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Adjacency preserving mappings
between point-line geometries

Wen-ling Huang

Abstract

In certain point-line geometries G = (P,L), G′ = (P ′,L′), which in-
clude dense near polygons and the geometry of Hermitian matrices, any
adjacency preserving mapping ϕ : P → P ′ satisfying

∃p, q ∈ P : d(p, q) = d(pϕ, qϕ) = diam(G),

is an isomorphism between G and ϕ(G).

Keywords: Adjacency preserving mappings, near polygons, dual polar spaces, geometry
of Hermitian matrices
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1. Introduction

In his famous paper on algebraic homogeneous spaces [4], W.-L. Chow
proved that any bijection ϕ of invariant subspaces of a null system for which
both ϕ and ϕ−1 preserve adjacency, is induced by a collineation. It was shown
in [6] that it is sufficient to demand that ϕ is surjective and that ϕ preserves
adjacency. The geometric idea of the proof in [6] applies to a larger class of
geometries [9]: Every surjective adjacency preserving mapping between two
locally projective near polygons of the same diameter and the same rank is an
isomorphism.

In the present paper we study the adjacency preserving mappings of a certain
class of point-line geometries [1], which includes dense near polygons and the
geometry of Hermitian matrices. Let G = (P,L) be a point-line geometry with
finite diameter, where P denotes the set of points and L the set of lines. Lines
are subsets of P. Two distinct points are adjacent iff they are on a line. The
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distance between two distinct points x and y is defined as the smallest integer d
with the property that there is a sequence of d+ 1 consecutively adjacent points
x = x0, x1, . . . , xd = y, and d(x, x) = 0 for all x ∈ P. From this property we
obtain the triangle inequality

d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ P.

From now on, we demand that G has the following properties.

1. For any points x, y ∈ P, there is a point z with d(x, z) = d(x, y)+d(y, z) =

n, where n ≥ 2 is the diameter of G.

2. Every line contains at least three points.

3. For any line l ∈ L and any point x ∈ P, either all points of l have the same
distance from x, or l contains a unique point nearest to x.

4. For any d = 1, . . . , n and for all points x, y, z ∈ P with d(x, y) = d,
d(x, z) = d− 1, d(y, z) = 1, there is a point w with d(x,w) = 1, d(y, w) =

d− 1, d(z, w) = d.

5. For any two adjacent points x, y, there is a unique line l(x, y) containing
x and y, and any point z which is adjacent to x and y is an element of
l(x, y).

6. For any points x, y, z ∈ P with d(x, z) = n = d(y, z) there exist con-
secutively adjacent points x = x0, . . . , xk = y with d(xi, z) = n, and on
every line l(xi, xi+1) there exists a point pi with d(pi, z) = n − 1, for all
i = 0, . . . , k − 1.

Our main result is the following theorem.

Theorem 1.1. Let G = (P,L), G′ = (P ′,L′) be two point-line geometries with
finite diameters, which have the above properties 1–6. Let ϕ : P → P ′ be a
mapping which satisfies

1. For all x, y ∈ P, d(x, y) = 1 implies d(xϕ, yϕ) = 1.

2. There exist p, q ∈ P with d(p, q) = d(pϕ, qϕ) = diam(G).

Then ϕ is an isometry:

d(x, y) = d(xϕ, yϕ) ∀x, y ∈ P.

Hence the geometries (P,L) and
(
ϕ(P), ϕ(L)

)
are isomorphic, where ϕ(L) =

{lϕ | l ∈ L} and lϕ := {xϕ | x ∈ l}.
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Corollary 1.2. Let G = (P,L), G′ = (P ′,L′) be two point-line geometries with
diam(G) ≤ diam(G′) < ∞, which have the above properties 1–6. Let ϕ : P → P ′
be a mapping which satisfies

1. For all x, y ∈ P, d(x, y) = 1 implies d(xϕ, yϕ) = 1.

2. ϕ is surjective.

Then diam(G) = diam(G′) and ϕ is an isomorphism.

2. Proof of Theorem 1.1

Since ϕ preserves adjacency, we have d(x, y) ≥ d(xϕ, yϕ) for all x, y ∈ P. Fur-
thermore, by property 5, ϕ maps any line to a subset of a line.

Step 1. For any two points x, y ∈ P there is a point z ∈ P such that

d(x, z) = d(y, z) = n := diam(G).

Proof. We prove step 1 by induction on d(x, y).

1. In the case d(x, y) = 0, choose z ∈ P with d(x, z) = n.

2. Now let d(x, y) = k + 1, k ∈ {0, . . . , n − 1}. Let w ∈ P with d(x,w) = k

and d(w, y) = 1. Choose u ∈ P with d(u, x) = n = d(u,w). Then

d(u, y) ≥ d(u,w)− d(w, y) = n− 1.

If d(u, y) = n, then let z := u. If d(u, y) = n − 1, then let v ∈ P with
d(v, y) = n, and d(u, v) = 1. If d(v, x) = n, let z := v. If d(v, x) = n−1, let
z 6∈ {u, v} be any point on the line l(u, v). We have d(x, z) = n = d(y, z).

Step 2. Let x, z ∈ P satisfy d(x, z) = n = d(xϕ, zϕ). Then for any y ∈ P with
d(y, z) = n we have d(yϕ, zϕ) = n.

Proof. By property 6, there is a sequence x = x0, . . . , xk = y of consecutively
adjacent points at distance n from z such that the line l(xi, xi+1) contains a
unique point pi at distance n− 1 from z, (i = 0, . . . , k − 1). Since d(xϕ, zϕ) = n

and n − 1 = d(xϕ, zϕ) − d(xϕ, pϕ0 ) ≤ d(pϕ0 , z
ϕ) ≤ d(p0, z) = n − 1, we have

d(pϕ0 , z
ϕ) = n− 1. Since ϕ maps lines to subsets of lines and since the point xϕ1

is on the line l(xϕ, pϕ0 ), we have d(xϕ1 , z
ϕ) = n by property 3. Inductively we

obtain d(xϕi , z
ϕ) = n, i = 2, . . . , k and n = d(xϕk , z

ϕ) = d(yϕ, zϕ).
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Step 3. For all points x, y ∈ P, d(x, y) = n implies d(xϕ, yϕ) = n.

Proof. Let x, y ∈ P with d(x, y) = n. By assumption there are p, q ∈ P with

d(p, q) = n = d(pϕ, qϕ).

From step 1 there exists z ∈ P with

d(p, z) = n = d(x, z).

From step 2 we have d(pϕ, zϕ) = n (choose center point p) and then d(xϕ, zϕ) =

n (choose center point z) and then d(xϕ, yϕ) = n (choose center point x).

Step 4. For all points x, y ∈ P, d(x, y) = d(xϕ, yϕ).

Proof. Let x, y ∈ P. Then there exists z ∈ P with d(x, y) + d(y, z) = n and
d(x, z) = n, and

n = d(x, z) = d(x, y) + d(y, z)

≥ d(xϕ, yϕ) + d(yϕ, zϕ)

≥ d(xϕ, zϕ) = n

which implies d(x, y) = d(xϕ, yϕ).

Step 5. From step 4 we have that ϕ is injective and distance preserving. De-
fine ϕ(G) as the geometry with set of points ϕ(P) and set of lines ϕ(L). The
geometry (ϕ(P), ϕ(L)) has the 6 properties stated in section 1, and ϕ is an
isomorphism between (P,L) and

(
ϕ(P), ϕ(L)

)
.

3. Applications

3.1. Geometry of Hermitian matrices

The geometry of Hermitian matrices was first studied by L.-K. Hua. Hua char-
acterized the transformations of the basic group in this geometry as adjacency
preserving bijections. The geometry of Hermitian matrices can be considered as
point-line geometry which satisfies the properties 1–6. Hence our theorem can
be applied to it.

Let D be a division ring which possesses an involution . Denote by F the
set of fixed elements of . When is the identity map, hence D = F is a field,
then assume that char(F ) 6= 2. When is not the identity map, assume that
F is a subfield of D and is contained in the center of D. An n × n matrix H
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over D is called a Hermitian matrix if H
t

= H. Let Hn(D) denote the space of
Hermitian n × n matrices, n ≥ 2. Two Hermitian matrices X,Y are adjacent if
and only if rank(X−Y ) = 1. The distance d(X,Y ) between X and Y is defined
to be the smallest nonnegative integer k such that there exists a sequence of
consecutively adjacent points X = X0, X1, . . . , Xk = Y . It was proved in [11]
that

d(X,Y ) = rank(X − Y ).

We call any Hermitian matrix inHn(D) a point. For any two adjacent Hermitian
matrices X,Y ∈ Hn(D) the line l(X,Y ) joining X and Y is defined to be the
set consisting of X, Y , and all points P which are adjacent to both X and Y . It
was also proved in [11] that

l(X,Y ) = {X + λ(Y −X) | λ ∈ F}.

We can easily check that the geometry of Hermitian matrices is a point-line
geometry which satisfies the properties 1, 2, 3, 4, 5. In [8], it was proved that
also property 6 holds when |F | = ∞, but indeed, the proof remains valid if
|F | > 5. So, in the case |F | > 5 we have the following corollary.

Corollary 3.1. Let D,F be as above and |F | > 5. Let ϕ : Hn(D) → Hn(D) be a
mapping which satisfies

1. For all X,Y ∈ Hn(D), d(X,Y ) = 1 implies d(Xϕ, Y ϕ) = 1.

2. There exist P,Q ∈ P with d(P,Q) = n = d(Pϕ, Qϕ).

Then d(X,Y ) = d(Xϕ, Y ϕ) for all X,Y ∈ Hn(D).

3.2. Near polygons

Replace the property 3 by

3’. For every line l ∈ L and every point x ∈ P, there exists a unique point
y ∈ l nearest to x and d(x, y) = d(x, z)− 1 for all z ∈ l \ {y}. We call y the
gate of l with respect to x.

Obviously, property 5 holds for any thick point-line geometry satisfying prop-
erty 3’. A near polygon is a connected partial linear space satisfying property 3’
[10]. Near polygons with finite diameter which satisfy property 2 and prop-
erty 4 for d = 2 are studied by A. E. Brouwer and H. A. Wilbrink in [2]. It is
proved in Theorem 2 in [2] that property 4 holds for such near polygons. Re-
cently, such near polygons are named dense near polygons, see e.g. [5]. Thick
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dual polar spaces [3] are examples of dense near polygons. From Theorem 3 in
[2] it follows that property 1 holds for any dense near polygon. It is a Corollary
of Theorem 3 in [2], that for any near 2n-gon satisfying properties 2 and 4, the
set of all points at distance n from any given point is connected. We will give a
direct proof of this statement in the following Lemma.

Lemma 3.2. LetG = (P,L) be a point line geometry with diam(G) = n satisfying
properties 2, 3’, 4 (dense near polygon) . For any three points x, y, z ∈ P with
d(x, y) ≥ 1, d(x, z) = n = d(y, z), there exists a sequence of consecutively adjacent
points x = x0, x1, . . . , xt = y such that

d(xi, z) = n ∀i = 0, . . . , t.

Proof. We prove the statement by induction on d(x, y).

1. In the case d(x, y) = 1, let x = x0, x1 = y.

2. Now let d(x, y) = k + 1, k ∈ {1, . . . , n − 1}. Let u, v ∈ P be two points
with

d(v, x) = k, d(v, y) = 1,

d(u, x) = 1, d(u, y) = k.

and d(u, v) = k + 1. If d(u, z) = n or d(v, z) = n then we may assume
d(v, z) = n. Then there exists a sequence x = x0, x1, . . . , xt = v of con-
secutively adjacent points at distance n from z. Obviously, the sequence
x = x0, x1, . . . , xt = v, y satisfies the required property.
Now we consider the case d(u, z) = n − 1 = d(v, z). Let p be a point of
the line l(u, x), p 6∈ {u, x}. Then d(p, z) = n and d(p, y) = k + 1 = d(p, v).
Let q be the gate of the line l(v, y) to p, then q 6∈ {v, y}, d(q, p) = k and
d(q, z) = n. Then there exists a sequence p = p0, . . . , ps = q of con-
secutively adjacent points at distance n from z. Obviously, the sequence
x, p = p0, . . . , ps = q, y satisfies the required property.

From above we know that dense near polygons are point-line geometries
which satisfy properties 1, 2, 3, 4, 5, 6. Our main theorem can be applied to
them.

Corollary 3.3. Let G = (P,L), G′ = (P ′,L′) be two dense near polygons with
finite diameters. Let ϕ : P → P ′ be a mapping which satisfies

1. For all x, y ∈ P, d(x, y) = 1 implies d(xϕ, yϕ) = 1.

2. There exist p, q ∈ P with d(p, q) = d(pϕ, qϕ) = diam(G).
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Then ϕ is an isometry:

d(x, y) = d(xϕ, yϕ) ∀x, y ∈ P.

Hence the geometries (P,L) and
(
ϕ(P), ϕ(L)

)
are isomorphic.

Corollary 3.4. Let G = (P,L), G′ = (P ′,L′) be two dense near polygons with
diam(G) ≤ diam(G′) <∞. Let ϕ : P → P ′ be a mapping which satisfies

1. For all x, y ∈ P, d(x, y) = 1 implies d(xϕ, yϕ) = 1.

2. ϕ is surjective.

Then ϕ is an isomorphism.

Remark 3.5. From [2] we know that every geometry G = (P,L) which satisfies
the properties 2, 3’, 4 also satisfies the properties 1, 3, 5, 6. However, there
are some other known classes of geometries, which satisfy the properties 1–6,
but which do not satisfy property 3’, for example, the geometry of Hermitian
matrices: Consider the geometry of 2× 2 Hermitian matrices over the complex
field. For the point x = ( 0 1

1 0 ) and any point y of the line l =
{

( λ 0
0 0 ) | λ ∈ R

}
,

we have d(x, y) = rank
(−λ 1

1 0

)
= 2.

Remark 3.6. Let m,n be integers satisfying 2 ≤ n ≤ m− 1. Let V be an (m+ 1)-
dimensional vector space over a division ringD. The Grassmann spaceAm,n(D)

is a point-line geometry, where points of Am,n(D) are n-dimensional subspaces
of V , and lines are pencils of points which are contained in a common (n+ 1)-
dimensional subspace and which contain a common (n − 1)-dimensional sub-
space. The Grassmann space A2n−1,n(D) satisfies properties 1, 2, 3, 4, 6, but
property 5 does not hold for Grassmann spaces. Without property 5, it is un-
known, whether any adjacency preserving mapping will map lines to subsets of
lines or not. However, it is proved in [7], that any adjacency preserving bijection
on Am,n(D) is an isomorphism of Am,n(D).
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