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Linear spaces with significant characteristic
prime

Nick Gill

Abstract

Let G be a group with socle a simple group of Lie type defined over the
finite field with q elements where q is a power of the prime p. Suppose that
G acts transitively upon the lines of a linear space S. We show that if p is
significant then G acts flag-transitively on S and all examples are known.
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1. Background and statement of result

A linear space S is an incidence structure of points and lines such that any two
points are incident with exactly one line. Also S is non-trivial provided every
line contains at least three points and there are at least two lines; all linear
spaces considered in this paper will be presumed to be non-trivial. A flag is a
pair (α,L) where α is a point incident with a line L.

Let S be a finite linear space admitting an automorphism group G which is
transitive on lines. Then S is said to have parameters b (the number of lines), v
(the number of points), k (the number of points incident with a line) and r (the
number of lines incident with a point).

Camina, Neumann and Praeger [?] have defined a prime p to be significant
for the space S if it divides into (b, v − 1). They then show that if P is a Sylow
p-subgroup of G and Gα is a point-stabilizer in G then Gα ≥ NG(P ) [?, Lemma
6.1].

The finite linear spaces which admit a flag-transitive almost simple group
have been classified in [?, ?]. As part of the program to extend this classification



I I G

JJ II

J I

page 2 / 100

go back

full screen

close

quit

ACADEMIA
PRESS

to those linear spaces which admit a line-transitive almost simple group we
prove the following theorem:

Theorem 1.1. Suppose that a group G has socle a group of Lie type of charac-
teristic p. Suppose furthermore that G acts transitively upon the lines of a linear
space S with significant prime p. Then G acts transitively upon the flags of S and
we have one of the following examples:

• U3(q) ≤ G ≤ PΓU(3, q) and S is a Hermitian unital.

• 2G2(q) ≤ G ≤ Aut(2G2(q)) and S is a Ree unital.

The remainder of this paper will be occupied with a proof of Theorem 1.1.
The suppositions given in Theorem 1.1 will be assumed from here on.

2. A reduction to simplicity

Observe that, by [?, Lemma 6.1] mentioned above, a point-stabilizer Gα must
contain a parabolic subgroup of the socle of G. We can use this fact along with
the notion of exceptionality to immediately simplify our task.

Let G0 be a normal subgroup in a group G which acts upon a set P. Then
(G,G0,P) is called exceptional if the only common orbital of G0 and G in their
action upon P is the diagonal (see [?]). Then we have the following result:

Lemma 2.1. [?, Lemma 26] Suppose a group G acts line-transitively on a finite
linear space S; suppose furthermore that G0 is a normal subgroup which is not
line-transitive on S; finally suppose that |G : G0| = t, a prime.

Then either S is a projective plane, or (G,G0,P) is exceptional where P is the
set of points in S.

Now consider a pair (G,S) satisfying the suppositions of Theorem 1.1. Then
S is not a projective plane since the finite projective planes are precisely the
finite linear spaces with no significant prime [?, 3.2.3]. Thus if G contains a
normal subgroup G0 of index a prime t which is not line-transitive on S then
(G,G0,P) is exceptional.

However all of the exceptional triples of this form are enumerated in [?, The-
orem 1.5]. In all cases a point-stabilizer does not contain a parabolic subgroup
of the socle of G. We can conclude from this that our socle itself is transitive on
the lines of S.

In fact, referring to [?], we see that if the socle ofG has Lie rank 1 then it acts
2-transitively upon its parabolic subgroups. Thus the socle of G is 2-transitive
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upon the points of S and hence is transitive on the flags of S (c.f. [?]). Then,
by [?], the actions listed in Theorem 1.1 are the only examples.

Thus for the remainder of this paper we add the following suppositions to
those mentioned in Theorem 1.1:

• We suppose that G is simple;

• We suppose that G has Lie rank greater than 1.

We will show that these suppositions lead to a contradiction. We will do this by
taking Gα to be a parabolic subgroup of G and then examining potentional line
stabilizers, GL.

2.1. Group theory notation

In our use of the theory of groups of Lie type we will use the notation of Carter
[?]. Write F for the finite field with q elements. Firstly suppose that G is a
Chevalley group. We write Φ and Π for the set of roots, and the set of funda-
mental roots respectively, associated with G. We have the following standard
subgroups: For s ∈ Φ, Xs = {xs(u) : u ∈ F} is the root group associated with s,
U is the Sylow p-group of G generated by the positive root subgroups of G, H is
a maximal torus in G such that B = UH is a Borel subgroup of G, N = NG(H)

and W ∼= N/H is the associated Weyl group of G. A parabolic subgroup of G
is any subgroup of G which contains a G-conjugate of B. The Lie rank of G is
equal to |Π|.

For G a twisted simple group, consider G as a subgroup of G∗ the untwisted
simple group. Let Φ and Π for the set of roots, and the set of fundamental roots
respectively, associated with G∗ and take ρ to be the non-trivial symmetry of the
Dynkin diagram. Take W 1 to be the Weyl group of G, so that W 1 is a subgroup
of W , the Weyl group of G∗. The subgroups U1, H1, B1 and N1 are defined as
usual. Write P for the partition of Π into ρ-orbits. The Lie rank of G is equal to
|P|.

We will sometimes precede the structure of a subgroup of a projective group
with ˆ which means that we are giving the structure of the pre-image in the
corresponding universal group. An integer n denotes a cyclic group of order n,
while [n] denotes an arbitrary soluble group of order n. We write A.B for an
extension of a group A by a group B, while A : B denotes a split extension.
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3. The point stabilizer is non-maximal

Lemma 3.1. Suppose that G is a simple Chevalley group acting on a linear space
S with Gα a non-maximal parabolic subgroup of G. Then a line stabilizer, GL, is
a parabolic subgroup of G and p is not significant.

Proof. Let Φ+ be the set of positive roots associated with G so that

U =
∏

s∈Φ+

Xs.

For r ∈ Π be a fundamental root define the group Ur =
∏
s∈Φ+\{r}Xs.

Now suppose that Gα is the parabolic subgroup PJ where J is a subset of
the set of fundamental roots Π. Since Gα is non-maximal in G we know that at
least two fundamental roots, say s and t, do not lie in J .

For s a fundamental root recall the standard homomorphism φs from SL(2, q)

into 〈Xs, X−s〉. Then

ns := φr

(
0 1

−1 0

)
.

Now ns is an involution lying outside of Gα but which normalizes Us inside of
Gα. Hence Us fixes at least two points and hence the line between them. So
GL contains a G-conjugate of Us. Similarly GL contains a G-conjugate of Ut. In
fact GL contains a G-conjugate of Us : H and Ut : H.

Now consider a Sylow p-subgroup of GL. For some choice of L this lies
inside U . Now observe that, since G = BNB and since both Us and U are
normal in B,

Ugs < U

=⇒ b1nb2Usb
−1
2 n−1b−1

1 < U where g = b1nb2

=⇒ nUsn
−1 < U

=⇒ nUsn
−1 = Us.

Thus U only contains one G-conjugate of Us and one G-conjugate of Ut,
namely themselves. Furthermore they generate U . ThusGL containsB = U : H

as required.

Now p does not divide into b and so p is not significant.

Lemma 3.2. Suppose that G is a twisted simple group acting on a linear space S
withGα a non-maximal parabolic subgroup ofG. ThenGL is a parabolic subgroup
of G and p is not significant.
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Proof. Let J be a ρ-orbit of Π. Then observe that

U1
J =

( ∏

r∈Φ+,r 6∈Φ+
J

Xr

)
∩ U1

is a subgroup of U1 which is normalized by
〈
X1

Φ+
J

, X1
Φ−J

〉
.

Let w1
J be the element in W 1 which maps every positive root of ΦJ to a neg-

ative root of ΦJ . Then, by [?, Proposition 13.5.2], there exists n1
J ∈ N1 which

maps onto w1
J in the natural way. Now w1

J can be thought of as a reflection and
(n1
J)2 ∈ H1.

Now suppose that Gα lies inside the parabolic subgroup PP\{J,K} where J
and K are distinct ρ-orbits of Π. Then n1

J and n1
K do not lie in Gα. By the same

argument as above this means that GL contains a G-conjugate of U 1
J : H1 and

U1
K : H1.

As before consider a Sylow p-subgroup of GL. For some choice of L this
lies inside U1. Furthermore just as before U 1 only contains one G-conjugate
of U1

J and one G-conjugate of U1
K and these generate U . Thus GL contains

B1 = U1 : H1 and we have a contradiction.

4. The point-stabilizer is maximal

In this section take G to be a Chevalley group. Our argument generally trans-
lates in a straightforward way to the twisted groups and so we will not repeat
it; we will comment on any deviations as we proceed.

For convenience we begin by showing that G = 2F4(2)′ cannot act line-
transitively upon our linear space S. This is established by examining possible
values for v and observing that in all cases v − 1 is divisible by a large prime t
which does not divide the order of G. Thus t must divide into k(k − 1) and this
fact can be used to rule out all possibilities.

Take r ∈ Π and suppose that Gα = PJ where Π = J ∪ {r}. By the argument
in the previous section it is clear that GL ≥ UrLΠ\K where LΠ\K is the Levi
complement of the parabolic group PΠ\K and K = {r} ∪K ′ where

K ′ = {fundamental roots which are not orthogonal to r}.

Observe first of all that, for the Chevalley groups, if GL contains any p-ele-
ment h from

〈Ur, Xr, X−r〉\Ur
then GL ≥ 〈h, UrH〉 = Bg for some g ∈ G. This is a contradiction.
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For the twisted groups this argument does not work in all cases. We need
to show that U1

J : H is maximal in all conjugates of the Borel of which it is a
subgroup. It is sufficient to show that H acts transitively upon the set of non-
identity elements of X1

J . We refer to [?, Tables 2.4 and 2.4.7] to see that this is
only true when X1

J is of type I, II, III and VI as listed there. The cases we have

excluded are when G = 2An(q), n even, with Gα = [̂q
n2+4n

4 ] : GLn
2

(q2); and
when G = 2F4(q) with Gα = [q22] : GL2(q2).

Now we will investigate the possibility that there exists g ∈ GL\(PΠ\K′∩GL).
Suppose that this is the case. Since we have a BN -pair we can write g = u1nwu

where u1, u ∈ U and nw ∈ N maps onto w ∈W under the natural epimorphism.
In fact, since GL ≥ UrH we can assume that g = xr(t)nwxr(u) where t, u are
elements of the finite field of order q.

Now suppose that w(r) 6= ±r (and note that then w−1(r) 6= ±r). We seek to
prove the following

g−1Urg ∩ 〈Ur, Xr, X−r〉 6≤ Ur. (1)

Clearly we can replace g by nw since Xr normalizes Ur and 〈Xr, X−r〉. So
we are required to prove

n−1
w Urnw ∩ 〈Ur, Xr, X−r〉 6≤ Ur.

Since w(r) 6= ±r we know that, for some s ∈ {r,−r},

nwXsn
−1
w < Ur.

This implies (1) and so there exists a p-element in GL lying in

〈Ur, Xr, X−r〉\Ur.

This element will normalize Ur and so GL ≥ B. This is a contradiction.

Thus if there exists g ∈ GL\(PΠ\K′ ∩ GL) then we can take g = u1nwu as
before and w(r) = ±r. In fact, just as before, we can without loss of generality
assume that g = xr(t)nwxr(u).

Now suppose that for all s, adjacent fundamental roots of r, we have w(s)

in Φ+ ∪ Φ−Π\K . Since GL > LΠ\K we can assume that w(s) is positive for all
fundamental roots not equal to r. But then, by [?, Theorem 2.2.2], w = wr
or w = 1 (see also [?, Lemma 13.1.3] for the twisted case). However GL also
contains nr and so we can assume that g = x±r(t)xr(u). In this case though
g ∈ PΠ\K′ which is a contradiction.
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Thus there exists an adjacent fundamental root of r, s say, such that w(s)

is negative. Define h := gxs(v)g−1. Clearly, as before, we can suppose that
h = xr(v1)nw1

xr(v2).

Now observe that g ∈ 〈Xr, X−r〉NN (〈Xr, X−r〉). Suppose that h also lies in
〈Xr, X−r〉NN (〈Xr, X−r〉). Then this would imply that

xs(v) ∈ 〈Xr, X−r〉NN (〈Xr, X−r〉).

This is clearly impossible, see [?, Corollary 8.4.4, Proposition 13.5.3].

Thus h 6∈ 〈Xr, X−r〉NN (〈Xr, X−r〉). This implies that w1(r) 6= ±r. Further-
more since w(s) 6∈ Φ+ ∪ Φ−Π\K , h 6∈ PΠ\K′ . Then we can apply the same argu-
ment to h as we applied to g above. This will lead us to conclude that GL ≥ B

which is a contradiction.

This leads to the following result:

Lemma 4.1. Suppose that G is a Chevalley group with Gα = PΠ\r. Then

UrLΠ\K ≤ GL ≤ PΠ\K′ .

Suppose alternatively that G is a twisted group with Gα = PP\J . Suppose
further that G 6= 2F4(q)′ and G 6= 2An(q), n even. Then

U1
JLP\K ≤ GL ≤ PP\K′

where K = J ∪ K ′ and K ′ is the set of orbits of fundamental roots in P which
contain roots not orthogonal to some root in J .

We record the following lemma of Saxl:

Lemma 4.2. [?, Lemma 2.6] If X is a group of Lie type of characteristic p acting
on cosets of a maximal parabolic subgroup, then there is a unique subdegree which
is a power of p except where X is one of PSLn(q), PΩ+

2m(q) (m odd) or E6(q).

For the moment let us exclude the exceptions listed in these two lemmas;
then Lemma 4.2 suggests that if Gα = Pr then GL contains some G-conjugate
of Lr. This clearly contradicts Lemma 4.1. Note also that even in the listed ex-
ceptions of Lemma 4.2 many of the maximal parabolic subgroups have a unique
subdegree which is a power of p.

4.1. The twisted exceptions

We consider the exceptional cases listed in Lemma 4.1. In fact we need only con-

sider when (G,Gα) is one of
(

2An(q), [̂q
n2+4n

4 ].GLn
2

(q2)
)

, n even; or
(

2F4(q),

[q22] : GL2(q2)
)

, q2 = 21+2a, a ≥ 1.
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