A subset of the Hermitian surface

Giorgio Donati Nicola Durante

Abstract

In this paper we define a ruled algebraic surface of $\mathbb{P}G(3, q^2)$, called a hyperbolic Q_F-set and we prove that it is contained in the Hermitian surface of $\mathbb{P}G(3, q^2)$. Also, we characterise a hyperbolic Q_F-set as the intersection of two Hermitian surfaces.

Keywords: Hermitian surface, collineation.

MSC 2000: 51E20, 05B25.

1 Introduction

Let \mathcal{P}_A and \mathcal{P}_B be the pencils of lines with vertices two distinct points A and B in $\mathbb{P}G(2, q^2)$. Let α_F be the involutory automorphism of $GF(q^2)$ given by $x \in GF(q^2) \mapsto x^q \in GF(q^2)$ and let Φ be an α_F-collineation between \mathcal{P}_A and \mathcal{P}_B. If Φ does not map the line $A \vee B$ onto the line $B \vee A$, then the set of points of intersections of corresponding lines under Φ is called a C_F-set (see [3], [4]). If Φ maps the line $A \vee B$ onto the line $B \vee A$, then the set of points of intersections of corresponding lines under Φ is called a degenerate C_F-set (see [5]).

Every C_F-set has $q^2 + 1$ points, it is of type $(0, 1, 2, q + 1)$ with respect to lines of $\mathbb{P}G(2, q^2)$ and every $(q + 1)$-secant line intersects such a set in a Baer subline. The $(q + 1)$-secant lines number $q - 1$ and all contain a common point C not on the C_F-set. Those lines, together with the lines $C \vee A$ and $C \vee B$, form a Baer subpencil. The point C is called the centre of the C_F-set. Also, every C_F-set is projectively equivalent to the algebraic curve with equation

$$x_1x_2^q - x_3^{q+1} = 0.$$

Under the André–Bruck–Bose representation of $\mathbb{P}G(2, q^2)$ in $\mathbb{P}G(4, q)$ these subsets correspond to three-dimensional elliptic quadrics contained in suitable hyperplanes of $\mathbb{P}G(4, q)$.
Every degenerate C_F-set has $2q^2 + 1$ points, it is of type $(1, 2, q+1, q^2+1)$ with respect to lines of $PG(2, q^2)$ and every $(q + 1)$-secant line intersects such a set in a Baer subline. Also, every degenerate C_F-set is the union of the line $A \vee B$ and a Baer subplane meeting the line $A \vee B$ in a Baer subline. Every degenerate C_F-set is projectively equivalent to the algebraic curve with equation

$$x_3(x_1 x_2^{q-1} - x_2^q) = 0.$$

The points A and B are called the vertices of a C_F-set (degenerate or not).

Observe that the construction of a C_F-set (degenerate or not) is a variation of Steiner’s projective construction of conics.

In a similar way, we obtain an algebraic surface of $PG(3, q^2)$ by using a variation of Steiner’s projective generation of hyperbolic quadrics.

2 Definition and properties

Let a and b be two skew lines of the projective space $PG(3, q^2)$ and let \mathcal{P}_a and \mathcal{P}_b be the pencils of planes with axes a and b. Let Φ be an α_F-collineation between \mathcal{P}_a and \mathcal{P}_b; the set of points of intersection of corresponding planes under Φ is called a hyperbolic Q_F-set. In [3] it is proved that every hyperbolic Q_F-set of $PG(3, q^2)$ is projectively equivalent to the algebraic surface with equation

$$x_1 x_4^q - x_2 x_3^q = 0.$$

The lines a and b are called the axes of the hyperbolic Q_F-set.

Every hyperbolic Q_F-set has $(q^2 + 1)^2$ points and it is the union of $q^2 + 1$ skew lines, each a transversal of a and b. These lines, together with a and b, are all the lines contained in a hyperbolic Q_F-set.

In the following two propositions we investigate the intersection of a hyperbolic Q_F-set with lines and planes of $PG(3, q^2)$.

Proposition 2.1. Every line of $PG(3, q^2)$ intersects a hyperbolic Q_F-set in $0, 1, 2, q + 1$ or $q^2 + 1$ points. The $(q + 1)$-secant lines intersects a hyperbolic Q_F-set in a Baer subline.

Proof. Let Q be a hyperbolic Q_F-set defined by an α_F-collineation Φ between the pencils of planes with axes two skew lines a and b of $PG(3, q^2)$. For a line ℓ of $PG(3, q^2)$, four cases are distinguished.

1. Either $\ell = a$ or $\ell = b$.

 In this case ℓ is a $(q^2 + 1)$-secant line.
A subset of the Hermitian surface

(2) ℓ is a transversal line of a and b.

In this case, if $\Phi(a \lor \ell) = b \lor \ell$, then ℓ is a $(q^2 + 1)$-secant line. Otherwise ℓ intersects Q exactly in two points, one on a and one on b. Hence ℓ is a 2-secant line.

(3) ℓ intersects a and it is skew with b.

Since the plane $a \lor \ell$ intersects Q in the union of the two lines a and $\Phi(a \lor \ell) \cap (a \lor \ell)$, it follows that ℓ is a 1-secant or 2-secant line. The same argument holds if ℓ intersects b and is skew to a.

(4) ℓ is skew with both a and b.

In this case the α_F-collineation of the line ℓ defined by

$$\phi_\ell : P \in \ell \mapsto \Phi(a \lor P) \cap \ell \in \ell$$

has $\ell \cap Q$ as set of fixed points. It follows from [2] that ℓ intersects Q in 0, 1, 2, or $q + 1$ points and, if ℓ is a $(q+1)$-secant line to Q, then $\ell \cap Q$ is a Baer subline of ℓ.

\[\square \]

Proposition 2.2. Every plane of $\operatorname{PG}(3, q^2)$ intersects a hyperbolic Q_F-set in a pair of distinct lines, in a C_F-set or in a degenerate C_F-set.

Proof. Let Q be a hyperbolic Q_F-set defined by an α_F-collineation Φ between the pencils of planes with axes two skew lines a and b of $\operatorname{PG}(3, q^2)$. For a plane π of $\operatorname{PG}(3, q^2)$, two cases are distinguished.

(1) π contains either a or b.

If π contains a, then $\pi \cap Q$ is the union of two distinct lines a and $\pi \cap \Phi(\pi)$. The same argument holds if π contains b.

(2) π contains neither a nor b.

In this case Φ induces an α_F-collineation between the pencils of lines $\mathcal{P}_A(\pi)$ and $\mathcal{P}_B(\pi)$ of π with vertices $A = \pi \cap a$ and $B = \pi \cap b$ defined by:

$$\Phi_\pi : \ell \in \mathcal{P}_A(\pi) \mapsto \Phi(a \lor \ell) \cap \pi \in \mathcal{P}_B(\pi).$$

Observe that $Q \cap \pi$ is the set of points of intersection of corresponding lines under Φ_π. Hence $Q \cap \pi$ is a C_F-set which is degenerate or not according as Φ_π maps the line $A \lor B$ onto itself or not.

\[\square \]
In [4] and [5] it is shown that, given in \(\text{PG}(2; q^2) \) two points \(A \) and \(B \) and a Baer subline \(\ell_0 \) of a line \(\ell \), with \(A \) and \(B \) not on \(\ell \), there exists only one \(\mathcal{C}_F \)-set, possibly degenerate, with vertices \(A \) and \(B \) containing \(\ell_0 \).

A similar result holds for hyperbolic \(\mathcal{Q}_F \)-sets as shown in the following proposition.

Proposition 2.3. Let \(a \) and \(b \) be two skew lines of \(\text{PG}(3; q^2) \), let \(\ell \) be a line skew to both \(a \) and \(b \), and let \(\ell_0 \) be a Baer subline of \(\ell \). Then there exists a unique hyperbolic \(\mathcal{Q}_F \)-set of \(\text{PG}(3; q^2) \) with axes \(a \) and \(b \) that meets \(\ell_0 \).

Proof. There exists a bijective map \(\Psi \) between the set of \(\alpha_F \)-collineations of the line \(\ell \) into itself and the set of the \(\alpha_F \)-collineations between the pencils of planes \(\mathcal{P}_a \) and \(\mathcal{P}_b \) with axes \(a \) and \(b \). Given \(f \) and \(\Psi \), there exists the \(\alpha_F \)-collineation \(\Psi_f \) defined by:

\[
\Psi_f : \pi \in \mathcal{P}_a \mapsto f(\pi \cap r) \vee b \in \mathcal{P}_b.
\]

By Lemma 3.2 in [4] there exists a unique \(\alpha_F \)-collineation \(f_0 \) of the line \(\ell \) into itself fixing the Baer subline \(\ell_0 \) pointwise. Hence \(\Psi_{f_0} \) is the unique \(\alpha_F \)-collineation between \(\mathcal{P}_a \) and \(\mathcal{P}_b \) such that every point on \(\ell_0 \) belongs to the intersection of corresponding planes. Hence the hyperbolic \(\mathcal{Q}_F \)-set defined by \(\Psi_{f_0} \) is the unique one with axes \(a \) and \(b \) containing \(\ell_0 \). \(\square \)

It is known that given, in a three-dimensional projective space, two skew lines \(a \) and \(b \) and a non-degenerate conic \(C \) in a plane \(\pi \) neither through \(a \) nor through \(b \), there exists a unique hyperbolic quadric containing \(a \), \(b \) and \(C \).

A similar result holds for hyperbolic \(\mathcal{Q}_F \)-sets as shown in the following proposition.

Proposition 2.4. Let \(a \) and \(b \) be two skew lines of \(\text{PG}(3; q^2) \), let \(\pi \) be a plane containing neither \(a \) nor \(b \), and let \(A = a \cap \pi \), \(B = b \cap \pi \). If \(C \) is a \(\mathcal{C}_F \)-set, possibly degenerate, contained in \(\pi \) with vertices \(A \) and \(B \), then there exists a unique hyperbolic \(\mathcal{Q}_F \)-set of \(\text{PG}(3; q^2) \) with axes \(a \) and \(b \) containing \(C \).

Proof. Let \(\ell \) be a \((q+1)\)-secant line to \(C \) contained in \(\pi \) and let \(\ell_0 = \ell \cap \pi \). Since \(\ell \) contains neither \(A \) nor \(B \), it follows that \(\ell \) is skew to both \(a \) and \(b \). By Proposition 2.3 there exists a unique \(\mathcal{Q}_F \)-set \(Q \) of \(\text{PG}(3; q^2) \) generated by an \(\alpha_F \)-collineation \(\Phi \) between the pencils of planes with axes \(a \) and \(b \) and containing \(\ell_0 \). The map \(\Phi \) induces an \(\alpha_F \)-collineation \(\Phi_\pi \) between the pencils of lines of \(\pi \) with vertices \(A \) and \(B \) defined by:

\[
\Phi_\pi : r \in \mathcal{P}_A(\pi) \mapsto \Phi(r \vee a) \cap \pi \in \mathcal{P}_B(\pi).
\]
The points of \(\ell_0 \) are points of intersection of corresponding planes under \(\Phi \), hence these are points of intersections of corresponding lines under \(\Phi_\pi \). It follows that the \(\mathcal{C}_F \)-set of the plane \(\pi \) defined by \(\Phi_\pi \) contains the subline \(\ell_0 \) and hence it coincides with \(\mathcal{C} \); see Proposition 3.3 in [4] and Proposition 2.3 in [5]. Since the points of \(\mathcal{C} \) are points of intersection of corresponding lines under \(\Phi_\pi \), they also belong to the intersection of corresponding planes under \(\Phi \). Hence \(Q \) contains \(\mathcal{C} \).

Proposition 2.5. Let \(\ell, m, n \) be three skew lines of \(\mathrm{PG}(3, q^2) \), and let \(a \) and \(b \) be two transversal lines of \(\ell, m, n \). Then there exists a unique hyperbolic \(Q_F \)-set with axes \(a \) and \(b \) containing \(\ell, m, n \).

Proof. By duality we can construct a hyperbolic \(Q_F \)-set as the set of lines joining corresponding points under an \(\alpha_F \)-collineation between the lines \(a \) and \(b \). Let \(L = \ell \cap a, M = m \cap a, N = n \cap a, L' = \ell \cap b, M' = m \cap b, N' = n \cap b \). We may choose a frame of \(\mathrm{PG}(3, q^2) \) such that

\[
L = (1, 0, 0, 0), \quad M = (0, 1, 0, 0), \quad N = (1, 1, 0, 0), \\
L' = (0, 0, 1, 0), \quad M' = (0, 0, 0, 1), \quad N' = (0, 0, 1, \alpha),
\]

with \(\alpha \neq 0 \). The \(\alpha_F \)-collineation,

\[
f : (x_1, x_2, 0, 0) \in a \mapsto \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & \alpha & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1^q \\ x_2^q \\ 0 \\ 0 \end{pmatrix} \in b,
\]

maps \(L \) to \(L' \), \(M \) to \(M' \), and \(N \) to \(N' \); so it defines a hyperbolic \(Q_F \)-set with axes \(a \) and \(b \) containing \(\ell, m, n \).

Let \(f \) and \(g \) be two \(\alpha_F \)-collineations between \(a \) and \(b \) mapping \(L, M, N \) onto \(L', M', N' \), respectively. Then the projectivity \(g^{-1} \circ f \) of the line \(a \) fixes the points \(L, M, N \) and so is the identity. Hence \(f = g \). This proves that there exists a unique hyperbolic \(Q_F \)-set with axes \(a \) and \(b \) containing \(\ell, m, n \). \(\square \)

Let \(Q \) be a hyperbolic \(Q_F \)-set of \(\mathrm{PG}(3, q^2) \) with axes \(a \) and \(b \) generated by an \(\alpha_F \)-collineation \(\Phi \), and let \(\ell \) be a transversal line of \(a \) and \(b \) that is a 2-secant line to \(Q \). There are \(q^2 - 1 \) planes \(\pi_1, \ldots, \pi_{q^2-1} \) through \(\ell \) such that \(\pi_i \cap Q = C_i \) is a \(\mathcal{C}_F \)-set with centre \(C_i \) and two planes \(\ell \cap a \) and \(\ell \cap b \) intersecting \(Q \) in a pair of distinct lines.

Let \(\mathcal{C} \) be a \(\mathcal{C}_F \)-set of \(\mathrm{PG}(2, q^2) \) with vertices \(A \) and \(B \) and with centre \(C \), defined by an \(\alpha_F \)-collineation \(\Phi \) between the pencils of lines \(\mathcal{P}_A \) and \(\mathcal{P}_B \). Recall
that Φ maps the line $A \lor B$ onto the line $B \lor C$ and the line $A \lor C$ onto the line $B \lor A$.

Proposition 2.6. The centres C_i of the $q^2 - 1$ C_F-sets C_i are on a common line.

Proof. Let $A = \ell \cap a$ and $B = \ell \cap b$. Let $a_i = A \lor C_i$ and let $b_i = B \lor C_i$. We will prove that the line $(a \lor a_i) \cap (b \lor b_i)$ is independent of i and hence contains all points C_i.

The collineation Φ maps the plane $a \lor a_k$ to the plane $b \lor \ell$ and the plane $b \lor b_k$ to the plane $b \lor b_k$ for every k, since Φ induces on π_k a collineation between pencils of lines with vertices $\pi_k \cap a$ and $\pi_k \cap b$ which maps $a_k = A \lor C_k$ onto $\ell = A \lor B$ and $b_k = B \lor C_k$. It follows that $a \lor a_i = a \lor a_j$ and $b \lor b_i = b \lor b_j$. The assertion follows.

3 Hyperbolic Q_F-sets and Hermitian surfaces

A Hermitian surface of $\text{PG}(3, q^2)$ is the set H of all absolute points of a non-degenerate unitary polarity. It has $(q^2 + 1)(q^3 + 1)$ points, and every line of $\text{PG}(3, q^2)$ intersects H in $1, q + 1$ or $q^2 + 1$ points. The $(q + 1)$-secant lines each intersect H in a Baer subline. Every plane of $\text{PG}(3, q^2)$ intersects H either in a Hermitian curve or in a Baer subpencil.

In [4] it is shown that every Hermitian curve of $\text{PG}(2, q^2)$ contains C_F-sets. In the following proposition we prove that every Hermitian surface of $\text{PG}(3, q^2)$ contains hyperbolic Q_F-sets.

Proposition 3.1. Let H be a Hermitian surface of $\text{PG}(3, q^2)$ and let a and b be two skew lines contained in H. Then there exists a hyperbolic Q_F-set with axes a and b contained in H.

Proof. Let u be the polarity associated with H. Let α be a plane of the pencil with axis a. Since a is contained in H, it follows that $u(\alpha)$ is on a. Hence the following map may be defined:

$$\Phi : \alpha \in \mathcal{P}_a \longmapsto b \lor u(\alpha) \in \mathcal{P}_b.$$

Since Φ is an α_F-collineation, the set of points of intersection of corresponding planes under Φ is a hyperbolic Q_F-set, say Q, of $\text{PG}(3, q^2)$. Also, for every plane $\alpha \in \mathcal{P}_a$, the line $\Phi(\alpha) \cap \alpha = (b \lor u(\alpha)) \cap \alpha$, contained in Q, joins the two points points $u(\alpha)$ and $\alpha \cap b$, which are conjugate with respect to the polarity u, and hence is contained in H. Therefore Q is contained in H. \square
A subset of the Hermitian surface

A set of \(k \) mutually skew lines contained in a Hermitian surface \(\mathcal{H} \) is called a \(k \)-span. A \(k \)-span of \(\mathcal{H} \) is called \(\mathcal{H} \)-complete if it is not contained in a \((k+1) \)-span of \(\mathcal{H} \). In [6] the following has been proved.

Proposition 3.2. The \(q^2 + 1 \) lines meeting two skew lines of \(\mathcal{H} \) form an \(\mathcal{H} \)-complete span.

Here we prove the following result.

Proposition 3.3. Let \(\mathcal{H} \) be a Hermitian surface of \(\text{PG}(3, q^2) \). The union of the lines on \(\mathcal{H} \) meeting two skew lines \(a \) and \(b \) of \(\mathcal{H} \) is a hyperbolic \(\mathcal{Q}_F \)-set with axes \(a \) and \(b \).

Proof. Let \(u \) be the polarity associated with \(\mathcal{H} \). The \(\alpha_F \)-collineation,

\[
\Phi : \alpha \in \mathcal{P}_a \mapsto b \vee u(\alpha) \in \mathcal{P}_b,
\]

gives a hyperbolic \(\mathcal{Q}_F \)-set \(Q \) of \(\text{PG}(3, q^2) \) contained in \(\mathcal{H} \). Let \(\ell \) be a transversal line of \(a \) and \(b \) contained in \(\mathcal{H} \) and let \(P = \ell \cap a \). The plane \(a \vee \ell \) is the tangent plane to \(\mathcal{H} \) at \(P \) since the lines \(a \) and \(\ell \) are contained in \(\mathcal{H} \). So \(u(a \vee \ell) = P \) and hence \(\Phi(a \vee \ell) = b \vee P \) and \(\Phi(a \vee \ell) \cap (a \vee \ell) = \ell \). It follows that \(\ell \subseteq Q \). Since the points and the lines of \(\mathcal{H} \) form a generalized quadrangle, it follows that the lines on \(\mathcal{H} \) meeting \(a \) and \(b \) number \(q^2 + 1 \). Hence the union of the lines on \(\mathcal{H} \) meeting \(a \) and \(b \) coincides with \(Q \).

In [9] B. Segre gives the following definition. If \(\mathcal{H} \) and \(\mathcal{H}' \) are Hermitian surfaces of \(\text{PG}(3, q^2) \) with associated polarities \(u \) and \(u' \), then \(\mathcal{H} \) and \(\mathcal{H}' \) are permutative Hermitian surfaces if and only if \(uu' = u' u \). Also, in [9] the following is proved.

Result 3.4. If \(q \) is odd and \(\mathcal{H}, \mathcal{H}' \) are permutative Hermitian surfaces of \(\text{PG}(3, q^2) \), then \(uu' \) is a projectivity with two skew lines \(a, b \) of fixed points (Biaxial harmonic involutorial collineation).

Under the hypothesis of the previous theorem, the lines \(a \) and \(b \) are called fundamental lines of \(\mathcal{H} \) and \(\mathcal{H}' \). In [1] the following is proved.

Result 3.5. If \(q \) is odd, \(\mathcal{H}, \mathcal{H}' \) are permutative Hermitian surfaces of \(\text{PG}(3, q^2) \) and the fundamental lines \(a, b \) are contained in \(\mathcal{H} \cap \mathcal{H}' \), then \(\mathcal{H} \cap \mathcal{H}' \) is a ruled determinantal variety and it is a complete \(\mathcal{H} \)-span.

A similar result obtains for \(\mathcal{Q}_F \)-sets.

Proposition 3.6. Let \(\mathcal{H} \) and \(\mathcal{H}' \) be distinct Hermitian surfaces of \(\text{PG}(3, q^2) \), \(q > 2 \), with associated polarities \(u \) and \(u' \), and let \(a \) and \(b \) be two skew lines contained in \(\mathcal{H} \cap \mathcal{H}' \). Then \(\mathcal{H} \cap \mathcal{H}' \) is a hyperbolic \(\mathcal{Q}_F \)-set with axes \(a \) and \(b \) if and only if \(u \) and \(u' \) agree on the points of \(a \cup b \).
Proof. Suppose that $\mathcal{H} \cap \mathcal{H}'$ is a hyperbolic $Q_\mathcal{F}$-set Q of $\text{PG}(3, q^2)$. Let P be a point on the line a and let $\ell_P = (P \lor b) \cap u(P)$ be the unique line through P contained in Q, different from a. The line ℓ_P is the unique line through P contained in \mathcal{H} which is a transversal of a and b. Let $\ell'_P = (P \lor b) \cap u'(P)$ be the unique line through P contained in \mathcal{H}' which is a transversal of a and b. Since $Q = \mathcal{H} \cap \mathcal{H}'$, we have that $\ell'_P = \ell_P$, hence $u(P) = u'(P)$. This proves that u and u' agree on the points of a. In a similar way u and u' agree on the points of b.

Conversely, if u and u' agree on the points of $a \cup b$, then u and u' agree also on the planes through a. Consider the following $\alpha_\mathcal{F}$-collineations:

$$
\Phi : \alpha \in \mathcal{P}_a \mapsto b \lor u(\alpha) \in \mathcal{P}_b,
$$

$$
\Phi' : \alpha \in \mathcal{P}_a \mapsto b \lor u'(\alpha) \in \mathcal{P}_b.
$$

Since u and u' agree on the planes through a, so $\Phi = \Phi'$ and hence they define the same $Q_\mathcal{F}$-set, say Q. From Proposition 3.1 it follows that Q is contained in $\mathcal{H} \cap \mathcal{H}'$.

It is now shown that $Q = \mathcal{H} \cap \mathcal{H}'$. Suppose, on the contrary, that there exists a point $C \in (\mathcal{H} \cap \mathcal{H}') \setminus Q$. Let $u(C)$ be the tangent plane to \mathcal{H} at C. Any line contained in Q is also contained in \mathcal{H} and does not contain C. Hence any line contained in Q is not contained in $u(C)$, since the lines of \mathcal{H} contained in $u(C)$ all pass through C. It follows that a and b are not contained in $u(C)$ and so they intersect $u(C)$ in A and B respectively. Since the line $A \lor B$ is not contained in Q, the plane $u(C)$ intersects Q in a $\mathcal{C}_\mathcal{F}$-set \mathcal{C}. Also, the line $C \lor A$ intersects Q only in A. Indeed, if there is a further point P on $(C \lor A) \cap Q$, the unique line ℓ through P contained in Q together with a and $P \lor A$ would give a triangle contained in \mathcal{H}. In the same way, the line $C \lor B$ intersects Q only in B. Hence \mathcal{C} is the union of the points A and B with $q - 1$ Baer sublines each of them on a line of the Baer subpencil $u(C) \cap \mathcal{H}$ different from $C \lor A$ and from $C \lor B$ (see [2], [4]). Since $Q \subset \mathcal{H} \cap \mathcal{H}'$, it follows that \mathcal{C} is contained in both $\mathcal{H} \cap u(C)$ and $\mathcal{H}' \cap u(C)$.

Each of the $q - 1$ lines of the Baer subpencil $u(C) \cap \mathcal{H}$, other than $C \lor A$ and $C \lor B$, intersects \mathcal{H}' in at least $q + 2$ points, since $C \in \mathcal{H}'$, and hence it is contained in \mathcal{H}'. It follows that, for $q \geq 3$, there are at least two lines of the Baer subpencil $u(C) \cap \mathcal{H}$ that are contained in $\mathcal{H} \cap \mathcal{H}'$, hence $u(C) \cap \mathcal{H} = u(C) \cap \mathcal{H}'$, so $u(C) = u'(C)$. Therefore $uu'(C) = C$ and since uu' is a projectivity of $\text{PG}(3, q^2)$ fixing a and b pointwise, it follows that uu' is the identity. Hence $u = u'$ and so $\mathcal{H} = \mathcal{H}'$, a contradiction.

From the last proposition the following result holds.

Proposition 3.7. Let \mathcal{H} and \mathcal{H}' be two permutable Hermitian surfaces of $\text{PG}(3, q^2)$, q odd. If the skew fundamental lines a and b lie on \mathcal{H}, then the intersection of \mathcal{H}
and \mathcal{H}' is a hyperbolic Q_F-set with axes a and b.

Let l, m, n be three skew lines of $\text{PG}(3, q^2)$ contained in a Hermitian surface \mathcal{H} and let Q^+ be the hyperbolic quadric of $\text{PG}(3, q^2)$ containing l, m, n. We will show that $\mathcal{H} \cap Q^+$ is the union of two Baer subreguli.

Indeed, let a and b be two transversal lines of l, m, n contained in \mathcal{H}. Let \mathcal{R} be the regulus containing l, m, n and let \mathcal{R}' be its opposite regulus. Let R be the Baer subregulus of \mathcal{R} containing l, m, n. Let t be a line of \mathcal{R} not in \mathcal{R}'. The line t meets \mathcal{H} in two points, namely $t \cap a$ and $t \cap b$. It follows that either $|t \cap \mathcal{H}| = q + 1$ or t is contained in \mathcal{H}.

As in the proof of Proposition 2.5, let $f : a \mapsto b$ be the α_F-collineation generating the unique hyperbolic Q_F-set, Q, with axis a and b containing l, m, n and let $g : a \mapsto b$ be the projectivity generating the unique hyperbolic quadric Q^+ containing l, m, n. The maps f and g agree on the points of a Baer subline a_0 of a since f and g agree on the points $l \cap a, m \cap a, n \cap a$. The point $t \cap a$ does not belong to a_0, and hence t is not contained in Q. Since Q is the union of all the transversal lines of a and b contained in \mathcal{H}, it follows that t is not contained in \mathcal{H}. Hence t meets \mathcal{H} in a Baer subline t_0.

Through every point P of t_0 there is a unique line of \mathcal{R}'. This line meets \mathcal{H} in at least $q + 2$ points, and therefore is contained in $\mathcal{H} \cap Q^+$. This show that $Q^+ \cap \mathcal{H}$ contains the union of the two Baer subreguli \mathcal{R} and \mathcal{R}', where \mathcal{R}' is the Baer subregulus of \mathcal{R}' whose lines meet the points of t_0.

Let k be a line of \mathcal{R} not in \mathcal{R}' and let $P = k \cap a$. It follows that $P \notin a_0$, and hence $f(P) \neq g(P)$; therefore the line k is not contained in Q and hence it is not contained in \mathcal{H}. So $k \cap \mathcal{H}$ contains only the points of intersection between k and the lines of \mathcal{R}'. Hence $Q^+ \cap \mathcal{H}$ is the union of the two Baer subreguli \mathcal{R} and \mathcal{R}'.

This shows that the following proposition holds.

Proposition 3.8. Let l, m, n be three skew lines of $\text{PG}(3, q^2)$ contained in a Hermitian surface \mathcal{H} and let Q^+ be the hyperbolic quadric of $\text{PG}(3, q^2)$ containing l, m, n. Then $\mathcal{H} \cap Q^+$ is the union of two Baer subreguli.

4 Representation on the Klein quadric

The lines of $\text{PG}(3, q^2)$ are represented under the Plücker map by the points of the Klein quadric $Q^+(5, q^2)$ of $\text{PG}(5, q^2)$. In this section we describe the set of points on the Klein quadric representing the lines of a hyperbolic Q_F-set.

First we observe the following. Let a and b be two skew lines of $\text{PG}(3, q^2)$ which are conjugate with respect to the Frobenius involutory automorphism α_F.
of $GF(q^2)$, and let $\Sigma = PG(3, q)$ be the set of self-conjugate points with respect to α_F. The map f sending a point on a to its conjugate point on b is an α_F-collineation; hence the set of lines joining every point P of a to the point $f(P)$ on b form a hyperbolic Q_F-set of $PG(3, q^2)$. Also, these lines intersect Σ in lines of a regular spread of Σ, [8, Section 17.1]). Conversely, the lines of a regular spread of $\Sigma = PG(3, q)$, when extended to $PG(3, q^2)$, form a hyperbolic Q_F-set.

Let S be a regular spread of $\Sigma = PG(3, q)$. The lines of S are represented, under the Plücker map, by the points of an elliptic quadric $Q(3; q^2)$ obtained as intersection of the Klein quadric $Q^+(5, q^2)$ with a 3-dimensional subspace of $PG(5, q^2)$; see, for example [8, Section 15.4]).

Since the lines of a hyperbolic Q_F-set of $PG(3, q^2)$ are the $q^2 + 1$ extended lines of a regular spread of Σ together with the axes a and b, it follows that those lines are represented, under the Plücker map, by the points of an elliptic quadric $Q^-(3, q)$ obtained as the intersection of the Klein quadric $Q^+(5, q^2)$ with a 3-dimensional Baer subspace of $PG(5, q^2)$ together with the two other points a^* and b^* of $Q^+(5, q^2)$ which represent the lines a and b.

Finally, it should be noted that in [7] J. W. Freeman studied certain partial spreads of $PG(3, q^2)$ called pseudoreguli. A pseudoregulus of $PG(3, q^2)$ is the set of $q^2 + 1$ lines of a regular spread of $\Sigma = PG(3, q)$, when extended to lines of $PG(3, q^2)$. Hence given a hyperbolic Q_F-set Q with axes a and b, the $q^2 + 1$ lines of Q different from a and b form a pseudoregulus; conversely, the $q^2 + 1$ lines of a pseudoregulus of $PG(3, q^2)$ form a hyperbolic Q_F-set.

References

[3] G. Donati, A family of $(q^2 + 1)$-sets of class $(0, 1, 2, q + 1)$ in Desarguesian projective planes of order q^2, J. Geom., to appear.

Giorgio Donati
Dipartimento di Matematica e Applicazioni, Università di Napoli “Federico II”, Complesso di Monte S. Angelo - Edificio T, via Cintia, 80126 Napoli, Italy
e-mail: giorgio.donati@unina.it

Nicola Durante
Dipartimento di Matematica e Applicazioni, Università di Napoli “Federico II”, Complesso di Monte S. Angelo - Edificio T, via Cintia, 80126 Napoli, Italy
e-mail: ndurante@unina.it