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Abstract

We investigate caps in the projective Hjelmslev geometries PHG(RkR)

over chain rings R with |R| = q2, R/ radR ∼= Fq. We present a geometric
construction for caps using ovoids in the factor geometry PG(3, q) as well
as an algebraic construction that makes use of the Teichmüller group of
units in the Galois extension of certain chain rings. We prove upper bounds
on the size of a maximal cap in PHG(R4

R). It has an order of magnitude
q4. This bound extends to higher dimensions, but gives the rather rough
estimate q2k−4.
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1 Introduction

In this paper, we will investigate caps in the projective Hjelmslev geometries
PHG(RkR). There exists an extensive literature about caps in the projective
geometries PG(k, q). The same objects in Hjelmslev geometries have attracted
little or no attention despite the obvious connections to interesting areas as
linear codes over finite chain rings.

We restrict ourselves to geometries over chain rings with q2 elements and
residue field of order q. The reason for this is threefold. Geometries over rings
are structures that have less regularities than the usual projective geometries.
Taking the simplest possible chain rings, and hence the Hjelmslev geometries
∗This research has been supported by the Bulgarian NSRF under Contract M-1405/04.
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with the simplest possible structure, we settle for a problem that is to some ex-
tent tractable. Secondly, the nested structure of the projective Hjelmslev geome-
tries implies that results about caps in geometries over rings of large nilpotency
index will necessarily depend on results in geometries over ring with a smaller
index. Finally, there exists a classification for the chain rings R with |R| = q2,
R/ radR ∼= Fq .

There is some interest in this problem that comes from coding theory. The ex-
istence of a cap in a projective Hjelmslev geometry over Z4 implies the existence
of a corresponding linear code over Z4 (“cap code”) with dual Lee distance at
least four. Cap codes over other chain rings satisfy a similar lower bound for the
dual homogeneous distance. Large caps are associated to codes that are usually
good.

In Section 2 we give some basic facts about finite chain rings and projective
Hjelmslev geometries over such rings. In Section 3 we present several con-
structions for caps. In Section 4, we derive bounds on the size of a cap in the
projective Hjelmslev geometries PHG(RkR).

2 Basic facts on projective Hjelmslev geometries

A finite ring R (associative, with identity 1 6= 0, ring homomorphisms preserving
the identity) is called a left (resp. right) chain ring if its lattice of left (resp.
right) ideals forms a chain. It turns out that every left ideal is also a right ideal.
Moreover, if N = radR every proper ideal of R has the form N i = Rθi = θiR,
for any θ ∈ N \N2 and some positive integer i. The factors N i/N i+1 are one-
dimensional linear spaces over R/N . Hence, if R/N ∼= Fq and m denotes the
nilpotency index of N , the number of elements of R is equal to qm. For further
facts about chain rings we refer to [3, 14, 15].

As mentioned above, we consider chain rings of nilpotency index 2, i.e. chain
rings with N 6= (0) and N2 = (0). Thus we have always |R| = q2, where
R/N ∼= Fq . Chain rings with this property have been classified in [4, 17]. If
q = pr there are exactly r + 1 isomorphism classes of such rings. These are:

• for every σ ∈ AutFq the ring Rσ ∼= Fq [X ;σ]/(X2) of so-called σ-dual num-
bers over Fq with underlying set Fq × Fq, component-wise addition and mul-
tiplication given by (x0, x1)(y0, y1) =

(
x0y0, x0y1 + x1σ(y0)

)
;

• the Galois ring GR(q2, p2) ∼= Zp2 [X ]/(f(X)), where f(X) ∈ Zp2 [X ] is a monic
polynomial of degree r, which is irreducible modulo p.

The rings Rσ with σ 6= id are noncommutative. Further Rid is commutative
and charRσ = p for every σ. The Galois ring GR(q2, p2) is commutative and
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has characteristic p2. From now on we denote by R any finite chain ring of
nilpotency index 2.

Let R be a finite chain ring and consider the module M = RkR. Denote by
M∗ the set of all non-torsion vectors of M , i.e. M∗ = M \Mθ. Define sets P
and L by

P = {xR;x ∈M∗} ,
L = {xR+ yR;x, y linearly independent} ,

respectively, and take as incidence relation I ⊆ P × L set-theoretical inclusion.
Further, define a neighbour relation _̂ on the sets of points and lines of the
incidence structure (P ,L, I) as follows:

(N1) the points X,Y ∈ P are neighbours (notation X _̂ Y ) if there exist two
different lines incident with both of them;

(N2) the lines s, t ∈ L are neighbours (notation s _̂ t) if there exist two differ-
ent points incident with both of them.

Definition 2.1. The incidence structure Π = (P ,L, I) with the neighbour rela-
tion _̂ is called the (k− 1)-dimensional (right) projective Hjelmslev geometry
over R and is denoted by PHG(RkR).

The point set S ⊆ P is called a Hjelmslev subspace (or simply subspace)
of PHG(RkR) if for every two points X,Y ∈ S, there exists a line l incident
with X and Y that is incident only with points of S. The Hjelmslev subspaces of
PHG(RkR) are of the form {xR;x ∈ (M ′)∗}, whereM ′ is a free submodule ofM .
The (projective) dimension of a subspace is equal to the rank of the underlying
module minus 1.

It is easily checked that _̂ is an equivalence relation on each one of the sets
P and L. If [X ] denotes the set of all points that are neighbours to X = xR,
then [X ] consists of all free rank 1 submodules of xR+Mθ. Similarly, the class
[l] of all lines which are neighbours to l = xR + yR consists of all free rank 2
submodules of xR + yR+Mθ.

More generally, two subspaces S and T , dim S = s, dim T = t, s ≤ t, are
neighbours if

{[X ];X ∈ S} ⊆ {[X ];X ∈ T }.
In particular, we say that the point X is a neighbour of the subspace S if there
exists a point Y ∈ S with X _̂ Y . The neighbour class [S] contains all sub-
spaces of dimension s that are neighbours to S.

The next theorems give some insight into the structure of the projective
Hjelmslev geometries PHG(RkR) and are part of more general results [1, 5, 7,
11, 12, 13, 19].
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Theorem 2.2. Let Π = PHG(RkR) where R is a chain ring with |R| = q2, R/N ∼=
Fq. Then

(i) There are qk−1 · qk−1
q−1 points (hyperplanes) and q2(k−2) · (qk−1)(qk−1−1)

(q2−1)(q−1) lines
in Π;

(ii) every point (hyperplane) has qk−1 neighbours;

(iii) every subspace of dimension s − 1 is contained in exactly q(t−s)(k−t)[k−s
t−s
]
q

subspaces of dimension t − 1, where s ≤ t ≤ k and
[
n
k

]
q

denotes the q-ary
Gaussian binomial coefficient;

(iv) given a point P and a subspace S of dimension s − 1 containing P , there
exist exactly qs−1 points in S that are neighbours to P .

Note that the Hjelmslev spaces PHG(RkR) are 2-uniform in the sense of [5].
Denote by η the natural homomorphism from Rk to Rk/Rkθ and by η the map-
ping induced by η on the submodules of Rk. It is clear that for every point X
and every line l we have

[X ] = {Y ∈ P ; η(Y ) = η(X)} ,
[l] = {m ∈ L; η(m) = η(l)} .

Let us denote by P ′ (resp. L′) the set of all neighbour classes of points (resp.
lines). The following result is straightforward.

Theorem 2.3. The incidence structure (P ′,L′, I ′) with incidence relation I ′ de-
fined by

[X ] I ′ [l]⇐⇒ ∃Y ∈ [X ], ∃m ∈ [l] : Y I m

is isomorphic to the projective geometry PG(k − 1, q).

Let S0 be a fixed subspace in PHG(RkR) with dim S0 = s. Define the set P of
subsets of P by

P = {S ∩ [X ];X _̂ S0,S ∈ [S0]}.
The sets S ∩ [X ] are either disjoint or coincide. Define an incidence relation
I ⊂ P×L by

(S ∩ [X ])I l ⇐⇒ l ∩ (S ∩ [X ]) 6= ∅.
Let L(S0) be the set of all lines in L incident with at least one point in P. For the
lines l1, l2 ∈ L(S0) we write l1 ∼ l2 if they are incident (under I) with the same
elements of P. The relation ∼ is an equivalence relation under which L(S0)

splits into classes of equivalent lines. Denote by L a set of representatives of the
equivalence classes of lines in L(S0). The set of representatives L contains only
two types of lines: lines l with l _̂ S0 and lines l with l 6_̂S0.
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Theorem 2.4. The incidence structure (P,L, I |P×L) can be embedded into PG(k−
1, q).

A special case of this result is obtained if we take S0 to be a point. Given
Π = (P ,L, I) = PHG(RkR) and a point P ∈ P , let L(P ) be the set of all lines
in L incident with points in [P ]. For two lines s, t ∈ L(P ) we write s ∼ t if s
and t coincide on [P ]. Denote by L1 a complete list of representatives of the
lines from L(P ) with respect to the equivalence relation ∼. Then we have the
following result:

Theorem 2.5.
([P ],L1, I |[P ]×L1

) ∼= AG(k − 1, q).

Finally, let two points X1 and X2 in Π = PHG(RkR) be neighbours. Then any
two lines incident with both X1 and X2 are neighbours and belong to the same
class, [l] say. In such case we say that the neighbour class [l] has the direction of
the pair (X1, X2).

3 Constructions of caps in projective Hjelmslev ge-
ometries

Let Π = (P ,L, I) be a projective Hjelmslev space.

Definition 3.1. A set C of points in Π is called a cap if no three points from C

are collinear. A cap of cardinality n is also referred to as an n-cap.

First we give a construction of caps in the 3-dimensional projective Hjelmslev
space PHG(R4

R). Let [P1], [P2], . . . , [Pq2+1] be point classes that form an elliptic
quadric K in the factor geometry (P ′,L′, I ′) ∼= PG(3, q) (cf. Theorem 2.3).1 It
is well known that for each point [Pi] there exists a unique plane of (P ′,L′, I ′),
say [πi] that is tangent to K. The intersection πi ∩ [Pi] has the structure of
an affine plane isomorphic to AG(2, q) (cf. Theorem 2.5). Let Oi ⊂ πi ∩ [Pi],
i = 1, . . . , q2 + 1, be a set of points no three of which are collinear. It is a
straightforward check that the point set

C =

q2+1⋃

i=1

Oi

is a cap in PG(R4
R) for every chain ring R. If we choose the sets Oi to contain

the maximal possible number of points, i.e. q+ 2 for q even and q+ 1 for q odd,

1Actually, if q > 2 then K can be an arbitrary (q2 + 1)-cap.
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we obtain a cap of cardinality

|C| =
{

(q2 + 1)(q + 2) for q even;

(q2 + 1)(q + 1) for q odd.

Remark 3.2. For q = 2 this construction gives the largest cap. Suppose that there
exists a 21-cap C in PHG(R4

R), R = Z4 or F2[X ]/(X2). Assume first that there
exists a neighbour class of points, [X ] say, with |[X ] ∩ C| = 3. The three pairs
of points in [X ] determine three directions (classes of neighbour lines), which
do not contain points from C apart from the points in [X ]. The remaining four
neighbour classes of lines through [X ] contain at most four additional points
each. Hence |C| ≤ 3 + 4 · 4 = 19, a contradiction. Classes [X ] with |[X ] ∩ C| > 3

are ruled out in a similar way. Denote by λi the number of neighbour classes of
points [X ] with |[X ] ∩ C| = i, i = 0, 1, 2. Clearly,

λ0 + λ1 + λ2 = 15 ,

λ1 + 2λ2 = 21 .

Moreover,
(
λ0

2

)
≥ λ2 since every two-point class determines a couple of empty

classes. The above system does not have a solution which satisfies this inequal-
ity. Consequently there is no 21-cap in PHG(R4

R), where R is a chain ring with
four elements.

As shown in [10, Th. 12], a nice class of caps related to the generalized
Kerdock codes can be obtained in the projective Hjelmslev geometries of even
dimension over the chain rings of characteristic 4, i.e. GR(q2, 4). We shall now
derive a corresponding result for projective Hjelmslev geometries over Galois
rings of characteristic p2 > 4. The special case p = 3 has already been consid-
ered in [6].

Let q = pr be a prime power and denote the Galois ring GR(q2, p2) of cardi-
nality q2 and characteristic p2 by G. For every f ∈ N, the ring G has a unique
Galois extension Gf ∼= GR(q2f , p2) of degree f . It is known that Gf is a free
module of rank f over G. Hence Gf can be viewed as the underlying module of
the (f − 1)-dimensional projective Hjelmslev geometry over G. We denote this
geometry by PHG(Gf/G), i. e. PHG(Gf/G) = PHG(GGf ) ∼= PHG(Gf ).

The group G∗f of units of Gf contains a unique cyclic subgroup T ∗f of order

qf − 1, called the group of Teichmüller units. We set Tf = {x ∈ Gf ;xq
f

= x} =

T ∗f ∪{0} and abbreviate T1, T ∗1 as T resp. T ∗. Note that T ∗f = 〈η〉 for any η ∈ Tf
such that β = η + pGf is a primitive element of Gf/pGf ∼= Fqf .

Definition 3.3 (cf. [6, 10]). The set {Gηj | 0 ≤ j < (qf − 1)/(q − 1)} in
PHG(Gf/G) is called the Teichmüller set of Gf/G and is denoted by Tf .
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Since {ηj | 0 ≤ j < (qf − 1)/(q − 1)} is a set of coset representatives for
T ∗ in T ∗f , Tf contains exactly one point from each neighbour class. In case of
G = Z4, f odd, the linear code over Z4 associated with Tf (via the columns
of a generator matrix) is isomorphic to the shortened quaternary Kerdock code;
cf. [2, 16].

For the computations which follow we shall use the fact that GR(q2, p2) is iso-
morphic to the ring W2(Fq) of Witt vectors of length 2 over Fq which is defined
as the ring with underlying set Fq × Fq and operations

(a0, a1) + (b0, b1) =


a0 + b0, a1 + b1 −

p−1∑

j=1

1

p

(
p

j

)
aj0b

p−j
0


 , (1)

(a0, a1)× (b0, b1) = (a0b0, a
p
0b1 + bp0a1) . (2)

Hence we can identify G with W2(Fq) and Gf with W2(Fqf ). Viewed as
a subset of W2(Fqf ), the set Tf consists of all elements {a} := (a, 0), where
a ∈ Fqf , and for a = (a0, a1) ∈ W2(Fqf ) we have the p-adic representation a =

{a0}+{ap
−1

1 }p. The Teichmüller set ofGf/G becomes
{
G{βj} | 0 ≤ j < qf−1

q−1

}
,

where β is a fixed primitive element of Fqf .

The isomorphism GR(q2, p2) ∼= W2(Fq) and other basic facts about rings of
Witt vectors are described in [20, 17, 18, 10].

Lemma 3.4. Suppose a = (a0, a1), b = (b0, b1), c = (c0, c1) are elements of
W2(Fqf ) with a0 + b0 + c0 = 0. If p > 2 then

a+ b+ c =

(
0, a1 + b1 + c1 −

p−1∑

j=1

1

p

(
p

j

)
aj0b

p−j
0

)
. (3)

If p = 2 then a+ b+ c = (0, a1 + b1 + c1 + a0b0 + a2
0 + b20).

Proof. From (1) we get

a+ b+ c =

(
a0 + b0, a1 + b1 −

p−1∑

j=1

1

p

(
p

j

)
aj0b

p−j
0

)
+ (c0, c1)

=

(
0, a1 + b1 + c1 −

p−1∑

j=1

1

p

(
p

j

)
aj0b

p−j
0 −

p−1∑

j=1

1

p

(
p

j

)
(−c0)jcp−j0

)

=

(
0, a1 + b1 + c1 −

p−1∑

j=1

1

p

(
p

j

)
aj0b

p−j
0 − cp0 ·

p−1∑

j=1

1

p

(
p

j

)
(−1)j

)

(4)

For p > 2 the result follows, since
∑p−1

j=1

(
p
j

)
(−1)j = 0 in this case (as an identity

in Z). For p = 2 it is easily checked directly.
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Lemma 3.5. Let G = GR(q2, p2) be a Galois ring of characteristic p2 and f ≥ 3

be an integer. The following assertions are equivalent:

1. The Teichmüller set Tf in PHG(Gf/G) is a cap.

2. None of the polynomials

AXp +

p−1∑

s=1

1

p

(
p

s

)
Xs +B ∈ Fq [X ] (A,B ∈ Fq) (5)

has a root in Fqf \ Fq.

Proof. Throughout the proof we assume p > 2. The case p = 2 is similar and
can be done without effort by inspecting the proof of [10, Th. 12].

Suppose P1 = Gηi, P2 = Gηj , P3 = Gηk are distinct (and hence pairwise
linearly independent) points in Tf . The points P1, P2, P3 are collinear iff there
exist units u, v, w ∈ G∗ with uηi + vηj + wηk = 0. W. l. o. g., let k = 0, w = 1.
Viewing this as an equation in W2(Fqf ), we have (1, 0)+(u0, u1){βi}+(v0, v1)×
{βj} = (0, 0), where now u0, u1, v0, v1 ∈ Fq , u0v0 6= 0. By Lemma 3.4 this is
equivalent to

1 + u0β
i + v0β

j = 0 ,

u1β
ip + v1β

jp −
p−1∑

s=1

1

p

(
p

s

)
us0β

is = 0 .
(6)

Writing α = u0β
i, α′ = v0β

j , u′1 = u1/u
p
0, v′1 = v1/v

p
0 and substituting α′p =

−1− αp into the second equation, we get

(u′1 − v′1)αp −
p−1∑

s=1

1

p

(
p

s

)
αs − v′1 = 0.

We must have α ∈ Fqf \ Fq, since P1 = Gα 6= P3 = G1. With A := v′1 − u′1,
B := v′1 this proves (2)=⇒(1). For the reverse conclusion we need only to check
that the points P1 = Gα, P2 = Gα′, P3 = G1 obtained from a root α ∈ Fqf \Fq of
(5) are distinct. (Going backwards through the above computation easily gives
that P1, P2, P3 are collinear.) Since α′ = −1−α /∈ Fq and α′/α = −α−1−1 /∈ Fq,
this is indeed the case, and the lemma is proved.

Theorem 3.6. Let G = GR(q2, p2) be a Galois ring of characteristic p2 and f ≥ 3

be an integer.

1. If every prime divisor of f is greater than p, then the Teichmüller set Tf is a
cap in PHG(Gf/G).
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2. If f is even, Tf is never a cap.

Proof. If one of the polynomials in (5) has a root α ∈ Fqf \ Fq , then the degree
|Fq [α] : Fq| ∈ {2, 3, . . . , p} is a divisor of f = |Fqf : Fq|. Hence f has a prime
divisor that is not greater than p. In view of Lemma 3.5 this proves (1). Now
suppose that f is even, and choose an element α ∈ Fqf which generates a
quadratic extension of Fq. Then Fq[α] = {Aαp + B;A,B ∈ Fq}, and so there
exist A,B ∈ Fq such that

Aαp +B = −
p−1∑

s=1

1

p

(
p

s

)
αs.

Again by Lemma 3.5, the set Tf is not a cap in PHG(Gf/G).

Remark 3.7. Theorem 3.6 shows in particular that for a Galois ring G of char-
acteristic 4 and an integer f ≥ 3 the Teichmüller set Tf is a cap in PHG(Gf/G)

if and only if f is odd. For a Galois ring G of characteristic 9 and integers f ≡ 3

(mod 6) it can be ruled out with the help of Lemma 3.5 that Tf is a cap in
PHG(Gf/G). (The proof uses the fact that AX3 + X2 + X − A is irreducible
over F3r if A + A3 + · · · + A3r−1 6= 0.) Hence for G = GR(q2, 9) the set Tf is
a cap in PHG(Gf/G) if and only if gcd(f, 6) = 1. For odd q the Teichmüller set
T4 in PHG(G4/G), G = GR(q2, p2), has the same size as the caps constructed
at the beginning of this section, but T4 is never a cap according to Theorem 3.6.

The following result allows to double the size of a known cap in PHG(RkR)

in the geometry PHG(Rk+1
R ).

Theorem 3.8. Let C be a cap in PHG(RkR). The set

C′ = {(c1, . . . , ck, 0) | (c1, . . . , ck) ∈ C} ∪ {(c1, . . . , ck, 1) | (c1, . . . , ck) ∈ C}

is a cap in PHG(Rk+1
R ).

4 Upper bounds for caps in projective Hjelmslev
geometries

In this section we derive upper bounds for the cardinality of caps in 3-dimensional
projective Hjelmslev spaces.

Theorem 4.1. Let C be a cap in PHG(R4
R), where R is a chain ring with |R| = q2,

R/ radR ∼= Fq. Then |C| ≤ q4 + 2q2 + q.
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Proof. We start by noting that

|C| ≤ u(q3 + q2 + q + 1), (7)

where u = max
{
|C∩ [X ]|; [X ] ∈ P ′

}
. Let [X ] be a neighbour class of points with

|C ∩ [X ]| = u. The pairs of points from [X ] determine at least u− 1 directions.
All these neighbour classes of lines contain no points from C (apart from the
points in [X ]). Each one of the remaining neighbour classes of lines contains at
most q2 points from C. This implies that

|C| ≤ u+ (q2 + q + 1− (u− 1))q2 = q4 + q3 − (u− 2)q2 + u. (8)

By (7) and (8), we obtain

|C| ≤ max
1≤u≤q2+1

min{u(q3 + q2 + q + 1), q4 + q3 − (u− 2)q2 + u}.

The maximum value is obtained for u = q and gives the upper bound |C| ≤
q4 + 2q2 + q. (Our reasoning remains valid in the case q = 2, even so [X ] is itself
a cap of size 8 in this case.)

In the case when q is odd we can improve on this bound using the fact that
a cap (arc) in the projective Hjelmslev plane PHG(R3

R) has at most q2 points
[8, 9].

Theorem 4.2. Let C be a cap in PHG(R4
R), where R is a chain ring with |R| = q2,

R/ radR ∼= Fq , q odd. Then |C| ≤ q4 − q2 + 1.

Proof. Let P be a point of C for which u = |C ∩ [P ]| is maximal, and let π be a
plane such that P 6_̂ π. Define the projection ϕ from P onto π by

ϕ :

{
P \ [P ] → π ,

Q 7→ π ∩ 〈P,Q〉 ,

where P is the point set of PHG(R4
R) and 〈P,Q〉 is the (unique) line through P

and Q. Clearly, ϕ(Q) is a point if Q 6_̂P . If Q _̂ P , ϕ(Q) is a set of q collinear
points that are neighbours. The lines in π are images of the planes through P .
Moreover two lines in π are neighbours iff their preimages are neighbours in
PHG(R4

R).

Define the induced arc Cϕ by

Cϕ = {ϕ(Q);Q ∈ P \ [P ]}.
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Every plane in PHG(R4
R) contains at most q2 points [8, 9]. Hence Cϕ is a

(n− 1 + q(u− 1), r)-arc in π ∼= PHG(R3
R), where r ≤ q2 − 1. Now by Corollary

1 from [9]

|Cϕ| ≤ max
1≤i≤q2

min{i(q2 +q+1), q2(q2−2)+q(n−i)+i, q(q+1)(q2−1+i−di/qe}.

The value of the right-hand side turns out to be q4−2q, whence n−1+q(u−1)≤
q4 − 2q.

Now, as in the proof of Theorem 4.1,

|C| ≤ max
1≤u≤q2+1

min{u(q3 + q2 + q + 1), q4 − (u+ 1)q + 1}.

The maximum value is obtained for u = q − 1 and gives |C| ≤ q4 − q2 + 1.

Remark 4.3. The order of magnitude of the upper bounds for the cardinality of
a cap in PHG(R4

R), where |R| = q2, is approximately q4. At the same time, we
have constructions that give caps with approximately q3 points. The argument
used in the proof of Theorem 4.1 can be used to get a bound in Hjelmslev
geometries of an arbitrary dimension. As expected, this bound stated in the
theorem below turns out to be rather rough.

Theorem 4.4. Let C be a cap in PHG(RkR), where R is a chain ring with |R| = q2,
R/ radR ∼= Fq. Then |C| ≤ q2k−4 +O(q2k−6).

Proof. Set u = max
{
|C ∩ [X ]|; [X ] ∈ P ′

}
. Clearly,

|C| ≤ u(qk−1 + qk−2 + . . .+ 1). (9)

On the other hand, we get as in (8)

|C| ≤ u+(qk−2 + . . .+1− (u−1))qk−2 = q2k−4 +q2k−5 +qk−1− (u−2)qk−2 +u.

(10)
Now

|C| ≤ max
1≤u≤qk−2

min{u(qk−1+qk−2+. . .+1), q2k−4+q2k−5+qk−1−(u−2)qk−2+u}.

The maximum value is obtained for the lower or upper integer part of u =

(q2k−5 + . . .+ qk−2 + 2qk−3)/(qk−2 + 2qk−3 + qk−4 + . . .+ 1).
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