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Some properties of the twisted Grassmann
graphs
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Abstract

In this note we determine the full automorphism group of the twisted
Grassmann graph. Further we show that twisted Grassmann graphs do not
have antipodal distance-regular covers. At last, we show that the twisted
Grassmann graphs are not the halved graphs of bipartite distance-regular
graphs.
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1. Introduction

In November 2004, E. van Dam and J. Koolen [4] constructed the twisted Grass-
mann Graphs. These graphs have the same parameters as the Grassmann graphs
Jq(2e + 1, e), but are not vertex-transitive. In this note we will determine the
full automorphism groups of these graphs, and also show that they do not have
distance-regular antipodal covers. Furthermore we show that they are not the
halved graphs of bipartite distance-regular graphs.
In Section 2 we will give the preliminaries and definitions, in Section 3 we recall
the twisted Grassmann graphs and their maximal cliques, in Section 4 we de-
termine the automorphism group and in Section 5 and 6, respectively we show
that they do not have distance-regular antipodal covers and are not the halved
graphs of bipartite distance-regular graphs.
∗This work was done while the first author visited the Combinatorial and Computational Math-

ematics Center at POSTECH. The first two authors were supported by the SRC/ERC program of
MOST/KOSEF (R11-1999-054)
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2. Definitions and preliminaries

We begin this section by recalling some facts concerning distance-regular graphs
(for more details see [1]). Suppose that Γ is a connected graph. The distance
d(u, v) between any two vertices u, v in the vertex set V Γ of Γ is the length of a
shortest path between u and v in Γ. For any v ∈ V Γ, define Γi(v) to be the set of
vertices in Γ at distance precisely i from v, where i is any non-negative integer
not exceeding the diameter D of Γ. In addition, define Γ−1(v) = ΓD+1(v) := ∅.

Following [1], we call Γ distance-regular if there are integers bi, ci, 0 ≤ i ≤ D,
such that for any two vertices u, v ∈ V Γ at distance i = d(u, v), there are pre-
cisely ci neighbors of v in Γi−1(u) and bi neighbors of v in Γi+1(u). In particular,
Γ is regular with valency k := b0. The numbers ci, bi and

ai := k − bi − ci (i = 0, . . . , D),

the number of neighbors of v in Γi(u) for d(u, v) = i, are called the intersection
numbers of Γ.

Let Γ be a distance-regular graph, with diameterD and n vertices. A partition
Π = P1, P2, . . . , , Pf of the vertex set V Γ is called equitable if there are constants
αij (i, j ∈ {1, . . . , f}) such that for any x ∈ Pi the number of neighbours of x in
Pj equals αij .

A code C in Γ is just a subset of V Γ. For a vertex x and a code C define
d(x,C) = min{d(x, y) | y ∈ C}. For i ≤ D define Ci = {x ∈ V Γ | d(x,C) = i}.
The covering radius of C, ρ is defined as

ρ = max{i | Ci 6= ∅}.

A code C is called completely regular if {Ci | 0 ≤ i ≤ ρ} is an equitable partition
of Γ.

Let Γ be a distance-regular graph. Let MV Γ(C) be the matrix algebra indexed
by V Γ over C. The matrix Ai denotes the i-th adjacency matrix of Γ, that is to
say that, Ai is the matrix in MV Γ(C) whose (x, y)-entry is 1 if d(x, y) = i, and 0

otherwise.

Let A be the subalgebra of MV Γ(C) generated by the adjacency matrix A1.
Then, for all i, the matrix Ai ∈ A. Since A0, . . . , AD are pairwise commutative
normal matrices, they can be diagonalized simultaneously. It is well-known
that the number of the maximal common eigenspaces of A0, . . . , AD is D + 1

and span(1, 1, . . . , 1) is one of the maximal common eigenspaces. Denote the
maximal common eigenspaces by V0 = 〈(1, 1, . . . , 1)〉, V1, . . . , VD and let Ei be
the orthogonal projection C|V Γ| → Vi expressed in the matrix form with respect
to the unit vectors. Then E0, . . . , ED are the primitive idempotents of A. Let
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C be a code in Γ, and let χ be its characteristic vector. The width of C, w, is
defined by w = max{d(x, y) | x, y ∈ C}. The dual degree s∗ of C is defined
by s∗ := #{i ≥ 1 | χTEiχ 6= 0}. If C is a completely regular code of Γ with
covering radius ρ, then it is known that s∗ = ρ, cf. [1, Theorem 11.1.1(ii)].

3. Twisted Grassmann graphs

Let us first recall the twisted Grassmann graphs J̃q(2e + 1, e), q a prime power
and e ≥ 2 integer, the distance-regular graphs constructed by Van Dam and
Koolen [4].
Let e ≥ 2 be an integer and q a prime power. Let V be a (2e + 1)-dimensional
vector space over the finite field Fq, and let H be a fixed hyperplane of V . We
define the sets B1,B2 and B as follows:

B1 := {W subspace of V | dimW = e+ 1, W 6⊆ H},
B2 := {W subspace of V | dimW = e− 1, W ⊆ H},
B := B1 ∪B2 .

The twisted Grassmann graph J̃q(2e + 1, e) has as vertex set B, and vertices
B1, B2 ∈ B are adjacent as follows:

B1 ∼ B2 ⇐⇒ dim(B1) + dim(B2)− 2 dim(B1 ∩ B2) = 2.

3.1. Maximal cliques

In this subsection we recall the maximal cliques of the twisted Grassmann graph
as determined by [4]:

(I) Fix an e-dimensional subspace S. Then

CI(S) := {B ∈ B1 | S ⊆ B} ∪ {B ∈ B2 | B ⊆ S ∩H}

is a maximal clique of type I. The size of CI(S) is as follows:

# CI(S) =

{[
e+1

1

]
+ 1 if S 6⊆ H,[

e+1
1

]
if S ⊆ H.

Here
[
n
m

]
denotes the q-ary Gaussian binomial coefficient.

(II) Fix an (e+ 2)-dimensional subspace S which is not contained in H. Then

CII (S) := {B ∈ B1 | B ⊆ S}

is a maximal clique of type II. Its size is: # CII (S) =
[
e+2

1

]
− 1.
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(III) Fix an (e + 2)-dimensional subspace S which is not contained in H, and
also fix an (e− 1)-dimensional subspace S ′ in S ∩H. Then

CIII (S, S′) := {B ∈ B1 | S′ ⊆ B ⊆ S} ∪ {S′}

is a maximal clique of type III. For its size we have # CIII (S, S′) =
[
3
1

]
.

(IV) Fix an (e− 2)-dimensional subspace S in H. Then

CIV (S) := {B ∈ B2 | S ⊆ B}

is a maximal clique of type IV. For its size we have # CIV (S) =
[
e+2

1

]
.

4. Automorphism group

By the definition of the twisted Grassmann graph, it follows easily that the group
PΓL(V )H acts as an automorphism group on J̃q(2e+ 1, e). Van Dam and Koolen
conjectured that this is the full automorphism group. In this section we show
that this is indeed the case, by showing the following theorem.

Theorem 4.1. Let e ≥ 2 be an integer and q a prime power. The full automorphism
group of J̃q(2e+ 1, e) equals PΓL(V )H , where V is the (2e+ 1)-dimensional vector
space over Fq and H the fixed hyperplane in V , as in the definition of the twisted
Grassmann graph.

Before we show this theorem we recall the automorphism group of the Grass-
mann graphs.

Let V be a n-dimensional vector space over Fq and 1 ≤ e ≤ n− 1. The Grass-
mann graph Jq(n, e) is the graph whose vertices are e-dimensional subspaces of
V , and whose adjacency relation is defined as follows: for vertices W1 and W2,
we have W1 ∼ W2 if and only if dim(W1 ∩W2) = e− 1.

Theorem 4.2. (Chow [3], cf. [1, Thm 9.3.1]) Let Γ be the Grassmann graph
Jq(n, e), and suppose that Γ is not complete, i.e., 1 < e < n− 1. Then

Aut Γ ∼=
{

PΓL(V ) if n 6= 2e ,

PΓL(V ).2 if n = 2e .

Proof of Theorem 4.1. Let G be the full automorphism group of J̃q(2e + 1, e).
First we will show the following claim.

Claim. (i) B1 and B2 are the orbits of B under G.
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(ii) For each maximal clique, G preserves its type.

Proof of Claim. Clearly, G preserves the size of maximal cliques, and hence it
preserves the types if e > 2, as each type has a different size. For e = 2, this
implies that the types II and IV are preserved. The group PΓL(V )H has orbits
B1 and B2 on B. As cliques of type IV only contain vertices in B1, it follows that
B1 and B2 are the orbits of B under G. This shows (i). In order to finish the
proof for this step we need to show that for e = 2 and a maximal clique C of size[
3
1

]
the type of this clique is preserved. If C is of type I then it contains exactly[

e
1

]
vertices in B2, whereas if C is of type III then it contains exactly one element

of B2. This shows that (ii) is true for e = 2. This concludes the proof of the
claim.

Define the graph ∆ on the maximal cliques of type I. If S, S ′ are e-dimensional
subspaces of V , then CI(S) ∼ CI(S′) in ∆, if CI(S) ∩ CI(S′) 6= ∅. Note that
CI(S) ∼ CI(S′) if and only if dim(S ∩ S′) = e − 1. Therefore, the graph ∆ is
isomorphic to the Grassmann graph Jq(2e+ 1, e), so its automorphism group G
equals PΓL(2e+ 1, q), by Chow’s Theorem.

Any automorphism of Γ induces naturally to an automorphism of ∆. Let ψ be
an automorphism of Γ whose induced automorphism equals the identity. Then
for B1 ∈ B1, take S, S′ two e-dimensional subspaces of V , both not in H, such
that B1 = S+S′. As CI(S)∩CI(S′) = {B1}, it follows that ψ fixes B1 pointwise.
Now let B2 ∈ B2. Then, let S and S′ be e-dimensional subspaces of H such that
S ∩ S′ = B2. Then CI(S) ∩ CI(S′) ∩ B2 = {B2}. This implies that ψ fixes
B2 pointwise and hence ψ is the identity. This shows that #G ≤ # PΓL(V )H
(as an induced automorphism has to fix the hyperplane H) and hence G =

PΓL(V )H .

5. Antipodal covers

In this section we show that the twisted Grassmann graphs can not have antipo-
dal distance-regular covers.

Theorem 5.1. For e ≥ 2, the twisted Grassmann graphs J̃q(2e+ 1, e) do not have
any antipodal distance-regular covers.

Proof. As {B1,B2} is an equitable partition of Γ := J̃q(2e + 1, e) it follows that
B1 is a completely regular code of Γ with covering radius 1 and hence s∗ = 1.
Moreover, as its width w equals e− 1, and e is the diameter of Γ, it follows that
w+ s∗ = e. Now by [2, Corollary 2], the twisted Grassmann graph J̃q(2e+ 1, e)

has no antipodal distance-regular cover of diameter at least 5.
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In order to show the theorem, we only need to show that J̃q(5, 2) has no an-
tipodal distance-regular cover of diameter 4. For B1 ∈ B1 and B2 ∈ B2 such
that d(B1, B2) = 2 it is easy to check that the induced subgraph on the common
neighbours is connected. This shows that J̃q(5, 2) can not have any antipodal
distance-regular cover of diameter 4. This concludes the proof.

Remark 5.2. That the twisted Grassmann graphs do not have antipodal distance-
regular covers of diameter at least 7, also follows from [5]

6. Halved graphs

In this section we show that, in contrast to the Grassmann graph Jq(2e + 1, e),
any twisted Grassmann graph is not the halved graph of a bipartite distance-
regular graph:

Theorem 6.1. For q a prime power and e an integer at least 2, the twisted Grass-
mann graph J̃q(2e + 1, e) is not the halved graph of a bipartite distance-regular
graph.

Proof. We show the statement by contradiction. To this end, suppose that there
exists a bipartite graph ∆ with colour classes VR and VB such that the halved
graph with vertex set VB is the twisted Grassman graph Γ = J̃q(2e + 1, e). As
the diameter of Γ equals e ≥ 2, it follows that the diameter of ∆ is at least 5.
Let x ∈ VR, and let ∆(x) be the set of neighbours in ∆. Then it is easy to see
that ∆(x) has the following properties:

(i) ∆(x) forms a completely regular code in Γ;

(ii) The subgraph of Γ induced on ∆(x) forms a maximal clique in Γ.

The maximal cliques in Γ are known, see Subsection 3.1. We first show
that a maximal clique of type (III) is not possible. Let S be a subspace of V of
dimension e+2 not contained inH and let S ′ be an (e−1)-dimensional subspace
of S∩H. Then CIII (S, S′) := {B ∈ B1 | S′ ⊆ B ⊆ S}∪{S′} is a maximal clique
of type III. We now show that CIII (S, S′) is not completely regular. In order to
show this let U ∈ B2 such that U ⊆ H ∩ S and dim(U ∩ S′) = e− 2. Now U has
more than one neighbour in CIII (S, S

′). On the other hand, let W ∈ B2 such
that W 6⊆ H ∩ S and dim(W ∩ S′) = e− 2. Then W has exactly one neighbour
in CIII (S, S′). This shows that no clique of type III is completely regular.
Hence we have

k(∆) ∈
{[
e+ 2

1

]
,

[
e+ 2

1

]
− 1,

[
e+ 1

1

]
+ 1,

[
e+ 1

1

]}
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If k(∆) =
[
e+2

1

]
then ∆(x) is maximal clique of type IV for all x ∈ VR. But

this is impossible as cliques of type IV only contain vertices in B2. Similarly
k(∆) 6=

[
e+2

1

]
− 1. As the total number of maximal cliques of type I equals[

2e+1
e

]
, and there are two sizes for type I, depending whether S ⊆ H or not,

and both sizes occur, it follows that ∆(x) can not be a clique of type I. This
completes the proof.
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