b are called the axes of the hyperbolic Q_F -set.

Every hyperbolic Q_F -set has $(q^2+1)^2$ points and it is the union of q^2+1 skew lines, each a transversal of a and b. These lines, together with a and b, are all the lines contained in a hyperbolic Q_F -set.

In the following two propositions we investigate the intersection of a hyperbolic Q_F -set with lines and planes of $PG(3, q^2)$.

Proposition 2.1. Every line of $PG(3, q^2)$ intersects a hyperbolic Q_F -set in 0, 1, 2, q+1 or q^2+1 points. The (q+1)-secant lines intersects a hyperbolic Q_F -set in a Baer subline.

Proof. Let $\mathcal Q$ be a hyperbolic $\mathcal Q_F$ -set defined by an α_F -collineation Φ between the pencils of planes with axes two skew lines a and b of $\mathrm{PG}(3,q^2)$. For a line ℓ of $\mathrm{PG}(3,q^2)$, four cases are distinguished.

(1) Either $\ell=a$ or $\ell=b$. In this case ℓ is a (q^2+1) -secant line.

(2) ℓ is a transversal line of a and b.

In this case, if $\Phi(a \vee \ell) = b \vee l$, then ℓ is a $(q^2 + 1)$ -secant line. Otherwise ℓ intersects $\mathcal Q$ exactly in two points, one on a and one on b. Hence ℓ is a 2-secant line.

(3) ℓ intersects a and it is skew with b.

Since the plane $a \vee \ell$ intersects $\mathcal Q$ in the union of the two lines a and $\Phi(a \vee \ell) \cap (a \vee \ell)$, it follows that ℓ is a 1-secant or 2-secant line. The same argument holds if ℓ intersects b and is skew to a.

(4) ℓ is skew with both a and b.

In this case the α_F -collineation of the line ℓ defined by

$$\phi_{\ell}: P \in \ell \longmapsto \Phi(a \vee P) \cap \ell \in \ell$$

has $\ell \cap \mathcal{Q}$ as set of fixed points. It follows from [2] that ℓ intersects \mathcal{Q} in 0,1,2, or q+1 points and, if ℓ is a (q+1)-secant line to \mathcal{Q} , then $\ell \cap \mathcal{Q}$ is a Baer subline of ℓ .

Proposition 2.2. Every plane of $PG(3, q^2)$ intersects a hyperbolic Q_F -set in a pair of distinct lines, in a C_F -set or in a degenerate C_F -set.

Proof. Let \mathcal{Q} be a hyperbolic \mathcal{Q}_F -set defined by an α_F -collineation Φ between the pencils of planes with axes two skew lines a and b of $\mathrm{PG}(3,q^2)$. For a plane π of $\mathrm{PG}(3,q^2)$, two cases are distinguished.

(1) π contains either a or b.

If π contains a, then $\pi \cap \mathcal{Q}$ is the union of two distinct lines a and $\pi \cap \Phi(\pi)$. The same argument holds if π contains b.

(2) π contains neither a nor b.

In this case Φ induces an α_F -collineation between the pencils of lines $\mathcal{P}_A(\pi)$ and $\mathcal{P}_B(\pi)$ of π with vertices $A = \pi \cap a$ and $B = \pi \cap b$ defined by:

$$\Phi_{\pi}: \ell \in \mathcal{P}_A(\pi) \longmapsto \Phi(a \vee \ell) \cap \pi \in \mathcal{P}_B(\pi).$$

Observe that $\mathcal{Q} \cap \pi$ is the set of points of intersection of corresponding lines under Φ_{π} . Hence $\mathcal{Q} \cap \pi$ is a \mathcal{C}_F -set which is degenerate or not according as Φ_{π} maps the line $A \vee B$ onto itself or not.

In [4] and [5] it is shown that, given in $PG(2, q^2)$ two points A and B and a Baer subline ℓ_0 of a line ℓ , with A and B not on ℓ , there exists only one \mathcal{C}_F -set, possibly degenerate, with vertices A and B containing ℓ_0 .

A similar result holds for hyperbolic \mathcal{Q}_F -sets as shown in the following proposition.

Proposition 2.3. Let a and b be two skew lines of $PG(3, q^2)$, let ℓ be a line skew to both a and b, and let ℓ_0 be a Baer subline of ℓ . Then there exists a unique hyperbolic \mathcal{Q}_F -set of $PG(3, q^2)$ with axes a and b that meets ℓ in ℓ_0 .

Proof. There exists a bijective map Ψ between the set of α_F -collineations of the line ℓ into itself and the set of the α_F -collineations between the pencils of planes \mathcal{P}_a and \mathcal{P}_b with axes a and b. Given f and Ψ , there exists the α_F -collineation Ψ_f defined by:

$$\Psi_f: \pi \in \mathcal{P}_a \longmapsto f(\pi \cap r) \vee b \in \mathcal{P}_b.$$

By Lemma 3.2 in [4] there exists a unique α_F -collineation f_0 of the line ℓ into itself fixing the Baer subline ℓ_0 pointwise. Hence Ψ_{f_0} is the unique α_F -collineation between \mathcal{P}_a and \mathcal{P}_b such that every point on ℓ_0 belongs to the intersection of corresponding planes. Hence the hyperbolic \mathcal{Q}_F -set defined by Ψ_{f_0} is the unique one with axes a and b containing ℓ_0 .

It is known that given, in a three-dimensional projective space, two skew lines a and b and a non-degenerate conic C in a plane π neither through a nor through b, there exists a unique hyperbolic quadric containing a, b and C.

A similar result holds for hyperbolic \mathcal{Q}_F -sets as shown in the following proposition.

Proposition 2.4. Let a and b be two skew lines of $PG(3, q^2)$, let π be a plane containing neither a nor b, and let $A = a \cap \pi$, $B = b \cap \pi$. If C is a C_F -set, possibly degenerate, contained in π with vertices A and B, then there exists a unique hyperbolic Q_F -set of $PG(3, q^2)$ with axes a and b containing C.

Proof. Let ℓ be a (q+1)-secant line to $\mathcal C$ contained in π and let $\ell_0 = \ell \cap \mathcal C$. Since ℓ contains neither A nor B, it follows that ℓ is skew to both a and b. By Proposition 2.3 there exists a unique $\mathcal Q_F$ -set $\mathcal Q$ of $\mathrm{PG}(3,q^2)$ generated by an α_F -collineation Φ between the pencils of planes with axes a and b and containing ℓ_0 . The map Φ induces an α_F -collineation Φ_π between the pencils of lines of π with vertices A and B defined by:

$$\Phi_{\pi}: r \in \mathcal{P}_A(\pi) \longmapsto \Phi(r \vee a) \cap \pi \in \mathcal{P}_B(\pi).$$

The points of ℓ_0 are points of intersection of corresponding planes under Φ , hence these are points of intersections of corresponding lines under Φ_{π} . It follows that the \mathcal{C}_F -set of the plane π defined by Φ_{π} contains the subline ℓ_0 and hence it coincides with \mathcal{C} ; see Proposition 3.3 in [4] and Proposition 2.3 in [5]. Since the points of \mathcal{C} are points of intersection of corresponding lines under Φ_{π} , they also belong to the intersection of corresponding planes under Φ . Hence \mathcal{Q} contains \mathcal{C} .

Proposition 2.5. Let ℓ, m, n be three skew lines of $PG(3, q^2)$, and let a and b be two transversal lines of ℓ, m, n . Then there exists a unique hyperbolic \mathcal{Q}_F -set with axes a and b containing ℓ, m, n .

Proof. By duality we can construct a hyperbolic \mathcal{Q}_F -set as the set of lines joining corresponding points under an α_F -collineation between the lines a an b. Let $L=\ell\cap a, M=m\cap a, N=n\cap a, L'=\ell\cap b, M'=m\cap b, N'=n\cap b$. We may choose a frame of $\mathrm{PG}(3,q^2)$ such that

$$L = (1, 0, 0, 0), \quad M = (0, 1, 0, 0), \quad N = (1, 1, 0, 0),$$

 $L' = (0, 0, 1, 0), \quad M' = (0, 0, 0, 1), \quad N' = (0, 0, 1, \alpha),$

with $\alpha \neq 0$. The α_F -collineation,

$$f: (x_1, x_2, 0, 0) \in a \longmapsto \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & \alpha & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1^q \\ x_2^q \\ 0 \\ 0 \end{pmatrix} \in b,$$

maps L to L', M to M', and N to N'; so it defines a hyperbolic \mathcal{Q}_F -set with axes a and b containing ℓ, m, n .

Let f and g be two α_F -collineations between a and b mapping L, M, N onto L', M', N', respectively. Then the projectivity $g^{-1} \circ f$ of the line a fixes the points L, M, N and so is the identity. Hence f = g. This proves that there exists a unique hyperbolic \mathcal{Q}_F -set with axes a and b containing ℓ, m, n .

Let $\mathcal Q$ be a hyperbolic $\mathcal Q_F$ -set of $\operatorname{PG}(3,q^2)$ with axes a and b generated by an α_F -collineation Φ , and let ℓ be a transversal line of a and b that is a 2-secant line to $\mathcal Q$. There are q^2-1 planes π_1,\dots,π_{q^2-1} through ℓ such that $\pi_i\cap\mathcal Q=\mathcal C_i$ is a $\mathcal C_F$ -set with centre C_i and two planes $\ell\vee a$ and $\ell\vee b$ intersecting $\mathcal Q$ in a pair of distinct lines.

Let \mathcal{C} be a \mathcal{C}_F -set of $\mathrm{PG}(2,q^2)$ with vertices A and B and with centre C, defined by an α_F -collineation Φ between the pencils of lines \mathcal{P}_A and \mathcal{P}_B . Recall

that Φ maps the line $A \vee B$ onto the line $B \vee C$ and the line $A \vee C$ onto the line $B \vee A$.

Proposition 2.6. The centres C_i of the $q^2 - 1$ C_F -sets C_i are on a common line.

Proof. Let $A = \ell \cap a$ and $B = \ell \cap b$. Let $a_i = A \vee C_i$ and let $b_i = B \vee C_i$. We will prove that the line $(a \vee a_i) \cap (b \vee b_i)$ is independent of i and hence contains all points C_i .

The collineation Φ maps the plane $a \vee a_k$ to the plane $b \vee \ell$ and the plane $a \vee \ell$ to the plane $b \vee b_k$ for every k, since Φ induces on π_k a collineation between pencils of lines with vertices $\pi_k \cap a$ and $\pi_k \cap b$ which maps $a_k = A \vee C_k$ onto $\ell = A \vee B$ and ℓ onto $b_k = B \vee C_k$. It follows that $a \vee a_i = a \vee a_j$ and $b \vee b_i = b \vee b_j$. The assertion follows.

3 Hyperbolic Q_F -sets and Hermitian surfaces

A Hermitian surface of $PG(3,q^2)$ is the set $\mathcal H$ of all absolute points of a non-degenerate unitary polarity. It has $(q^2+1)(q^3+1)$ points, and every line of $PG(3,q^2)$ intersects $\mathcal H$ in 1, q+1 or q^2+1 points. The (q+1)-secant lines each intersect $\mathcal H$ in a Baer subline. Every plane of $PG(3,q^2)$ intersects $\mathcal H$ either in a Hermitian curve or in a Baer subpencil.

In [4] it is shown that every Hermitian curve of $PG(2, q^2)$ contains C_F -sets. In the following proposition we prove that every Hermitian surface of $PG(3, q^2)$ contains hyperbolic Q_F -sets.

Proposition 3.1. Let \mathcal{H} be a Hermitian surface of $PG(3, q^2)$ and let a and b be two skew lines contained in \mathcal{H} . Then there exists a hyperbolic \mathcal{Q}_F -set with axes a and b contained in \mathcal{H} .

Proof. Let u be the polarity associated with \mathcal{H} . Let α be a plane of the pencil with axis a. Since a is contained in \mathcal{H} , it follows that $u(\alpha)$ is on a. Hence the following map may be defined:

$$\Phi: \alpha \in \mathcal{P}_a \longmapsto b \vee u(\alpha) \in \mathcal{P}_b.$$

Since Φ is an α_F -collineation, the set of points of intersection of corresponding planes under Φ is a hyperbolic \mathcal{Q}_F -set, say \mathcal{Q} , of $\mathrm{PG}(3,q^2)$. Also, for every plane $\alpha \in \mathcal{P}_a$, the line $\Phi(\alpha) \cap \alpha = (b \vee u(\alpha)) \cap \alpha$, contained in \mathcal{Q} , joins the two points points $u(\alpha)$ and $\alpha \cap b$, which are conjugate with respect to the polarity u, and hence is contained in \mathcal{H} . Therefore \mathcal{Q} is contained in \mathcal{H} .

A set of k mutually skew lines contained in a Hermitian surface \mathcal{H} is called a k-span. A k-span of \mathcal{H} is called \mathcal{H} -complete if it is not contained in a (k+1)-span of \mathcal{H} . In [6] the following has been proved.

Proposition 3.2. The $q^2 + 1$ lines meeting two skew lines of \mathcal{H} form an \mathcal{H} -complete span.

Here we prove the following result.

Proposition 3.3. Let \mathcal{H} be a Hermitian surface of $PG(3, q^2)$. The union of the lines on \mathcal{H} meeting two skew lines a and b of \mathcal{H} is a hyperbolic \mathcal{Q}_F -set with axes a and b.

Proof. Let u be the polarity associated with \mathcal{H} . The α_F -collineation,

$$\Phi: \alpha \in \mathcal{P}_a \mapsto b \vee u(\alpha) \in \mathcal{P}_b$$

gives a hyperbolic \mathcal{Q}_F -set \mathcal{Q} of $\mathrm{PG}(3,q^2)$ contained in \mathcal{H} . Let ℓ be a transversal line of a and b contained in \mathcal{H} and let $P=\ell\cap a$. The plane $a\vee\ell$ is the tangent plane to \mathcal{H} at P since the lines a and ℓ are contained in \mathcal{H} . So $u(a\vee\ell)=P$ and hence $\Phi(a\vee\ell)=b\vee P$ and $\Phi(a\vee\ell)\cap(a\vee\ell)=\ell$. It follows that $\ell\subseteq\mathcal{Q}$. Since the points and the lines of \mathcal{H} form a generalized quadrangle, it follows that the lines on \mathcal{H} meeting a and b number q^2+1 . Hence the union of the lines on \mathcal{H} meeting a and b coincides with \mathcal{Q} .

In [9] B. Segre gives the following definition. If \mathcal{H} and \mathcal{H}' are Hermitian surfaces of $\mathrm{PG}(3,q^2)$ with associated polarities u and u', then \mathcal{H} and \mathcal{H}' are permutable Hermitian surfaces if and only if uu'=u'u. Also, in [9] the following is proved.

Result 3.4. If q is odd and $\mathcal{H}, \mathcal{H}'$ are permutable Hermitian surfaces of $PG(3, q^2)$, then uu' is a projectivity with two skew lines a, b of fixed points (Biaxial harmonic involutorial collineation).

Under the hypothesis of the previous theorem, the lines a and b are called fundamental lines of \mathcal{H} and \mathcal{H}' . In [1] the following is proved.

Result 3.5. If q is odd, $\mathcal{H}, \mathcal{H}'$ are permutable Hermitian surfaces of $PG(3, q^2)$ and the fundamental lines a, b are contained in $\mathcal{H} \cap \mathcal{H}'$, then $\mathcal{H} \cap \mathcal{H}'$ is a ruled determinantal variety and it is a complete \mathcal{H} -span.

A similar result obtains for Q_F -sets.

Proposition 3.6. Let \mathcal{H} and \mathcal{H}' be distinct Hermitian surfaces of $PG(3,q^2)$, q>2, with associated polarities u and u', and let a and b be two skew lines contained in $\mathcal{H} \cap \mathcal{H}'$. Then $\mathcal{H} \cap \mathcal{H}'$ is a hyperbolic \mathcal{Q}_F -set with axes a and b if and only if u and u' agree on the points of $a \cup b$.

Proof. Suppose that $\mathcal{H} \cap \mathcal{H}'$ is a hyperbolic \mathcal{Q}_F -set \mathcal{Q} of $\mathrm{PG}(3,q^2)$. Let P be a point on the line a and let $\ell_P = (P \vee b) \cap u(P)$ be the unique line through P contained in \mathcal{Q} , different from a. The line ℓ_P is the unique line through P contained in \mathcal{H} which is a transversal of a and b. Let $\ell_P' = (P \vee b) \cap u'(P)$ be the unique line through P contained in \mathcal{H}' which is a transversal of a and b. Since $\mathcal{Q} = \mathcal{H} \cap \mathcal{H}'$, we have that $\ell_P' = \ell_P$, hence u(P) = u'(P). This proves that u and u' agree on the points of a. In a similar way u and u' agree on the points of b.

Conversely, if u and u' agree on the points of $a \cup b$, then u and u' agree also on the planes through a. Consider the following α_F -collineations:

$$\Phi : \alpha \in \mathcal{P}_a \longmapsto b \vee u(\alpha) \in \mathcal{P}_b,
\Phi' : \alpha \in \mathcal{P}_a \longmapsto b \vee u'(\alpha) \in \mathcal{P}_b.$$

Since u and u' agree on the planes through a, so $\Phi = \Phi'$ and hence they define the same \mathcal{Q}_F -set, say \mathcal{Q} . From Proposition 3.1 it follows that \mathcal{Q} is contained in $\mathcal{H} \cap \mathcal{H}'$.

It is now shown that $\mathcal{Q} = \mathcal{H} \cap \mathcal{H}'$. Suppose, on the contrary, that there exists a point $C \in (\mathcal{H} \cap \mathcal{H}') \setminus \mathcal{Q}$. Let u(C) be the tangent plane to \mathcal{H} at C. Any line contained in \mathcal{Q} is also contained in \mathcal{H} and does not contain C. Hence any line contained in \mathcal{Q} is not contained in u(C), since the lines of \mathcal{H} contained in u(C) all pass through C. It follows that a and b are not contained in u(C) and so they intersect u(C) in A and B respectively. Since the line $A \vee B$ is not contained in \mathcal{Q} , the plane u(C) intersects \mathcal{Q} in a \mathcal{C}_F -set \mathcal{C} . Also, the line $C \vee A$ intersects \mathcal{Q} only in A. Indeed, if there is a further point P on $(C \vee A) \cap \mathcal{Q}$, the unique line ℓ through P contained in \mathcal{Q} together with a and $P \vee A$ would give a triangle contained in \mathcal{H} . In the same way, the line $C \vee B$ intersects \mathcal{Q} only in B. Hence \mathcal{C} is the union of the points A and B with Q = 1 Baer sublines each of them on a line of the Baer subpencil $u(C) \cap \mathcal{H}$ different from $C \vee A$ and from $C \vee B$ (see [2], [4]). Since $\mathcal{Q} \subset \mathcal{H} \cap \mathcal{H}'$, it follows that \mathcal{C} is contained in both $\mathcal{H} \cap u(C)$ and $\mathcal{H}' \cap u(C)$.

Each of the q-1 lines of the Baer subpencil $u(C)\cap \mathcal{H}$, other than $C\vee A$ and $C\vee B$, intersects \mathcal{H}' in at least q+2 points, since $C\in \mathcal{H}'$, and hence it is contained in \mathcal{H}' . It follows that, for $q\geq 3$, there are at least two lines of the Baer subpencil $u(C)\cap \mathcal{H}$ that are contained in $\mathcal{H}\cap \mathcal{H}'$, hence $u(C)\cap \mathcal{H}=u(C)\cap \mathcal{H}'$, so u(C)=u'(C). Therefore uu'(C)=C and since uu' is a projectivity of $\mathrm{PG}(3,q^2)$ fixing a and b pointwise, it follows that uu' is the identity. Hence u=u' and so $\mathcal{H}=\mathcal{H}'$, a contradiction.

From the last proposition the following result holds.

Proposition 3.7. Let \mathcal{H} and \mathcal{H}' be two permutable Hermitian surfaces of $PG(3, q^2)$, q odd. If the skew fundamental lines a and b lie on \mathcal{H} , then the intersection of \mathcal{H}

and \mathcal{H}' is a hyperbolic \mathcal{Q}_F -set with axes a and b.

Let l,m,n be three skew lines of $\mathrm{PG}(3,q^2)$ contained in a Hermitian surface $\mathcal H$ and let Q^+ be the hyperbolic quadric of $\mathrm{PG}(3,q^2)$ containing l,m,n. We will show that $\mathcal H\cap Q^+$ is the union of two Baer subreguli.

Indeed, let a and b be two transversal lines of l,m,n contained in \mathcal{H} . Let \mathcal{R} be the regulus containing l,m,n and let \mathcal{R}' be its opposite regulus. Let $\overline{\mathcal{R}}$ be the Baer subregulus of \mathcal{R} containing l,m,n. Let t be a line of \mathcal{R} not in $\overline{\mathcal{R}}$. The line t meets \mathcal{H} in two points, namely $t\cap a$ and $t\cap b$. It follows that either $|t\cap \mathcal{H}|=q+1$ or t is contained in \mathcal{H} .

As in the proof of Proposition 2.5, let $f: a \longmapsto b$ be the α_F -collineation generating the unique hyperbolic \mathcal{Q}_F -set, \mathcal{Q} , with axis a and b containing l, m, n and let $g: a \longmapsto b$ be the projectivity generating the unique hyperbolic quadric \mathcal{Q}^+ containing l, m, n. The maps f and g agree on the points of a Baer subline a_0 of a since f and g agree on the points $l \cap a, m \cap a, n \cap a$. The point $f \cap a$ does not belong to $f \cap a$, and hence $f \cap a$ is not contained in $f \cap a$. Since $f \cap a$ is the union of all the transversal lines of $f \cap a$ and $f \cap a$ contained in $f \cap a$. Hence $f \cap a$ meets $f \cap a$ in a Baer subline $f \cap a$.

Through every point P of t_0 there is a unique line of \mathcal{R}' . This line meets \mathcal{H} in at least q+2 points, and therefore is contained in $\mathcal{H}\cap Q^+$. This show that $Q^+\cap \mathcal{H}$ contains the union of the two Baer subreguli $\overline{\mathcal{R}}$ and $\overline{\mathcal{R}'}$, where $\overline{\mathcal{R}'}$ is the Baer subregulus of \mathcal{R}' whose lines meet the points of t_0 .

Let k be a line of $\mathcal R$ not in $\overline{\mathcal R}$ and let $P=k\cap a$. It follows that $P\notin a_0$, and hence $f(P)\neq g(P)$; therefore the line k is not contained in $\mathcal Q$ and hence it is not contained in $\mathcal H$. So $k\cap \mathcal H$ contains only the points of intersection between k and the lines of $\overline{\mathcal R'}$. Hence $Q^+\cap \mathcal H$ is the union of the two Baer subreguli $\overline{\mathcal R}$ and $\overline{\mathcal R'}$.

This shows that the following proposition holds.

Proposition 3.8. Let l, m, n be three skew lines of $PG(3, q^2)$ contained in a Hermitian surface \mathcal{H} and let Q^+ be the hyperbolic quadric of $PG(3, q^2)$ containing l, m, n. Then $\mathcal{H} \cap Q^+$ is the union of two Baer subreguli.

4 Representation on the Klein quadric

The lines of $PG(3, q^2)$ are represented under the Plücker map by the points of the Klein quadric $Q^+(5, q^2)$ of $PG(5, q^2)$. In this section we describe the set of points on the Klein quadric representing the lines of a hyperbolic Q_F -set.

First we observe the following. Let a and b be two skew lines of $PG(3, q^2)$ which are conjugate with respect to the Frobenius involutory automorphism α_F

of $GF(q^2)$, and let $\Sigma=\mathrm{PG}(3,q)$ be the set of self-conjugate points with respect to α_F . The map f sending a point on a to its conjugate point on b is an α_F -collineation; hence the set of lines joining every point P of a to the point f(P) on b form a hyperbolic \mathcal{Q}_F -set of $\mathrm{PG}(3,q^2)$. Also, these lines intersect Σ in lines of a regular spread of Σ , [8, Section 17.1]). Conversely, the lines of a regular spread of $\Sigma=\mathrm{PG}(3,q)$, when extended to $\mathrm{PG}(3,q^2)$, form a hyperbolic \mathcal{Q}_F -set.

Let S be a regular spread of $\Sigma=\mathrm{PG}(3,q)$. The lines of S are represented, under the Plücker map, by the points of an elliptic quadric $Q^-(3,q)$ obtained as intersection of the Klein quadric $Q^+(5,q)$ with a 3-dimensional subspace of $\mathrm{PG}(5,q)$; see, for example [8, Section 15.4]).

Since the lines of a hyperbolic \mathcal{Q}_F -set of $\mathrm{PG}(3,q^2)$ are the q^2+1 extended lines of a regular spread of Σ together with the axes a and b, it follows that those lines are represented, under the Plücker map, by the points of an elliptic quadric $Q^-(3,q)$ obtained as the intersection of the Klein quadric $Q^+(5,q^2)$ with a 3-dimensional Baer subspace of $\mathrm{PG}(5,q^2)$ together with the two other points a^* and b^* of $Q^+(5,q^2)$ which represent the lines a and b.

Finally, it should be noted that in [7] J. W. Freeman studied certain partial spreads of $\mathrm{PG}(3,q^2)$ called pseudoreguli. A *pseudoregulus* of $\mathrm{PG}(3,q^2)$ is the set of q^2+1 lines of a regular spread of $\Sigma=\mathrm{PG}(3,q)$, when extended to lines of $\mathrm{PG}(3,q^2)$. Hence given a hyperbolic \mathcal{Q}_F -set \mathcal{Q} with axes a and b, the q^2+1 lines of \mathcal{Q} different from a and b form a pseudoregulus; conversely, the q^2+1 lines of a pseudoregulus of $\mathrm{PG}(3,q^2)$ form a hyperbolic \mathcal{Q}_F -set.

References

- [1] **A. Aguglia**, **A. Cossidente** and **G. L. Ebert**, On pairs of permutable Hermitian surfaces, *Discrete Math.* **301** (2005), no. 1, 28–33.
- [2] **G. Donati**, On the system of fixed points of a collineation in non commutative projective geometry, *Discrete Math.* **255** (2002), 65–70.
- [3] **G. Donati**, A family of $(q^2 + 1)$ -sets of class (0, 1, 2, q + 1) in Desarguesian projective planes of order q^2 , *J. Geom.*, to appear.
- [4] **G. Donati** and **N. Durante**, Some subsets of the Hermitian curve, *European J. Combin.* **24** (2003), 211–218.
- [5] **G. Donati** and **N. Durante**, Baer subplanes generated by collineations between pencils of lines, *Rend. Circ. Mat. Palermo* (2) **54** (2005), no. 1, 93–100.

- [6] **G. L. Ebert** and **J. W. P. Hirschfeld**, Complete systems of lines on a Hermitian surface over a finite field, *Des. Codes Cryptogr.* **17** (1999), 253–268.
- [7] **J. W. Freeman**, Reguli and pseudoreguli in $PG(3, s^2)$, *Geom. Dedicata* **9**, (1980), 267–280.
- [8] **J. W. P. Hirschfeld**, *Finite projective spaces of three dimensions*, Oxford University Press, Oxford, (1985).
- [9] **B. Segre**, Forme e geometrie hermitiane con particolare riguardo al caso finito, *Ann. Mat. Pura Appl.* **70** (1965), 1–201.

Giorgio Donati

DIPARTIMENTO DI MATEMATICA E APPLICAZIONI, UNIVERSITÀ DI NAPOLI "FEDERICO II", COMPLESSO DI MONTE S. ANGELO - EDIFICIO T, VIA CINTIA, 80126 NAPOLI, ITALY

Nicola Durante

DIPARTIMENTO DI MATEMATICA E APPLICAZIONI, UNIVERSITÀ DI NAPOLI "FEDERICO II", COMPLESSO DI MONTE S. ANGELO - EDIFICIO T, VIA CINTIA, 80126 NAPOLI, ITALY

e-mail: ndurante@unina.it

 $e ext{-}mail: {\tt giorgio.donati@unina.it}$