

Some properties of the twisted Grassmann graphs

Tatsuya Fujisaki*

Jack H. Koolen

Makoto Tagami

Abstract

In this note we determine the full automorphism group of the twisted Grassmann graph. Further we show that twisted Grassmann graphs do not have antipodal distance-regular covers. At last, we show that the twisted Grassmann graphs are not the halved graphs of bipartite distance-regular graphs.

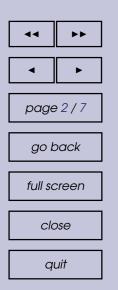
Keywords: automorphism group twisted Grassmann graph, antipodal covers, bipartite MSC 2000: 05E20, 05E30, 05C25

1. Introduction

In November 2004, E. van Dam and J. Koolen [4] constructed the twisted Grassmann Graphs. These graphs have the same parameters as the Grassmann graphs $J_q(2e + 1, e)$, but are not vertex-transitive. In this note we will determine the full automorphism groups of these graphs, and also show that they do not have distance-regular antipodal covers. Furthermore we show that they are not the halved graphs of bipartite distance-regular graphs.

In Section 2 we will give the preliminaries and definitions, in Section 3 we recall the twisted Grassmann graphs and their maximal cliques, in Section 4 we determine the automorphism group and in Section 5 and 6, respectively we show that they do not have distance-regular antipodal covers and are not the halved graphs of bipartite distance-regular graphs.

^{*}This work was done while the first author visited the Combinatorial and Computational Mathematics Center at POSTECH. The first two authors were supported by the SRC/ERC program of MOST/KOSEF (R11-1999-054)



2. Definitions and preliminaries

We begin this section by recalling some facts concerning distance-regular graphs (for more details see [1]). Suppose that Γ is a connected graph. The distance d(u, v) between any two vertices u, v in the vertex set $V\Gamma$ of Γ is the length of a shortest path between u and v in Γ . For any $v \in V\Gamma$, define $\Gamma_i(v)$ to be the set of vertices in Γ at distance precisely i from v, where i is any non-negative integer not exceeding the diameter D of Γ . In addition, define $\Gamma_{-1}(v) = \Gamma_{D+1}(v) := \emptyset$.

Following [1], we call Γ distance-regular if there are integers $b_i, c_i, 0 \le i \le D$, such that for any two vertices $u, v \in V\Gamma$ at distance i = d(u, v), there are precisely c_i neighbors of v in $\Gamma_{i-1}(u)$ and b_i neighbors of v in $\Gamma_{i+1}(u)$. In particular, Γ is regular with valency $k := b_0$. The numbers c_i, b_i and

$$a_i := k - b_i - c_i \quad (i = 0, \dots, D),$$

the number of neighbors of v in $\Gamma_i(u)$ for d(u, v) = i, are called the *intersection* numbers of Γ .

Let Γ be a distance-regular graph, with diameter D and n vertices. A partition $\Pi = P_1, P_2, \ldots, P_f$ of the vertex set $V\Gamma$ is called *equitable* if there are constants α_{ij} $(i, j \in \{1, \ldots, f\})$ such that for any $x \in P_i$ the number of neighbours of x in P_j equals α_{ij} .

A code C in Γ is just a subset of $V\Gamma$. For a vertex x and a code C define $d(x, C) = \min\{d(x, y) \mid y \in C\}$. For $i \leq D$ define $C_i = \{x \in V\Gamma \mid d(x, C) = i\}$. The covering radius of C, ρ is defined as

$$\rho = \max\{i \mid C_i \neq \emptyset\}.$$

A code *C* is called *completely regular* if $\{C_i \mid 0 \le i \le \rho\}$ is an equitable partition of Γ .

Let Γ be a distance-regular graph. Let $M_{V\Gamma}(\mathbb{C})$ be the matrix algebra indexed by $V\Gamma$ over \mathbb{C} . The matrix A_i denotes the *i*-th adjacency matrix of Γ , that is to say that, A_i is the matrix in $M_{V\Gamma}(\mathbb{C})$ whose (x, y)-entry is 1 if d(x, y) = i, and 0 otherwise.

Let \mathfrak{A} be the subalgebra of $M_{V\Gamma}(\mathbb{C})$ generated by the adjacency matrix A_1 . Then, for all *i*, the matrix $A_i \in \mathfrak{A}$. Since A_0, \ldots, A_D are pairwise commutative normal matrices, they can be diagonalized simultaneously. It is well-known that the number of the maximal common eigenspaces of A_0, \ldots, A_D is D + 1and span $(1, 1, \ldots, 1)$ is one of the maximal common eigenspaces. Denote the maximal common eigenspaces by $V_0 = \langle (1, 1, \ldots, 1) \rangle, V_1, \ldots, V_D$ and let E_i be the orthogonal projection $\mathbb{C}^{|V\Gamma|} \to V_i$ expressed in the matrix form with respect to the unit vectors. Then E_0, \ldots, E_D are the primitive idempotents of \mathfrak{A} . Let

C be a code in Γ , and let χ be its characteristic vector. The *width* of *C*, *w*, is defined by $w = \max\{d(x, y) \mid x, y \in C\}$. The *dual degree* s^* of *C* is defined by $s^* := \#\{i \ge 1 \mid \chi^T E_i \chi \neq 0\}$. If *C* is a completely regular code of Γ with covering radius ρ , then it is known that $s^* = \rho$, cf. [1, Theorem 11.1.1(ii)].

3. Twisted Grassmann graphs

Let us first recall the twisted Grassmann graphs $\tilde{J}_q(2e+1,e)$, q a prime power and $e \geq 2$ integer, the distance-regular graphs constructed by Van Dam and Koolen [4].

Let $e \ge 2$ be an integer and q a prime power. Let V be a (2e + 1)-dimensional vector space over the finite field \mathbb{F}_q , and let H be a fixed hyperplane of V. We define the sets $\mathcal{B}_1, \mathcal{B}_2$ and \mathcal{B} as follows:

$$\mathcal{B}_1 := \{ W \text{ subspace of } V \mid \dim W = e + 1, W \not\subseteq H \},\$$

$$\mathcal{B}_2 := \{ W \text{ subspace of } V \mid \dim W = e - 1, W \subseteq H \},\$$

$$\mathcal{B} := \mathcal{B}_1 \cup \mathcal{B}_2 .$$

The twisted Grassmann graph $J_q(2e + 1, e)$ has as vertex set \mathcal{B} , and vertices $B_1, B_2 \in \mathcal{B}$ are adjacent as follows:

$$B_1 \sim B_2 \iff \dim(B_1) + \dim(B_2) - 2\dim(B_1 \cap B_2) = 2.$$

3.1. Maximal cliques

In this subsection we recall the maximal cliques of the twisted Grassmann graph as determined by [4]:

(I) Fix an e-dimensional subspace S. Then

$$\mathcal{C}_I(S) := \{ B \in \mathcal{B}_1 \mid S \subseteq B \} \cup \{ B \in \mathcal{B}_2 \mid B \subseteq S \cap H \}$$

is a maximal clique of type I. The size of $C_I(S)$ is as follows:

$$\# \mathcal{C}_I(S) = \begin{cases} {e+1 \\ 1} + 1 & \text{if } S \not\subseteq H, \\ {e+1 \\ 1} & \text{if } S \subseteq H. \end{cases}$$

Here $\begin{bmatrix} n \\ m \end{bmatrix}$ denotes the *q*-ary Gaussian binomial coefficient.

(II) Fix an (e+2)-dimensional subspace S which is not contained in H. Then

$$\mathcal{C}_{II}(S) := \{ B \in \mathcal{B}_1 \mid B \subseteq S \}$$

is a maximal clique of type II. Its size is: $\# C_{II}(S) = {e+2 \brack 1} - 1.$

(III) Fix an (e + 2)-dimensional subspace S which is not contained in H, and also fix an (e - 1)-dimensional subspace S' in $S \cap H$. Then

$$\mathcal{C}_{III}(S,S') := \{ B \in \mathcal{B}_1 \mid S' \subseteq B \subseteq S \} \cup \{ S' \}$$

is a maximal clique of type III. For its size we have $\# C_{III}(S, S') = \begin{bmatrix} 3\\1 \end{bmatrix}$.

(IV) Fix an (e-2)-dimensional subspace S in H. Then

 $\mathcal{C}_{IV}(S) := \{ B \in \mathcal{B}_2 \mid S \subseteq B \}$

is a maximal clique of type IV. For its size we have $\# C_{IV}(S) = \begin{bmatrix} e+2\\ 1 \end{bmatrix}$.

4. Automorphism group

By the definition of the twisted Grassmann graph, it follows easily that the group $\mathsf{PFL}(V)_H$ acts as an automorphism group on $\tilde{J}_q(2e+1,e).$ Van Dam and Koolen conjectured that this is the full automorphism group. In this section we show that this is indeed the case, by showing the following theorem.

Theorem 4.1. Let $e \ge 2$ be an integer and q a prime power. The full automorphism group of $\tilde{J}_q(2e+1, e)$ equals $\mathsf{PFL}(V)_H$, where V is the (2e+1)-dimensional vector space over \mathbb{F}_q and H the fixed hyperplane in V, as in the definition of the twisted Grassmann graph.

Before we show this theorem we recall the automorphism group of the Grassmann graphs.

Let V be a *n*-dimensional vector space over \mathbb{F}_q and $1 \le e \le n-1$. The Grassmann graph $J_q(n, e)$ is the graph whose vertices are *e*-dimensional subspaces of V, and whose adjacency relation is defined as follows: for vertices W_1 and W_2 , we have $W_1 \sim W_2$ if and only if $\dim(W_1 \cap W_2) = e - 1$.

Theorem 4.2. (Chow [3], cf. [1, Thm 9.3.1]) Let Γ be the Grassmann graph $J_q(n, e)$, and suppose that Γ is not complete, i.e., 1 < e < n - 1. Then

 $\operatorname{Aut} \Gamma \cong \begin{cases} \mathsf{P}\mathsf{\Gamma}\mathsf{L}(V) & \text{if } n \neq 2e \,, \\ \mathsf{P}\mathsf{\Gamma}\mathsf{L}(V).2 & \text{if } n = 2e \,. \end{cases}$

Proof of Theorem 4.1. Let G be the full automorphism group of $\tilde{J}_q(2e+1,e)$. First we will show the following claim.

Claim. (i) \mathcal{B}_1 and \mathcal{B}_2 are the orbits of \mathcal{B} under G.

(ii) For each maximal clique, G preserves its type.

Proof of Claim. Clearly, *G* preserves the size of maximal cliques, and hence it preserves the types if e > 2, as each type has a different size. For e = 2, this implies that the types II and IV are preserved. The group $\mathsf{PFL}(V)_H$ has orbits \mathcal{B}_1 and \mathcal{B}_2 on \mathcal{B} . As cliques of type IV only contain vertices in \mathcal{B}_1 , it follows that \mathcal{B}_1 and \mathcal{B}_2 are the orbits of \mathcal{B} under *G*. This shows (i). In order to finish the proof for this step we need to show that for e = 2 and a maximal clique \mathcal{C} of size $\begin{bmatrix} 3\\1\\1 \end{bmatrix}$ the type of this clique is preserved. If \mathcal{C} is of type I then it contains exactly $\begin{bmatrix} e\\1 \end{bmatrix}$ vertices in \mathcal{B}_2 , whereas if \mathcal{C} is of type III then it contains exactly one element of \mathcal{B}_2 . This shows that (ii) is true for e = 2. This concludes the proof of the claim.

Define the graph Δ on the maximal cliques of type I. If S, S' are *e*-dimensional subspaces of V, then $C_I(S) \sim C_I(S')$ in Δ , if $C_I(S) \cap C_I(S') \neq \emptyset$. Note that $C_I(S) \sim C_I(S')$ if and only if $\dim(S \cap S') = e - 1$. Therefore, the graph Δ is isomorphic to the Grassmann graph $J_q(2e+1, e)$, so its automorphism group \overline{G} equals $\mathsf{PFL}(2e+1, q)$, by Chow's Theorem.

Any automorphism of Γ induces naturally to an automorphism of Δ . Let ψ be an automorphism of Γ whose induced automorphism equals the identity. Then for $B_1 \in \mathcal{B}_1$, take S, S' two *e*-dimensional subspaces of V, both not in H, such that $B_1 = S + S'$. As $\mathcal{C}_I(S) \cap \mathcal{C}_I(S') = \{B_1\}$, it follows that ψ fixes \mathcal{B}_1 pointwise. Now let $B_2 \in \mathcal{B}_2$. Then, let S and S' be *e*-dimensional subspaces of H such that $S \cap S' = B_2$. Then $\mathcal{C}_I(S) \cap \mathcal{C}_I(S') \cap \mathcal{B}_2 = \{B_2\}$. This implies that ψ fixes \mathcal{B}_2 pointwise and hence ψ is the identity. This shows that $\#G \leq \# \mathsf{PFL}(V)_H$ (as an induced automorphism has to fix the hyperplane H) and hence G = $\mathsf{PFL}(V)_H$.

5. Antipodal covers

In this section we show that the twisted Grassmann graphs can not have antipodal distance-regular covers.

Theorem 5.1. For $e \ge 2$, the twisted Grassmann graphs $\tilde{J}_q(2e+1, e)$ do not have any antipodal distance-regular covers.

Proof. As $\{\mathcal{B}_1, \mathcal{B}_2\}$ is an equitable partition of $\Gamma := \tilde{J}_q(2e+1, e)$ it follows that \mathcal{B}_1 is a completely regular code of Γ with covering radius 1 and hence $s^* = 1$. Moreover, as its width w equals e-1, and e is the diameter of Γ , it follows that $w + s^* = e$. Now by [2, Corollary 2], the twisted Grassmann graph $\tilde{J}_q(2e+1, e)$ has no antipodal distance-regular cover of diameter at least 5.

ACADEMIA PRESS In order to show the theorem, we only need to show that $\tilde{J}_q(5,2)$ has no antipodal distance-regular cover of diameter 4. For $B_1 \in \mathcal{B}_1$ and $B_2 \in \mathcal{B}_2$ such that $d(B_1, B_2) = 2$ it is easy to check that the induced subgraph on the common neighbours is connected. This shows that $\tilde{J}_q(5,2)$ can not have any antipodal distance-regular cover of diameter 4. This concludes the proof. \Box

Remark 5.2. That the twisted Grassmann graphs do not have antipodal distance-regular covers of diameter at least 7, also follows from [5]

6. Halved graphs

In this section we show that, in contrast to the Grassmann graph $J_q(2e + 1, e)$, any twisted Grassmann graph is not the halved graph of a bipartite distanceregular graph:

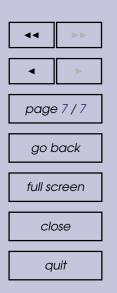
Theorem 6.1. For q a prime power and e an integer at least 2, the twisted Grassmann graph $\tilde{J}_q(2e+1, e)$ is not the halved graph of a bipartite distance-regular graph.

Proof. We show the statement by contradiction. To this end, suppose that there exists a bipartite graph Δ with colour classes V_R and V_B such that the halved graph with vertex set V_B is the twisted Grassman graph $\Gamma = \tilde{J}_q(2e+1, e)$. As the diameter of Γ equals $e \geq 2$, it follows that the diameter of Δ is at least 5. Let $x \in V_R$, and let $\Delta(x)$ be the set of neighbours in Δ . Then it is easy to see that $\Delta(x)$ has the following properties:

- (i) $\Delta(x)$ forms a completely regular code in Γ ;
- (ii) The subgraph of Γ induced on $\Delta(x)$ forms a maximal clique in Γ .

The maximal cliques in Γ are known, see Subsection 3.1. We first show that a maximal clique of type (III) is not possible. Let S be a subspace of V of dimension e+2 not contained in H and let S' be an (e-1)-dimensional subspace of $S \cap H$. Then $C_{III}(S, S') := \{B \in \mathcal{B}_1 \mid S' \subseteq B \subseteq S\} \cup \{S'\}$ is a maximal clique of type III. We now show that $C_{III}(S, S')$ is not completely regular. In order to show this let $U \in \mathcal{B}_2$ such that $U \subseteq H \cap S$ and $\dim(U \cap S') = e - 2$. Now U has more than one neighbour in $C_{III}(S, S')$. On the other hand, let $W \in \mathcal{B}_2$ such that $W \not\subseteq H \cap S$ and $\dim(W \cap S') = e - 2$. Then W has exactly one neighbour in $C_{III}(S, S')$. This shows that no clique of type III is completely regular. Hence we have

$$k(\Delta) \in \left\{ \begin{bmatrix} e+2\\1 \end{bmatrix}, \begin{bmatrix} e+2\\1 \end{bmatrix} - 1, \begin{bmatrix} e+1\\1 \end{bmatrix} + 1, \begin{bmatrix} e+1\\1 \end{bmatrix} \right\}$$



If $k(\Delta) = \begin{bmatrix} e+2\\ 1 \end{bmatrix}$ then $\Delta(x)$ is maximal clique of type IV for all $x \in V_R$. But this is impossible as cliques of type IV only contain vertices in \mathcal{B}_2 . Similarly $k(\Delta) \neq \begin{bmatrix} e+2\\ 1 \end{bmatrix} - 1$. As the total number of maximal cliques of type I equals $\begin{bmatrix} 2e+1\\ e \end{bmatrix}$, and there are two sizes for type I, depending whether $S \subseteq H$ or not, and both sizes occur, it follows that $\Delta(x)$ can not be a clique of type I. This completes the proof.

Aknowledgments. The authors would like to thank Aleksandar Jurišić for his comments.

References

- [1] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, *Springer-Verlag, Berlin,* 1989.
- [2] A. E. Brouwer, C. D. Godsil, J. H. Koolen and W. J. Martin, Width and dual width of subsets in polynomial asociation schemes, *J. Combin. Th. (A)* 102 (2003) 255-271.
- [3] W.-L. Chow, On the geometry of algebraic homogeneous spaces, *Ann. of Math.* (2) **50** (1949) 32-67.
- [4] E. R. van Dam and J. H. Koolen, A new family of distance-regular graphs with unbounded diameter, *Invent. Math.* **162** (1) (2005) 189 193.
- [5] **P. Terwilliger**, *P* and *Q*-polynomial association schemes and their antipodal *P*-polynomial covers, *European J. Combin.* **14** (1993), no. 4, 355–358.

Tatsuya Fujisaki

GRADUATE SCHOOL OF SYSTEMS AND INFORMATION ENGINEERING, UNIVERSITY OF TSUKUBA, JAPAN *e-mail*: fujisaki@sk.tsukuba.ac.jp

Jack H. Koolen

DEPARTMENT OF MATHEMATICS, POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY, HYOJA-DONG, NAMGU, POHANG 790-784, KOREA.

e-mail: koolen@postech.ac.kr

Makoto Tagami

Faculty of Mathematics, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashiku, Fukuoka 812-8581, Japan.

e-mail: tmakoto@math.kyushu-u.ac.jp

