|~

=

page 1/ 100

go back

full screen

close

quit

ACADEMIA
PRESS

) =

UNIVERSITEIT
GENT

Linear spaces with significant characteristic
prime

Nick Gill

Abstract

Let GG be a group with socle a simple group of Lie type defined over the
finite field with ¢ elements where ¢ is a power of the prime p. Suppose that
G acts transitively upon the lines of a linear space S. We show that if p is
significant then G acts flag-transitively on S and all examples are known.
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1. Background and statement of result

A linear space S is an incidence structure of points and lines such that any two
points are incident with exactly one line. Also S is non-trivial provided every
line contains at least three points and there are at least two lines; all linear
spaces considered in this paper will be presumed to be non-trivial. A flag is a
pair («, L) where « is a point incident with a line L.

Let S be a finite linear space admitting an automorphism group G which is
transitive on lines. Then S is said to have parameters b (the number of lines), v
(the number of points), k& (the number of points incident with a line) and r (the
number of lines incident with a point).

Camina, Neumann and Praeger [?] have defined a prime p to be significant
for the space § if it divides into (b,v — 1). They then show that if P is a Sylow
p-subgroup of G and G,, is a point-stabilizer in G then G, > Ng(P) [?, Lemma
6.1].

The finite linear spaces which admit a flag-transitive almost simple group
have been classified in [?, ?]. As part of the program to extend this classification
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to those linear spaces which admit a line-transitive almost simple group we
prove the following theorem:

Theorem 1.1. Suppose that a group G has socle a group of Lie type of charac-
teristic p. Suppose furthermore that G acts transitively upon the lines of a linear
space S with significant prime p. Then G acts transitively upon the flags of S and
we have one of the following examples:

e Us(q) < G <PrU(3,q) and S is a Hermitian unital.
e 2Ga(q) < G < Aut(*Ga(q)) and S is a Ree unital.

The remainder of this paper will be occupied with a proof of Theorem 1.1.
The suppositions given in Theorem 1.1 will be assumed from here on.

2. A reduction to simplicity

Observe that, by [?, Lemma 6.1] mentioned above, a point-stabilizer G, must
contain a parabolic subgroup of the socle of G. We can use this fact along with
the notion of exceptionality to immediately simplify our task.

Let Gy be a normal subgroup in a group G which acts upon a set P. Then
(G, Gy, P) is called exceptional if the only common orbital of Gy and G in their
action upon P is the diagonal (see [?]). Then we have the following result:

Lemma 2.1. [?, Lemma 26] Suppose a group G acts line-transitively on a finite
linear space S; suppose furthermore that G is a normal subgroup which is not
line-transitive on S; finally suppose that |G : Go| = t, a prime.

Then either S is a projective plane, or (G, Gy, P) is exceptional where P is the
set of points in S.

Now consider a pair (G, S) satisfying the suppositions of Theorem 1.1. Then
S is not a projective plane since the finite projective planes are precisely the
finite linear spaces with no significant prime [?, 3.2.3]. Thus if G contains a
normal subgroup G of index a prime ¢ which is not line-transitive on S then
(G, Gy, P) is exceptional.

However all of the exceptional triples of this form are enumerated in [?, The-
orem 1.5]. In all cases a point-stabilizer does not contain a parabolic subgroup
of the socle of G. We can conclude from this that our socle itself is transitive on
the lines of S.

In fact, referring to [?], we see that if the socle of G has Lie rank 1 then it acts
2-transitively upon its parabolic subgroups. Thus the socle of G is 2-transitive
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upon the points of S and hence is transitive on the flags of S (c.f. [?]). Then,
by [?], the actions listed in Theorem 1.1 are the only examples.

Thus for the remainder of this paper we add the following suppositions to
those mentioned in Theorem 1.1:

e We suppose that G is simple;

e We suppose that G has Lie rank greater than 1.

We will show that these suppositions lead to a contradiction. We will do this by
taking GG, to be a parabolic subgroup of G and then examining potentional line
stabilizers, G ¢.

2.1. Group theory notation

In our use of the theory of groups of Lie type we will use the notation of Carter
[?]. Write F for the finite field with ¢ elements. Firstly suppose that GG is a
Chevalley group. We write ® and II for the set of roots, and the set of funda-
mental roots respectively, associated with G. We have the following standard
subgroups: For s € ®, X; = {z;(u) : u € F} is the root group associated with s,
U is the Sylow p-group of G generated by the positive root subgroups of G, H is
a maximal torus in G such that B = UH is a Borel subgroup of G, N = N (H)
and W = N/H is the associated Weyl group of GG. A parabolic subgroup of GG
is any subgroup of G which contains a G-conjugate of B. The Lie rank of G is
equal to |II].

For G a twisted simple group, consider GG as a subgroup of G* the untwisted
simple group. Let ® and II for the set of roots, and the set of fundamental roots
respectively, associated with G* and take p to be the non-trivial symmetry of the
Dynkin diagram. Take W' to be the Weyl group of G, so that W! is a subgroup
of W, the Weyl group of G*. The subgroups U', H', B! and N' are defined as
usual. Write ‘B for the partition of II into p-orbits. The Lie rank of G is equal to

RYP

We will sometimes precede the structure of a subgroup of a projective group
with ~ which means that we are giving the structure of the pre-image in the
corresponding universal group. An integer n denotes a cyclic group of order n,
while [n] denotes an arbitrary soluble group of order n. We write A.B for an
extension of a group A by a group B, while A : B denotes a split extension.
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3. The point stabilizer is non-maximal

Lemma 3.1. Suppose that G is a simple Chevalley group acting on a linear space
S with G, a non-maximal parabolic subgroup of G. Then a line stabilizer, G ¢, is
a parabolic subgroup of G and p is not significant.

Proof. Let @ be the set of positive roots associated with G so that

For r € II be a fundamental root define the group U, =[] cq+\ 3 Xs-

Now suppose that G,, is the parabolic subgroup P; where J is a subset of
the set of fundamental roots II. Since G, is non-maximal in G we know that at
least two fundamental roots, say s and ¢, do not lie in J.

For s a fundamental root recall the standard homomorphism ¢, from SL(2, ¢)

into (X, X_g). Then
0 1
Ns = Qp (_1 0) .

Now ny is an involution lying outside of GG, but which normalizes U inside of
G,. Hence U, fixes at least two points and hence the line between them. So
G ¢ contains a G-conjugate of U,. Similarly G¢ contains a G-conjugate of U,. In
fact G¢ contains a G-conjugate of U, : H and U, : H.

Now consider a Sylow p-subgroup of G¢. For some choice of £ this lies
inside U. Now observe that, since G = BN B and since both U, and U are
normal in B,

U <U
— bynbyUsby 'n~'b; ! < U where g = bynby
— nUn ' <U
— nU,n~ ! =Us,.

Thus U only contains one G-conjugate of Us; and one G-conjugate of Uy,
namely themselves. Furthermore they generate U. Thus G¢ contains B =U : H
as required.

Now p does not divide into b and so p is not significant. O
Lemma 3.2. Suppose that G is a twisted simple group acting on a linear space S

with G, a non-maximal parabolic subgroup of G. Then G ¢ is a parabolic subgroup
of G and p is not significant.



page 5/ 100

go back

full screen

close

quit

ACADEMIA
PRESS

) =

UNIVERSITEIT
GENT

Proof. Let J be a p-orbit of II. Then observe that

vi=( II x)nov

red+,rgd’

is a subgroup of U; which is normalized by <Xé+, X, - >
J J

Let w be the element in W' which maps every positive root of ®; to a neg-
ative root of ® ;. Then, by [?, Proposition 13.5.2], there exists n}, € N! which
maps onto w} in the natural way. Now w? can be thought of as a reflection and
(n})? e H'.

Now suppose that G, lies inside the parabolic subgroup P\ (s,x} where J
and K are distinct p-orbits of II. Then n}; and n}. do not lie in G,,. By the same
argument as above this means that G¢ contains a G-conjugate of U} : H! and
Uy HL.

As before consider a Sylow p-subgroup of G¢. For some choice of £ this
lies inside U'. Furthermore just as before U' only contains one G-conjugate
of U} and one G-conjugate of U} and these generate U. Thus Gg contains
B! = U!: H! and we have a contradiction. O

4. The point-stabilizer is maximal

In this section take GG to be a Chevalley group. Our argument generally trans-
lates in a straightforward way to the twisted groups and so we will not repeat
it; we will comment on any deviations as we proceed.

For convenience we begin by showing that G = 2F4(2)’ cannot act line-
transitively upon our linear space S. This is established by examining possible
values for v and observing that in all cases v — 1 is divisible by a large prime ¢
which does not divide the order of G. Thus ¢ must divide into k(k — 1) and this
fact can be used to rule out all possibilities.

Take r € II and suppose that G, = P; where I1 = J U {r}. By the argument
in the previous section it is clear that G¢ > U, L\ g where Ly g is the Levi
complement of the parabolic group P\ x and K = {r} U K’ where

K' = {fundamental roots which are not orthogonal to r}.

Observe first of all that, for the Chevalley groups, if G¢ contains any p-ele-
ment h from
(Up, Xy, X )\U,

then G¢ > (h,U,.H) = BY for some g € G. This is a contradiction.
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For the twisted groups this argument does not work in all cases. We need
to show that U} : H is maximal in all conjugates of the Borel of which it is a
subgroup. It is sufficient to show that H acts transitively upon the set of non-
identity elements of X } We refer to [?, Tables 2.4 and 2.4.7] to see that this is

only true when X! is of type I, II, III and VI as listed there. The cases we have
n2+4n

excluded are when G = 2A,(g), n even, with G, = "[¢" ¢ | : GL=z(¢?); and
when G = 2F4(q) with G, = [¢*?] : GLa(¢?).

Now we will investigate the possibility that there exists g € G¢\(Pm\ g/ NGg).
Suppose that this is the case. Since we have a BN-pair we can write g = u1n,,u
where uy,u € U and n,, € N maps onto w € W under the natural epimorphism.
In fact, since G¢ > U, H we can assume that g = z,.(t)n,z,(u) where ¢, u are
elements of the finite field of order q.

Now suppose that w(r) # +r (and note that then w—*(r) # +r). We seek to
prove the following

97 Urg N (Up, Xp, X)) £ Uy (D)

Clearly we can replace g by n,, since X, normalizes U, and (X,, X_,). So
we are required to prove

Ny Upny N Uy, Xy, X)) £ U,
Since w(r) # +r we know that, for some s € {r, —r},

ansn:Ul < U,.

This implies (1) and so there exists a p-element in G¢ lying in
(Ur, Xp, X_p)\Uy.

This element will normalize U, and so G¢ > B. This is a contradiction.

Thus if there exists g € G¢\(Pq\ g N Ge) then we can take g = uin,u as
before and w(r) = £r. In fact, just as before, we can without loss of generality
assume that g = x,.(t)ny, . (u).

Now suppose that for all s, adjacent fundamental roots of r, we have w(s)
in U Ppp\ g Since Ge > Ly g We can assume that w(s) is positive for all
fundamental roots not equal to ». But then, by [?, Theorem 2.2.2], w = w,
or w = 1 (see also [?, Lemma 13.1.3] for the twisted case). However G ¢ also
contains n, and so we can assume that g = x4,)z,(u). In this case though

g € P\ k- which is a contradiction.
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Thus there exists an adjacent fundamental root of r, s say, such that w(s)
is negative. Define h := gx,(v)g~!. Clearly, as before, we can suppose that
h = (V1) N, 2 (V2).

Now observe that g € (X,., X_,) Ny ((X,, X_,.)). Suppose that h also lies in
(X, X_r)Nn({(X,, X_,)). Then this would imply that

25(v) € (Xp, XY Ny ((Xy, X_,)).

This is clearly impossible, see [?, Corollary 8.4.4, Proposition 13.5.3].
Thus h & (X, X_,)Nny((X,, X_,)). This implies that w,(r) # £r. Further-

more since w(s) € & U P fe h ¢ Pm k. Then we can apply the same argu-
ment to h as we applied to g above. This will lead us to conclude that G¢ > B

which is a contradiction.

This leads to the following result:

Lemma 4.1. Suppose that G is a Chevalley group with G, = Pr\,. Then
UrLmkg < Ge < Pmk-

Suppose alternatively that G is a twisted group with G, = Pgyp\ ;. Suppose
further that G # ?F4(q)" and G # %A,,(q), n even. Then

ULy < Ge < P\

where K = J U K’ and K' is the set of orbits of fundamental roots in 8 which
contain roots not orthogonal to some root in J.

We record the following lemma of Saxl:

Lemma 4.2. [?, Lemma 2.6] If X is a group of Lie type of characteristic p acting
on cosets of a maximal parabolic subgroup, then there is a unique subdegree which
is a power of p except where X is one of PSL,,(q), PQ3. (¢) (m odd) or Eg(q).

For the moment let us exclude the exceptions listed in these two lemmas;
then Lemma 4.2 suggests that if G, = P, then G¢ contains some G-conjugate
of L,. This clearly contradicts Lemma 4.1. Note also that even in the listed ex-
ceptions of Lemma 4.2 many of the maximal parabolic subgroups have a unique
subdegree which is a power of p.

4.1. The twisted exceptions

We consider the exceptional cases listed in Lemma 4.1. In fact we need only con-

'n2+4'n

sider when (G, G,,) is one of <2An(q),A[q 1 ].GL%(qQ)), n even; or <2F4(q),
4] GLa(?)), ¢ =220 > 1.
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