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Transitive eggs

John Bamberg Tim Penttila

Abstract

We prove that a pseudo-oval or pseudo-ovoid (that is not an oval or
ovoid) admitting an insoluble transitive group of collineations is elementary
and arises over an extension field from a conic, an elliptic quadric, or a
Suzuki-Tits ovoid.

Keywords: pseudo-oval, pseudo-ovoid, egg, translation generalised quadrangle, transi-
tive
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1. Introduction

An egg of the projective space PG(2n + m − 1, q) is a set E of qm + 1 sub-
spaces of dimension (n− 1) such that every three are independent (i.e., span a
(3n− 1)-dimensional subspace), and such that each element of E is contained
in a common complement to the other elements of E (i.e., each element of E is
contained in an (n+ m− 1)-dimensional subspace having no point in common
with any other element of E). The theory of eggs is equivalent to the theory
of translation generalised quadrangles (see [20, Chapter 8]). If q is even, then
m = n or m = 2n (see [20, 8.7.2]), and for q odd, the only known examples
of eggs have m = n or m = 2n. Now an ovoid of PG(3, q) is an example of an
egg where m = 2n = 1; hence an egg having m = 2n is called a pseudo-ovoid.
Likewise, an oval of PG(2, q) is an egg where m = n = 2, and henceforth, a
pseudo-oval is an egg with m = n. If O is an oval of PG(2, qn), then by field
reduction from GF(qn) to GF(q), one obtains a pseudo-oval of PG(3n − 1, q).
Such pseudo-ovals are called elementary. Likewise, field reduction of an ovoid
of PG(3, qn) yields an elementary pseudo-ovoid of PG(4n − 1, q). All known
pseudo-ovals are elementary, and in even characteristic, every known example
of a pseudo-ovoid is elementary. There is some conflict over the definition of a
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classical pseudo-ovoid. In [6] and [24], a classical pseudo-ovoid is one which
arises by field reduction from an elliptic quadric. However, some authors (e.g.,
Cossidente and King [9]) also include the Suzuki-Tits ovoids in their definition
of a classical ovoid. Such confusion will be avoided in this paper by not using
the term classical at all; so we will take the perhaps cumbersome approach of
stating our results explicitly.

By Segre’s Theorem [22], every oval of PG(2, q), q odd, is a conic. Similarly,
every ovoid of PG(3, q), for q odd, is an elliptic quadric, and this was proved
independently by Barlotti [5] and Panella [19]. In the case where q is even,
there also exist the Suzuki-Tits ovoids which are inequivalent to elliptic quadrics.
The second author and O’Keefe, building on the work of Abatangelo and Larato,
showed that the ovals of PG(2, q), q even, which admit a transitive subgroup
of PGL3(q) are conics (see [1] and [18]). Similarly, Bagchi and Sastry [2]
showed that the ovoids of PG(3, q), q even, which admit a transitive subgroup
of PGL4(q) are elliptic quadrics or Suzuki-Tits ovoids. Brown and Lavrauw [6]
have shown that an egg of PG(4n − 1, q), q even, contains a pseudo-conic if
and only if it is elementary and arises from an elliptic quadric. Recently, J. A.
Thas and K. Thas [24] have shown that every 2-transitive pseudo-oval in even
characteristic is elementary and arises from a conic. In this paper, we prove the
following result:

Main Theorem. Suppose E is a pseudo-oval or pseudo-ovoid (that
is not an oval or ovoid) admitting an insoluble transitive group of
collineations. Then E is elementary and arises from a conic, an el-
liptic quadric, or a Suzuki-Tits ovoid.

2. The approach

A divisor x of qd − 1 (where d > 3) is primitive if x does not divide qi − 1 for
each positive integer i < d. By a result of Zsigmondy [25], such divisors exist
if (q, d) 6= (2, 6). Therefore, if G acts transitively on a set of size qm + 1 (and
(q,m) 6= (2, 3)), then a primitive prime divisor of q2m−1 divides the order of G.
Such groups have an irreducible Sylow subgroup, and from this information,
the structure of G can be described in great detail (see [12]). The authors
have used this argument to classify m-systems of polar spaces which admit an
insoluble transitive group (see [3]). From the definitions of a pseudo-ovoid and
pseudo-oval, we can apply a similar argument here; which is dependent on the
Classification of Finite Simple Groups.

Note. Suppose E is a pseudo-oval (resp. pseudo-ovoid) of PG(2n + m − 1, q)

where q = pf for some prime p. Under field reduction from GF(q) to GF(p),
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there arises a pseudo-oval (resp. pseudo-ovoid) Ẽ of PG((2n + m)f − 1, p).
If E admits an insoluble transitive subgroup of PΓL2n+m(q), then Ẽ admits an
insoluble transitive subgroup of PΓL(2n+m)f (p) = PGL(2n+m)f (p). We then
apply the main result of this paper to Ẽ to establish that it is elementary, from
which it follows that E is elementary provided that it is not an oval or ovoid.
Hence throughout this paper, we will assume without loss of generality that our
given pseudo-oval or pseudo-ovoid admits an insoluble transitive subgroup of
the homography group PGL2m+n(q).

3. The pseudo-oval case

A pseudo-oval of PG(d − 1, q) (where d is a multiple of 3) is a set of qe/2 + 1

subspaces of dimension d/3 − 1, where e = 2
3d. This phrasing makes it clear

how we apply the results of [4].

3.1. Even characteristic

If q is even, then the tangent spaces of a pseudo-oval E all have a (d/3−1)-space
in common; the nucleus of E (see [20, pp. 182]). Since G must fix the nucleus,
we have that G acts reducibly in this case. Let N be the the nucleus of E and
consider the quotient map π from PG(d−1, q) to PG(d−1, q)/N , and note that
the codomain can be identified with PG(2d/3 − 1, q). The image of E under π
is a spread S of PG(2d/3− 1, q) (see [20, pp. 182]). Moreover, we have that G
acts transitively on this spread, and by the Andre/Bruck-Bose construction, we
obtain a flag-transitive affine plane admitting an insoluble group. By [7], this
affine plane is Desarguesian or a Lüneburg plane, so in particular, it follows that
E admits a 2-transitive group. So by [24, §8], we have that E is an elementary
pseudo-oval arising from a conic of PG(2, qd/3).

3.2. Odd characteristic

Let E be a pseudo-oval of PG(d− 1, q), where q is odd. Then each element E of
E is contained in a unique 2d/3− 1-subspace TE of PG(d− 1, q) which is called
the tangent space at E. By [20, pp. 182], each point of PG(d−1, q) is contained
in 0 or 2 tangent spaces of E .

Theorem 3.1. Let q = pf where p is an odd prime, let d be an integer divisible by
3. If an insoluble subgroup G of PGLd(q) acts transitively on a pseudo-oval E of
PG(d− 1, q), then E is elementary and is obtained by field reduction of a conic of
PG(2, qd/3).
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Proof. Let E be a pseudo-oval of PG(d − 1, q) admitting a group G 6 PGLd(q)

that is insoluble and acts transitively on E , and let H be the stabiliser in G of an
element of E . Note that the number of elements of E is qe/2 + 1 where e = 2/3d.
We may assume that qd/3 > 16 as it was shown by the second author in [21]
that if qd/3 6 16, then E is elementary and is obtained by field reduction of a
conic of PG(2, qd/3). Let Ĝ be a preimage of G in GLd(q). Then there exists a
subgroup Ĥ of Ĝ of index qe/2 + 1 such that the image of Ĥ in PGLd(q) is H.
So we can apply [4, Theorem 3.1] to Ĝ. There are six cases to consider from
this theorem: the Classical, Imprimitive, Reducible, Extension Field (case (b)),
Symplectic Type, and Nearly Simple examples. Straight away, we have that the
Symplectic examples do not occur as d is a multiple of 3. By [4, Lemma 13], Ĝ is
not in the Classical examples case. So we are left with four families to consider:
the Reducible, Imprimitive, Extension Field, and the Nearly simple examples.

Let us first suppose we are in the Imprimitive examples case. So by [4, The-
orem 3.1], we have that d = 9, q ∈ {3, 5}, and Ĝ preserves a decomposi-
tion of V9(q) into 1-spaces. So in particular, Ĝ 6 GL1(q) o S9. We treat both
cases, q = 3 and q = 5, simultaneously. Let µ be the natural projection map
from GL1(q) o S9 onto S9. Now µ(Ĝ) is insoluble and primitive (of degree 9),
and hence µ(Ĝ) ∈ {PSL2(8),PΓL2(8), A9, S9} (see [10, Appendix B]). More-
over, µ(Ĝ) is 3-transitive in its degree 9 action. Let B be the kernel of µ. So
|B| = (q − 1)9 ∈ {29, 218}. Now G ∩ B is a nontrivial normal subgroup of G
and hence G ∩ B contains the subgroup K of B consisting of diagonal matri-
ces with entries ±1. Since |Ĝ : Ĥ| ∈ {28, 126}, we see that a subgroup J of
K with index at most 2, is contained in Ĥ. The only J -invariant subspaces of
V9(q) are the spans of vectors from the canonical basis; coordinate subspaces.
Let E be an element of the pseudo-oval. We may assume (up to conjugacy)
that E is J -invariant and so it is a coordinate plane. Now the action of µ(Ĝ)

is 3-transitive, and so the orbit of E under Ĝ on planes is ( 9
3 ) = 84. So the

Imprimitive examples case does not arise.

Let us now suppose we are in the Nearly simple case. So S 6 G 6 Aut(S)

where S is a finite nonabelian simple group, and Ĝ is irreducible. By using the
fact that qd/3 > 16, we have only two subcases to consider: the Alternating
group case and the Natural-characteristic case. In the former, we have S =

A10, d = 9, q = 3, and the vector space V9(3) can be identified with the fully
deleted permutation module for S10 over GF(3). It can be readily checked that
G does not have a subgroup of index 33 + 1, and so this case does not arise. In
the Natural-characteristic case, we have that d = 9 and S = PSL3(q2) (by [4,
Theorem 2.1]). Now by [8], the minimum degree of a nontrivial representation
of S is (q6 − 1)/(q2 − 1). However

q3 + 1 = (q6 − 1)/(q3 − 1) < (q6 − 1)/(q2 − 1)
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and so Ĝ does not have a transitive action of degree q3 + 1. Therefore, we have
that Ĝ is not in the Nearly Simple examples case.

Now suppose we are in the Field Extension examples case. We have that
Ĝ is irreducible and there is a divisor b of 2d/3 (where b 6= 1) such that Ĝ
preserves a field extension structure Vd/b(qb) on Vd(q). Moreover, G∩GLd/b(q

b)

has a subgroup of index (qe/2 + 1)/x, for some x, and so if d/b > 3, then we
can apply [4, Theorem 3.2] to G ∩ GLd/b(q

b) with parameters qb, d/b, and e/b
playing the roles of q, d, and e respectively. So let us assume that d/b > 3.
Since d/b 6= e/b, we do not have the Classical examples case. Note that if Ĝ
fixes a subspace over the field extension qb, then it also fixes a subspace that is
written over the field GF(q). Hence Ĝ∩GLd/b(q

b) is irreducible in its action on
PG(d/b−1, qb). We can also assume that G∩GLd/b(q

b) does not preserve a field
extension structure by choosing b to be maximal. Since qb is not prime, we can
eliminate the Imprimitive examples, Symplectic Type examples, and the Nearly
Simple examples. Therefore d/b = 3 and e/b = 2. By some old work of Mitchell
[17], the only absolutely irreducible insoluble maximal subgroups of PSL3(qb)

are

(i) PSL2(qb);

(ii) PSU3(qb) when qb is a square;

(iii) A6 when p ≡ 1, 2, 4, 7, 8, 13 mod 15 (and GF(qb) contains the squares of
5 and −3);

(iv) PSL2(7) when p ≡ 1, 2, 4 mod 7.

In the case that PSU3(qd/3) 6 G∩PGL3(qd/3) 6 PΓL3(qd/3), we have qd/3+1

divides qd/2(qd/3 − 1)(qd/2 + 1). This is a contradiction as qd/3 + 1 is coprime to
qd/2 and qd/3 − 1 (note that q is odd). So this case does not arise. In the case
that A6 6 G∩PGL3(qd/3) 6 S6, we have qd/3 +1 divides 6! (note that qd/3 +1 is
coprime to |G : G∩PGL3(qd/3)|). However, qd/3 + 1 divides 6! only if q = 3 and
d = 6 (so b = 2). So this case does not arise as A6 does not embed in PΓL3(qb)

in characteristic 3. In the case that PSL2(7) 6 G ∩ PGL3(qd/3) 6 PGL2(7), we
have qd/3 + 1 divides 336. However, qd/3 + 1 divides 336 only if q = 3 and d = 9

(so b = 3). So this case does not arise as PSL2(7) does not embed in PΓL3(qb)

in characteristic 3. Hence PSL2(qb) 6 G.

Let J = PSL2(qd/3). It is a classical result, but can also be found in [8],
that PSL2(qd/3) (where d > 2) has a unique conjugacy class of subgroups
of index qd/3 + 1. It follows from [14, Proposition 4.3.17], that there is a
unique characteristic class of subgroups of PGLd(q) isomorphic to J (it is not
true in general that there is a unique conjugacy class of such subgroups). Let
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ϕ : V3(qd/3)→ Vd(q) denote the natural vector space isomorphism here, and let
C be a conic of V3(qd/3) admitting J . Let α and β be two distinct points of C.
Then ϕ(α) and ϕ(β) are d/3-dimensional vector subspaces of Vd(q). Note that J
has a unique conjugacy class of subgroups of index qd/3 + 1, and hence we can
assume that the stabiliser of an element E of E is identical to the stabiliser Jα.
Now suppose we have a third vector v which is neither α nor β. Then

|vJα | = |Jα : Jα,v| = |Jα : Jα,β ||Jα,β : Jα,β,v| = qd/3|Jα,β : Jα,β,v|.
Now J is a Zassenhaus group (i.e., a 2-transitive group such that the stabiliser
of any three points is trivial) and so Jα,β,v = 1. Therefore

|vJα | = qd/3
qd/3 − 1

gcd(2, qd/3 − 1)

which is not a prime power. Now any Jα-invariant d/3-subspace of Vd(q) is a
union of orbits of Jα. Therefore, it follows that the only Jα-invariant subspace
of Vd(q) is ϕ(α). Since W is Jα-invariant, we have that W = ϕ(α) and hence E
is the image of C under ϕ. Therefore, E is elementary and is obtained by field
reduction of a conic of PG(2, qd/3).

Reducible examples

We have that Ĝ fixes a subspace/quotient space U of Vd(q) and dim(U) = u >
2
3
d. In fact, it follows that u = 2/3d by noting that a primitive divisor of q(2/3)d−

1 also divides |Ĝ|. So Ĝ 6 qu(d−u) · (GLu(q)×GLd−u(q)). We may assume that
U is a subspace, as for q odd, each point of U is in 0 or 2 tangent spaces of E .
Consider the set of intersections

M = {TE ∩ U : E ∈ E}.
Note that each element ofM has a common dimension as G acts transitively on
M, and thus dim(TE ∩ U) = d/3 for all E ∈ E . Therefore ĜU acts transitively
on a set of (qd/3 + 1)/δ subspaces of dimension d/3 where δ = 1, 2. This implies
that ĜU has a subgroup of index (qd/3 + 1)/δ, and so we can apply [4, Theorem
3.2] with q, 2

3d, and 2
3d playing the roles of q, d, and e respectively. In the

following subcases, we have that G has a normal insoluble subgroup S, which
is given explicitly. Moreover, S must have a union of orbits on (d/3)-spaces of
U of size (qd/3 + 1)/δ where δ = 1, 2.

Reducible/nearly simple examples

In this case, S 6 GU ∩PGLd(q) 6 Aut(S) where S is a finite nonabelian simple
group. Here we have four subcases.
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Alternating group case

Here S = Ar and the vector space Vu(q) can be identified with the fully deleted
permutation module for Sr over GF(q). We have that u is r−1 or r−2 (according
to whether p does not or does divide n respectively), and qu = pu = 36, 56.
Suppose S = A7, u = 6, and q = 3. Then S stabilises M and hence S has a
union of orbits on planes of PG(5, 3) of size 14 or 28. Now A7, in its unique
irreducible representation in PG(5, 3) has the following orbit lengths on planes
(n.b., the exponents denote multiplicities):

[352, 1054, 1403, 2104, 3156, 42010, 6306, 8404, 126015].

Therefore this case does not arise. Now suppose q = 5. It can be shown using
GAP [11] that the S-invariant sets of planes of size 63 or 126 do not cover every
point either 0 or 2 times. Therefore this case does not arise.

Cross-characteristic case

The table below lists the possibilities for this case.

S d q u

PSL2(7) 9 3 6

PSL2(13) 9 3 6

PSU3(32) 9 5 6

Now PSL2(13) acts transitively on the points of PG(5, 3), and so this case
does not arise. Suppose S = PSL2(7), u = 6, and q = 3. Then S stabilisesM
and hence S has a union of orbits on planes of PG(5, 3) of size 14 or 28. Now
by using GAP [11] and the unique irreducible representation for S in PG(5, 3),
we have that S has the following orbit lengths on planes:

[74, 218, 2812, 4218, 5612, 84100, 168140].

None of the thirteen S-invariant sets of planes of size 28 have each point of
PG(5, 3) contained in a constant number (0 or 2) of elements of the set. Like-
wise, of all the six S-invariant sets of size 14, none have each point of PG(5, 3)

contained in a constant number of elements of the set. Therefore, this case does
not arise.

Now suppose S = PSU3(32), u = 6, and q = 5. Then S stabilises M and
hence S stabilises a set of points of size (qu − 1)/(2(q − 1)) = 1953. However,
by using GAP [11] one can calculate that S has the following orbit lengths on
points of PG(5, 5):

[1892, 10082, 1512].
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Since 1953 cannot be partitioned into these numbers, this case does not arise.

So we are left now with just two more cases: the “Classical examples” and
the “Extension field” examples, which can be unified naturally.

Reducible/classical and extension field examples

We have that ĜU preserves a (possibly trivial) field extension structure on U

as a u/b-dimensional subspace over GF(b) where b is a proper divisor of u =

(2/3)d. So ĜU 6 ΓL(2/3)d/b(q
b) and we can apply [4, Theorem 3.2] to ĜU ∩

GL(2/3)d/b(q
b) where qb, u/b, and u/b play the roles of q, d, and e respectively.

We simply have d/b = 6 and PSL2(qd/3) 6 ĜU . Let S = PSL2(qd/3) and note
that the preimage of S acts transitively on the non-zero vectors of V2(qd/3).
However, we have here that S stabilises a set of qd/3 + 1 subspaces, each of
dimension d/3 − 1, which is impossible for d/3 > 1. So we conclude that G is
irreducible.

4. The pseudo-ovoid case

A pseudo-ovoid of PG(d − 1, q) (where d is a multiple of 4) is a set of qd/2 + 1

subspaces of dimension d/4 − 1. Here we can also apply the results of [4], as
we did in the pseudo-oval case.

Theorem 4.1. Let q = pf where p is a prime and let d be an integer divisible by
4. If an insoluble subgroup G of PGLd(q) acts transitively on a pseudo-ovoid E of
PG(d−1, q), then E is elementary and arises from an elliptic quadric or Suzuki-Tits
ovoid.

Proof. LetH be the stabiliser of an element of E inG, and let Ĝ be a preimage of
G in GLd(q). Note that the number of elements of a pseudo-ovoid of PG(d−1, q)

is qe/2 + 1 where e = d. So there exists a subgroup Ĥ of Ĝ of index qd/2 + 1

such that the image of Ĥ in PGLd(q) is H. Therefore we can apply [4, Theorem
3.2] to Ĝ. First note that we can rule out the Reducible examples, Imprimitive
examples, and case (a) of the Extension field examples. Recall that by [18], we
can assume that d > 4. Hence we have ruled out the Classical and Symplectic
Type examples. Also note that d is a multiple of 4, and so in the Nearly simple
case, we have the following: q = 2, d = 12, and either

(a) A13 6 G 6 S13, or

(b) S = PSL2(25) 6 G 6 PΓL2(25), and S ∩H is isomorphic to S5 (there are
two such conjugacy classes of S).
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However in the first case, it is clear that G does not have a subgroup of
index 65. In the second case, we know by [13] that PSL2(25) has a unique 12-
dimensional irreducible representation (up to quasi-equivalence) over GF(2)

and it has the following orbit lengths on points:

[65, 3252, 650, 780, 1950].

Let B be the set of points covered by the pseudo-ovoid E of PG(11, 2). Then B
has size (qd/4 − 1)(qd/2 + 1) = (23 − 1)(26 + 1) = 455 and it must be a union of
orbits of S as G acts transitively on E . However, 455 cannot be partitioned into
the orbit lengths displayed above, and hence this case does not arise.

That leaves us with the Extension field examples. Here we have that Ĝ 6
ΓLd/b(q

b) where b is a divisor of d (where b 6= 1). If d/b > 2, We can apply [4,
Theorem 3.2] (for e/b even) and [4, Theorem 3.1] (for e/b odd) to Ĝ∩GLd/b(q

b)

with parameters d/b, e/b, and qb playing the roles of d, e, and q respectively. We
have the following subcases:

(i) d/b = 4 and Ω−4 (qd/4) P Ĝ ∩GLd/b(q
b);

(ii) d/b = 4, q is even, and Sz(qd/4) P Ĝ ∩GLd/b(q
b);

(iii) d/b = 3, qd/3 is a square, and SU3(qd/3) P Ĝ ∩GLd/b(q
b).

(i) Let us suppose we have the first case above, where d/b = 4 and E admits
PΩ−4 (qd/4). Let J = PΩ−4 (qd/4). It is a classical result, but can also be
found in [8], that PSL2(qd/2) (where d > 2) has a unique conjugacy class
of subgroups of index qd/2 + 1. Note that PΩ−4 (qd/4) is isomorphic to
PSL2(qd/2), and by [14, Proposition 4.3.6], there is a unique conjugacy
class of subgroups of PGLd(q) isomorphic to PSL2(qd/2). Therefore, there
is a unique conjugacy class of subgroups of PGLd(q) isomorphic to J .

Let ϕ : V4(qd/4) → Vd(q) denote the natural vector space isomorphism
here, and let Q be an elliptic quadric of V4(qd/4) admitting J . Let α and
β be two distinct points of Q. Then ϕ(α) and ϕ(β) are d/4-dimensional
subspaces of Vd(q). Note that J has a unique conjugacy class of subgroups
of index q2 + 1 (see [8]), and hence we can assume that the stabiliser of
an element E of E is identical to the stabiliser Jα. Now suppose we have
a third vector v which is neither α nor β. Then

|vJα | = |Jα : Jα,v| = |Jα : Jα,β||Jα,β : Jα,β,v| = qd/2|Jα,β : Jα,β,v|.

Now J is a Zassenhaus group and so Jα,β,v = 1. Therefore

|vJα | = qd/2
qd/2 − 1

gcd(2, qd/2 − 1)
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which is not a prime power. Now any Jα-invariant d/4-subspace of Vd(q)
is a union of orbits of Jα. Therefore, it follows that the only Jα-invariant
subspace of Vd(q) is ϕ(α). Since W is Jα-invariant, we have that W =

ϕ(α) and hence E is the image of Q under ϕ. Therefore, E is elementary
and arises from an elliptic quadric.

(ii) By a similar argument to that above, it is not difficult to show that E is
the image of a Suzuki-Tits ovoid under field reduction. The key steps to
note are that Sz(qd/4) is a Zassenhaus group, there is a unique conjugacy
class of subgroups of PGLd(q) isomorphic to Sz(qd/4), and Sz(qd/4) has a
unique conjugacy class of subgroups of index q2 + 1. In the seminal paper
of Suzuki [23, §15], it was shown that Sz(qd/4) is a Zassenhaus group and
has a unique conjugacy class of subgroups of index qd/2 + 1 and this is
the minimum non-trivial degree of Sz(qd/4). The uniqueness of its repre-
sentation in PGLd(q) needs more work. By a result of Lüneburg (see [16,
27.3 Theorem] or [15]), there is a unique conjugacy class of subgroups
of PGL4(qd/4) isomorphic to Sz(qd/4). Now by [14, Proposition 4.3.6],
there is a unique conjugacy class of subgroups of PGLd(q) isomorphic to
PGL4(qd/4). Therefore, there is a unique conjugacy class of subgroups of
PGLd(q) isomorphic to Sz(qd/4). Therefore, E is elementary and arises
from a Suzuki-Tits ovoid.

(iii) Now suppose we have the third case; d/b = 3, qd/3 is a square, and E
admits PSU3(qd/3). Now the smallest orbit of PSU3(qd/3) on nonzero
vectors consists of the non-singular vectors and has size (qd/3−1)(qd/2+1).
Since E covers (qd/4 − 1)(qd/2 + 1) vectors of Vd(q), and this number is
strictly smaller than the size of the smallest orbit of PSU3(qd/3), we see
that this case does not arise.

Suppose now that d/b = 2. Since Ĝ is an insoluble subgroup of ΓL2(qd/2),
it follows from [4, Lemma 5] that Ĝ contains SL2(qd/2). However, SL2(qd/2)

is transitive on nonzero vectors and hence does not stabilise a set of d/4
vector subspaces of size qd/2 + 1. Hence this case does not arise.

Remark 4.2. If a (presently unknown) pseudo-oval or pseudo-ovoid over GF(q)

admitting a soluble transitive group G exists, then G is meta-cyclic; indeed G is
a subgroup of ΓL1(qb), for an appropriate positive integer b.
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