Base subsets of the Hilbert Grassmannian

Mark Pankov

Abstract

Let H be a separable Hilbert space. We consider the Hilbert Grassmannian $G_\infty(H)$ consisting of closed subspaces having infinite dimension and codimension and show that every bijective transformation of $G_\infty(H)$ preserving the class of base subsets is induced by an element of $\text{GL}(H)$ or it is the composition of the transformation induced by an element of $\text{GL}(H)$ and the bijection sending a subspace to its orthogonal complement.

Keywords: Hilbert Grassmannian, base subset, infinite-dimensional topological projective space

MSC 2000: 46C05, 51E24

1. Introduction

We start from the classical Grassmannian $G_k(V)$ consisting of all k-dimensional subspaces of an n-dimensional vector space V. A base subset of $G_k(V)$ is the set of $\binom{n}{k}$ distinct k-dimensional subspaces spanned by vectors of a certain base of V. This construction is closely related with Tits buildings [5]: the Grassmannians $G_k(V)$ ($k = 1, \ldots, n - 1$) are the shadow spaces of the building associated with the group $\text{GL}(V)$ and their base subsets are the shadows of the corresponding apartments. It was proved in [2] that transformations of $G_k(V)$ preserving the class of base subsets are induced by a semilinear isomorphism of V to itself or to V^* (the second possibility can be realized only for the case when $n = 2k$); a more general result can be found in [3].

Suppose that V is an infinite-dimensional vector space and $\dim V = \aleph$. The group $\text{GL}(V)$ acts on the set S of all subspaces of V and the orbits of this action are called Grassmannians. There are the following three types of Grassmannians:

$$G_\alpha(V) := \{ S \in S \mid \dim S = \alpha, \ \text{codim} S = \aleph \}$$
As in the finite-dimensional case, we define base subsets of Grassmannians. It was shown in [4] that every bijective transformation of $G_\alpha(V)$, $\alpha < \aleph$ is induced by a semilinear automorphism of V. The methods of [4] cannot be applied to other Grassmannians; this is related with the fact that V and V^* have different dimensions and the duality principles do not hold for infinite-dimensional vector spaces.

Now suppose that V is a topological vector space. Denote by Π_V the projective space associated with V. The topology of V induces a topology on Π_V and we talk about an infinity-dimensional topological projective space. A collineation of Π_V to itself will be called closed if it preserves the class of closed subspaces. It follows from Mackey’s results [1] that every closed collineation of Π_V to itself is induced by an invertible bounded linear operator if V is a real normed space. In the general case, closed collineations are not determined.

In the present note we give a geometrical characterization of closed collineations of the projective space over a separable Hilbert space.

2. Result

Let H be a separable Hilbert space (real or complex). We write $G_\infty(H)$ for the Hilbert Grassmannian consisting of all closed subspaces with infinite dimension and codimension. Let $B = \{x_i\}_{i \in \mathbb{N}}$ be a base of H (possibly non-orthogonal). The set of all elements of $G_\infty(H)$ spanned by subsets of B is called the base subset of $G_\infty(H)$ associated with (or defined by) the base B.

Every closed collineation of Π_H to itself induces a bijective transformation of $G_\infty(H)$ preserving the class of base subsets. The bijection

$$\circ : G_\infty(H) \to G_\infty(H)$$

sending subspaces to their orthogonal complements also preserves the class of base subsets.

Theorem 2.1. If f is a bijective transformation of $G_\infty(H)$ preserving the class of base subsets, then f is induced by a closed collineation of Π_H to itself or it is the composition of the transformation \circ and the transformation induced by a closed collineation of Π_H to itself.
3. Preliminaries

Let \(B = \{ x_i \}_{i \in \mathbb{N}} \) be base of \(H \), and let \(\mathcal{B} \) be the associated base subset of \(G_{\infty}(H) \). We denote by \(P_i \) the 1-dimensional subspace containing \(x_i \) and write \(\mathcal{B}_{+i} \) and \(\mathcal{B}_{-i} \) for the sets of all elements of \(\mathcal{B} \) which contain \(P_i \) or do not contain \(P_i \), respectively. Then \(\mathcal{B}_{-i} \) consists of all elements of \(\mathcal{B} \) contained in the hyperplane

\[
S_i := \overline{B \setminus \{x_i\}}.
\]

We say that \(X \subset \mathcal{B} \) is an exact subset if there is only one base subset of \(G_{\infty}(H) \) containing \(X \); otherwise, \(X \) is said to be inexact.

Remark 3.1. It is trivial that \(X \) is exact if and only if for each \(i \in \mathbb{N} \) the intersection of all \(U \in X \) containing \(P_i \) coincides with \(P_i \). For example,

\[
\mathcal{R}_{ij} := (\mathcal{B}_{+i} \cap \mathcal{B}_{+j}) \cup \mathcal{B}_{-i}, \quad i \neq j
\]

is an inexact subset. Indeed, the intersection of all elements containing \(P_k \) coincides with \(P_k \) if \(k \neq i \), however for \(k = i \) this intersection is \(P_i + P_j \). Every element of \(\mathcal{B} \setminus \mathcal{R}_{ij} \) intersects \(P_i + P_j \) by \(P_i \). This means that

\[
\mathcal{R}_{ij} \cup \{U\}
\]

is exact and the inexact subset \(\mathcal{R}_{ij} \) is maximal. Conversely, every maximal inexact subset of \(\mathcal{B} \) coincides with certain \(\mathcal{R}_{ij} \) (the proof of this fact is similar to the proof of Lemma 1 in [4]).

Let \(\mathcal{B}' \) be the base subset of \(G_{\infty}(H) \) defined by a base \(\mathcal{B}' = \{ x'_i \}_{i \in \mathbb{N}} \). We write \(\mathcal{B}'_{+i} \) and \(\mathcal{B}'_{-i} \) for the sets of all elements of \(\mathcal{B}' \) which contain \(P'_i \) or do not contain \(P'_i \) (respectively); here \(P'_i \) is the 1-dimensional subspace containing \(x'_i \). We also define

\[
S'_i := \overline{B' \setminus \{x'_i\}}.
\]

A bijection \(g : \mathcal{B} \to \mathcal{B}' \) is called special if \(g \) and \(g^{-1} \) map inexact subsets to inexact subsets.

Lemma 3.2. If \(g : \mathcal{B} \to \mathcal{B}' \) is a special bijection then there exists a bijective transformation \(\delta : \mathbb{N} \to \mathbb{N} \) such that

\[
g(\mathcal{B}_{+i}) = \mathcal{B}'_{+\delta(i)}, \quad g(\mathcal{B}_{-i}) = \mathcal{B}'_{-\delta(i)} \quad \forall \ i \in \mathbb{N}
\]

or

\[
g(\mathcal{B}_{+i}) = \mathcal{B}'_{-\delta(i)}, \quad g(\mathcal{B}_{-i}) = \mathcal{B}'_{+\delta(i)} \quad \forall \ i \in \mathbb{N}.
\]

Proof. This is similar to the proof of Lemma 3 in [4].
We say that a special bijection $g : B \to B'$ is of first type if the first equality of Lemma 3.2 holds; otherwise, g is said to be of second type.

Lemma 3.3. Let g and δ be as in the previous lemma. Let also $S, U \in B$. If g is of first type then

$$S \cap U = P_i \Leftrightarrow g(S) \cap g(U) = P'_{\delta(i)} \quad \text{and} \quad S + U = S_i \Leftrightarrow g(S) + g(U) = S'_{\delta(i)}.$$

If g is of second type then

$$S \cap U = P_i \Leftrightarrow g(S) + g(U) = S'_{\delta(i)} \quad \text{and} \quad S + U = S_i \Leftrightarrow g(S) \cap g(U) = P'_{\delta(i)}.$$

Proof. The equality $S \cap U = P_i$ holds if and only if S, U belong to B_{+i} and there is no $j \neq i$ such that B_{+j} contains both S, U. Similarly, we have $S + U = S_i$ if and only if S, U belong to B_{-i} and there is no $j \neq i$ such that B_{-j} contains both S, U. Lemma 3.2 gives the claim.

For every 1-dimensional subspace P we denote by $[P]$ the set of all elements of $G_\infty(H)$ containing P. If S is a closed hyperplane then we write $[S]$ for the set of all elements of $G_\infty(H)$ contained in S.

Lemma 3.4. For any $i \in \mathbb{N}$ and any $U \in [P_i] \setminus \mathcal{B}$ there exist $M, N \in B_{+i}$ such that

$$M \cap N = P_i, \quad \text{codim} M + N > 1,$$

and M, N, U are contained in a certain base subset of $G_\infty(H)$.

Proof. Let $\{U_j\}_{j \in X} \subset \mathbb{N}$ be a countable collection of elements of \mathcal{B} such that

$$U_k \cap U_m = 0 \quad \text{if} \quad k \neq n.$$

For every $j \in X$ we choose $P_j \in U_j \setminus U$ (this is possible, since $U \neq U_j$) and denote by T the element of \mathcal{B} spanned by P_i and all $P_j, j \in X$. Then $U \cap T = P_i$. We take any $M, N \in B_{+i}$ contained in T and such that $M \cap N = P_i$. These subspaces are as required.

Since $\circ|_B : B \to \circ(B)$ is a special bijection of second type, we have the following dual version of Lemma 3.4.

Lemma 3.5. For any $i \in \mathbb{N}$ and any $U \in [S_i] \setminus \mathcal{B}$ there exist $M, N \in B_{-i}$ such that

$$M + N = S_i, \quad \text{dim} M \cap N > 1,$$

and M, N, U are contained in a certain base subset of $G_\infty(H)$.

4. Proof of the theorem

Let \(f \) be a bijective transformation of \(G_\infty(H) \) preserving the class of base subsets. We consider an arbitrary base subset \(B \subset G_\infty(H) \). Then \(B' := f(B) \) is a base subset and \(f|_B : B \to B' \) is a special bijection. Suppose that \(B = \{x_i\}_{i \in \mathbb{N}} \) and \(B' = \{x'_i\}_{i \in \mathbb{N}} \) are bases associated with \(B \) and \(B' \), respectively. Let \(P_i, P'_i, S_i, S'_i \) and \(\delta : \mathbb{N} \to \mathbb{N} \) be as in the previous section. It is clear that we can assume that \(\delta \) is identical. We have to consider the following possibilities:

(A) \(f|_B \) is a special bijection of first type,

(B) \(f|_B \) is a special bijection of second type.

Case (A). First we claim that

\[
f([P_i]) = [P'_i] \quad \forall \, i \in \mathbb{N}.
\]

Let \(U, M, N \) be as in Lemma 3.4. By Lemma 3.3,

\[
f(M) \cap f(N) = P'_i, \quad \operatorname{codim} f(M) + \operatorname{codim} f(N) > 1. \tag{1}
\]

If \(\tilde{B} \) is a base subset containing \(U, M, N \) then (1) together with Lemma 3.3 show that the restriction of \(f \) to \(\tilde{B} \) is a special bijection of first type. Bases associated with \(\tilde{B} \) and its \(f \)-image contain vectors lying in \(P_i \) and \(P'_i \) (respectively), and Lemma 3.2 implies that \(f(U) \) belongs to \([P'_i] \). Thus \(f([P_i]) \subset [P'_i] \). Since \(f^{-1} \) preserves the class of base subsets, we can also prove the inverse inclusion. The claim follows.

Using Lemma 3.5 we show that

\[
f([S_i]) = [S'_i] \quad \forall \, i \in \mathbb{N}.
\]

For any 1-dimensional subspace \(P \) there exists \(S_i \) which do not contain \(P \). We consider a base \(\tilde{B} \) of \(H \) such that each vector of \(\tilde{B} \) is contained in \(S_i \) or \(P \). The latter equality guarantees that the restriction of \(f \) to the associated base subset is a special bijection of first type, and arguments given above imply the existence of a 1-dimensional subspace \(P' \) such that \(f([P]) = [P'] \).

Similarly, for every closed hyperplane \(S \) we choose \(P_i \notin S \) and establish the existence of a closed hyperplane \(S' \) such that \(f([S]) = [S'] \).

Therefore, \(f \) gives a closed collineation of \(\Pi_H \). This collineation induces \(f \).

Case (B). Since \(\circ f|_B \) is a special bijection of first type, \(\circ f \) is induced by a closed collineation.
Acknowledgment

The result of this paper was presented on 32. Arbeitstagung über Geometrie und Algebra (9 – 11 February, 2006, Hamburg). The author thanks the organizers (A. Blunck, H. Kiechle, A. Kreuzer, H.-J. Samaga, H. Wefelscheid) for the invitation and financial support.

References

Mark Pankov

DEPARTMENT OF MATHEMATICS AND INFORMATION TECHNOLOGY, UNIVERSITY OF WARMIA AND MAZURY, ŻÓLNIERSKA 14A, 10-561 OLSZTYN, POLAND
e-mail: pankov@matman.uwm.edu.pl